WO2018003958A1 - Heat sink structure - Google Patents

Heat sink structure Download PDF

Info

Publication number
WO2018003958A1
WO2018003958A1 PCT/JP2017/024069 JP2017024069W WO2018003958A1 WO 2018003958 A1 WO2018003958 A1 WO 2018003958A1 JP 2017024069 W JP2017024069 W JP 2017024069W WO 2018003958 A1 WO2018003958 A1 WO 2018003958A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
heat pipe
heating element
planar
tubular
Prior art date
Application number
PCT/JP2017/024069
Other languages
French (fr)
Japanese (ja)
Inventor
義勝 稲垣
川畑 賢也
博史 青木
大輝 竹村
Original Assignee
古河電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2016131803A external-priority patent/JP6266044B2/en
Priority claimed from JP2016131802A external-priority patent/JP6574404B2/en
Application filed by 古河電気工業株式会社 filed Critical 古河電気工業株式会社
Priority to CN201790000986.XU priority Critical patent/CN209524789U/en
Publication of WO2018003958A1 publication Critical patent/WO2018003958A1/en
Priority to US16/237,283 priority patent/US20190137187A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0275Arrangements for coupling heat-pipes together or with other structures, e.g. with base blocks; Heat pipe cores
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0233Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes the conduits having a particular shape, e.g. non-circular cross-section, annular
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/04Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/367Cooling facilitated by shape of device
    • H01L23/3672Foil-like cooling fins or heat sinks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/42Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
    • H01L23/427Cooling by change of state, e.g. use of heat pipes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/46Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids
    • H01L23/467Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids by flowing gases, e.g. air
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2029Modifications to facilitate cooling, ventilating, or heating using a liquid coolant with phase change in electronic enclosures
    • H05K7/20336Heat pipes, e.g. wicks or capillary pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0028Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for cooling heat generating elements, e.g. for cooling electronic components or electric devices
    • F28D2021/0029Heat sinks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2250/00Arrangements for modifying the flow of the heat exchange media, e.g. flow guiding means; Particular flow patterns
    • F28F2250/08Fluid driving means, e.g. pumps, fans

Definitions

  • the present invention relates to a heat sink structure excellent in cooling performance for a plurality of heating elements installed in a narrow internal space, for example, an internal space having a small dimension in the thickness direction.
  • the present invention also relates to a heat sink structure excellent in cooling performance for a heating element installed in a narrow internal space.
  • a planar heat pipe may be used as a cooling means for electronic components installed in a narrowed internal space.
  • Patent Document 1 since the flat heat pipe is bent by the pressing of the pressing member, that is, deformed in the vertical direction with respect to the flat surface, in the flat heat pipe with a thin container, the internal space In particular, the space in the thickness direction is blocked or narrowed, and there is a problem that the heat transport characteristic which is a function as a heat pipe is impaired.
  • Patent Document 1 when cooling a plurality of heating elements, flat heat pipes that are separate from each other are connected to the respective heating elements, and the flat heat pipes are respectively tubular. It needs to be connected to a second heat pipe, which is a main heat pipe, having a container. Therefore, the dimensions of the flat heat pipe must be adjusted according to the position of the heating element, and there is a problem that the number of parts increases and the structure becomes complicated.
  • the present invention reliably prevents the internal space of the planar heat pipe from being blocked or narrowed, and has an excellent heat transport characteristic, and a narrow internal space with a simple configuration. It is an object of the present invention to provide a heat sink structure that can uniformly cool a plurality of heating elements installed in a heat sink. In addition, the present invention exhibits excellent cooling performance by having an excellent heat transport property and a function as a heat equalizing plate for a heating element installed in a narrowed internal space with a simple configuration. An object is to provide a heat sink structure.
  • aspects of the present invention include a planar heat pipe that is mounted on a plurality of heating elements and thermally connected to the plurality of heating elements, and heat is generated by a heat radiating unit and a heat receiving unit of the planar heat pipe. And a heat sink structure having a tubular heat pipe connected thereto.
  • the planar heat pipe is mounted on the plurality of heating elements, so that it is thermally connected to the plurality of heating elements, and is fixed to the heating element.
  • part to which the heat generating body was thermally connected among planar heat pipes functions as a heat receiving part.
  • part to which the tubular heat pipe was thermally connected among planar heat pipes functions as a thermal radiation part.
  • a portion where the planar heat pipe is thermally connected functions as a heat receiving portion.
  • the plurality of heating elements are thermally connected to the planar heat pipe, the plurality of heating elements are thermally connected to one planar heat pipe, that is, the same planar heat pipe.
  • An aspect of the present invention is a heat sink structure in which a heat exchange means is provided in a heat radiating portion of the tubular heat pipe.
  • An aspect of the present invention is a heat sink structure in which the heat exchanging means has heat radiating fins.
  • An aspect of the present invention is a heat sink structure in which the heat exchange means and / or the heat radiating portion of the tubular heat pipe is cooled by cooling air from a blower fan.
  • An aspect of the present invention is a heat sink structure in which a biasing member is provided on the planar heat pipe, and the biasing member is fixed to a support member of the heating element.
  • An aspect of the present invention is a heat sink structure including a planar heat pipe and a tubular heat pipe thermally connected to the planar heat pipe, and the planar heat pipe and the tubular in a plan view.
  • This is a heat sink structure in which a heating element is thermally connected at a position where heat pipes overlap.
  • the heating element is connected to the flat heat pipe or the tubular heat pipe.
  • plan view means the aspect visually recognized from the perpendicular direction with respect to the plane part of a planar heat pipe.
  • An aspect of the present invention is a heat sink structure in which the tubular heat pipe is arranged in the direction of the heating element rather than the planar heat pipe.
  • the heating element is connected to the tubular heat pipe.
  • An aspect of the present invention is a heat sink structure in which the planar heat pipe is arranged in the direction of the heating element rather than the tubular heat pipe.
  • a heat generating body is connected to a planar heat pipe.
  • An aspect of the present invention is a heat sink structure in which a heat exchange means is provided in a heat radiating portion of the tubular heat pipe.
  • An aspect of the present invention is a heat sink structure in which the heat exchanging means has a heat radiation fin.
  • An aspect of the present invention is a heat sink structure in which the heat exchange means and / or the heat radiating portion of the tubular heat pipe is cooled by cooling air from a blower fan.
  • the planar heat pipe is placed on the plurality of heating elements and thermally connected to the plurality of heating elements, the internal space of the planar heat pipe is blocked. And narrowing can be reliably prevented, and as a result, excellent heat transport characteristics can be exhibited.
  • the plurality of heating elements are thermally connected to one planar heat pipe, the number of parts of the planar heat pipe can be reduced and the structure can be simplified.
  • a plurality of heating elements are thermally connected to one flat heat pipe, and the flat heat pipe heats a tubular heat pipe having excellent heat transport characteristics in a predetermined direction. Therefore, even if the heat generation amounts of the plurality of heat generating elements are different, the flat heat pipe can equalize the heat generating elements, and thus the cooling of the heat generating elements can be made uniform.
  • the heating element is thermally connected to the planar heat pipe, even in a narrow inner space, for example, a heating element installed in an inner space having a small dimension in the thickness direction, Can be cooled reliably.
  • the heat exchange means is provided in the heat radiating portion of the tubular heat pipe, so that the heat radiating characteristic of the tubular heat pipe is improved, and even a heating element installed in a narrow internal space is reliably cooled. it can.
  • the heat sink structure of the present invention can exhibit excellent cooling performance with respect to the heating element by having excellent heat transport characteristics and a function as a soaking plate.
  • the heating elements having a relatively small heating value are Since it can cool with the planar heat pipe which has a function, the heat transport amount of a tubular heat pipe can be reduced by that much.
  • the number of heating elements that use a planar heat pipe and are thermally connected is not particularly limited, heat generated in a narrowed internal space with a simple configuration. Excellent cooling performance for the body.
  • the tubular heat pipe is disposed in the direction of the heating element rather than the planar heat pipe, so that the heat of the heating element is smoothly transferred to the tubular heat pipe, and the The heat from the heating element transmitted to the flat heat pipe is diffused on the surface by the function of the flat plate heat pipe as a soaking plate, thereby increasing the heat radiation area. Therefore, in the said aspect, the amount of heat transport of a tubular heat pipe can be reduced, and by extension, a tubular heat pipe can be flattened (thinned) and thinned. Thus, since the tubular heat pipe can be flattened and thinned, the heat sink structure can be further downsized.
  • the planar heat pipe is arranged in the direction of the heating element rather than the tubular heat pipe, so that the heat of the heating element is first brought about by the function as the soaking plate of the planar heat pipe. Since it is transmitted to the tubular heat pipe after being diffused upward, it is possible to prevent hot spots from occurring in the planar heat pipe. Thus, since a hot spot can be prevented from occurring in the planar heat pipe, excellent cooling performance can be exhibited for the heating element.
  • the heat exchange means is provided in the heat radiating portion of the tubular heat pipe, so that the heat radiating characteristic of the tubular heat pipe is improved, and even a heating element installed in a narrow internal space is reliably cooled. it can.
  • the heat sink structure 1 according to the first embodiment includes a planar heat pipe 10 and a tubular heat pipe 12 thermally connected to the planar heat pipe 10. .
  • the planar container 11 of the planar heat pipe 10 and the tubular container 13 of the tubular heat pipe 12 are in direct contact with each other so that the planar heat pipe 10 and the tubular heat pipe 12 are thermally connected. Yes.
  • a plurality of heating elements mounted on the substrate 102 are thermally connected to the planar heat pipe 10.
  • the first heating element 100 and the second heating element 101 are thermally connected to the same planar heat pipe 10.
  • the first heating element 100 and the second heating element 101 are thermally connected via the planar heat pipe 10.
  • a portion of the flat heat pipe 10 where the first heat generating body 100 and the second heat generating body 101 are thermally connected functions as a heat receiving portion of the flat heat pipe 10.
  • the planar heat pipe 10 is thermally connected to the first heating element 100 and the second heating element 101 by being placed on the first heating element 100 and the second heating element 101, and It has been fixed.
  • the flat heat pipe 10 may be placed so as to be in direct contact with the first heat generating body 100 and the second heat generating body 101. 10 may be inserted between the first heating element 100 and the second heating element 101.
  • the peripheral edge of the planar heat pipe 10 that is a predetermined distance away from the portion of the planar heat pipe 10 where the first heating element 100 and the second heating element 101 are thermally connected.
  • One end portion 14 of the tubular heat pipe 12 is thermally connected to the portion.
  • one tubular heat pipe 12 is thermally connected to the peripheral portion of the planar heat pipe 10.
  • a portion where one end 14 of the tubular heat pipe 12 is thermally connected functions as a heat radiating portion of the flat heat pipe 10.
  • the method of thermally connecting the planar heat pipe 10 and the tubular heat pipe 12 is not particularly limited.
  • the tubular container 13 of the tubular heat pipe 12 is soldered to the planar container 11 of the planar heat pipe 10.
  • the flat heat pipe 10 and the tubular heat pipe 12 can be thermally connected by fixing by attaching, caulking, or the like.
  • the one end portion 14 of the tubular heat pipe 12 thermally connected to the planar heat pipe 10 functions as a heat receiving portion of the tubular heat pipe 12.
  • portions of the tubular heat pipe 12 other than the one end portion 14, that is, the center portion 15 and the other end portion 16 are not in contact with the planar heat pipe 10.
  • the other end portion 16 of the tubular heat pipe 12 functions as a heat radiating portion of the tubular heat pipe 12.
  • the tubular heat pipe 12 may be bent as shown in FIGS. 1 and 2 or may be used in a linear shape.
  • the tubular heat pipe 12 may be partially or entirely flattened.
  • the entire tubular heat pipe 12 including the heat receiving portion is flattened.
  • one end portion 14 (heat receiving portion) of the tubular heat pipe 12 extends along the planar direction of the planar heat pipe 10. That is, one end 14 of the tubular heat pipe 12 extends along the planar direction of the planar heat pipe 10 in plan view.
  • the central portion 15 and the other end portion 16 of the tubular heat pipe 12 also extend along the planar direction of the planar heat pipe 10, similarly to the one end portion 14. Therefore, the heat transport direction of the tubular heat pipe 12 is substantially parallel to the planar direction of the planar heat pipe 10.
  • a heat radiating fin 17 is attached to the other end portion 16 of the tubular heat pipe 12 (that is, a heat radiating portion of the tubular heat pipe 12) as heat exchange means.
  • a blower fan 103 is disposed between the heat radiating fins 17 and the planar heat pipe 10. Cooling air from the blower fan 103 is supplied to the radiation fins 17.
  • heat is smoothly released from the heat radiating portion of the tubular heat pipe 12 to the external environment by attaching the plurality of heat radiating fins 17 to the other end portion 16 of the tubular heat pipe 12. Further, since the blower fan 103 is disposed between the heat radiation fins 17 and the planar heat pipe 10, the blower fan 103 is operated, so that not only cooling air is supplied to the heat radiation fins 17, but also a flat surface. An air flow is generated from the mold heat pipe 10 toward the radiation fins 17, and this air flow also functions as cooling air for cooling the planar heat pipe 10.
  • the flat heat pipe 10 includes a flat container 11, a working fluid (not shown) sealed in the internal space of the flat container 11, and a wick structure (not shown) provided in the internal space of the flat container 11.
  • the tubular heat pipe 12 includes a tubular container 13, a working fluid (not shown) sealed in the inner space of the tubular container 13, and a wick structure (not shown) provided in the inner space of the tubular container 13. And have.
  • Examples of the material of the flat container 11 and the tubular container 13 include copper, copper alloy, aluminum, aluminum alloy, nickel, nickel alloy, stainless steel, titanium, and the like. Further, the working fluid can be appropriately selected according to the compatibility with the material of the planar container 11 and the tubular container 13, and examples thereof include water, fluorocarbons such as chlorofluorocarbons and fluorinate, and cyclopentane. Can do.
  • Examples of the wick structure include a sintered body of metal powder such as copper powder, a metal mesh, a wire, a groove formed on the inner surface of the planar container 11 and the tubular container 13.
  • the heating element to be cooled is not particularly limited, but a central processing unit, graphic chip (GPU, VGA), memory, capacitor, power supply mounted on the substrate 102 (for example, a circuit board built in an electronic device). Etc.
  • the heat receiving part of the flat heat pipe 10 receives heat from the first heat generating element 100 and the second heat generating element 101
  • the heat receiving part of the flat heat pipe 10 is connected to one end 14 of the tubular heat pipe 12.
  • the heat from the first heating element 100 and the second heating element 101 is transported to the heat radiating part of the flat heat pipe 10.
  • a flat surface portion other than the heat receiving portion of the flat heat pipe 10 functions as a heat radiating portion of the flat heat pipe 10.
  • Part of the heat transported from the heat receiving portion of the planar heat pipe 10 to the heat radiating portion is from the heat radiating portion of the flat heat pipe 10 to one end 14 of the tubular heat pipe 12, that is, the heat receiving portion of the tubular heat pipe 12. Is transmitted to.
  • the heat transferred to the heat receiving portion of the tubular heat pipe 12 is transported to the other end portion 16 of the tubular heat pipe 12, that is, the heat radiating portion of the tubular heat pipe 12. To the outside environment.
  • the heat of the first heating element 100 and the second heating element 101 received by the flat heat pipe 10 is transported to the site of the radiation fin 17 by the tubular heat pipe 12, so that it can be smoothly transferred to the external environment. Can be released.
  • the heat sink structure 1 is thermally connected to the first heating element 100 and the second heating element 101 while being placed on the first heating element 100 and the second heating element 101, it is flat. It is possible to reliably prevent the internal space of the mold heat pipe from being blocked and narrowed, and thus exhibit excellent heat transport characteristics, and to reliably cool a plurality of heating elements.
  • a plurality of heating elements (the first heating element 100 and the second heating element 101) are thermally connected to one planar heat pipe 10. The number of points can be reduced and the heat sink structure 1 can be simplified. Further, in the heat sink structure 1, a plurality of heating elements are thermally connected to one flat heat pipe 10, and the flat heat pipe 10 is heated to the tubular heat pipe 12 that transports heat to the installation site of the radiation fins 17. Therefore, even if the heat generation amounts of the plurality of heat generating elements are different, the flat heat pipe 10 can equalize the heat generating elements, and thus can uniformly cool the heat generating elements.
  • each heating element is thermally connected to the planar heat pipe, even in the case of a heating element installed in a narrow internal space, for example, an internal space having a small dimension in the thickness direction, it is ensured. Can be cooled.
  • one tubular heat pipe 12 is thermally connected to the peripheral portion of the planar heat pipe 10, but instead of this, the second embodiment is used.
  • the heat sink structure 2 as shown in FIG. 3, two tubular heat pipes 12 and 12 ′ are thermally connected to the peripheral portion of the planar heat pipe 10.
  • the tubular heat pipe 12 is not only thermally connected to a predetermined portion of the peripheral portion of the planar heat pipe 10, but also the planar heat pipe 10 facing the tubular heat pipe 12.
  • Another tubular heat pipe 12 ' is thermally connected to the position of the peripheral edge. Note that, similarly to the heat radiating portion of the tubular heat pipe 12, heat radiating fins 17 are also provided in the heat radiating portions of the other tubular heat pipes 12 '.
  • the number of the tubular heat pipes 12 that are thermally connected to the planar heat pipe 10 is not particularly limited, and may be one or more, depending on use conditions such as the amount of heat generated by the heating element and the number of heating elements. Can be appropriately selected.
  • the planar heat pipe 10 is thermally contacted directly with each heating element (the first heating element 100 and the second heating element 101) or through heat conductive grease.
  • a heat conductive member 18 is inserted between the planar heat pipe 10 and the heating element. ing.
  • the third heating element 104 that is, three heating elements are mounted on the substrate 102 in addition to the first heating element 100 and the second heating element 101.
  • the above aspect is particularly effective when the first heating element 100, the second heating element 101, and the third heating element 104 have mutually different height dimensions. That is, the heat conductive member 18 is inserted between the heating element (the second heating element 101 and the third heating element 104 in FIG. 4) and the flat heat pipe 10 having a small dimension in the height direction, The heating element has the same height as that of the heating element having the largest dimension in the height direction (first heating element 100 in FIG. 4). As a result, a plurality of heating elements (first heating element 100, second heating element 101, and third heating element 104) and the planar heat pipe 10 can be obtained without deforming the planar heat pipe 10 such as bending. Can be connected thermally.
  • Examples of the heat conductive member 18 include a heat conductive sheet.
  • thermal conductive grease 19 is applied to the contact surface between the first heating element 100 and the flat heat pipe 10 in order to improve thermal conductivity.
  • a biasing member 20 is further provided on the surface (back surface) of the flat heat pipe 10 on the heating element side.
  • the biasing member 20 is provided on the back surface of the planar heat pipe 10
  • the planar heat pipe 10 is prevented from being deformed such as bending, and the planar heat pipe 10 is connected to the first heating element 100 and the second heating element 100.
  • the heating element 101 can be biased. Therefore, the thermal connectivity between the planar heat pipe 10 and the first and second heating elements 100 and 101 is improved, and the planar heat pipe 10 can be securely fixed to the substrate 102.
  • the tubular heat pipe 12 is attached to a surface (surface) that is not the heating element side of the flat heat pipe 10.
  • two urging members 20 are provided on the back surface of the planar heat pipe 10.
  • the respective urging members 20 are arranged at the peripheral edge of the planar heat pipe 10 so as to face each other.
  • each heating element (the first heating element 100 and the second heating element 101) is disposed between the two biasing members 20. Accordingly, the planar heat pipe 10 in a state of being urged toward the substrate 102 is thermally connected to all the heating elements.
  • the biasing member 20 is fixed to the substrate 102 on which the first heating element 100 and the second heating element 101 are mounted.
  • the urging member 20 includes a first flat portion 20-1 attached in a surface contact with the back surface of the planar heat pipe 10, and a second flat portion 20-2 attached in a surface contact with the substrate 102. And a connecting portion 20-3 that connects the first flat portion 20-1 and the second flat portion 20-2.
  • the connecting portion 20-3 exhibits a biasing action.
  • the means for attaching the first flat portion 20-1 to the back surface of the planar heat pipe 10 is not particularly limited, and examples thereof include soldering.
  • the means for fixing the second flat portion 20-2 to the substrate 102 is not particularly limited, and in the heat sink structure 4, the second flat portion 20-2 is fixed to the substrate 102 with screws 21. That is, the second flat portion 20-2 is provided with a through hole (not shown) through which the screw 21 is inserted, the substrate 102 is provided with a screw hole (not shown), and the screw 21 is used as a through hole.
  • the biasing member 20 is fixed to the substrate 102 by being inserted and screwed into the screw hole.
  • Examples of the urging member 20 include spring members such as metal leaf springs and coils.
  • the planar heat pipe 10 in a state of being urged toward the substrate 102 is thermally connected to all the heating elements.
  • a plurality of heating elements in FIG. 6, the first heating element 100 and the second heating element 101 are formed. Of the two heating elements), only a part of the heating elements (in FIG. 6, the first heating element 100), the planar heat pipe 10 that is biased toward the substrate 102 is thermally It is connected.
  • the planar heat pipe 10 is provided with a through hole 22 through which the screw 21 is inserted, and the biasing member 20 is also provided with a through hole (not shown) through which the screw 21 is inserted.
  • the substrate 102 is provided with a screw hole (not shown).
  • the planar heat pipe 10 and the urging member 20 are inserted into the through hole 22 of the planar heat pipe 10 and the through hole of the urging member 20 and screwed into the threaded holes of the substrate 102, respectively. It is fixed to the substrate 102.
  • the first heating element 100 is disposed between the two biasing members 20, but the second heating element 101 is not disposed. .
  • a portion of the flat heat pipe 10 that is not biased toward the substrate 102 is thermally connected to the second heating element 101.
  • a thermal conductive member 18 such as a thermal conductive sheet is inserted between the second heat generating body 101 and the planar heat pipe 10, and the planar heat pipe is provided by a buffering function of the thermal conductive member 18. 10 is also biased toward the first heating element 100.
  • the thermal connectivity between the planar heat pipe 10 and the first heating element 100 is improved while preventing deformation such as bending of the planar heat pipe 10, and the planar heat pipe 10 is reliably secured. It can be fixed to the substrate 102.
  • the heat radiating fins are provided as the heat exchanging means in the heat radiating portion of the tubular heat pipe.
  • the heat exchanging means may not be provided depending on the use situation.
  • the blower fan is installed in the vicinity of the heat radiating fins. However, the blower fan may not be installed depending on the use situation.
  • the planar heat pipe is placed in direct contact with each heating element or via thermal conductive grease.
  • the heating element and the planar heat pipe are You may arrange
  • the heat sink structure of the present invention described above has excellent heat transport characteristics, and with a simple configuration, can uniformly cool a plurality of heating elements installed in a narrowed internal space.
  • the utility value is high in the field of cooling a plurality of heating elements installed in a space with small dimensions.
  • the heat sink structure 6 includes a planar heat pipe 10 and a tubular heat pipe 12 thermally connected to the planar heat pipe 10. .
  • the planar container 11 of the planar heat pipe 10 and the tubular container 13 of the tubular heat pipe 12 are in direct contact, so that the planar heat pipe 10 and the tubular heat pipe 12 are thermally connected. Yes.
  • the tubular heat pipe 12 is arranged in the direction of the heating element rather than the planar heat pipe 10.
  • the tubular heat pipe 12 is thermally connected to the first heating element 100 mounted on the substrate 102
  • the planar heat pipe 10 is thermally connected to the second heating element 101 mounted on the substrate 102. It is connected. Accordingly, the first heating element 100 is thermally connected to the planar heat pipe 10 via the tubular heat pipe 12, and the second heating element 101 is connected to the tubular heat pipe 12 via the planar heat pipe 10. Thermally connected.
  • the planar heat pipe 10 has a function as a soaking plate.
  • the tubular heat pipe 12 is in direct contact with the first heating element 100 to be thermally connected to the first heating element 100, and the planar heat pipe 10 is connected to the second heating element 101.
  • the heat generating grease (not shown) may be thermally connected to the second heating element 101 by direct contact, and the tubular heat pipe 12 and the first heating element 100, the planar heat pipe 10 and the second heating pipe 101 are connected to each other. It may be inserted between the heating element 101 and thermally connected.
  • one end 14 of the tubular heat pipe 12 is thermally connected to the planar heat pipe 10, and the first heating element 100 is connected to the one end 14 of the tubular heat pipe 12. Thermally connected. That is, as shown in FIG. 8, the first heating element 100 is thermally connected at a position where the planar heat pipe 10 and the tubular heat pipe 12 overlap in a plan view.
  • the second heating element 101 is thermally connected to the planar heat pipe 10 at a position that does not overlap the tubular heat pipe 12 in plan view.
  • one tubular heat pipe 12 is thermally connected to the planar heat pipe 10.
  • the method of thermally connecting the planar heat pipe 10 and the tubular heat pipe 12 is not particularly limited.
  • the tubular container 13 of the tubular heat pipe 12 is soldered to the planar container 11 of the planar heat pipe 10.
  • the flat heat pipe 10 and the tubular heat pipe 12 can be thermally connected by fixing by attaching, caulking, or the like.
  • portions of the tubular heat pipe 12 other than the one end portion 14, that is, the center portion 15 and the other end portion 16 are not in contact with the planar heat pipe 10.
  • the other end portion 16 of the tubular heat pipe 12 functions as a heat radiating portion of the tubular heat pipe 12.
  • the tubular heat pipe 12 may be bent as shown in FIGS. 7 and 8 or may be used in a linear shape.
  • the tubular heat pipe 12 may be partially or entirely flattened.
  • the entire tubular heat pipe 12 including the heat receiving portion is flattened.
  • one end portion 14 (heat receiving portion) of the tubular heat pipe 12 extends along the planar direction of the planar heat pipe 10. That is, one end 14 of the tubular heat pipe 12 extends along the planar direction of the planar heat pipe 10 in plan view.
  • the central portion 15 and the other end portion 16 of the tubular heat pipe 12 also extend along the planar direction of the planar heat pipe 10, similarly to the one end portion 14. Therefore, the heat transport direction of the tubular heat pipe 12 is substantially parallel to the planar direction of the planar heat pipe 10.
  • heat radiating fins 17 are attached to the other end portion 16 of the tubular heat pipe 12 (that is, the heat radiating portion of the tubular heat pipe 12) as heat exchange means.
  • a blower fan 103 is disposed between the heat radiating fins 17 and the planar heat pipe 10. Cooling air from the blower fan 103 is supplied to the radiation fins 17.
  • the plurality of radiating fins 17 are attached to the other end 16 of the tubular heat pipe 12, so that heat is smoothly released from the radiating portion of the tubular heat pipe 12 to the external environment.
  • the installation position of the blower fan 103 is not particularly limited, but when the blower fan 103 is disposed between the heat radiation fin 17 and the planar heat pipe 10, the blower fan 103 is operated to cool the heat radiation fin 17. Not only the wind is supplied, but also an air flow is generated from the planar heat pipe 10 toward the radiating fins 17, and this air flow also functions as cooling air for cooling the planar heat pipe 10.
  • the flat heat pipe 10 includes a flat container 11, a working fluid (not shown) sealed in the internal space of the flat container 11, and a wick structure (not shown) provided in the internal space of the flat container 11.
  • the tubular heat pipe 12 includes a tubular container 13, a working fluid (not shown) sealed in the inner space of the tubular container 13, and a wick structure (not shown) provided in the inner space of the tubular container 13. And have.
  • Examples of the material of the flat container 11 and the tubular container 13 include copper, copper alloy, aluminum, aluminum alloy, nickel, nickel alloy, stainless steel, titanium, and the like. Further, the working fluid can be appropriately selected according to the compatibility with the material of the planar container 11 and the tubular container 13, and examples thereof include water, fluorocarbons such as chlorofluorocarbons and fluorinate, and cyclopentane. Can do.
  • Examples of the wick structure include a sintered body of metal powder such as copper powder, a metal mesh, a wire, a groove formed on the inner surface of the planar container 11 and the tubular container 13.
  • the heating element to be cooled is not particularly limited, but a central processing unit, graphic chip (GPU, VGA), memory, capacitor, power supply mounted on the substrate 102 (for example, a circuit board built in an electronic device). Etc.
  • the cooling mechanism of the heat sink structure 6 will be described.
  • one end portion 14 (heat receiving portion) of the tubular heat pipe 12 receives heat from the first heating element 100
  • the heat transferred from the first heating element 100 to the heat receiving portion of the tubular heat pipe 12 is the tubular heat pipe. 12 is transported to the heat radiating portion of the tubular heat pipe 12, and is discharged from the heat radiating portion of the tubular heat pipe 12 to the external environment via the heat radiating fins 17.
  • the heat transferred from the second heating element 101 to the flat heat pipe 10 is diffused along the plane of the flat heat pipe 10, and a part thereof. Is transported to one end 14 of the tubular heat pipe 12 and discharged from the heat radiating portion of the tubular heat pipe 12 to the external environment via the heat radiating fins 17. Accordingly, the planar heat pipe 10 has a function as a soaking plate.
  • the heat of the first heating element 100 and the second heating element 101 received by the heat sink structure 6 is smoothly released to the external environment by being transported to the site of the radiation fin 17 by the tubular heat pipe 12, It diffuses along the plane of the planar heat pipe 10 and is also released from the planar heat pipe 10.
  • the planar heat pipe 10 and the tubular heat pipe 12 are thermally connected, so that the heat from the first heating element 100 and the second heat pipe 10 are heated by the planar heat pipe 10.
  • the tubular heat pipe 12 exhibits a heat transport function.
  • at a position where the planar heat pipe 10 and the tubular heat pipe 12 overlap each other at least a part of the plurality of heating elements (first heating element 100 and second heating element 101) (first heating element). Since the body 100) is thermally connected, heat is smoothly transferred from the first heating element 100 to the tubular heat pipe 12. Therefore, the heat sink structure 6 can exhibit excellent cooling performance with respect to the heating element by having an excellent heat transport characteristic and a function as a soaking plate.
  • the heat sink structure 6 when a plurality of heating elements (the first heating element 100 and the second heating element 101) are cooled and the amount of heat generated by each heating element is different, heat generation is relatively performed.
  • a small amount of the heating element (for example, the second heating element 101) can be cooled by the flat heat pipe 10 having a function as a soaking plate, so that the heat transport amount of the tubular heat pipe 12 can be reduced accordingly. .
  • the flat heat pipe 10 is used, and the number of heat generating elements to be thermally connected is not particularly limited, so that heat generated in a narrowed internal space with a simple configuration. Excellent cooling performance for the body.
  • the tubular heat pipe 12 is arranged in the direction of the heating element (the first heating element 100 and the second heating element 101) (the direction of the substrate 102) rather than the planar heat pipe 10, thereby generating heat.
  • the heat of the body (the first heating element 100 in FIGS. 7 and 8) is smoothly transferred to the tubular heat pipe 12.
  • the heat transmitted from each heating element (the first heating element 100 and the second heating element 101) is transmitted on the surface of the planar heat pipe 10 by the function as a soaking plate of the planar heat pipe 10.
  • the heat dissipation area increases. Therefore, the amount of heat transport of the tubular heat pipe 12 can be reduced, and as a result, the tubular heat pipe 12 can be flattened and thinned.
  • the heat sink structure 6 can be further downsized.
  • the tubular heat pipe 12 is connected to the first heating element 100 mounted on the substrate 102, and the planar heat pipe 10 is mounted on the substrate 102.
  • the flat heat pipe 10 instead of this, as shown in FIGS. 9A and 9B, the flat heat pipe 10 includes The heating element is not connected.
  • the first heating element 100 is thermally connected at a position where the planar heat pipe 10 and the tubular heat pipe 12 overlap in a plan view.
  • the heating element is not connected to a position where the tubular heat pipe 12 and the planar heat pipe 10 do not overlap in plan view.
  • the heat from the first heating element 100 is caused by the planar heat pipe 10 to be generated in the planar heat pipe 10.
  • the tubular heat pipe 12 exhibits a heat transport function in a state where the heat radiating area increases while diffusing along the plane.
  • the heating element first heating element 100
  • the heat sink structure 7 can exhibit excellent cooling performance with respect to the heating element by having excellent heat transport characteristics and a function as a soaking plate.
  • the tubular heat pipe 12 is arranged in the direction of the heating element rather than the planar heat pipe 10, but instead, the heat sink structure according to the eighth embodiment.
  • the planar heat pipe 10 is arranged in the direction of the heating element rather than the tubular heat pipe 12.
  • the planar heat pipe 10 is connected to a heating element mounted on the substrate 102 (in FIG. 10, a plurality of heating elements, that is, the first heating element 100 and the second heating element 101).
  • a heating element is not connected to the tubular heat pipe 12. Accordingly, both of the heating elements, that is, the first heating element 100 and the second heating element 101 are thermally connected to the tubular heat pipe 12 via the planar heat pipe 10. Accordingly, the planar heat pipe 10 has a function as a soaking plate.
  • FIG. 10 (b) some of the plurality of heating elements (in FIG. 10 (b), the first heat pipe 10 and the tubular heat pipe 12 overlap each other in plan view).
  • the heating element 100) is thermally connected to the planar heat pipe 10.
  • the other part of the heating elements in FIG. 10B, the second heating element 101 is heated with the planar heat pipe 10 at a position that does not overlap with the tubular heat pipe 12 in plan view. Connected.
  • the 1st heat generating body 100 touches the flat type heat pipe 10 directly, or contacts through thermal conductive grease (not shown), and is plane.
  • the mold heat pipe 10 is thermally connected.
  • a heat conductive member 18 such as a heat conductive sheet is inserted between the planar heat pipe 10 and the second heat generating element 101, and the second heat generating element 101 is a heat conductive member 18. It is thermally connected to the planar heat pipe 10 via
  • the heating elements having different dimensions in the height direction are thermally connected to the heat sink structure 8, the heating elements having a small dimension in the height direction (in FIG. 10A, the second heating element 101). ) And the planar heat pipe 10, it is possible to adjust the height between the heating elements having different dimensions in the height direction while preventing an increase in thermal resistance. Therefore, deformation such as bending of the planar heat pipe 10 can be prevented, so that the internal space of the planar heat pipe 10 can be maintained, and as a result, a decrease in cooling performance of the heat sink structure 8 can be prevented.
  • both the heat from the first heating element 100 and the heat from the second heating element 101 are planar heat. It is discharged from the planar heat pipe 10 while diffusing on the planar heat pipe 10 along the plane of the pipe 10.
  • the tubular heat pipe 12 is provided at a position overlapping the first heating element 100 in plan view, and one end portion 14 (heat receiving portion) of the tubular heat pipe 12 is in direct contact with the planar heat pipe 10. . Therefore, the heat that has not been released from the planar heat pipe 10 is transmitted to the heat receiving portion of the tubular heat pipe 12.
  • the heat transferred to the heat receiving portion of the tubular heat pipe 12 is transported from the heat receiving portion of the tubular heat pipe 12 to the other end 16 (heat radiating portion) of the tubular heat pipe 12 and from the heat radiating fins 17 provided in the heat radiating portion. Released to the outside environment. Therefore, the tubular heat pipe 12 has a function of transporting heat that has not been released from the planar heat pipe 10 to the portion of the radiation fin.
  • the heat of the heating element is changed to that of the planar heat pipe 10. Due to the function as a heat equalizing plate, the heat is first diffused along the plane of the flat heat pipe 10 and then transmitted to the tubular heat pipe 12. Accordingly, hot spots can be prevented from occurring in the planar heat pipe 10.
  • the heat sink structure 8 can prevent a hot spot from being generated in the planar heat pipe 10, it can exhibit excellent cooling performance for the heating element.
  • the planar heat pipe 10 can cover the entirety of the heating elements (the first heating element 100 and the second heating element 101) connected to the planar heat pipe 10 in plan view. The heat transfer from the body to the heat sink structure 8 is improved.
  • the number of tubular heat pipes is one.
  • the number is not particularly limited, and a plurality of tubular heat pipes may be installed according to the use state of the heat sink structure.
  • one tubular heat pipe 12 is thermally connected to the first heating element 100 mounted on the substrate 102, but instead, As shown in FIG. 11, in the heat sink structure 9 according to the ninth embodiment, a plurality of (two in FIG. 11) tubular heat pipes 12, 12 ′ are provided on the first heating element 100 mounted on the substrate 102. May be thermally connected.
  • two tubular heat pipes 12 and 12 ′ are thermally connected to a position overlapping the first heating element 100 in a plan view.
  • the portions that overlap the first heating element 100 in plan view are arranged in parallel and overlap with the planar heat pipe 10 in plan view.
  • one tubular heat pipe 12 and the other tubular heat pipe 12 ′ are arranged so as to be substantially symmetrical with respect to the center line of the planar heat pipe 10.
  • the plurality of tubular heat pipes 12 and 12 ′ are thermally connected to the first heating element 100, so that the first heating element 100 can be securely connected even when the first heating element 100 generates a large amount of heat. Can be cooled.
  • the number of heating elements that are thermally connected to the position where the planar heat pipe and the tubular heat pipe overlap in plan view is not particularly limited.
  • the position is Although one heating element is thermally connected, a plurality of heating elements may be thermally connected.
  • the heat radiating fins are provided as the heat exchanging means in the heat radiating portion of the tubular heat pipe.
  • the heat exchanging means may not be provided depending on the use situation.
  • the blower fan is installed in the vicinity of the heat radiating fins.
  • the blower fan may not be installed depending on the use situation.
  • the above-described heat sink structure of the present invention has an excellent cooling performance by having an excellent heat transport characteristic and a function as a heat equalizing plate for a heating element installed in a narrowed internal space with a simple configuration. Therefore, for example, in the field of cooling a heating element mounted on a substrate, the utility value is high.

Abstract

A heat sink structure is provided which, while achieving excellent heat transport characteristics by reliably preventing blockage and narrowing of the internal space of a flat heat pipe, can, with a simple structure, enable uniform cooling of multiple heat-generating bodies arranged in the narrowed internal space. This heat sink structure is provided with: a flat heat pipe which is thermally connected to multiple heat emitting bodies by being arranged on said heat emitting bodies; and a tubular heat pipe which is thermally connected at a heat receiving part to a heat dissipating part of said flat heat pipe.

Description

ヒートシンク構造Heat sink structure
 本発明は、狭小な内部空間、例えば、厚さ方向の寸法が小さい内部空間に設置された複数の発熱体に対する冷却性能に優れたヒートシンク構造に関するものである。また、本発明は、狭小な内部空間に設置された発熱体に対する冷却性能に優れたヒートシンク構造に関するものである。 The present invention relates to a heat sink structure excellent in cooling performance for a plurality of heating elements installed in a narrow internal space, for example, an internal space having a small dimension in the thickness direction. The present invention also relates to a heat sink structure excellent in cooling performance for a heating element installed in a narrow internal space.
 電気・電子機器に搭載されている半導体素子等の電子部品は、高機能化に伴う高密度搭載等により、発熱量が増大し、近年、その冷却がより重要となっている。また、電気・電子機器の小型化、薄型化等により、電気・電子機器の筐体の内部空間が、ますます、狭小化している。狭小化した内部空間に設置された電子部品の冷却手段として、平面型ヒートパイプが使用されることがある。 Electronic parts such as semiconductor elements mounted on electric / electronic devices have increased heat generation due to high-density mounting associated with higher functionality, and in recent years, cooling has become more important. In addition, due to the downsizing and thinning of electrical and electronic equipment, the internal space of the housing of electrical and electronic equipment is becoming increasingly narrow. A planar heat pipe may be used as a cooling means for electronic components installed in a narrowed internal space.
 厚さ方向の寸法が小さい内部空間に設置された電子部品の冷却構造として、筐体内に設けられた第1の発熱体と、筐体内に設けられたヒートシンクと、第1の押圧部材と、第1の発熱体に対向した第1の部分と第1の発熱体から外れた第2の部分とを有し、第1の押圧部材の押圧で撓む平板状の第1のヒートパイプと、第1のヒートパイプの第2の部分と、ヒートシンクとに接続された管状のコンテナを有する第2のヒートパイプを備えた冷却構造が提案されている(特許文献1)。 As a cooling structure for an electronic component installed in an internal space having a small dimension in the thickness direction, a first heating element provided in the housing, a heat sink provided in the housing, a first pressing member, A flat plate-like first heat pipe having a first portion facing the first heating element and a second portion deviating from the first heating element and being bent by the pressing of the first pressing member; A cooling structure having a second heat pipe having a tubular container connected to a second portion of one heat pipe and a heat sink has been proposed (Patent Document 1).
 また、特許文献1では、筐体内に第2の発熱体が設けられている場合、平板状の第1のヒートパイプに加えて、さらに、第2の発熱体に対向した第1の部分と、第2の発熱体から外れて第2のヒートパイプに接続された第2の部分とを有した平板状の第3のヒートパイプを備えるものである。 Moreover, in patent document 1, when the 2nd heat generating body is provided in the housing | casing, in addition to the flat plate-shaped 1st heat pipe, Furthermore, the 1st part facing the 2nd heat generating body, A flat plate-shaped third heat pipe having a second portion connected to the second heat pipe and deviating from the second heating element is provided.
 しかし、特許文献1では、押圧部材の押圧で平板状のヒートパイプを撓ませる、つまり、平面に対して鉛直方向に変形させるので、コンテナの厚さの薄い平板状のヒートパイプでは、その内部空間、特に、厚さ方向の空間が閉塞または狭小化して、ヒートパイプとしての機能である熱輸送特性が損なわれるという問題があった。 However, in Patent Document 1, since the flat heat pipe is bent by the pressing of the pressing member, that is, deformed in the vertical direction with respect to the flat surface, in the flat heat pipe with a thin container, the internal space In particular, the space in the thickness direction is blocked or narrowed, and there is a problem that the heat transport characteristic which is a function as a heat pipe is impaired.
 また、特許文献1では、複数の発熱体を冷却する場合に、それぞれの発熱体に、相互に別体である平板状のヒートパイプが接続され、該平板状のヒートパイプを、それぞれ、管状のコンテナを有する、メインのヒートパイプである第2のヒートパイプに接続される必要がある。よって、発熱体の位置に応じて、平板状のヒートパイプの寸法を調整しなければならず、部品点数が増大すると共に、構造が複雑化するという問題があった。 Further, in Patent Document 1, when cooling a plurality of heating elements, flat heat pipes that are separate from each other are connected to the respective heating elements, and the flat heat pipes are respectively tubular. It needs to be connected to a second heat pipe, which is a main heat pipe, having a container. Therefore, the dimensions of the flat heat pipe must be adjusted according to the position of the heating element, and there is a problem that the number of parts increases and the structure becomes complicated.
 また、特許文献1では、それぞれの発熱体に、相互に別体である平板状のヒートパイプが接続されているので、複数の発熱体の発熱量が異なると、特に、大きな発熱量を有する発熱体が十分に冷却されない場合がある、という問題があった。 Moreover, in patent document 1, since the flat heat pipe which is a mutually separate body is connected to each heat generating body, if the heat generating amount of several heat generating bodies differs, especially heat_generation | fever which has a big heat generating amount. There was a problem that the body might not be cooled sufficiently.
特開2011-106793号公報JP 2011-106793 A
 上記事情に鑑み、本発明は、平面型ヒートパイプの内部空間の閉塞や狭小化を確実に防止することで、優れた熱輸送特性を有しつつ、簡易な構成にて、狭小化した内部空間に設置された複数の発熱体の冷却を均一化できるヒートシンク構造を提供することを目的とする。また、本発明は、簡易な構成にて、狭小化した内部空間に設置された発熱体に対し、優れた熱輸送特性や均熱板としての機能を有することで、優れた冷却性能を発揮するヒートシンク構造を提供することを目的とする。 In view of the above circumstances, the present invention reliably prevents the internal space of the planar heat pipe from being blocked or narrowed, and has an excellent heat transport characteristic, and a narrow internal space with a simple configuration. It is an object of the present invention to provide a heat sink structure that can uniformly cool a plurality of heating elements installed in a heat sink. In addition, the present invention exhibits excellent cooling performance by having an excellent heat transport property and a function as a heat equalizing plate for a heating element installed in a narrowed internal space with a simple configuration. An object is to provide a heat sink structure.
 本発明の態様は、複数の発熱体上に載置されることで該複数の発熱体と熱的に接続される平面型ヒートパイプと、該平面型ヒートパイプの放熱部と受熱部にて熱的に接続された管状ヒートパイプと、を備えたヒートシンク構造である。 Aspects of the present invention include a planar heat pipe that is mounted on a plurality of heating elements and thermally connected to the plurality of heating elements, and heat is generated by a heat radiating unit and a heat receiving unit of the planar heat pipe. And a heat sink structure having a tubular heat pipe connected thereto.
 上記態様では、平面型ヒートパイプは、複数の発熱体上に載置されることで、該複数の発熱体と熱的に接続され、また、発熱体に固定されている。上記態様では、平面型ヒートパイプのうち、発熱体が熱的に接続された部位が、受熱部として機能する。また、平面型ヒートパイプのうち、管状ヒートパイプが熱的に接続された部位は、放熱部として機能する。管状ヒートパイプのうち、平面型ヒートパイプが熱的に接続された部位は、受熱部として機能する。また、上記態様では、平面型ヒートパイプに複数の発熱体が熱的に接続されるので、複数の発熱体は、1つの平面型ヒートパイプ、すなわち、同じ平面型ヒートパイプに熱的に接続される。 In the above aspect, the planar heat pipe is mounted on the plurality of heating elements, so that it is thermally connected to the plurality of heating elements, and is fixed to the heating element. In the said aspect, the site | part to which the heat generating body was thermally connected among planar heat pipes functions as a heat receiving part. Moreover, the site | part to which the tubular heat pipe was thermally connected among planar heat pipes functions as a thermal radiation part. Of the tubular heat pipe, a portion where the planar heat pipe is thermally connected functions as a heat receiving portion. In the above aspect, since the plurality of heating elements are thermally connected to the planar heat pipe, the plurality of heating elements are thermally connected to one planar heat pipe, that is, the same planar heat pipe. The
 本発明の態様は、前記管状ヒートパイプの放熱部に、熱交換手段が設けられているヒートシンク構造である。 An aspect of the present invention is a heat sink structure in which a heat exchange means is provided in a heat radiating portion of the tubular heat pipe.
 本発明の態様は、前記熱交換手段が、放熱フィンを有するヒートシンク構造である。 An aspect of the present invention is a heat sink structure in which the heat exchanging means has heat radiating fins.
 本発明の態様は、前記熱交換手段及び/または管状ヒートパイプの放熱部が、送風ファンの冷却風により冷却されるヒートシンク構造である。 An aspect of the present invention is a heat sink structure in which the heat exchange means and / or the heat radiating portion of the tubular heat pipe is cooled by cooling air from a blower fan.
 本発明の態様は、前記平面型ヒートパイプに付勢部材が設けられ、該付勢部材が、前記発熱体の支持部材に固定されるヒートシンク構造である。 An aspect of the present invention is a heat sink structure in which a biasing member is provided on the planar heat pipe, and the biasing member is fixed to a support member of the heating element.
 本発明の態様は、平面型ヒートパイプと、該平面型ヒートパイプと熱的に接続された管状ヒートパイプと、を備えたヒートシンク構造であって、平面視において、前記平面型ヒートパイプと前記管状ヒートパイプが重なり合う位置に、発熱体が熱的に接続されるヒートシンク構造である。 An aspect of the present invention is a heat sink structure including a planar heat pipe and a tubular heat pipe thermally connected to the planar heat pipe, and the planar heat pipe and the tubular in a plan view. This is a heat sink structure in which a heating element is thermally connected at a position where heat pipes overlap.
 上記態様では、平面型ヒートパイプまたは管状ヒートパイプに、発熱体が接続される。なお、本明細書中、「平面視」とは、平面型ヒートパイプの平面部に対して鉛直方向から視認した態様を意味する。 In the above aspect, the heating element is connected to the flat heat pipe or the tubular heat pipe. In addition, in this specification, "plan view" means the aspect visually recognized from the perpendicular direction with respect to the plane part of a planar heat pipe.
 本発明の態様は、前記管状ヒートパイプが、前記平面型ヒートパイプよりも前記発熱体の方向に配置されるヒートシンク構造である。上記態様では、管状ヒートパイプに、発熱体が接続される。 An aspect of the present invention is a heat sink structure in which the tubular heat pipe is arranged in the direction of the heating element rather than the planar heat pipe. In the above aspect, the heating element is connected to the tubular heat pipe.
 本発明の態様は、前記平面型ヒートパイプが、前記管状ヒートパイプよりも前記発熱体の方向に配置されるヒートシンク構造である。上記態様では、平面型ヒートパイプに、発熱体が接続される。 An aspect of the present invention is a heat sink structure in which the planar heat pipe is arranged in the direction of the heating element rather than the tubular heat pipe. In the said aspect, a heat generating body is connected to a planar heat pipe.
 本発明の態様は、前記管状ヒートパイプの放熱部に、熱交換手段が設けられているヒートシンク構造である。 An aspect of the present invention is a heat sink structure in which a heat exchange means is provided in a heat radiating portion of the tubular heat pipe.
 本発明の態様は、前記熱交換手段が、放熱フィンを有するヒートシンク構造である。 An aspect of the present invention is a heat sink structure in which the heat exchanging means has a heat radiation fin.
 本発明の態様は、前記熱交換手段及び/または管状ヒートパイプの放熱部が、送風ファンの冷却風により冷却されるヒートシンク構造である。 An aspect of the present invention is a heat sink structure in which the heat exchange means and / or the heat radiating portion of the tubular heat pipe is cooled by cooling air from a blower fan.
 本発明の態様によれば、平面型ヒートパイプは、複数の発熱体上に載置されることで、該複数の発熱体と熱的に接続されるので、平面型ヒートパイプの内部空間の閉塞や狭小化を確実に防止でき、結果、優れた熱輸送特性を発揮することができる。 According to the aspect of the present invention, since the planar heat pipe is placed on the plurality of heating elements and thermally connected to the plurality of heating elements, the internal space of the planar heat pipe is blocked. And narrowing can be reliably prevented, and as a result, excellent heat transport characteristics can be exhibited.
 また、本発明の態様によれば、複数の発熱体が1つの平面型ヒートパイプに熱的に接続されるので、平面型ヒートパイプの部品点数を低減できると共に、構造を簡素化できる。また、本発明の態様によれば、複数の発熱体が1つの平面型ヒートパイプに熱的に接続され、該平面型ヒートパイプが、所定方向に優れた熱輸送特性を有する管状ヒートパイプに熱的に接続されているので、複数の発熱体の発熱量が異なっても、平面型ヒートパイプが各発熱体を均熱化でき、ひいては、各発熱体の冷却を均一化できる。さらに、本発明の態様によれば、発熱体は平面型ヒートパイプに熱的に接続されるので、狭小な内部空間、例えば、厚さ方向の寸法が小さい内部空間に設置された発熱体でも、確実に冷却できる。 Further, according to the aspect of the present invention, since the plurality of heating elements are thermally connected to one planar heat pipe, the number of parts of the planar heat pipe can be reduced and the structure can be simplified. Further, according to the aspect of the present invention, a plurality of heating elements are thermally connected to one flat heat pipe, and the flat heat pipe heats a tubular heat pipe having excellent heat transport characteristics in a predetermined direction. Therefore, even if the heat generation amounts of the plurality of heat generating elements are different, the flat heat pipe can equalize the heat generating elements, and thus the cooling of the heat generating elements can be made uniform. Furthermore, according to the aspect of the present invention, since the heating element is thermally connected to the planar heat pipe, even in a narrow inner space, for example, a heating element installed in an inner space having a small dimension in the thickness direction, Can be cooled reliably.
 本発明の態様によれば、管状ヒートパイプの放熱部に熱交換手段が設けられていることにより、管状ヒートパイプの放熱特性が向上し、狭小な内部空間に設置された発熱体でも確実に冷却できる。 According to the aspect of the present invention, the heat exchange means is provided in the heat radiating portion of the tubular heat pipe, so that the heat radiating characteristic of the tubular heat pipe is improved, and even a heating element installed in a narrow internal space is reliably cooled. it can.
 本発明の態様によれば、平面型ヒートパイプと管状ヒートパイプとが熱的に接続されているので、平面型ヒートパイプにより、発熱体からの熱が面上に拡散し、放熱面積が増大した状態にて、管状ヒートパイプが稼働する。また、平面型ヒートパイプと管状ヒートパイプが重なり合う位置に発熱体が熱的に接続されるので、発熱体から管状ヒートパイプへ円滑に熱伝達される。従って、本発明のヒートシンク構造は、優れた熱輸送特性や均熱板としての機能を有することで、発熱体に対して優れた冷却性能を発揮できる。 According to the aspect of the present invention, since the planar heat pipe and the tubular heat pipe are thermally connected, the heat from the heating element is diffused on the surface by the planar heat pipe, and the heat radiation area is increased. In the state, the tubular heat pipe operates. Further, since the heating element is thermally connected to the position where the planar heat pipe and the tubular heat pipe overlap, heat is smoothly transferred from the heating element to the tubular heat pipe. Therefore, the heat sink structure of the present invention can exhibit excellent cooling performance with respect to the heating element by having excellent heat transport characteristics and a function as a soaking plate.
 また、本発明の態様によれば、複数の発熱体を冷却する場合であって、各発熱体の発熱量が相違する場合に、相対的に発熱量の少ない発熱体は、均熱板としての機能を有する平面型ヒートパイプにて冷却できるので、その分、管状ヒートパイプの熱輸送量を低減できる。 Further, according to the aspect of the present invention, when a plurality of heating elements are cooled and the heating values of the respective heating elements are different, the heating elements having a relatively small heating value are Since it can cool with the planar heat pipe which has a function, the heat transport amount of a tubular heat pipe can be reduced by that much.
 本発明の態様によれば、平面型ヒートパイプを用い、また、熱的に接続される発熱体の数量は、特に制限されないので、簡易な構成にて、狭小化した内部空間に設置された発熱体に対して優れた冷却性能を発揮できる。 According to the aspect of the present invention, since the number of heating elements that use a planar heat pipe and are thermally connected is not particularly limited, heat generated in a narrowed internal space with a simple configuration. Excellent cooling performance for the body.
 本発明の態様によれば、管状ヒートパイプが平面型ヒートパイプよりも発熱体の方向に配置されることにより、発熱体の熱が管状ヒートパイプに円滑に伝達されつつ、管状ヒートパイプを介して平面型ヒートパイプに伝達された発熱体からの熱が、平面型ヒートパイプの均熱板としての機能により面上に拡散することで放熱面積が増大する。従って、上記態様では、管状ヒートパイプの熱輸送量を低減でき、ひいては、管状ヒートパイプを扁平化(薄型化)、細管化できる。このように、管状ヒートパイプを扁平化、細管化できるので、ヒートシンク構造をより小型化できる。 According to the aspect of the present invention, the tubular heat pipe is disposed in the direction of the heating element rather than the planar heat pipe, so that the heat of the heating element is smoothly transferred to the tubular heat pipe, and the The heat from the heating element transmitted to the flat heat pipe is diffused on the surface by the function of the flat plate heat pipe as a soaking plate, thereby increasing the heat radiation area. Therefore, in the said aspect, the amount of heat transport of a tubular heat pipe can be reduced, and by extension, a tubular heat pipe can be flattened (thinned) and thinned. Thus, since the tubular heat pipe can be flattened and thinned, the heat sink structure can be further downsized.
 本発明の態様によれば、平面型ヒートパイプが管状ヒートパイプよりも発熱体の方向に配置されることにより、発熱体の熱が、まず、平面型ヒートパイプの均熱板としての機能により面上に拡散してから、管状ヒートパイプに伝達されるので、平面型ヒートパイプにホットスポットが生じるのを防止できる。このように、平面型ヒートパイプにホットスポットが生じるのを防止できるので、発熱体に対して優れた冷却性能を発揮できる。 According to the aspect of the present invention, the planar heat pipe is arranged in the direction of the heating element rather than the tubular heat pipe, so that the heat of the heating element is first brought about by the function as the soaking plate of the planar heat pipe. Since it is transmitted to the tubular heat pipe after being diffused upward, it is possible to prevent hot spots from occurring in the planar heat pipe. Thus, since a hot spot can be prevented from occurring in the planar heat pipe, excellent cooling performance can be exhibited for the heating element.
 本発明の態様によれば、管状ヒートパイプの放熱部に熱交換手段が設けられていることにより、管状ヒートパイプの放熱特性が向上し、狭小な内部空間に設置された発熱体でも確実に冷却できる。 According to the aspect of the present invention, the heat exchange means is provided in the heat radiating portion of the tubular heat pipe, so that the heat radiating characteristic of the tubular heat pipe is improved, and even a heating element installed in a narrow internal space is reliably cooled. it can.
本発明の第1実施形態例に係るヒートシンク構造の側面視の説明図である。It is explanatory drawing of the side view of the heat sink structure which concerns on the example of 1st Embodiment of this invention. 本発明の第1実施形態例に係るヒートシンク構造の平面視の説明図である。It is explanatory drawing of planar view of the heat sink structure which concerns on the example of 1st Embodiment of this invention. 本発明の第2実施形態例に係るヒートシンク構造の平面視の説明図である。It is explanatory drawing of planar view of the heat sink structure which concerns on the 2nd Example of this invention. 本発明の第3実施形態例に係るヒートシンク構造の側面視の説明図である。It is explanatory drawing of the side view of the heat sink structure which concerns on the example of 3rd Embodiment of this invention. (a)図は、本発明の第4実施形態例に係るヒートシンク構造の側面視の説明図、(b)図は、本発明の第4実施形態例に係るヒートシンク構造の平面視の説明図である。(A) is a side view of the heat sink structure according to the fourth embodiment of the present invention, and (b) is a plan view of the heat sink structure according to the fourth embodiment of the present invention. is there. (a)図は、本発明の第5実施形態例に係るヒートシンク構造の側面視の説明図、(b)図は、本発明の第5実施形態例に係るヒートシンク構造の平面視の説明図である。(A) The figure is explanatory drawing of the side view of the heat sink structure which concerns on 5th Example of this invention, (b) Drawing is explanatory drawing of the planar view of the heat sink structure which concerns on 5th Embodiment of this invention. is there. 本発明の第6実施形態例に係るヒートシンク構造の側面視の説明図である。It is explanatory drawing of the side view of the heat sink structure which concerns on the 6th Example of this invention. 本発明の第6実施形態例に係るヒートシンク構造の平面視の説明図である。It is explanatory drawing of planar view of the heat sink structure which concerns on the 6th Example of this invention. (a)図は、本発明の第7実施形態例に係るヒートシンク構造の側面視の説明図、(b)図は、本発明の第7実施形態例に係るヒートシンク構造の平面視の説明図である。(A) The figure is explanatory drawing of the side view of the heat sink structure concerning 7th Embodiment of this invention, (b) The figure is explanatory drawing of the planar view of the heat sink structure concerning 7th Embodiment of this invention is there. (a)図は、本発明の第8実施形態例に係るヒートシンク構造の側面視の説明図、(b)図は、本発明の第8実施形態例に係るヒートシンク構造の平面視の説明図である。(A) The figure is explanatory drawing of the side view of the heat sink structure which concerns on 8th Embodiment of this invention, (b) The figure is explanatory drawing of the planar view of the heat sink structure which concerns on 8th Embodiment of this invention. is there. 本発明の第9実施形態例に係るヒートシンク構造の平面視の説明図である。It is explanatory drawing of planar view of the heat sink structure which concerns on the 9th Example of this invention.
 以下に、本発明の第1実施形態例に係るヒートシンク構造について、図面を用いながら説明する。図1、2に示すように、第1実施形態例に係るヒートシンク構造1は、平面型ヒートパイプ10と、平面型ヒートパイプ10と熱的に接続された管状ヒートパイプ12と、を備えている。ヒートシンク構造1では、平面型ヒートパイプ10の平面型コンテナ11と管状ヒートパイプ12の管状コンテナ13とが直接接することで、平面型ヒートパイプ10と管状ヒートパイプ12とが、熱的に接続されている。 The heat sink structure according to the first embodiment of the present invention will be described below with reference to the drawings. As shown in FIGS. 1 and 2, the heat sink structure 1 according to the first embodiment includes a planar heat pipe 10 and a tubular heat pipe 12 thermally connected to the planar heat pipe 10. . In the heat sink structure 1, the planar container 11 of the planar heat pipe 10 and the tubular container 13 of the tubular heat pipe 12 are in direct contact with each other so that the planar heat pipe 10 and the tubular heat pipe 12 are thermally connected. Yes.
 また、平面型ヒートパイプ10には、基板102に実装された複数の発熱体(図1では、2つの発熱体、第1の発熱体100と第2の発熱体101)が、熱的に接続されている。すなわち、第1の発熱体100、第2の発熱体101が、同じ平面型ヒートパイプ10に熱的に接続されている。従って、第1の発熱体100、第2の発熱体101が、平面型ヒートパイプ10を介して熱的に接続されている。平面型ヒートパイプ10のうち、第1の発熱体100、第2の発熱体101が熱的に接続された部位が、平面型ヒートパイプ10の受熱部として機能する。 In addition, a plurality of heating elements mounted on the substrate 102 (two heating elements, the first heating element 100 and the second heating element 101 in FIG. 1) are thermally connected to the planar heat pipe 10. Has been. That is, the first heating element 100 and the second heating element 101 are thermally connected to the same planar heat pipe 10. Accordingly, the first heating element 100 and the second heating element 101 are thermally connected via the planar heat pipe 10. A portion of the flat heat pipe 10 where the first heat generating body 100 and the second heat generating body 101 are thermally connected functions as a heat receiving portion of the flat heat pipe 10.
 また、平面型ヒートパイプ10は、第1の発熱体100、第2の発熱体101に載置されることで第1の発熱体100、第2の発熱体101と熱的に接続され、また、固定されている。 The planar heat pipe 10 is thermally connected to the first heating element 100 and the second heating element 101 by being placed on the first heating element 100 and the second heating element 101, and It has been fixed.
 なお、ヒートシンク構造1では、第1の発熱体100、第2の発熱体101に直接接するように、平面型ヒートパイプ10が載置されていてもよく、図示しない熱伝導グリースを平面型ヒートパイプ10と第1の発熱体100、第2の発熱体101との間に挿入してもよい。 In the heat sink structure 1, the flat heat pipe 10 may be placed so as to be in direct contact with the first heat generating body 100 and the second heat generating body 101. 10 may be inserted between the first heating element 100 and the second heating element 101.
 図1、2に示すように、平面型ヒートパイプ10のうち、第1の発熱体100、第2の発熱体101が熱的に接続された部位から所定距離離れた平面型ヒートパイプ10の周縁部に、管状ヒートパイプ12の一方の端部14が熱的に接続されている。ヒートシンク構造1では、1つの管状ヒートパイプ12が、平面型ヒートパイプ10の周縁部に熱的に接続されている。平面型ヒートパイプ10のうち、管状ヒートパイプ12の一方の端部14が熱的に接続された部位が、平面型ヒートパイプ10の放熱部として機能する。 As shown in FIGS. 1 and 2, the peripheral edge of the planar heat pipe 10 that is a predetermined distance away from the portion of the planar heat pipe 10 where the first heating element 100 and the second heating element 101 are thermally connected. One end portion 14 of the tubular heat pipe 12 is thermally connected to the portion. In the heat sink structure 1, one tubular heat pipe 12 is thermally connected to the peripheral portion of the planar heat pipe 10. Of the flat heat pipe 10, a portion where one end 14 of the tubular heat pipe 12 is thermally connected functions as a heat radiating portion of the flat heat pipe 10.
 平面型ヒートパイプ10と管状ヒートパイプ12とを熱的に接続する方法は、特に限定されず、例えば、平面型ヒートパイプ10の平面型コンテナ11に、管状ヒートパイプ12の管状コンテナ13を、はんだ付け、かしめ等により固定することで、平面型ヒートパイプ10と管状ヒートパイプ12とを熱的に接続することができる。 The method of thermally connecting the planar heat pipe 10 and the tubular heat pipe 12 is not particularly limited. For example, the tubular container 13 of the tubular heat pipe 12 is soldered to the planar container 11 of the planar heat pipe 10. The flat heat pipe 10 and the tubular heat pipe 12 can be thermally connected by fixing by attaching, caulking, or the like.
 平面型ヒートパイプ10に熱的に接続された管状ヒートパイプ12の一方の端部14が、管状ヒートパイプ12の受熱部として機能する。一方で、管状ヒートパイプ12のうち、一方の端部14以外の部位、すなわち、中央部15と他方の端部16は、平面型ヒートパイプ10と接していない。このうち、管状ヒートパイプ12の他方の端部16が、管状ヒートパイプ12の放熱部として機能する。なお、管状ヒートパイプ12には、平面型ヒートパイプ10と異なり、発熱体は接続されない。なお、管状ヒートパイプ12は、図1、2に示すように、曲げ加工してもよく、直線状の形状にて使用してもよい。また、管状ヒートパイプ12は、熱的接続性を向上させるために、一部または全体を扁平加工してもよい。 The one end portion 14 of the tubular heat pipe 12 thermally connected to the planar heat pipe 10 functions as a heat receiving portion of the tubular heat pipe 12. On the other hand, portions of the tubular heat pipe 12 other than the one end portion 14, that is, the center portion 15 and the other end portion 16 are not in contact with the planar heat pipe 10. Among these, the other end portion 16 of the tubular heat pipe 12 functions as a heat radiating portion of the tubular heat pipe 12. Note that, unlike the planar heat pipe 10, no heating element is connected to the tubular heat pipe 12. The tubular heat pipe 12 may be bent as shown in FIGS. 1 and 2 or may be used in a linear shape. Moreover, in order to improve thermal connectivity, the tubular heat pipe 12 may be partially or entirely flattened.
 ヒートシンク構造1では、管状ヒートパイプ12は、受熱部も含めて全体が扁平加工されている。また、管状ヒートパイプ12の一方の端部14(受熱部)は、平面型ヒートパイプ10の平面方向に沿って延在している。すなわち、管状ヒートパイプ12の一方の端部14は、平面視において平面型ヒートパイプ10の平面方向に沿って延在している。管状ヒートパイプ12の中央部15と他方の端部16も、一方の端部14と同様に、平面型ヒートパイプ10の平面方向に沿って延在している。従って、管状ヒートパイプ12の熱輸送方向は、平面型ヒートパイプ10の平面方向に対して略平行方向となっている。 In the heat sink structure 1, the entire tubular heat pipe 12 including the heat receiving portion is flattened. In addition, one end portion 14 (heat receiving portion) of the tubular heat pipe 12 extends along the planar direction of the planar heat pipe 10. That is, one end 14 of the tubular heat pipe 12 extends along the planar direction of the planar heat pipe 10 in plan view. The central portion 15 and the other end portion 16 of the tubular heat pipe 12 also extend along the planar direction of the planar heat pipe 10, similarly to the one end portion 14. Therefore, the heat transport direction of the tubular heat pipe 12 is substantially parallel to the planar direction of the planar heat pipe 10.
 ヒートシンク構造1では、管状ヒートパイプ12の他方の端部16(すなわち、管状ヒートパイプ12の放熱部)に、熱交換手段として、放熱フィン17が取り付けられている。また、放熱フィン17と平面型ヒートパイプ10との間には、送風ファン103が配置されている。送風ファン103からの冷却風が放熱フィン17へ供給される。 In the heat sink structure 1, a heat radiating fin 17 is attached to the other end portion 16 of the tubular heat pipe 12 (that is, a heat radiating portion of the tubular heat pipe 12) as heat exchange means. A blower fan 103 is disposed between the heat radiating fins 17 and the planar heat pipe 10. Cooling air from the blower fan 103 is supplied to the radiation fins 17.
 ヒートシンク構造1では、複数の放熱フィン17が管状ヒートパイプ12の他方の端部16に取り付けられることで、管状ヒートパイプ12の放熱部から外部環境へ、円滑に熱が放出される。また、放熱フィン17と平面型ヒートパイプ10との間に送風ファン103が配置されていることにより、送風ファン103が稼働することで、放熱フィン17へ冷却風が供給されるだけでなく、平面型ヒートパイプ10から放熱フィン17の方向へ気流が生じて、この気流が、平面型ヒートパイプ10を冷却する冷却風としても機能する。 In the heat sink structure 1, heat is smoothly released from the heat radiating portion of the tubular heat pipe 12 to the external environment by attaching the plurality of heat radiating fins 17 to the other end portion 16 of the tubular heat pipe 12. Further, since the blower fan 103 is disposed between the heat radiation fins 17 and the planar heat pipe 10, the blower fan 103 is operated, so that not only cooling air is supplied to the heat radiation fins 17, but also a flat surface. An air flow is generated from the mold heat pipe 10 toward the radiation fins 17, and this air flow also functions as cooling air for cooling the planar heat pipe 10.
 平面型ヒートパイプ10は、平面型コンテナ11と、平面型コンテナ11の内部空間に封入された作動流体(図示せず)と、平面型コンテナ11の内部空間に設けられたウィック構造体(図示せず)とを有している。また、管状ヒートパイプ12は、管状コンテナ13と、管状コンテナ13の内部空間に封入された作動流体(図示せず)と、管状コンテナ13の内部空間に設けられたウィック構造体(図示せず)とを有している。 The flat heat pipe 10 includes a flat container 11, a working fluid (not shown) sealed in the internal space of the flat container 11, and a wick structure (not shown) provided in the internal space of the flat container 11. Z). The tubular heat pipe 12 includes a tubular container 13, a working fluid (not shown) sealed in the inner space of the tubular container 13, and a wick structure (not shown) provided in the inner space of the tubular container 13. And have.
 平面型コンテナ11及び管状コンテナ13の材料としては、例えば、銅、銅合金、アルミニウム、アルミニウム合金、ニッケル、ニッケル合金、ステンレス、チタン等を挙げることができる。また、作動流体としては、平面型コンテナ11及び管状コンテナ13の材料との適合性に応じて、適宜選択可能であり、例えば、水、代替フロン、フロリナート等のフルオロカーボン類、シクロペンタン等を挙げることができる。 Examples of the material of the flat container 11 and the tubular container 13 include copper, copper alloy, aluminum, aluminum alloy, nickel, nickel alloy, stainless steel, titanium, and the like. Further, the working fluid can be appropriately selected according to the compatibility with the material of the planar container 11 and the tubular container 13, and examples thereof include water, fluorocarbons such as chlorofluorocarbons and fluorinate, and cyclopentane. Can do.
 ウィック構造体としては、銅粉等の金属粉の焼結体、金属メッシュ、ワイヤ、平面型コンテナ11及び管状コンテナ13の内面に形成されたグルーブ等を挙げることができる。 Examples of the wick structure include a sintered body of metal powder such as copper powder, a metal mesh, a wire, a groove formed on the inner surface of the planar container 11 and the tubular container 13.
 冷却対象である発熱体としては、特に限定されないが、基板102(例えば、電子機器に内蔵された回路基板)に実装された中央演算処理装置、グラフィックチップ(GPU、VGA)、メモリー、コンデンサ、電源等を挙げることができる。 The heating element to be cooled is not particularly limited, but a central processing unit, graphic chip (GPU, VGA), memory, capacitor, power supply mounted on the substrate 102 (for example, a circuit board built in an electronic device). Etc.
 次に、ヒートシンク構造1の冷却作用の仕組みについて説明する。平面型ヒートパイプ10の受熱部が、第1の発熱体100、第2の発熱体101から受熱すると、平面型ヒートパイプ10の受熱部から、管状ヒートパイプ12の一方の端部14と接続された平面型ヒートパイプ10の放熱部へ、第1の発熱体100、第2の発熱体101からの熱が輸送される。平面型ヒートパイプ10の受熱部以外の平面部が、平面型ヒートパイプ10の放熱部として機能する。平面型ヒートパイプ10の受熱部から放熱部へ輸送された熱の一部は、平面型ヒートパイプ10の放熱部から管状ヒートパイプ12の一方の端部14、すなわち、管状ヒートパイプ12の受熱部へ伝達される。管状ヒートパイプ12の受熱部へ伝達された熱は、管状ヒートパイプ12の他方の端部16、すなわち、管状ヒートパイプ12の放熱部へ輸送され、管状ヒートパイプ12の放熱部から放熱フィン17を介して外部環境へ放出される。 Next, the cooling mechanism of the heat sink structure 1 will be described. When the heat receiving part of the flat heat pipe 10 receives heat from the first heat generating element 100 and the second heat generating element 101, the heat receiving part of the flat heat pipe 10 is connected to one end 14 of the tubular heat pipe 12. The heat from the first heating element 100 and the second heating element 101 is transported to the heat radiating part of the flat heat pipe 10. A flat surface portion other than the heat receiving portion of the flat heat pipe 10 functions as a heat radiating portion of the flat heat pipe 10. Part of the heat transported from the heat receiving portion of the planar heat pipe 10 to the heat radiating portion is from the heat radiating portion of the flat heat pipe 10 to one end 14 of the tubular heat pipe 12, that is, the heat receiving portion of the tubular heat pipe 12. Is transmitted to. The heat transferred to the heat receiving portion of the tubular heat pipe 12 is transported to the other end portion 16 of the tubular heat pipe 12, that is, the heat radiating portion of the tubular heat pipe 12. To the outside environment.
 つまり、平面型ヒートパイプ10が受熱した第1の発熱体100と第2の発熱体101の熱は、管状ヒートパイプ12によって、放熱フィン17の部位まで輸送されることで、外部環境へ円滑に放出できる。 That is, the heat of the first heating element 100 and the second heating element 101 received by the flat heat pipe 10 is transported to the site of the radiation fin 17 by the tubular heat pipe 12, so that it can be smoothly transferred to the external environment. Can be released.
 ヒートシンク構造1では、第1の発熱体100及び第2の発熱体101上に載置される状態で、第1の発熱体100及び第2の発熱体101と熱的に接続されるので、平面型ヒートパイプの内部空間の閉塞や狭小化を確実に防止でき、ひいては、優れた熱輸送特性を発揮して、複数の発熱体を確実に冷却することができる。 Since the heat sink structure 1 is thermally connected to the first heating element 100 and the second heating element 101 while being placed on the first heating element 100 and the second heating element 101, it is flat. It is possible to reliably prevent the internal space of the mold heat pipe from being blocked and narrowed, and thus exhibit excellent heat transport characteristics, and to reliably cool a plurality of heating elements.
 また、ヒートシンク構造1では、複数の発熱体(第1の発熱体100及び第2の発熱体101)が1つの平面型ヒートパイプ10に熱的に接続されるので、平面型ヒートパイプ10の部品点数を低減できるとともに、ヒートシンク構造1を簡素化できる。また、ヒートシンク構造1では、複数の発熱体が1つの平面型ヒートパイプ10に熱的に接続され、平面型ヒートパイプ10が、放熱フィン17の設置部位へ熱を輸送する管状ヒートパイプ12に熱的に接続されているので、複数の発熱体の発熱量が異なっても、平面型ヒートパイプ10が各発熱体を均熱化でき、ひいては、各発熱体の冷却を均一化できる。さらに、ヒートシンク構造1では、各発熱体は平面型ヒートパイプに熱的に接続されるので、狭小な内部空間、例えば、厚さ方向の寸法が小さい内部空間に設置された発熱体でも、確実に冷却できる。 Further, in the heat sink structure 1, a plurality of heating elements (the first heating element 100 and the second heating element 101) are thermally connected to one planar heat pipe 10. The number of points can be reduced and the heat sink structure 1 can be simplified. Further, in the heat sink structure 1, a plurality of heating elements are thermally connected to one flat heat pipe 10, and the flat heat pipe 10 is heated to the tubular heat pipe 12 that transports heat to the installation site of the radiation fins 17. Therefore, even if the heat generation amounts of the plurality of heat generating elements are different, the flat heat pipe 10 can equalize the heat generating elements, and thus can uniformly cool the heat generating elements. Further, in the heat sink structure 1, since each heating element is thermally connected to the planar heat pipe, even in the case of a heating element installed in a narrow internal space, for example, an internal space having a small dimension in the thickness direction, it is ensured. Can be cooled.
 次に、本発明の第2実施形態例に係るヒートシンク構造について、図面を用いながら説明する。本発明の第1実施形態例に係るヒートシンク構造と同じ構成要素については同じ符号を用いて説明する。 Next, a heat sink structure according to a second embodiment of the present invention will be described with reference to the drawings. The same components as those of the heat sink structure according to the first embodiment of the present invention will be described using the same reference numerals.
 第1実施形態例に係るヒートシンク構造1では、平面型ヒートパイプ10の周縁部に、管状ヒートパイプ12が1つ、熱的に接続されていたが、これに代えて、第2実施形態例に係るヒートシンク構造2では、図3に示すように、平面型ヒートパイプ10の周縁部に、2つの管状ヒートパイプ12、12’が熱的に接続されている。 In the heat sink structure 1 according to the first embodiment, one tubular heat pipe 12 is thermally connected to the peripheral portion of the planar heat pipe 10, but instead of this, the second embodiment is used. In the heat sink structure 2, as shown in FIG. 3, two tubular heat pipes 12 and 12 ′ are thermally connected to the peripheral portion of the planar heat pipe 10.
 ヒートシンク構造2では、平面型ヒートパイプ10の周縁部のうち、所定の1箇所に管状ヒートパイプ12が熱的に接続されているだけでなく、管状ヒートパイプ12に対向する平面型ヒートパイプ10の周縁部の位置に、他の管状ヒートパイプ12’が熱的に接続されている。なお、他の管状ヒートパイプ12’の放熱部にも、管状ヒートパイプ12の放熱部と同様に、放熱フィン17が設けられている。 In the heat sink structure 2, the tubular heat pipe 12 is not only thermally connected to a predetermined portion of the peripheral portion of the planar heat pipe 10, but also the planar heat pipe 10 facing the tubular heat pipe 12. Another tubular heat pipe 12 'is thermally connected to the position of the peripheral edge. Note that, similarly to the heat radiating portion of the tubular heat pipe 12, heat radiating fins 17 are also provided in the heat radiating portions of the other tubular heat pipes 12 '.
 平面型ヒートパイプ10の周縁部に、2つの管状ヒートパイプ12が熱的に接続されていても、ヒートシンク構造1と同様に、複数の発熱体を確実に冷却することができる。すなわち、平面型ヒートパイプ10に熱的に接続される管状ヒートパイプ12の数量は、1つでも複数でも、特に限定されず、発熱体の発熱量や発熱体の数量等、使用状況に応じて、適宜選択可能である。 Even if the two tubular heat pipes 12 are thermally connected to the peripheral edge of the planar heat pipe 10, a plurality of heating elements can be reliably cooled as in the heat sink structure 1. That is, the number of the tubular heat pipes 12 that are thermally connected to the planar heat pipe 10 is not particularly limited, and may be one or more, depending on use conditions such as the amount of heat generated by the heating element and the number of heating elements. Can be appropriately selected.
 次に、本発明の第3実施形態例に係るヒートシンク構造について、図面を用いながら説明する。本発明の第1、第2実施形態例に係るヒートシンク構造と同じ構成要素については同じ符号を用いて説明する。 Next, a heat sink structure according to a third embodiment of the present invention will be described with reference to the drawings. The same components as those of the heat sink structure according to the first and second embodiments of the present invention will be described using the same reference numerals.
 第1実施形態例に係るヒートシンク構造1では、各発熱体(第1の発熱体100、第2の発熱体101)に直接接するまたは熱伝導グリースを介して、平面型ヒートパイプ10が熱的に接続されていたが、これに代えて、第3実施形態例に係るヒートシンク構造3では、図4に示すように、平面型ヒートパイプ10と発熱体との間に熱伝導性部材18が挿入されている。なお、ヒートシンク構造3では、第1の発熱体100、第2の発熱体101に加えて、第3の発熱体104が、すなわち、3つの発熱体が、基板102に実装されている。 In the heat sink structure 1 according to the first embodiment, the planar heat pipe 10 is thermally contacted directly with each heating element (the first heating element 100 and the second heating element 101) or through heat conductive grease. However, instead of this, in the heat sink structure 3 according to the third embodiment, as shown in FIG. 4, a heat conductive member 18 is inserted between the planar heat pipe 10 and the heating element. ing. In the heat sink structure 3, the third heating element 104, that is, three heating elements are mounted on the substrate 102 in addition to the first heating element 100 and the second heating element 101.
 上記態様は、第1の発熱体100、第2の発熱体101及び第3の発熱体104の高さ方向の寸法が、相互に異なる場合に、特に、有効である。すなわち、高さ方向の寸法が小さい発熱体(図4では、第2の発熱体101及び第3の発熱体104)と平面型ヒートパイプ10との間に熱伝導性部材18を挿入して、高さ方向の寸法が最も大きい発熱体(図4では、第1の発熱体100)と略同じ高さとする。これにより、平面型ヒートパイプ10に撓み等の変形を施すことなく、複数の発熱体(第1の発熱体100、第2の発熱体101、第3の発熱体104)と平面型ヒートパイプ10とを熱的に接続できる。 The above aspect is particularly effective when the first heating element 100, the second heating element 101, and the third heating element 104 have mutually different height dimensions. That is, the heat conductive member 18 is inserted between the heating element (the second heating element 101 and the third heating element 104 in FIG. 4) and the flat heat pipe 10 having a small dimension in the height direction, The heating element has the same height as that of the heating element having the largest dimension in the height direction (first heating element 100 in FIG. 4). As a result, a plurality of heating elements (first heating element 100, second heating element 101, and third heating element 104) and the planar heat pipe 10 can be obtained without deforming the planar heat pipe 10 such as bending. Can be connected thermally.
 熱伝導性部材18としては、例えば、熱伝導シート等を挙げることができる。なお、図4では、第1の発熱体100と平面型ヒートパイプ10の接触面に、熱伝導性を向上させるために熱伝導グリース19が塗布されている。 Examples of the heat conductive member 18 include a heat conductive sheet. In FIG. 4, thermal conductive grease 19 is applied to the contact surface between the first heating element 100 and the flat heat pipe 10 in order to improve thermal conductivity.
 次に、本発明の第4実施形態例に係るヒートシンク構造について、図面を用いながら説明する。本発明の第1、第2、第3実施形態例に係るヒートシンク構造と同じ構成要素については同じ符号を用いて説明する。 Next, a heat sink structure according to a fourth embodiment of the present invention will be described with reference to the drawings. The same components as those of the heat sink structure according to the first, second, and third embodiments of the present invention will be described using the same reference numerals.
 図5(a)、(b)に示すように、第4実施形態例に係るヒートシンク構造4では、平面型ヒートパイプ10の発熱体側の面(裏面)に、さらに付勢部材20が設けられている。平面型ヒートパイプ10の裏面に付勢部材20が設けられていることにより、平面型ヒートパイプ10の撓み等の変形を防止しつつ、平面型ヒートパイプ10を第1の発熱体100及び第2の発熱体101方向へ付勢させることができる。よって、平面型ヒートパイプ10と第1の発熱体100及び第2の発熱体101との熱的接続性が向上し、また、平面型ヒートパイプ10を確実に基板102に固定することができる。なお、管状ヒートパイプ12は、平面型ヒートパイプ10の発熱体側ではない面(表面)に取り付けられている。 As shown in FIGS. 5A and 5B, in the heat sink structure 4 according to the fourth embodiment, a biasing member 20 is further provided on the surface (back surface) of the flat heat pipe 10 on the heating element side. Yes. Since the biasing member 20 is provided on the back surface of the planar heat pipe 10, the planar heat pipe 10 is prevented from being deformed such as bending, and the planar heat pipe 10 is connected to the first heating element 100 and the second heating element 100. The heating element 101 can be biased. Therefore, the thermal connectivity between the planar heat pipe 10 and the first and second heating elements 100 and 101 is improved, and the planar heat pipe 10 can be securely fixed to the substrate 102. The tubular heat pipe 12 is attached to a surface (surface) that is not the heating element side of the flat heat pipe 10.
 ヒートシンク構造4では、平面型ヒートパイプ10の裏面に2つの付勢部材20が設けられている。それぞれの付勢部材20は、相互に対向するように、平面型ヒートパイプ10の周縁部に配置されている。また、2つの付勢部材20間に、各発熱体(第1の発熱体100及び第2の発熱体101)が配置されている。従って、全ての発熱体に対して、基板102側へ付勢された状態の平面型ヒートパイプ10が、熱的に接続されている。付勢部材20は、第1の発熱体100及び第2の発熱体101が実装された基板102に固定される。 In the heat sink structure 4, two urging members 20 are provided on the back surface of the planar heat pipe 10. The respective urging members 20 are arranged at the peripheral edge of the planar heat pipe 10 so as to face each other. In addition, each heating element (the first heating element 100 and the second heating element 101) is disposed between the two biasing members 20. Accordingly, the planar heat pipe 10 in a state of being urged toward the substrate 102 is thermally connected to all the heating elements. The biasing member 20 is fixed to the substrate 102 on which the first heating element 100 and the second heating element 101 are mounted.
 付勢部材20は、平面型ヒートパイプ10の裏面と面接触した状態で取り付けられる第1の平坦部20-1と、基板102に面接触した状態で取り付けられる第2の平坦部20-2と、第1の平坦部20-1と第2の平坦部20-2とを繋ぐ連結部20-3と、を有している。連結部20-3が、付勢作用を発揮する。 The urging member 20 includes a first flat portion 20-1 attached in a surface contact with the back surface of the planar heat pipe 10, and a second flat portion 20-2 attached in a surface contact with the substrate 102. And a connecting portion 20-3 that connects the first flat portion 20-1 and the second flat portion 20-2. The connecting portion 20-3 exhibits a biasing action.
 第1の平坦部20-1の平面型ヒートパイプ10裏面への取り付け手段は、特に限定されず、例えば、はんだ付け等を挙げることができる。第2の平坦部20-2の基板102への固定手段は、特に限定されず、ヒートシンク構造4では、第2の平坦部20-2は、ねじ21によって基板102に固定されている。すなわち、第2の平坦部20-2には、ねじ21を挿通する貫通孔(図示せず)が設けられ、基板102にはねじ穴(図示せず)が設けられ、ねじ21を貫通孔に挿通してねじ穴に螺合することで、付勢部材20は基板102に固定される。 The means for attaching the first flat portion 20-1 to the back surface of the planar heat pipe 10 is not particularly limited, and examples thereof include soldering. The means for fixing the second flat portion 20-2 to the substrate 102 is not particularly limited, and in the heat sink structure 4, the second flat portion 20-2 is fixed to the substrate 102 with screws 21. That is, the second flat portion 20-2 is provided with a through hole (not shown) through which the screw 21 is inserted, the substrate 102 is provided with a screw hole (not shown), and the screw 21 is used as a through hole. The biasing member 20 is fixed to the substrate 102 by being inserted and screwed into the screw hole.
 付勢部材20としては、例えば、金属製の板バネやコイル等のバネ部材が挙げられる。 Examples of the urging member 20 include spring members such as metal leaf springs and coils.
 次に、本発明の第5実施形態例に係るヒートシンク構造について、図面を用いながら説明する。本発明の第1、第2、第3、第4実施形態例に係るヒートシンク構造と同じ構成要素については同じ符号を用いて説明する。 Next, a heat sink structure according to a fifth embodiment of the present invention will be described with reference to the drawings. The same components as those of the heat sink structure according to the first, second, third, and fourth embodiments of the present invention will be described using the same reference numerals.
 第4実施形態例に係るヒートシンク構造4では、全ての発熱体に対して、基板102側へ付勢された状態の平面型ヒートパイプ10が、熱的に接続されていたが、これに代えて、第5実施形態例に係るヒートシンク構造5では、図6(a)、(b)に示すように、複数の発熱体(図6では、第1の発熱体100と第2の発熱体101の2つの発熱体)のうち、一部の発熱体(図6では、第1の発熱体100)に対してのみ、基板102側へ付勢された状態の平面型ヒートパイプ10が、熱的に接続されている。また、平面型ヒートパイプ10には、ねじ21を挿通する貫通孔22が設けられ、付勢部材20にも、ねじ21を挿通する貫通孔(図示せず)が設けられている。基板102には、ねじ穴(図示せず)が設けられている。ねじ21を、平面型ヒートパイプ10の貫通孔22と付勢部材20の貫通孔にそれぞれ挿通して、基板102のねじ穴に螺合することで、平面型ヒートパイプ10と付勢部材20は基板102に固定されている。 In the heat sink structure 4 according to the fourth embodiment, the planar heat pipe 10 in a state of being urged toward the substrate 102 is thermally connected to all the heating elements. In the heat sink structure 5 according to the fifth embodiment, as shown in FIGS. 6A and 6B, a plurality of heating elements (in FIG. 6, the first heating element 100 and the second heating element 101 are formed. Of the two heating elements), only a part of the heating elements (in FIG. 6, the first heating element 100), the planar heat pipe 10 that is biased toward the substrate 102 is thermally It is connected. Further, the planar heat pipe 10 is provided with a through hole 22 through which the screw 21 is inserted, and the biasing member 20 is also provided with a through hole (not shown) through which the screw 21 is inserted. The substrate 102 is provided with a screw hole (not shown). The planar heat pipe 10 and the urging member 20 are inserted into the through hole 22 of the planar heat pipe 10 and the through hole of the urging member 20 and screwed into the threaded holes of the substrate 102, respectively. It is fixed to the substrate 102.
 また、図6(b)に示すように、ヒートシンク構造5では、2つの付勢部材20間に、第1の発熱体100は配置されているが、第2の発熱体101は配置されていない。第2の発熱体101に対しては、平面型ヒートパイプ10のうち、基板102方向へ付勢されていない部位が、熱的に接続されている。また、第2の発熱体101には、平面型ヒートパイプ10との間に、熱伝導シート等の熱伝導性部材18が挿入され、熱伝導性部材18の有する緩衝機能によって、平面型ヒートパイプ10が第1の発熱体100の方向へ付勢されてもいる。 Further, as shown in FIG. 6B, in the heat sink structure 5, the first heating element 100 is disposed between the two biasing members 20, but the second heating element 101 is not disposed. . A portion of the flat heat pipe 10 that is not biased toward the substrate 102 is thermally connected to the second heating element 101. Further, a thermal conductive member 18 such as a thermal conductive sheet is inserted between the second heat generating body 101 and the planar heat pipe 10, and the planar heat pipe is provided by a buffering function of the thermal conductive member 18. 10 is also biased toward the first heating element 100.
 上記態様でも、平面型ヒートパイプ10の撓み等の変形を防止しつつ、平面型ヒートパイプ10と第1の発熱体100との熱的接続性が向上し、また、平面型ヒートパイプ10を確実に基板102に固定できる。 Even in the above aspect, the thermal connectivity between the planar heat pipe 10 and the first heating element 100 is improved while preventing deformation such as bending of the planar heat pipe 10, and the planar heat pipe 10 is reliably secured. It can be fixed to the substrate 102.
 次に、本発明の他の実施形態例について説明する。上記第1~第5実施形態例では、管状ヒートパイプの放熱部に熱交換手段として放熱フィンが設けられていたが、使用状況に応じて、熱交換手段を設けなくてもよい。また、上記第1~第5実施形態例では、放熱フィン近傍に送風ファンが設置されていたが、使用状況に応じて、送風ファンを設置しなくてもよい。 Next, another embodiment of the present invention will be described. In the first to fifth embodiments, the heat radiating fins are provided as the heat exchanging means in the heat radiating portion of the tubular heat pipe. However, the heat exchanging means may not be provided depending on the use situation. In the first to fifth embodiments, the blower fan is installed in the vicinity of the heat radiating fins. However, the blower fan may not be installed depending on the use situation.
 第1、第4実施形態例に係るヒートシンク構造では、各発熱体に直接接して、または熱伝導グリースを介して、平面型ヒートパイプが載置されていたが、発熱体と平面型ヒートパイプとの間に熱伝導性部材を配置してもよい。 In the heat sink structure according to the first and fourth embodiments, the planar heat pipe is placed in direct contact with each heating element or via thermal conductive grease. However, the heating element and the planar heat pipe are You may arrange | position a heat conductive member between these.
 上記した本発明のヒートシンク構造は、優れた熱輸送特性を有しつつ、簡易な構成にて、狭小化した内部空間に設置された複数の発熱体の冷却を均一化できるので、例えば、厚さ方向の寸法の小さい空間に、複数設置された発熱体を冷却する分野で、利用価値が高い。 The heat sink structure of the present invention described above has excellent heat transport characteristics, and with a simple configuration, can uniformly cool a plurality of heating elements installed in a narrowed internal space. The utility value is high in the field of cooling a plurality of heating elements installed in a space with small dimensions.
 以下に、本発明の第6実施形態例に係るヒートシンク構造について、図面を用いながら説明する。図7、8に示すように、第6実施形態例に係るヒートシンク構造6は、平面型ヒートパイプ10と、平面型ヒートパイプ10と熱的に接続された管状ヒートパイプ12と、を備えている。ヒートシンク構造6では、平面型ヒートパイプ10の平面型コンテナ11と管状ヒートパイプ12の管状コンテナ13とが直接接することで、平面型ヒートパイプ10と管状ヒートパイプ12とが、熱的に接続されている。 Hereinafter, a heat sink structure according to a sixth embodiment of the present invention will be described with reference to the drawings. As shown in FIGS. 7 and 8, the heat sink structure 6 according to the sixth embodiment includes a planar heat pipe 10 and a tubular heat pipe 12 thermally connected to the planar heat pipe 10. . In the heat sink structure 6, the planar container 11 of the planar heat pipe 10 and the tubular container 13 of the tubular heat pipe 12 are in direct contact, so that the planar heat pipe 10 and the tubular heat pipe 12 are thermally connected. Yes.
 ヒートシンク構造6では、管状ヒートパイプ12が、平面型ヒートパイプ10よりも発熱体の方向に配置されている。管状ヒートパイプ12には、基板102に実装された第1の発熱体100が熱的に接続され、平面型ヒートパイプ10には、基板102に実装された第2の発熱体101が熱的に接続されている。従って、第1の発熱体100は、管状ヒートパイプ12を介して平面型ヒートパイプ10と熱的に接続され、第2の発熱体101は、平面型ヒートパイプ10を介して管状ヒートパイプ12と熱的に接続されている。従って、平面型ヒートパイプ10は、均熱板としての機能を有する。 In the heat sink structure 6, the tubular heat pipe 12 is arranged in the direction of the heating element rather than the planar heat pipe 10. The tubular heat pipe 12 is thermally connected to the first heating element 100 mounted on the substrate 102, and the planar heat pipe 10 is thermally connected to the second heating element 101 mounted on the substrate 102. It is connected. Accordingly, the first heating element 100 is thermally connected to the planar heat pipe 10 via the tubular heat pipe 12, and the second heating element 101 is connected to the tubular heat pipe 12 via the planar heat pipe 10. Thermally connected. Accordingly, the planar heat pipe 10 has a function as a soaking plate.
 なお、ヒートシンク構造6では、管状ヒートパイプ12は第1の発熱体100と直接接することで、第1の発熱体100と熱的に接続され、平面型ヒートパイプ10は第2の発熱体101と直接接することで、第2の発熱体101と熱的に接続されていてもよく、図示しない熱伝導グリースを、管状ヒートパイプ12と第1の発熱体100、平面型ヒートパイプ10と第2の発熱体101との間に挿入して、熱的に接続してもよい。 In the heat sink structure 6, the tubular heat pipe 12 is in direct contact with the first heating element 100 to be thermally connected to the first heating element 100, and the planar heat pipe 10 is connected to the second heating element 101. The heat generating grease (not shown) may be thermally connected to the second heating element 101 by direct contact, and the tubular heat pipe 12 and the first heating element 100, the planar heat pipe 10 and the second heating pipe 101 are connected to each other. It may be inserted between the heating element 101 and thermally connected.
 図7、8に示すように、平面型ヒートパイプ10に管状ヒートパイプ12の一方の端部14が熱的に接続され、管状ヒートパイプ12の一方の端部14に第1の発熱体100が熱的に接続されている。つまり、図8に示すように、平面型ヒートパイプ10と管状ヒートパイプ12が平面視において重なり合う位置に、第1の発熱体100が熱的に接続される。一方で、第2の発熱体101は、管状ヒートパイプ12とは平面視において重なり合わない位置にて、平面型ヒートパイプ10と熱的に接続される。ヒートシンク構造6では、1つの管状ヒートパイプ12が、平面型ヒートパイプ10に熱的に接続されている。 As shown in FIGS. 7 and 8, one end 14 of the tubular heat pipe 12 is thermally connected to the planar heat pipe 10, and the first heating element 100 is connected to the one end 14 of the tubular heat pipe 12. Thermally connected. That is, as shown in FIG. 8, the first heating element 100 is thermally connected at a position where the planar heat pipe 10 and the tubular heat pipe 12 overlap in a plan view. On the other hand, the second heating element 101 is thermally connected to the planar heat pipe 10 at a position that does not overlap the tubular heat pipe 12 in plan view. In the heat sink structure 6, one tubular heat pipe 12 is thermally connected to the planar heat pipe 10.
 平面型ヒートパイプ10と管状ヒートパイプ12とを熱的に接続する方法は、特に限定されず、例えば、平面型ヒートパイプ10の平面型コンテナ11に、管状ヒートパイプ12の管状コンテナ13を、はんだ付け、かしめ等により固定することで、平面型ヒートパイプ10と管状ヒートパイプ12とを熱的に接続することができる。 The method of thermally connecting the planar heat pipe 10 and the tubular heat pipe 12 is not particularly limited. For example, the tubular container 13 of the tubular heat pipe 12 is soldered to the planar container 11 of the planar heat pipe 10. The flat heat pipe 10 and the tubular heat pipe 12 can be thermally connected by fixing by attaching, caulking, or the like.
 平面型ヒートパイプ10及び第1の発熱体100と熱的に接続された管状ヒートパイプ12の一方の端部14が、管状ヒートパイプ12の受熱部として機能する。一方で、管状ヒートパイプ12のうち、一方の端部14以外の部位、すなわち、中央部15と他方の端部16は、平面型ヒートパイプ10と接していない。このうち、管状ヒートパイプ12の他方の端部16が、管状ヒートパイプ12の放熱部として機能する。なお、管状ヒートパイプ12は、図7、8に示すように、曲げ加工してもよく、直線状の形状にて使用してもよい。また、管状ヒートパイプ12は、熱的接続性を向上させるために、一部または全体を扁平加工してもよい。 One end portion 14 of the tubular heat pipe 12 thermally connected to the planar heat pipe 10 and the first heating element 100 functions as a heat receiving portion of the tubular heat pipe 12. On the other hand, portions of the tubular heat pipe 12 other than the one end portion 14, that is, the center portion 15 and the other end portion 16 are not in contact with the planar heat pipe 10. Among these, the other end portion 16 of the tubular heat pipe 12 functions as a heat radiating portion of the tubular heat pipe 12. The tubular heat pipe 12 may be bent as shown in FIGS. 7 and 8 or may be used in a linear shape. Moreover, in order to improve thermal connectivity, the tubular heat pipe 12 may be partially or entirely flattened.
 ヒートシンク構造6では、管状ヒートパイプ12は、受熱部も含めて全体が扁平加工されている。また、管状ヒートパイプ12の一方の端部14(受熱部)は、平面型ヒートパイプ10の平面方向に沿って延在している。すなわち、管状ヒートパイプ12の一方の端部14は、平面視において平面型ヒートパイプ10の平面方向に沿って延在している。管状ヒートパイプ12の中央部15と他方の端部16も、一方の端部14と同様に、平面型ヒートパイプ10の平面方向に沿って延在している。従って、管状ヒートパイプ12の熱輸送方向は、平面型ヒートパイプ10の平面方向に対して略平行方向となっている。 In the heat sink structure 6, the entire tubular heat pipe 12 including the heat receiving portion is flattened. In addition, one end portion 14 (heat receiving portion) of the tubular heat pipe 12 extends along the planar direction of the planar heat pipe 10. That is, one end 14 of the tubular heat pipe 12 extends along the planar direction of the planar heat pipe 10 in plan view. The central portion 15 and the other end portion 16 of the tubular heat pipe 12 also extend along the planar direction of the planar heat pipe 10, similarly to the one end portion 14. Therefore, the heat transport direction of the tubular heat pipe 12 is substantially parallel to the planar direction of the planar heat pipe 10.
 ヒートシンク構造6では、管状ヒートパイプ12の他方の端部16(すなわち、管状ヒートパイプ12の放熱部)に、熱交換手段として、放熱フィン17が取り付けられている。また、放熱フィン17と平面型ヒートパイプ10との間には、送風ファン103が配置されている。送風ファン103からの冷却風が放熱フィン17へ供給される。 In the heat sink structure 6, heat radiating fins 17 are attached to the other end portion 16 of the tubular heat pipe 12 (that is, the heat radiating portion of the tubular heat pipe 12) as heat exchange means. A blower fan 103 is disposed between the heat radiating fins 17 and the planar heat pipe 10. Cooling air from the blower fan 103 is supplied to the radiation fins 17.
 ヒートシンク構造6では、複数の放熱フィン17が管状ヒートパイプ12の他方の端部16に取り付けられることで、管状ヒートパイプ12の放熱部から外部環境へ、円滑に熱が放出される。また、送風ファン103の設置位置は特に限定されないが、放熱フィン17と平面型ヒートパイプ10との間に送風ファン103が配置されると、送風ファン103が稼働することで、放熱フィン17へ冷却風が供給されるだけでなく、平面型ヒートパイプ10から放熱フィン17の方向へ気流が生じて、この気流が、平面型ヒートパイプ10を冷却する冷却風としても機能する。 In the heat sink structure 6, the plurality of radiating fins 17 are attached to the other end 16 of the tubular heat pipe 12, so that heat is smoothly released from the radiating portion of the tubular heat pipe 12 to the external environment. The installation position of the blower fan 103 is not particularly limited, but when the blower fan 103 is disposed between the heat radiation fin 17 and the planar heat pipe 10, the blower fan 103 is operated to cool the heat radiation fin 17. Not only the wind is supplied, but also an air flow is generated from the planar heat pipe 10 toward the radiating fins 17, and this air flow also functions as cooling air for cooling the planar heat pipe 10.
 平面型ヒートパイプ10は、平面型コンテナ11と、平面型コンテナ11の内部空間に封入された作動流体(図示せず)と、平面型コンテナ11の内部空間に設けられたウィック構造体(図示せず)とを有している。また、管状ヒートパイプ12は、管状コンテナ13と、管状コンテナ13の内部空間に封入された作動流体(図示せず)と、管状コンテナ13の内部空間に設けられたウィック構造体(図示せず)とを有している。 The flat heat pipe 10 includes a flat container 11, a working fluid (not shown) sealed in the internal space of the flat container 11, and a wick structure (not shown) provided in the internal space of the flat container 11. Z). The tubular heat pipe 12 includes a tubular container 13, a working fluid (not shown) sealed in the inner space of the tubular container 13, and a wick structure (not shown) provided in the inner space of the tubular container 13. And have.
 平面型コンテナ11及び管状コンテナ13の材料としては、例えば、銅、銅合金、アルミニウム、アルミニウム合金、ニッケル、ニッケル合金、ステンレス、チタン等を挙げることができる。また、作動流体としては、平面型コンテナ11及び管状コンテナ13の材料との適合性に応じて、適宜選択可能であり、例えば、水、代替フロン、フロリナート等のフルオロカーボン類、シクロペンタン等を挙げることができる。 Examples of the material of the flat container 11 and the tubular container 13 include copper, copper alloy, aluminum, aluminum alloy, nickel, nickel alloy, stainless steel, titanium, and the like. Further, the working fluid can be appropriately selected according to the compatibility with the material of the planar container 11 and the tubular container 13, and examples thereof include water, fluorocarbons such as chlorofluorocarbons and fluorinate, and cyclopentane. Can do.
 ウィック構造体としては、銅粉等の金属粉の焼結体、金属メッシュ、ワイヤ、平面型コンテナ11及び管状コンテナ13の内面に形成されたグルーブ等を挙げることができる。 Examples of the wick structure include a sintered body of metal powder such as copper powder, a metal mesh, a wire, a groove formed on the inner surface of the planar container 11 and the tubular container 13.
 冷却対象である発熱体としては、特に限定されないが、基板102(例えば、電子機器に内蔵された回路基板)に実装された中央演算処理装置、グラフィックチップ(GPU、VGA)、メモリー、コンデンサ、電源等を挙げることができる。 The heating element to be cooled is not particularly limited, but a central processing unit, graphic chip (GPU, VGA), memory, capacitor, power supply mounted on the substrate 102 (for example, a circuit board built in an electronic device). Etc.
 次に、ヒートシンク構造6の冷却作用の仕組みについて説明する。管状ヒートパイプ12の一方の端部14(受熱部)が、第1の発熱体100から受熱すると、第1の発熱体100から管状ヒートパイプ12の受熱部へ伝達された熱は、管状ヒートパイプ12の他方の端部16、すなわち、管状ヒートパイプ12の放熱部へ輸送され、管状ヒートパイプ12の放熱部から放熱フィン17を介して外部環境へ放出される。 Next, the cooling mechanism of the heat sink structure 6 will be described. When one end portion 14 (heat receiving portion) of the tubular heat pipe 12 receives heat from the first heating element 100, the heat transferred from the first heating element 100 to the heat receiving portion of the tubular heat pipe 12 is the tubular heat pipe. 12 is transported to the heat radiating portion of the tubular heat pipe 12, and is discharged from the heat radiating portion of the tubular heat pipe 12 to the external environment via the heat radiating fins 17.
 また、管状ヒートパイプ12の受熱部へ伝達された熱の一部は、管状ヒートパイプ12の放熱部へは輸送されずに、管状ヒートパイプ12の一方の端部14と熱的に接続された平面型ヒートパイプ10へ伝達される。管状ヒートパイプ12の受熱部から平面型ヒートパイプ10へ伝達された熱は、平面型ヒートパイプ10の平面に沿って拡散しつつ、平面型ヒートパイプ10から放出される。一方で、平面型ヒートパイプ10が第2の発熱体101から受熱すると、第2の発熱体101から平面型ヒートパイプ10へ伝達された熱は、第1の発熱体100から伝達された熱と同様、平面型ヒートパイプ10の平面に沿って拡散しつつ、平面型ヒートパイプ10から放出される。 Further, a part of the heat transmitted to the heat receiving portion of the tubular heat pipe 12 was thermally connected to one end portion 14 of the tubular heat pipe 12 without being transported to the heat radiating portion of the tubular heat pipe 12. It is transmitted to the planar heat pipe 10. The heat transferred from the heat receiving portion of the tubular heat pipe 12 to the planar heat pipe 10 is released from the planar heat pipe 10 while diffusing along the plane of the planar heat pipe 10. On the other hand, when the planar heat pipe 10 receives heat from the second heating element 101, the heat transmitted from the second heating element 101 to the planar heat pipe 10 is the heat transmitted from the first heating element 100. Similarly, it is discharged from the planar heat pipe 10 while diffusing along the plane of the planar heat pipe 10.
 また、第2の発熱体101の発熱量によっては、第2の発熱体101から平面型ヒートパイプ10へ伝達された熱は、平面型ヒートパイプ10の平面に沿って拡散しつつ、その一部は管状ヒートパイプ12の一方の端部14へ輸送され、管状ヒートパイプ12の放熱部から放熱フィン17を介して外部環境へ放出される。従って、平面型ヒートパイプ10は、均熱板としての機能を有する。 Depending on the amount of heat generated by the second heating element 101, the heat transferred from the second heating element 101 to the flat heat pipe 10 is diffused along the plane of the flat heat pipe 10, and a part thereof. Is transported to one end 14 of the tubular heat pipe 12 and discharged from the heat radiating portion of the tubular heat pipe 12 to the external environment via the heat radiating fins 17. Accordingly, the planar heat pipe 10 has a function as a soaking plate.
 つまり、ヒートシンク構造6が受熱した第1の発熱体100と第2の発熱体101の熱は、管状ヒートパイプ12によって放熱フィン17の部位まで輸送されることで外部環境へ円滑に放出されつつ、平面型ヒートパイプ10の平面に沿って拡散して、平面型ヒートパイプ10からも放出される。 That is, the heat of the first heating element 100 and the second heating element 101 received by the heat sink structure 6 is smoothly released to the external environment by being transported to the site of the radiation fin 17 by the tubular heat pipe 12, It diffuses along the plane of the planar heat pipe 10 and is also released from the planar heat pipe 10.
 このように、ヒートシンク構造6では、平面型ヒートパイプ10と管状ヒートパイプ12とが熱的に接続されているので、平面型ヒートパイプ10により、第1の発熱体100からの熱と第2の発熱体101からの熱が、面上に拡散し、放熱面積が増大した状態にて、管状ヒートパイプ12が熱輸送機能を発揮する。また、平面型ヒートパイプ10と管状ヒートパイプ12が重なり合う位置に、複数の発熱体(第1の発熱体100と第2の発熱体101)のうちの少なくとも一部の発熱体(第1の発熱体100)が熱的に接続されるので、第1の発熱体100から管状ヒートパイプ12へ円滑に熱伝達される。従って、ヒートシンク構造6は、優れた熱輸送特性と均熱板としての機能を有することで、発熱体に対して優れた冷却性能を発揮できる。 Thus, in the heat sink structure 6, the planar heat pipe 10 and the tubular heat pipe 12 are thermally connected, so that the heat from the first heating element 100 and the second heat pipe 10 are heated by the planar heat pipe 10. In the state where the heat from the heating element 101 diffuses on the surface and the heat radiation area increases, the tubular heat pipe 12 exhibits a heat transport function. In addition, at a position where the planar heat pipe 10 and the tubular heat pipe 12 overlap each other, at least a part of the plurality of heating elements (first heating element 100 and second heating element 101) (first heating element). Since the body 100) is thermally connected, heat is smoothly transferred from the first heating element 100 to the tubular heat pipe 12. Therefore, the heat sink structure 6 can exhibit excellent cooling performance with respect to the heating element by having an excellent heat transport characteristic and a function as a soaking plate.
 また、ヒートシンク構造6では、複数の発熱体(第1の発熱体100と第2の発熱体101)を冷却する場合であって、各発熱体の発熱量が相違する場合に、相対的に発熱量の小さい発熱体(例えば、第2の発熱体101)は、均熱板としての機能を有する平面型ヒートパイプ10にて冷却できるので、その分、管状ヒートパイプ12の熱輸送量を低減できる。 Further, in the heat sink structure 6, when a plurality of heating elements (the first heating element 100 and the second heating element 101) are cooled and the amount of heat generated by each heating element is different, heat generation is relatively performed. A small amount of the heating element (for example, the second heating element 101) can be cooled by the flat heat pipe 10 having a function as a soaking plate, so that the heat transport amount of the tubular heat pipe 12 can be reduced accordingly. .
 さらに、ヒートシンク構造6では、平面型ヒートパイプ10を用い、また、熱的に接続される発熱体の数量は、特に制限されないので、簡易な構成にて、狭小化した内部空間に設置された発熱体に対して優れた冷却性能を発揮できる。 Furthermore, in the heat sink structure 6, the flat heat pipe 10 is used, and the number of heat generating elements to be thermally connected is not particularly limited, so that heat generated in a narrowed internal space with a simple configuration. Excellent cooling performance for the body.
 ヒートシンク構造6では、管状ヒートパイプ12が平面型ヒートパイプ10よりも発熱体(第1の発熱体100と第2の発熱体101)の方向(基板102の方向)に配置されることにより、発熱体(図7、8では、第1の発熱体100)の熱が管状ヒートパイプ12に円滑に伝達される。また、各発熱体(第1の発熱体100と第2の発熱体101)から伝達された熱は、平面型ヒートパイプ10の均熱板としての機能により、平面型ヒートパイプ10の面上を拡散していくことで、放熱面積が増大する。従って、管状ヒートパイプ12の熱輸送量を低減でき、ひいては、管状ヒートパイプ12を扁平化、細管化できる。このように、管状ヒートパイプ12を扁平化、細管化できるので、ヒートシンク構造6をより小型化できる。 In the heat sink structure 6, the tubular heat pipe 12 is arranged in the direction of the heating element (the first heating element 100 and the second heating element 101) (the direction of the substrate 102) rather than the planar heat pipe 10, thereby generating heat. The heat of the body (the first heating element 100 in FIGS. 7 and 8) is smoothly transferred to the tubular heat pipe 12. In addition, the heat transmitted from each heating element (the first heating element 100 and the second heating element 101) is transmitted on the surface of the planar heat pipe 10 by the function as a soaking plate of the planar heat pipe 10. By diffusing, the heat dissipation area increases. Therefore, the amount of heat transport of the tubular heat pipe 12 can be reduced, and as a result, the tubular heat pipe 12 can be flattened and thinned. Thus, since the tubular heat pipe 12 can be flattened and thinned, the heat sink structure 6 can be further downsized.
 次に、本発明の第7実施形態例に係るヒートシンク構造について、図面を用いながら説明する。本発明の第6実施形態例に係るヒートシンク構造と同じ構成要素については同じ符号を用いて説明する。 Next, a heat sink structure according to a seventh embodiment of the present invention will be described with reference to the drawings. The same components as those of the heat sink structure according to the sixth embodiment of the present invention will be described using the same reference numerals.
 第6実施形態例に係るヒートシンク構造6では、管状ヒートパイプ12には、基板102に実装された第1の発熱体100が接続され、平面型ヒートパイプ10には、基板102に実装された第2の発熱体101が接続されていたが、これに代えて、第7実施形態例に係るヒートシンク構造7では、図9(a)、(b)に示すように、平面型ヒートパイプ10には、発熱体が接続されていない。 In the heat sink structure 6 according to the sixth embodiment, the tubular heat pipe 12 is connected to the first heating element 100 mounted on the substrate 102, and the planar heat pipe 10 is mounted on the substrate 102. In the heat sink structure 7 according to the seventh embodiment, instead of this, as shown in FIGS. 9A and 9B, the flat heat pipe 10 includes The heating element is not connected.
 つまり、図9に示すように、平面型ヒートパイプ10と管状ヒートパイプ12が平面視において重なり合う位置に、第1の発熱体100が熱的に接続される。一方で、管状ヒートパイプ12及び平面型ヒートパイプ10とは平面視において重なり合わない位置には、発熱体は接続されていない。 That is, as shown in FIG. 9, the first heating element 100 is thermally connected at a position where the planar heat pipe 10 and the tubular heat pipe 12 overlap in a plan view. On the other hand, the heating element is not connected to a position where the tubular heat pipe 12 and the planar heat pipe 10 do not overlap in plan view.
 ヒートシンク構造7でも、平面型ヒートパイプ10と管状ヒートパイプ12とが熱的に接続されているので、平面型ヒートパイプ10により、第1の発熱体100からの熱が、平面型ヒートパイプ10の平面に沿って拡散していき、放熱面積が増大した状態にて、管状ヒートパイプ12が熱輸送機能を発揮する。また、平面型ヒートパイプ10と管状ヒートパイプ12が重なり合う位置に、発熱体(第1の発熱体100)が熱的に接続されるので、第1の発熱体100から管状ヒートパイプ12へ円滑に熱伝達される。従って、ヒートシンク構造7でも、ヒートシンク構造6と同様、優れた熱輸送特性と均熱板としての機能を有することで、発熱体に対して優れた冷却性能を発揮できる。 Also in the heat sink structure 7, since the planar heat pipe 10 and the tubular heat pipe 12 are thermally connected, the heat from the first heating element 100 is caused by the planar heat pipe 10 to be generated in the planar heat pipe 10. The tubular heat pipe 12 exhibits a heat transport function in a state where the heat radiating area increases while diffusing along the plane. In addition, since the heating element (first heating element 100) is thermally connected to the position where the planar heat pipe 10 and the tubular heat pipe 12 overlap each other, the first heating element 100 is smoothly connected to the tubular heat pipe 12. Heat transferred. Therefore, like the heat sink structure 6, the heat sink structure 7 can exhibit excellent cooling performance with respect to the heating element by having excellent heat transport characteristics and a function as a soaking plate.
 次に、本発明の第8実施形態例に係るヒートシンク構造について、図面を用いながら説明する。本発明の第6、第7実施形態例に係るヒートシンク構造と同じ構成要素については同じ符号を用いて説明する。 Next, a heat sink structure according to an eighth embodiment of the present invention will be described with reference to the drawings. The same components as those of the heat sink structure according to the sixth and seventh embodiments of the present invention will be described using the same reference numerals.
 第6実施形態例に係るヒートシンク構造6では、管状ヒートパイプ12が、平面型ヒートパイプ10よりも発熱体の方向に配置されていたが、これに代えて、第8実施形態例に係るヒートシンク構造8では、図10(a)、(b)に示すように、平面型ヒートパイプ10が、管状ヒートパイプ12よりも発熱体の方向に配置されている。 In the heat sink structure 6 according to the sixth embodiment, the tubular heat pipe 12 is arranged in the direction of the heating element rather than the planar heat pipe 10, but instead, the heat sink structure according to the eighth embodiment. In FIG. 8, as shown in FIGS. 10A and 10B, the planar heat pipe 10 is arranged in the direction of the heating element rather than the tubular heat pipe 12.
 平面型ヒートパイプ10には、基板102に実装された発熱体(図10では、複数の発熱体、すなわち、第1の発熱体100と第2の発熱体101)が接続されている。一方で、管状ヒートパイプ12には、発熱体が接続されていない。従って、いずれの発熱体も、すなわち、第1の発熱体100も第2の発熱体101も、平面型ヒートパイプ10を介して管状ヒートパイプ12と熱的に接続されている。従って、平面型ヒートパイプ10は、均熱板としての機能を有する。 The planar heat pipe 10 is connected to a heating element mounted on the substrate 102 (in FIG. 10, a plurality of heating elements, that is, the first heating element 100 and the second heating element 101). On the other hand, a heating element is not connected to the tubular heat pipe 12. Accordingly, both of the heating elements, that is, the first heating element 100 and the second heating element 101 are thermally connected to the tubular heat pipe 12 via the planar heat pipe 10. Accordingly, the planar heat pipe 10 has a function as a soaking plate.
 図10(b)に示すように、平面型ヒートパイプ10と管状ヒートパイプ12が平面視において重なり合う位置に、複数の発熱体のうちの一部の発熱体(図10(b)では、第1の発熱体100)が、平面型ヒートパイプ10と熱的に接続される。一方で、他の一部の発熱体(図10(b)では、第2の発熱体101)は、管状ヒートパイプ12とは平面視において重なり合わない位置にて、平面型ヒートパイプ10と熱的に接続される。 As shown in FIG. 10 (b), some of the plurality of heating elements (in FIG. 10 (b), the first heat pipe 10 and the tubular heat pipe 12 overlap each other in plan view). The heating element 100) is thermally connected to the planar heat pipe 10. On the other hand, the other part of the heating elements (in FIG. 10B, the second heating element 101) is heated with the planar heat pipe 10 at a position that does not overlap with the tubular heat pipe 12 in plan view. Connected.
 なお、図10(a)に示すように、ヒートシンク構造8では、第1の発熱体100は平面型ヒートパイプ10と直接接する、または熱伝導グリース(図示せず)を介して接することで、平面型ヒートパイプ10と熱的に接続されている。一方で、平面型ヒートパイプ10と第2の発熱体101との間には、熱伝導シート等の熱伝導性部材18が挿入されており、第2の発熱体101は、熱伝導性部材18を介して、平面型ヒートパイプ10と熱的に接続されている。 In addition, as shown to Fig.10 (a), in the heat sink structure 8, the 1st heat generating body 100 touches the flat type heat pipe 10 directly, or contacts through thermal conductive grease (not shown), and is plane. The mold heat pipe 10 is thermally connected. On the other hand, a heat conductive member 18 such as a heat conductive sheet is inserted between the planar heat pipe 10 and the second heat generating element 101, and the second heat generating element 101 is a heat conductive member 18. It is thermally connected to the planar heat pipe 10 via
 このように、高さ方向の寸法が異なる発熱体が、ヒートシンク構造8と熱的に接続される場合、高さ方向の寸法が小さい発熱体(図10(a)では、第2の発熱体101)と平面型ヒートパイプ10との間に熱伝導性部材18を挿入することで、熱抵抗の増大を防止しつつ、高さ方向の寸法が異なる発熱体間の高さ調整ができる。従って、平面型ヒートパイプ10の撓み等の変形を防止できるので、平面型ヒートパイプ10の内部空間を維持でき、結果、ヒートシンク構造8の冷却性能の低下を防止できる。 As described above, when the heating elements having different dimensions in the height direction are thermally connected to the heat sink structure 8, the heating elements having a small dimension in the height direction (in FIG. 10A, the second heating element 101). ) And the planar heat pipe 10, it is possible to adjust the height between the heating elements having different dimensions in the height direction while preventing an increase in thermal resistance. Therefore, deformation such as bending of the planar heat pipe 10 can be prevented, so that the internal space of the planar heat pipe 10 can be maintained, and as a result, a decrease in cooling performance of the heat sink structure 8 can be prevented.
 次に、ヒートシンク構造8の冷却作用の仕組みについて説明する。平面型ヒートパイプ10が、第1の発熱体100と第2の発熱体101から受熱すると、第1の発熱体100からの熱と第2の発熱体101からの熱は、ともに、平面型ヒートパイプ10の平面に沿って平面型ヒートパイプ10上を拡散しながら、平面型ヒートパイプ10から放出される。また、管状ヒートパイプ12は、第1の発熱体100と平面視において重なり合う位置に設けられ、管状ヒートパイプ12の一方の端部14(受熱部)が、平面型ヒートパイプ10と直接接している。従って、平面型ヒートパイプ10から放出されなかった熱は、管状ヒートパイプ12の受熱部へ伝達される。管状ヒートパイプ12の受熱部へ伝達された熱は、管状ヒートパイプ12の受熱部から管状ヒートパイプ12の他方の端部16(放熱部)へ輸送され、放熱部に設けられた放熱フィン17から外部環境へ放出される。従って、管状ヒートパイプ12は、平面型ヒートパイプ10から放出されなかった熱を放熱フィンの部位へ輸送する機能を有する。 Next, the mechanism of the cooling action of the heat sink structure 8 will be described. When the planar heat pipe 10 receives heat from the first heating element 100 and the second heating element 101, both the heat from the first heating element 100 and the heat from the second heating element 101 are planar heat. It is discharged from the planar heat pipe 10 while diffusing on the planar heat pipe 10 along the plane of the pipe 10. The tubular heat pipe 12 is provided at a position overlapping the first heating element 100 in plan view, and one end portion 14 (heat receiving portion) of the tubular heat pipe 12 is in direct contact with the planar heat pipe 10. . Therefore, the heat that has not been released from the planar heat pipe 10 is transmitted to the heat receiving portion of the tubular heat pipe 12. The heat transferred to the heat receiving portion of the tubular heat pipe 12 is transported from the heat receiving portion of the tubular heat pipe 12 to the other end 16 (heat radiating portion) of the tubular heat pipe 12 and from the heat radiating fins 17 provided in the heat radiating portion. Released to the outside environment. Therefore, the tubular heat pipe 12 has a function of transporting heat that has not been released from the planar heat pipe 10 to the portion of the radiation fin.
 平面型ヒートパイプ10が管状ヒートパイプ12よりも発熱体(第1の発熱体100、第2の発熱体101)の方向に配置されることにより、発熱体の熱が、平面型ヒートパイプ10の均熱板としての機能により、まず、平面型ヒートパイプ10の平面に沿って拡散してから、管状ヒートパイプ12に伝達される。従って、平面型ヒートパイプ10にホットスポットが生じるのを防止できる。このように、ヒートシンク構造8は、平面型ヒートパイプ10にホットスポットが生じるのを防止できるので、発熱体に対して優れた冷却性能を発揮できる。また、平面型ヒートパイプ10は、平面視において、平面型ヒートパイプ10と接続されている発熱体(第1の発熱体100、第2の発熱体101)の全体を覆うことができるので、発熱体からヒートシンク構造8への熱伝達性が向上する。 By arranging the planar heat pipe 10 in the direction of the heating element (the first heating element 100 and the second heating element 101) rather than the tubular heat pipe 12, the heat of the heating element is changed to that of the planar heat pipe 10. Due to the function as a heat equalizing plate, the heat is first diffused along the plane of the flat heat pipe 10 and then transmitted to the tubular heat pipe 12. Accordingly, hot spots can be prevented from occurring in the planar heat pipe 10. Thus, since the heat sink structure 8 can prevent a hot spot from being generated in the planar heat pipe 10, it can exhibit excellent cooling performance for the heating element. Further, the planar heat pipe 10 can cover the entirety of the heating elements (the first heating element 100 and the second heating element 101) connected to the planar heat pipe 10 in plan view. The heat transfer from the body to the heat sink structure 8 is improved.
 次に、本発明の他の実施形態例について説明する。上記第6~第8実施形態例では、管状ヒートパイプの設置数は1本であったが、その数は特に限定されず、ヒートシンク構造の使用状況に応じて、複数設置してもよい。 Next, another embodiment of the present invention will be described. In the sixth to eighth embodiments, the number of tubular heat pipes is one. However, the number is not particularly limited, and a plurality of tubular heat pipes may be installed according to the use state of the heat sink structure.
 例えば、第6実施形態例に係るヒートシンク構造6では、基板102に実装された第1の発熱体100に、1本の管状ヒートパイプ12が熱的に接続されていたが、これに代えて、図11に示すように、第9実施形態例に係るヒートシンク構造9では、基板102に実装された第1の発熱体100に、複数(図11では、2本)の管状ヒートパイプ12、12’が熱的に接続されてもよい。 For example, in the heat sink structure 6 according to the sixth embodiment, one tubular heat pipe 12 is thermally connected to the first heating element 100 mounted on the substrate 102, but instead, As shown in FIG. 11, in the heat sink structure 9 according to the ninth embodiment, a plurality of (two in FIG. 11) tubular heat pipes 12, 12 ′ are provided on the first heating element 100 mounted on the substrate 102. May be thermally connected.
 ヒートシンク構造9では、平面視において、第1の発熱体100と重なり合う位置に、2本の管状ヒートパイプ12、12’が熱的に接続されている。なお、ヒートシンク構造9では、2本の管状ヒートパイプ12、12’のうち、平面視において第1の発熱体100と重なり合う部位では、並列に配置され、平面視において平面型ヒートパイプ10と重なり合わない部位では、一方の管状ヒートパイプ12と他方の管状ヒートパイプ12’が、平面型ヒートパイプ10の中心線を境に略対称となるように配置されている。 In the heat sink structure 9, two tubular heat pipes 12 and 12 ′ are thermally connected to a position overlapping the first heating element 100 in a plan view. Note that, in the heat sink structure 9, of the two tubular heat pipes 12 and 12 ′, the portions that overlap the first heating element 100 in plan view are arranged in parallel and overlap with the planar heat pipe 10 in plan view. In the part which is not present, one tubular heat pipe 12 and the other tubular heat pipe 12 ′ are arranged so as to be substantially symmetrical with respect to the center line of the planar heat pipe 10.
 第1の発熱体100に、複数の管状ヒートパイプ12、12’が熱的に接続されることで、第1の発熱体100の発熱量が大きくても、第1の発熱体100を確実に冷却できる。 The plurality of tubular heat pipes 12 and 12 ′ are thermally connected to the first heating element 100, so that the first heating element 100 can be securely connected even when the first heating element 100 generates a large amount of heat. Can be cooled.
 また、平面型ヒートパイプと管状ヒートパイプが平面視において重なり合う位置に、熱的に接続される発熱体の数は、特に限定されず、上記第6~第8実施形態例では、該位置に、1つの発熱体が熱的に接続されていたが、複数の発熱体を熱的に接続してもよい。 In addition, the number of heating elements that are thermally connected to the position where the planar heat pipe and the tubular heat pipe overlap in plan view is not particularly limited. In the sixth to eighth embodiments, the position is Although one heating element is thermally connected, a plurality of heating elements may be thermally connected.
 上記第6~第8実施形態例では、管状ヒートパイプの放熱部に熱交換手段として放熱フィンが設けられていたが、使用状況に応じて、熱交換手段を設けなくてもよい。また、上記第6~第8実施形態例では、放熱フィン近傍に送風ファンが設置されていたが、使用状況に応じて、送風ファンを設置しなくてもよい。また、必要に応じて、発熱体と平面型ヒートパイプまたは管状ヒートパイプとの間に、熱的接続性を向上させるために、熱伝導グリースを塗布してもよい。 In the sixth to eighth embodiments, the heat radiating fins are provided as the heat exchanging means in the heat radiating portion of the tubular heat pipe. However, the heat exchanging means may not be provided depending on the use situation. In the sixth to eighth embodiments, the blower fan is installed in the vicinity of the heat radiating fins. However, the blower fan may not be installed depending on the use situation. Moreover, you may apply | coat heat conductive grease between a heat generating body and a planar heat pipe or a tubular heat pipe as needed in order to improve thermal connectivity.
 上記した本発明のヒートシンク構造は、簡易な構成にて、狭小化した内部空間に設置された発熱体に対し、優れた熱輸送特性や均熱板としての機能を有することで、優れた冷却性能を発揮するので、例えば、基板に実装された発熱体を冷却する分野で、利用価値が高い。 The above-described heat sink structure of the present invention has an excellent cooling performance by having an excellent heat transport characteristic and a function as a heat equalizing plate for a heating element installed in a narrowed internal space with a simple configuration. Therefore, for example, in the field of cooling a heating element mounted on a substrate, the utility value is high.
1、2、3、4、5          ヒートシンク構造
6、7、8、9            ヒートシンク構造
10                 平面型ヒートパイプ
12                 管状ヒートパイプ
17                 放熱フィン
20                 付勢部材
1, 2, 3, 4, 5 Heat sink structure 6, 7, 8, 9 Heat sink structure 10 Planar heat pipe 12 Tubular heat pipe 17 Radiating fin 20 Biasing member

Claims (5)

  1.  複数の発熱体上に載置されることで該複数の発熱体と熱的に接続される平面型ヒートパイプと、該平面型ヒートパイプの放熱部と受熱部にて熱的に接続された管状ヒートパイプと、を備えたヒートシンク構造。 A planar heat pipe that is placed on a plurality of heating elements to be thermally connected to the plurality of heating elements, and a tube that is thermally connected to the heat radiating portion and the heat receiving portion of the planar heat pipe. A heat sink structure including a heat pipe.
  2.  前記管状ヒートパイプの放熱部に、熱交換手段が設けられている請求項1に記載のヒートシンク構造。 The heat sink structure according to claim 1, wherein a heat exchanging means is provided in a heat radiating portion of the tubular heat pipe.
  3.  前記熱交換手段が、放熱フィンを有する請求項2に記載のヒートシンク構造。 The heat sink structure according to claim 2, wherein the heat exchanging means has a radiation fin.
  4.  前記熱交換手段及び/または管状ヒートパイプの放熱部が、送風ファンの冷却風により冷却される請求項2または3に記載のヒートシンク構造。 The heat sink structure according to claim 2 or 3, wherein the heat exchange means and / or the heat radiating portion of the tubular heat pipe is cooled by cooling air from a blower fan.
  5.  前記平面型ヒートパイプに付勢部材が設けられ、該付勢部材が、前記発熱体の支持部材に固定される請求項1乃至4のいずれか1項に記載のヒートシンク構造。 The heat sink structure according to any one of claims 1 to 4, wherein a biasing member is provided on the planar heat pipe, and the biasing member is fixed to a support member of the heating element.
PCT/JP2017/024069 2016-07-01 2017-06-30 Heat sink structure WO2018003958A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201790000986.XU CN209524789U (en) 2016-07-01 2017-06-30 Heat spreader structures
US16/237,283 US20190137187A1 (en) 2016-07-01 2018-12-31 Heat sink structure

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016-131802 2016-07-01
JP2016131803A JP6266044B2 (en) 2016-07-01 2016-07-01 Heat sink structure
JP2016131802A JP6574404B2 (en) 2016-07-01 2016-07-01 Heat sink structure
JP2016-131803 2016-07-01

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/237,283 Continuation US20190137187A1 (en) 2016-07-01 2018-12-31 Heat sink structure

Publications (1)

Publication Number Publication Date
WO2018003958A1 true WO2018003958A1 (en) 2018-01-04

Family

ID=60787282

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/024069 WO2018003958A1 (en) 2016-07-01 2017-06-30 Heat sink structure

Country Status (4)

Country Link
US (1) US20190137187A1 (en)
CN (1) CN209524789U (en)
TW (1) TWI649529B (en)
WO (1) WO2018003958A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7275243B1 (en) 2021-12-21 2023-05-17 レノボ・シンガポール・プライベート・リミテッド Electronics

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6357515B1 (en) * 1998-02-23 2002-03-19 Intel Corporation Heat exchanger for a portable computing device utilizing active and passive heat dissipation mechanisms
JP2003336976A (en) * 2002-05-17 2003-11-28 Furukawa Electric Co Ltd:The Heat sink and mounting structure therefor
US20050103477A1 (en) * 2003-11-14 2005-05-19 Lg Electronics Inc. Cooling apparatus for portable computer
JP2011106793A (en) * 2009-11-20 2011-06-02 Toshiba Corp Electronic device
US20110297355A1 (en) * 2010-06-07 2011-12-08 Celsia Technologies Taiwan, Inc. Heat-conducting module and heat-dissipating device having the same
JP2012141082A (en) * 2010-12-28 2012-07-26 Fujitsu Ltd Cooling device, and electronic apparatus

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3673249B2 (en) * 2002-08-27 2005-07-20 株式会社東芝 Electronic equipment and cooling device
US7474527B2 (en) * 2007-03-05 2009-01-06 Dfi, Inc. Desktop personal computer and thermal module thereof
US7791876B2 (en) * 2008-05-12 2010-09-07 Hewlett-Packard Development Company, L.P. Hinge connector with liquid coolant path
JP2010092977A (en) * 2008-10-06 2010-04-22 Panasonic Corp Semiconductor device, and method of manufacturing the same
JP4558086B1 (en) * 2009-06-22 2010-10-06 株式会社東芝 Electronics
TWM385200U (en) * 2009-12-18 2010-07-21 Asia Vital Components Co Ltd Heat pipe bridging type structure and its heat dissipating module
TWM385912U (en) * 2010-03-18 2010-08-01 Celsia Technologies Taiwan Inc Heat conduction module and cooling device thereof
US9835382B2 (en) * 2015-09-16 2017-12-05 Acer Incorporated Thermal dissipation module

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6357515B1 (en) * 1998-02-23 2002-03-19 Intel Corporation Heat exchanger for a portable computing device utilizing active and passive heat dissipation mechanisms
JP2003336976A (en) * 2002-05-17 2003-11-28 Furukawa Electric Co Ltd:The Heat sink and mounting structure therefor
US20050103477A1 (en) * 2003-11-14 2005-05-19 Lg Electronics Inc. Cooling apparatus for portable computer
JP2011106793A (en) * 2009-11-20 2011-06-02 Toshiba Corp Electronic device
US20110297355A1 (en) * 2010-06-07 2011-12-08 Celsia Technologies Taiwan, Inc. Heat-conducting module and heat-dissipating device having the same
JP2012141082A (en) * 2010-12-28 2012-07-26 Fujitsu Ltd Cooling device, and electronic apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7275243B1 (en) 2021-12-21 2023-05-17 レノボ・シンガポール・プライベート・リミテッド Electronics

Also Published As

Publication number Publication date
TW201809579A (en) 2018-03-16
US20190137187A1 (en) 2019-05-09
CN209524789U (en) 2019-10-22
TWI649529B (en) 2019-02-01

Similar Documents

Publication Publication Date Title
TWI722736B (en) Heat sink
JP6588599B1 (en) Vapor chamber
JP5945047B1 (en) Thermal diffusion plate for portable electronic devices
US20120085520A1 (en) Heat spreader with flexibly supported heat pipe
US20040050534A1 (en) Heat sink with heat pipe in direct contact with component
JP5472955B2 (en) Heat dissipation module
US20040052051A1 (en) Heat sink with heat pipe and base fins
JP2009188329A (en) Heatsink, cooling module, and coolable electronic substrate
CN109906017B (en) Heat radiation unit
TW202040081A (en) heat sink
JP2004111969A (en) Heat sink with angled heat pipe
US9772143B2 (en) Thermal module
JP2009223881A (en) Radio communication apparatus
WO2018003958A1 (en) Heat sink structure
JP6928588B2 (en) Heat sink structure
US11435144B2 (en) Heat dissipation device
JP2000332175A (en) Heat sink with fin
JP5688477B1 (en) Heat transfer unit for heat dissipation
US10813246B2 (en) Chassis heat dissipation structure
JP6574404B2 (en) Heat sink structure
JP6266044B2 (en) Heat sink structure
KR200263467Y1 (en) Device for heat dissipation using thermal base in communication equipment
JP2000150728A (en) Semiconductor device
JP2007073668A (en) Heat-transfer device for heat conduction, and electronic equipment mounted therewith
JP2019160881A (en) Semiconductor device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17820312

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17820312

Country of ref document: EP

Kind code of ref document: A1