JP4380061B2 - Heat dissipation structure - Google Patents

Heat dissipation structure Download PDF

Info

Publication number
JP4380061B2
JP4380061B2 JP2000376982A JP2000376982A JP4380061B2 JP 4380061 B2 JP4380061 B2 JP 4380061B2 JP 2000376982 A JP2000376982 A JP 2000376982A JP 2000376982 A JP2000376982 A JP 2000376982A JP 4380061 B2 JP4380061 B2 JP 4380061B2
Authority
JP
Japan
Prior art keywords
heat
generating component
metal
dissipating
cpu
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000376982A
Other languages
Japanese (ja)
Other versions
JP2002184920A (en
Inventor
恒義 ▲吉▼田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2000376982A priority Critical patent/JP4380061B2/en
Publication of JP2002184920A publication Critical patent/JP2002184920A/en
Application granted granted Critical
Publication of JP4380061B2 publication Critical patent/JP4380061B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、情報処理装置等に内蔵されるCPUなどの発熱部品を冷却するための放熱構造に関する。
【0002】
【従来の技術】
従来、情報処理装置で特に、薄型省スペースのノートブックコンピュータなどでは、内蔵するCPUなどの発熱部品を冷却するための放熱構造がとられていた。
【0003】
以下、従来の発熱部品の放熱構造について、図を用いて説明する。図3は従来の発熱部品の放熱構造を示す断面図である。図において、31はプリント配線基板32上にコネクタソケット33を介して実装された発熱部品であるCPU、34は放熱のためのアルミダイキャスト製のヒートシンクで、上面に多数のフィン34aが設けられている。ヒートシンク34は、CPU31との間に弾性を有する高熱伝導性ラバー35を挟むようにして、プリント配線基板32とともにネジ36により情報処理装置筐体のボス37に固定されている。高熱伝導性ラバー35はシリコーンゲルを母材とし、熱伝導性フィラーを含有させたものである。
【0004】
以上のように構成された従来の発熱部品の放熱構造において、CPU31から発生した熱は、高熱伝導性ラバー35を経てヒートシンク34に伝熱される。そして伝熱された熱はフィン34aから放熱される。これにより、CPU31は冷却される。
【0005】
【発明が解決しようとする課題】
このような放熱構造においては、CPU31とアルミダイキャストのヒートシンク34の間は、弾性を有する高熱伝導性ラバー35が密着して伝熱している。この高熱伝導性ラバー35は、ヒートシンク34をプリント配線基板32に固定する際に圧縮されることによって、CPUソケット33の実装ばらつき、CPU31及びヒートシンク34の高さのばらつき等を吸収しており、これによって高い伝熱効果と共に、CPU31に対してヒートシンク34の取り付けによる許容以上の過負荷を掛けないようになっている。
【0006】
しかし、近年、ノートブックコンピュータなどでは、薄型省スペースと同時に高機能・高性能化の方向にあるため、CPUの発熱量が増大しており、ヒートシンクだけでは放熱に最も有効な放熱板の表面積確保を十分に取れなかった。また、CPUとヒートシンクとの間を伝熱する高熱伝導性ラバーは、CPUソケット、CPU、ヒートシンク等の高さのばらつきの調整の一役もになっていたが、上述のようなCPUの発熱量増大に対応し、母材のシリコーンゲルに熱伝導性フィラーの含有量を増やし、熱伝導性の向上を図ってきている。結果として、従来のラバーとしての弾力性が減り、硬質化しているため、高さのばらつきを吸収できなくなってきている。このため、高熱伝導性ラバーは、放熱効果を上げるためのCPUに対するいくらかの必要な負荷と、CPUの高さのばらつき及びその実装によるばらつきを考慮に入れて、過負荷にならないよう、ヒートシンク等の取付け高さを決定するという、微妙な調整を行う必要があり、CPUへの負荷を調整することが困難になってきた。
【0007】
本発明は、CPUなどの発熱部品に対する密着による過負荷を防ぎつつ、高い放熱効果を得ることのできる発熱部品の放熱構造を提供することを目的とする。
【0008】
【課題を解決するための手段】
この課題を解決するために本発明は、放熱部材を構成する弾性を有する薄板状の金属製放熱板を二枚重ねにし、プリント配線基板上に実装された発熱部品と金属製放熱板との間に熱伝導性弾性部材を介在し、さらに、2枚の金属製放熱板にそれぞれ折り曲げられた複数の立ち上がり部と、互いに直交する方向でその歪方向が重ならないようにした細形状に延長形成された取付け部をそれぞれ形成し、前記取付け部の先端部の取付け孔が重なるようにしてその取付け孔により放熱部材をプリント配線基板とともに筐体に取付け固定したものである。
【0009】
これにより、2枚の金属製放熱板とこれらに形成された複数の立ち上がり部により、発熱部品の放熱のための表面積増大が得られるとともに、その2枚の金属製放熱板に互いに直交する方向で歪方向が重ならないように延長形成されたそれぞれの取付け部はお互いのばね効果が損なわれることがなく、そのそれぞれの取付け部の弾性により発熱部品の高さばらつき及び実装ばらつきに影響されずに、熱伝導性弾性部材を確実に過負荷なく発熱部品に密着固定することができる。
【0010】
【発明の実施の形態】
本発明は、プリント配線基板上に実装された発熱部品と、弾性を有する薄板状の2枚の金属製放熱板と、前記発熱部品と前記金属製放熱板との間に設けられる熱伝導性弾性部材とを備えたことを特徴とする発熱部品の放熱構造である。
【0011】
また、本発明は、金属製放熱板は、放熱のための折り曲げられた複数の立ち上がり部を有することを特徴とするものであり、発熱部品の放熱のための表面積増大が得られるという作用を有する。
【0012】
また、本発明は、2枚以上の金属製放熱板が重ねて設けられることを特徴とするものであり、発熱部品の放熱のための表面積増大が得られるという作用を有する。
【0013】
さらに、本発明は、2枚以上の金属製放熱板はそれぞれ筐体等への取付け部を有し、前記取付け部は金属製放熱板の本体部から細幅に形成された延長部と、前記延長部の先端近傍に設けられた取付け孔から構成されることを特徴とするものであり、発熱部品の高さばらつき及び実装ばらつきを吸収するためのばね効果を発生するという作用を有する。
【0014】
また、本発明は、少なくとも2枚の金属製放熱板の取付け部の延長部は互いに直交した方向に形成され、かつ、取付け孔が重なるようにしたことを特徴とするものであり、歪方向を互いに重なり合うことなく90度ずらすことによって、互いの寸法ばらつきによるばね効果を損なうことがないという作用を有する。
【0015】
また、本発明は、金属製放熱板を挟み発熱部品と対向する位置に金属製ブロックからなるヒートシンクが取り付けられることを特徴とするものであり、金属製放熱板と合わせ、発熱部品の放熱量を増大できるという作用を有する。
【0016】
また、本発明は、ヒートシンクに放熱ファンが取り付けられることを特徴とするものであり、この放熱ファンによって、さらに金属製放熱板の熱を吸収放熱することが可能になり、全体の放熱効果を向上できるという作用を有する。
【0017】
以下、本発明の実施の形態について、図1から図2を用いて説明する。
【0018】
(実施の形態1)
図1は本発明の一実施の形態の発熱部品の放熱構造を示す断面図、図2は放熱構造の中の放熱部材を示すもので、図2(a)は分解斜視図で、図2(b)は組立図である。図において、1はプリント配線基板2上にコネクタソケット3を介して実装された発熱部品であるCPU、4は放熱部材で、上面に多数のフィン5aが設けられたアルミダイキャスト製のヒートシンク5と、薄板状で金属製の放熱板A6と放熱板B7がネジ8によって取り付けられている。放熱板A6と放熱板B7はそれぞれ折り曲げられて立ち上がり部6a、7aが形成されている。また、放熱板A6と放熱板B7にはそれぞれ取り付けのための取付け部6b、7bが本体から延長するように形成され、その取付け部6b、7bの先端部付近に取付け孔6c、7cが設けられている。取付け部6b、7bはばね性を発生させるため、細形状に形成されているとともに、スリット6d、7dが形成されている。そして、放熱部材4は、放熱板A6とCPU1との間に弾性を有する高熱伝導性ラバー9を挟むようにしてその放熱板A6及び放熱板B7の取付け部6b、7bに設けられた取付け孔6c、7cに挿入したネジ10によりプリント配線基板2とともに情報処理装置筐体のボス11に固定されている。高熱伝導性ラバー9はシリコーンゲルを母材とし、熱伝導性フィラーを含有させたものである。
【0019】
以上のように構成された本発明の発熱部品の放熱構造において、CPU1から発生した熱は、高熱伝導性ラバー9を経て放熱板A6と放熱板B7およびヒートシンク5に伝熱される。そして伝熱された熱は放熱板A6と放熱板B7の立ち上がり部6a、7aおよびヒートシンク5のフィン5aから放熱される。これにより、CPU1は冷却される。
【0020】
ここで、金属製の放熱板A6と放熱板B7の取付け部6b、7bは、両側にスリットの入った細形状を有しているため、情報処理装置筐体のボス11に固定したときに高熱伝導性ラバー9を介してCPU1を押える際、そのばね性により、CPU1の高さばらつき及び実装ばらつき等を吸収する。これは、放熱板A6と放熱板B7からそれぞれ細形状に延長形成された取付け部6bと7bは互いに90度ずれた方向、すなわち、互いに直交する方向でその歪方向が重ならないように延長形成されていることによって、お互いのばね効果が損なわれず、発熱部品の高さばらつき、及び実装ばらつきがあっても熱伝導性弾性部材を過負荷なく発熱部品に密着させることができる。
【0021】
このように、ばね性のある2枚の金属製放熱板で高熱伝導性ラバーを押えることにより、高熱伝導性ラバーが硬質化していても、過負荷をCPUに与えることがない。
【0022】
なお、本実施の形態におけるヒートシンクに放熱ファンを取り付けるようにすれば、放熱ファンによって、さらに金属製放熱板の熱を吸収放熱することが可能になり、全体の放熱効果を向上できる。
【0023】
【発明の効果】
以上のように本発明によれば、放熱部材を構成する弾性を有する薄板状の金属製放熱板を2枚重ねにし、プリント配線基板に実装された発熱部品と前記金属製放熱板との間に熱伝導性弾性部材を配し、さらに、2枚の金属製放熱板にそれぞれ折り曲げられた複数の立ち上がり部を形成するとともに、互いに直交する方向でその歪方向が重ならないようにした細形状に延長形成された取付け部をそれぞれ形成し、前記取付け部の先端部の取付け孔が重なるようにしてその取付け孔により放熱部材をプリント配線基板とともに筐体に取付け固定したことにより、放熱部材の放熱の表面積を増やすことができるとともに、発熱部品の高さばらつき、及び実装ばらつきに影響されることなく、前記取付け部の弾性により熱伝導性弾性部材を発熱部品に確実に過負荷なく密着固定することができるという効果が得られる。
【図面の簡単な説明】
【図1】 本発明の一実施の形態の発熱部品の放熱構造を示す断面図
【図2】 本発明の一実施の形態の発熱部品の放熱構造の中の放熱部材を示す分解斜視図および組立図
【図3】 従来の発熱部品の放熱構造を示す断面図
【符号の説明】
1 CPU
2 プリント配線基板
4 放熱部材
5 ヒートシンク
6 放熱板A
6a、7a 立ち上がり部
6b、7b 取付け部
7 放熱板B
9 高熱伝導性ラバー
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a heat dissipation structure for cooling a heat generating component such as a CPU built in an information processing apparatus or the like.
[0002]
[Prior art]
Conventionally, a heat dissipation structure for cooling a heat-generating component such as a built-in CPU has been taken especially in a thin space-saving notebook computer or the like in an information processing apparatus.
[0003]
Hereinafter, a conventional heat dissipation structure for a heat generating component will be described with reference to the drawings. FIG. 3 is a cross-sectional view showing a heat dissipation structure of a conventional heat generating component. In the figure, 31 is a CPU which is a heat generating component mounted on a printed wiring board 32 via a connector socket 33, 34 is a heat sink made of aluminum die cast for heat dissipation, and a large number of fins 34a are provided on the upper surface. Yes. The heat sink 34 is fixed to the boss 37 of the information processing apparatus casing with screws 36 together with the printed wiring board 32 so as to sandwich an elastic high thermal conductivity rubber 35 between the heat sink 34 and the CPU 31. The high heat conductive rubber 35 is made of silicone gel as a base material and contains a heat conductive filler.
[0004]
In the heat dissipation structure of the conventional heat generating component configured as described above, the heat generated from the CPU 31 is transferred to the heat sink 34 through the high thermal conductivity rubber 35. The heat transferred is radiated from the fins 34a. Thereby, the CPU 31 is cooled.
[0005]
[Problems to be solved by the invention]
In such a heat dissipation structure, an elastic high thermal conductivity rubber 35 is in close contact between the CPU 31 and the aluminum die cast heat sink 34 to transfer heat. The high thermal conductivity rubber 35 is compressed when the heat sink 34 is fixed to the printed wiring board 32, thereby absorbing variations in mounting of the CPU socket 33, variations in the height of the CPU 31 and the heat sink 34, and the like. As a result, the CPU 31 is not subjected to an overload exceeding an allowable value due to the attachment of the heat sink 34 together with a high heat transfer effect.
[0006]
However, in recent years, notebook computers, etc. are becoming thinner, space-saving and at the same time higher performance and higher performance, so the amount of heat generated by the CPU has increased. I could not get enough. In addition, the high thermal conductivity rubber that transfers heat between the CPU and the heat sink also played a role in adjusting the height variation of the CPU socket, CPU, heat sink, etc. In response to this, the content of the heat conductive filler is increased in the base material silicone gel to improve the heat conductivity. As a result, the elasticity as a conventional rubber is reduced and hardened, so that it is impossible to absorb height variations. For this reason, the high thermal conductivity rubber takes into account some necessary load on the CPU to increase the heat dissipation effect, variation in the height of the CPU, and variation due to its mounting, so as not to overload, It is necessary to make a delicate adjustment to determine the mounting height, and it has become difficult to adjust the load on the CPU.
[0007]
An object of the present invention is to provide a heat-dissipating structure for a heat-generating component that can obtain a high heat-dissipating effect while preventing overload due to close contact with a heat-generating component such as a CPU.
[0008]
[Means for Solving the Problems]
In order to solve this problem, in the present invention, two thin metal heat sinks having elasticity constituting a heat dissipating member are stacked, and heat is generated between a heat generating component mounted on a printed wiring board and the metal heat dissipating plate. A plurality of rising portions that are each bent by two metal heat sinks with conductive elastic members interposed therebetween, and an extension that is extended in a narrow shape so that the strain directions do not overlap in directions perpendicular to each other The heat sink is attached and fixed to the housing together with the printed wiring board through the attachment holes so that the attachment holes at the front end portions of the attachment portions overlap each other.
[0009]
Thus, the surface area for heat dissipation of the heat-generating component is obtained by the two metal heat sinks and the plurality of rising portions formed on them, and the two metal heat sinks are orthogonal to each other. Each mounting part extended so that the strain directions do not overlap each other does not impair the spring effect of each other, and the elasticity of each mounting part does not affect the height variation and mounting variation of the heat generating parts, The heat conductive elastic member can be securely fixed to the heat generating component without overload.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
The present invention provides a heat generating component mounted on a printed circuit board, two thin metal heat sinks having elasticity, and a heat conductive elasticity provided between the heat generating component and the metal heat dissipating plate. And a heat dissipating structure for a heat generating component .
[0011]
Further, the present invention is characterized in that the metal heat radiating plate has a plurality of bent rising portions for heat radiation, and has an effect that an increase in surface area for heat radiation of the heat-generating component can be obtained. .
[0012]
In addition, the present invention is characterized in that two or more metal heat radiating plates are provided in an overlapping manner, and has the effect of obtaining an increased surface area for heat radiation of the heat-generating component.
[0013]
Further, according to the present invention, the two or more metal heat sinks each have a mounting portion to a housing or the like, and the mounting portion is an extension formed narrowly from the main body portion of the metal heat sink, It is characterized by comprising a mounting hole provided in the vicinity of the tip of the extension, and has the effect of generating a spring effect for absorbing variations in the height and mounting variations of the heat-generating component.
[0014]
Further, the present invention is characterized in that the extension portions of the attachment portions of the at least two metal heat sinks are formed in directions orthogonal to each other, and the attachment holes are overlapped , and the strain direction is determined. By shifting by 90 degrees without overlapping each other, there is an effect that the spring effect due to dimensional variation is not impaired.
[0015]
In addition, the present invention is characterized in that a heat sink made of a metal block is attached at a position facing the heat generating component with the metal heat radiating plate interposed therebetween. It has the effect that it can be increased.
[0016]
In addition, the present invention is characterized in that a heat radiating fan is attached to the heat sink, and this heat radiating fan makes it possible to further absorb and radiate the heat of the metal heat radiating plate, improving the overall heat radiating effect. Has the effect of being able to.
[0017]
Hereinafter, embodiments of the present invention will be described with reference to FIGS.
[0018]
(Embodiment 1)
FIG. 1 is a cross-sectional view showing a heat dissipation structure for a heat generating component according to an embodiment of the present invention, FIG. 2 shows a heat dissipation member in the heat dissipation structure, FIG. 2 (a) is an exploded perspective view, and FIG. b) is an assembly drawing. In the figure, 1 is a CPU which is a heat generating component mounted on a printed wiring board 2 via a connector socket 3, 4 is a heat radiating member, and an aluminum die-cast heat sink 5 provided with a number of fins 5a on the upper surface. A thin plate-like metal heat radiating plate A6 and a heat radiating plate B7 are attached by screws 8. The radiator plate A6 and the radiator plate B7 are bent to form rising portions 6a and 7a. Further, the heat sink A6 and the heat sink B7 are formed so that mounting portions 6b and 7b for mounting extend from the main body, respectively , and mounting holes 6c and 7c are provided in the vicinity of the tips of the mounting portions 6b and 7b. ing. The attachment portions 6b and 7b are formed in a thin shape and have slits 6d and 7d in order to generate springiness. The heat radiating member 4 has mounting holes 6c and 7c provided in the mounting portions 6b and 7b of the heat radiating plate A6 and the heat radiating plate B7 so as to sandwich the elastic high thermal conductive rubber 9 between the heat radiating plate A6 and the CPU 1. The printed wiring board 2 and the boss 11 of the information processing device housing are fixed together with screws 10 inserted into the information processing apparatus. The high heat conductive rubber 9 is made of silicone gel as a base material and contains a heat conductive filler.
[0019]
In the heat dissipation structure of the heat generating component of the present invention configured as described above, the heat generated from the CPU 1 is transferred to the heat sink A6, the heat sink B7, and the heat sink 5 through the high thermal conductivity rubber 9. Then, the heat transferred is radiated from the rising portions 6 a and 7 a of the heat radiating plate A 6 and the heat radiating plate B 7 and the fins 5 a of the heat sink 5. Thereby, CPU1 is cooled.
[0020]
Here, since the attachment portions 6b and 7b of the metal heat sink A6 and the heat sink B7 have a narrow shape with slits on both sides, the heat is high when fixed to the boss 11 of the information processing device casing. When the CPU 1 is pressed through the conductive rubber 9, the CPU 1 absorbs variations in the height and mounting of the CPU 1 due to its springiness. This is because the attachment portions 6b and 7b extending in a thin shape from the heat radiating plate A6 and the heat radiating plate B7 are extended so that their strain directions do not overlap with each other in a direction shifted by 90 degrees, that is, in a direction perpendicular to each other. Accordingly, the spring effect of each other is not impaired, and the heat conductive elastic member can be brought into close contact with the heat generating component without overload even if the heat generating component has a height variation and a mounting variation.
[0021]
Thus, even if the high heat conductive rubber is hardened by pressing the high heat conductive rubber with two metal heat sinks having spring properties, no overload is applied to the CPU.
[0022]
If a heat radiating fan is attached to the heat sink in the present embodiment, the heat radiating fan can further absorb and radiate the heat of the metal heat radiating plate, thereby improving the overall heat radiating effect.
[0023]
【The invention's effect】
As described above, according to the present invention, two thin metal heat sinks having elasticity constituting the heat dissipating member are stacked, and a heat generating component mounted on a printed wiring board and the metal heat dissipating plate are interposed between them. A heat-conducting elastic member is arranged, and a plurality of rising parts are formed by bending each of the two metal heat sinks, and the shape is extended in a narrow shape so that the strain directions do not overlap in directions perpendicular to each other. Each of the formed mounting portions is formed, and the heat radiation surface area of the heat radiation member is fixed by attaching and fixing the heat radiation member to the casing together with the printed wiring board by using the mounting holes so that the mounting holes at the front end portions of the mounting portions overlap. The heat conductive elastic member can be changed to a heat generating component by the elasticity of the mounting portion without being affected by variations in the height and mounting variation of the heat generating component. Effect that can be tightly secured without really overload.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing a heat dissipation structure for a heat generating component according to an embodiment of the present invention. FIG. 2 is an exploded perspective view and an assembly showing a heat dissipation member in the heat dissipation structure for a heat generating component according to an embodiment of the present invention. [Figure 3] Cross-sectional view showing the heat dissipation structure of a conventional heat-generating component [Explanation of symbols]
1 CPU
2 Printed circuit board 4 Heat dissipation member 5 Heat sink 6 Heat sink A
6a, 7a Rising part 6b, 7b Mounting part 7 Heat sink B
9 High thermal conductivity rubber

Claims (1)

プリント配線基板上に実装された発熱部品が発生した熱を放熱部材により放熱するための放熱構造であって、
前記放熱部材は2枚の弾性を有する薄板状の金属製放熱板とその2枚の金属製放熱板が重ねられた状態でこれに一体に取付けられたヒートシンクからなり、
前記2枚の金属製放熱板にそれぞれ折り曲げられた複数の立ち上がり部と、当該2枚の金属製放熱板が重ねられた状態において互いに直交する方向でその歪方向が重ならないようにした細形状でそれぞれ延長形成された取付け部を形成し、かつ、前記各取付け部の先端部に前記2枚の金属製放熱板が重ねられた状態において重なるようにした取付け孔を設け、
前記放熱部材を前記金属製放熱板と前記プリント配線基板上に実装された発熱部品との間に熱伝導性弾性部材を介した状態で前記プリント配線基板とともに前記重なるように設けられた取付け孔により筐体に取付け固定し、前記2枚の金属製放熱板に延長形成された各取付け部の弾性により前記熱伝導性弾性部材が前記発熱部品に密着されるようにしたことを特徴とする発熱部品の放熱構造。
A heat dissipating structure for dissipating heat generated by a heat generating component mounted on a printed wiring board by a heat dissipating member,
The heat dissipating member is composed of two thin metal heat dissipating plates having elasticity and a heat sink integrally attached to the two heat dissipating metal plates,
A plurality of raised portions bent on the two metal heat sinks, and a thin shape in which the strain directions do not overlap in directions orthogonal to each other when the two metal heat sinks are stacked. An extension hole is formed, and an attachment hole is provided so as to overlap in a state where the two metal heat dissipating plates are overlapped at the tip of each attachment part;
An attachment hole provided so as to overlap the printed wiring board with the heat radiating member in a state where a heat conductive elastic member is interposed between the metal heat radiating plate and the heat generating component mounted on the printed wiring board. A heat generating component characterized in that the heat conductive elastic member is closely attached to the heat generating component by the elasticity of each mounting portion extended and fixed to the two metal heat radiating plates. Heat dissipation structure.
JP2000376982A 2000-12-12 2000-12-12 Heat dissipation structure Expired - Fee Related JP4380061B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000376982A JP4380061B2 (en) 2000-12-12 2000-12-12 Heat dissipation structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000376982A JP4380061B2 (en) 2000-12-12 2000-12-12 Heat dissipation structure

Publications (2)

Publication Number Publication Date
JP2002184920A JP2002184920A (en) 2002-06-28
JP4380061B2 true JP4380061B2 (en) 2009-12-09

Family

ID=18845762

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000376982A Expired - Fee Related JP4380061B2 (en) 2000-12-12 2000-12-12 Heat dissipation structure

Country Status (1)

Country Link
JP (1) JP4380061B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4438526B2 (en) 2004-06-16 2010-03-24 株式会社安川電機 Power component cooling system
KR100677617B1 (en) 2005-09-29 2007-02-02 삼성전자주식회사 Heat sink assembly
CN116860094A (en) * 2023-09-05 2023-10-10 北京华鲲振宇智能科技有限责任公司 Intelligent terminal

Also Published As

Publication number Publication date
JP2002184920A (en) 2002-06-28

Similar Documents

Publication Publication Date Title
JP3294785B2 (en) Heat dissipation structure of circuit element
US6570764B2 (en) Low thermal resistance interface for attachment of thermal materials to a processor die
JP2002217343A (en) Electronic device
JP5371106B2 (en) Heat dissipation structure for image sensor package
JPH06209174A (en) Heat sink
JP2000269671A (en) Electronic apparatus
TWI731622B (en) Automotive electronic device
TWM285193U (en) Heat spreader
WO2004023857A1 (en) Heat spreader with surface cavity
JPH0680911B2 (en) Heat dissipation structure of printed wiring board with electronic components
TW201215302A (en) Thermal module and electronic device incorporating the same
JP2016181546A (en) Cooling structure and device
JP4438526B2 (en) Power component cooling system
JP4380061B2 (en) Heat dissipation structure
TW201201000A (en) Heat dissipation apparatus
JPH08204070A (en) Electronic part cooling structure
JP2003198171A (en) Heat sink and radiator
JP3378174B2 (en) Heat dissipation structure of high heating element
JPH10107192A (en) Heat sink
JPH05160527A (en) Printed circuit board
JP4469101B2 (en) Electronic circuit device having heat dissipation structure
JP4807286B2 (en) Electronics
JP2007201351A (en) Electronic appliance
JP2002344178A (en) Electronic device
JPH09246439A (en) Cooling mechanism for heating component

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070213

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20070313

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090522

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090602

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090714

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090901

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090914

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131002

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131002

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141002

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees