JPH09246106A - Solid capacitor and formation of conductive functional polymer film - Google Patents

Solid capacitor and formation of conductive functional polymer film

Info

Publication number
JPH09246106A
JPH09246106A JP7839396A JP7839396A JPH09246106A JP H09246106 A JPH09246106 A JP H09246106A JP 7839396 A JP7839396 A JP 7839396A JP 7839396 A JP7839396 A JP 7839396A JP H09246106 A JPH09246106 A JP H09246106A
Authority
JP
Japan
Prior art keywords
functional polymer
conductive functional
polymer film
film
aluminum foil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7839396A
Other languages
Japanese (ja)
Inventor
Reiji Sato
玲司 佐藤
Junji Tagiri
淳二 田切
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Platforms Ltd
Original Assignee
Nitsuko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitsuko Corp filed Critical Nitsuko Corp
Priority to JP7839396A priority Critical patent/JPH09246106A/en
Publication of JPH09246106A publication Critical patent/JPH09246106A/en
Pending legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of forming a conductive functional polymer film for a solid capacitor such that electrolytic oxidation polymerization easily proceeds even when the thickness of an anodized aluminum film is increased, and a solid capacitor having a conductive functional polymer film formed by the same method. SOLUTION: After an anodized film 2 is formed on a roughened surface of an aluminum foil 1 by formation processing, the aluminum foil is immersed into a boric acid aqueous solution of 1 to 5wt.% (% by weight) and cleaned therewith. Then, a silane thin film layer 4 of γ-glycidoxypropyltrimethoxysilane or octadecyl-triethoxysilane is formed on the anodized film. After that, a conductive functional polymer film layer 5 is formed on the anodized film 2 by electrolytic oxidation polymerization in an acetonitrile solution containing pyrrole and ammonium borodisalicylate, or dodecyebenzenesulfonic acid.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本願発明はアルミニウム箔の
表面に形成した陽極酸化皮膜上に導電性機能高分子膜を
形成し、該導電性機能高分子を電解質とする固体電界コ
ンデンサ及びその導電性機能高分子膜の形成方法に関す
るものである。
TECHNICAL FIELD The present invention relates to a solid electrolytic capacitor having a conductive functional polymer film formed on an anodized film formed on the surface of an aluminum foil and using the conductive functional polymer as an electrolyte, and its conductive function. The present invention relates to a method for forming a polymer film.

【0002】[0002]

【従来の技術】アルミニウム箔の表面に形成した陽極酸
化皮膜上に導電性機能高分子膜を形成し、該導電性機能
高分子を電解質とする固体電界コンデンサは、従来の電
解コンデンサに使用されている電解質(駆動用電解液や
二酸化マンガン等)に比較して、比抵抗値が非常に小さ
いため、低インピーダンス・低等価直列抵抗値を有する
固体コンデンサとして知られている。
2. Description of the Related Art A solid electrolytic capacitor in which a conductive functional polymer film is formed on an anodized film formed on the surface of an aluminum foil and the conductive functional polymer is used as an electrolyte is used in conventional electrolytic capacitors. It is known as a solid capacitor having low impedance and low equivalent series resistance because it has a very small specific resistance value as compared with existing electrolytes (driving electrolyte, manganese dioxide, etc.).

【0003】従来、上記固体コンデンサにおいて、陽極
酸化皮膜上に形成した導電性機能高分子膜を形成する方
法として、化学酸化重合による方法と、電界酸化重合に
よる方法の2種類が提案されている。
Conventionally, in the above-mentioned solid-state capacitor, as a method of forming a conductive functional polymer film formed on an anodic oxide film, two types have been proposed, a method by chemical oxidative polymerization and a method by electric field oxidative polymerization.

【0004】上記アルミニウム陽極酸化皮膜上に導電性
機能高分子膜層を形成する上記2種類の方法のうち、電
界酸化重合による方法が有効であるが、アルミニウム陽
極酸化皮膜上に導電性機能高分子膜層を形成する電解酸
化重合液組成としては、例えば、アセトニトリル溶媒中
に、ピロールを溶解させ、電解質として、ホウ素化合物
(アンモニウムボロジ・サリシレート、ボロジ・クエン
酸等)又は、硫黄化合物(ドデシルベンゼンスルホン
酸、テトラエチルアンモニウムパラトルエンスルホン酸
等)を溶解させたものが、最も有効である。
Of the above-mentioned two types of methods for forming the conductive functional polymer film layer on the aluminum anodic oxide film, the method by electric field oxidative polymerization is effective, but the conductive functional polymer is formed on the aluminum anodic oxide film. The composition of the electrolytic oxidation polymerization solution for forming the film layer is, for example, by dissolving pyrrole in an acetonitrile solvent, and as the electrolyte, a boron compound (ammonium borodi salicylate, borodi citric acid, etc.) or a sulfur compound (dodecylbenzene). Most effective is a solution of sulfonic acid, tetraethylammonium paratoluenesulfonic acid, etc.).

【0005】[0005]

【発明が解決しようとする課題】しかしながら上記電界
酸化重合液組成を用い導電性機能高分子膜層を形成した
場合でも、固体コンデンサの定格電圧が高くなると、漏
れ電流値が大きくなってしまうという欠点がある。この
欠点はアルミニウム陽極酸化皮膜上と導電性機能高分子
との界面において、密着性が悪かったり、導電性機能高
分子の膜層に膜厚、密度、均一性等のバラツキ等が発生
するためと考えられる。かかる原因は、アルミニウム酸
化皮膜の膜厚が厚くなる程、電解酸化重合反応が困難に
なり、反応がスムーズに進行しないことによる。
However, even when the conductive functional polymer film layer is formed by using the above-mentioned electrolytic oxidation polymerization liquid composition, the leakage current value becomes large when the rated voltage of the solid capacitor becomes high. There is. This drawback is due to poor adhesion at the interface between the aluminum anodic oxide coating and the conductive functional polymer, or variations in the film thickness, density, uniformity, etc., of the conductive functional polymer film layer. Conceivable. This is because the electrolytic oxidation polymerization reaction becomes more difficult and the reaction does not proceed smoothly as the thickness of the aluminum oxide film increases.

【0006】本願発明は上述の点に鑑みてなされたもの
で、アルミニウム陽極酸化皮膜の膜厚が厚くなっても、
電解酸化重合反応が容易に進行する固体コンデンサの導
電性機能高分子膜の形成方法及びこの方法で形成された
導電性機能高分子膜を有する固体コンデンサを提供する
ことを目的とする。
The present invention has been made in view of the above points, and even if the thickness of the aluminum anodic oxide coating is increased,
An object of the present invention is to provide a method for forming a conductive functional polymer film of a solid capacitor in which an electrolytic oxidative polymerization reaction easily proceeds and a solid capacitor having the conductive functional polymer film formed by this method.

【0007】[0007]

【課題を解決するための手段】上記課題を解決するため
本願請求項1に記載の発明は、粗面化したアルミニウム
箔の表面に化成化処理により、陽極酸化皮膜を形成し、
該陽極酸化皮膜上にピロールとアンモニウムボロジ・サ
リシレート又は、ドデシルベンゼンスルホン酸を含むア
セトニトリル溶液中で、電界酸化重合により形成した導
電性機能高分子膜を電解質とする固体コンデンサにおい
て、アルミニウム箔の表面に形成した陽極酸化皮膜上
に、γ−グリシドキシプロピルトリメトキシシラン又は
オクタデシルトリエトキシシランのシラン薄膜層を形成
し、該シラン薄膜層の上に電解質となる導電性機能高分
子膜を形成したことを特徴とする。
In order to solve the above-mentioned problems, the invention described in claim 1 of the present application is to form an anodized film on the surface of a roughened aluminum foil by chemical conversion treatment,
The surface of an aluminum foil in a solid capacitor using as an electrolyte a conductive functional polymer film formed by electrolytic oxidation polymerization in an acetonitrile solution containing pyrrole and ammonium borodi salicylate or dodecylbenzene sulfonic acid on the anodic oxide film. A silane thin film layer of γ-glycidoxypropyltrimethoxysilane or octadecyltriethoxysilane was formed on the anodic oxide film formed on, and a conductive functional polymer film serving as an electrolyte was formed on the silane thin film layer. It is characterized by

【0008】また、請求項2に記載の発明は、粗面化し
たアルミニウム箔の表面に化成化処理により、陽極酸化
皮膜を形成した後、所定の部分を絶縁性材でマスキング
し、該マスキングが施されていない部分に、ピロールと
アンモニウムボロ・ジサリシレート又は、ドデシルベン
ゼンスルホン酸を含むアセトニトリル溶液中で、電界酸
化重合により、該陽極酸化皮膜上に導電性機能高分子膜
を形成する固体コンデンサの導電性機能高分子膜の形成
方法において、アルミニウム箔の表面に陽極酸化皮膜を
形成した後、該アルミニウム箔を1〜5wt・%(重量
%)硼酸水溶液中に浸漬・洗浄し、しかる後該陽極酸化
皮膜上にγ−グリシドキシプロピルトリメトキシシラン
又はオクタデシルトリエトキシシランのシラン薄膜層を
形成した後、該シラン薄膜層の上に前記導電性機能高分
子膜を形成したことを特徴とする。
Further, according to the invention described in claim 2, after the anodic oxide film is formed on the surface of the roughened aluminum foil by chemical conversion treatment, a predetermined portion is masked with an insulating material, and the masking is performed. In the acetonitrile solution containing pyrrole and ammonium borodisalicylate or dodecylbenzene sulfonic acid in the non-applied portion, a solid-state capacitor having a conductive functional polymer film formed on the anodic oxide film by electrolytic oxidation polymerization is used. In the method for forming a conductive functional polymer film, after forming an anodized film on the surface of an aluminum foil, the aluminum foil is immersed and washed in a 1-5 wt% (weight%) aqueous boric acid solution, and then the anode is formed. After forming a silane thin film layer of γ-glycidoxypropyltrimethoxysilane or octadecyltriethoxysilane on the oxide film, Wherein the over emissions thin layer to form the conductive features polymer film.

【0009】[0009]

【発明の実施の形態】以下、本願発明の実施の形態を図
面に基づいて説明する。図1は本願発明の固体コンデン
サの製造工程を示す図である。同図(a)に示すように
表面をエッチングして粗面化したアルミニウム箔1を用
意する。該アルミニウム箔1をホウ酸・ホウ酸アンモニ
ウム・リン酸アンモニウムの3成分を含む電解水溶液中
で、アルミニウム箔1に100Vの電圧を印加し、その
表面に同図(b)に示すようにアルミニウム陽極酸化皮
膜2を形成する。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a diagram showing a manufacturing process of a solid capacitor of the present invention. As shown in FIG. 4A, an aluminum foil 1 whose surface is roughened by etching is prepared. A voltage of 100 V was applied to the aluminum foil 1 in an electrolytic aqueous solution containing three components of boric acid / ammonium borate / ammonium phosphate, and an aluminum anode was applied to the surface of the aluminum foil 1 as shown in FIG. The oxide film 2 is formed.

【0010】上記アルミニウム箔1のアルミニウム陽極
酸化皮膜2の所定の部分に絶縁性材3でマスキングを施
した後、該アルミニウム箔1を濃度1〜5wt・%(3
wt%が最適)で水温40〜70℃(60℃が最適)の
硼酸水溶液中に30秒〜5分間(1.5分が最適)浸漬
し、洗浄する。続いて0.5〜5wt%(1wt%が最
適)のγ−グリシドキシプロピルトリメトキシシラン又
はオクタデシルトリエトキシシランのアルコール溶液
(メタノール又はエタノール)中に1時間浸漬して例え
ば105℃で10分間乾燥・硬化させて、同図(c)に
示すようにアルミニウム陽極酸化皮膜2上にγ−グリシ
ドキシプロピルトリメトキシシラン又はオクタデシルト
リエトキシシランのシラン薄膜層4を形成する。
After a predetermined portion of the aluminum anodic oxide film 2 of the aluminum foil 1 is masked with an insulating material 3, the aluminum foil 1 has a concentration of 1 to 5 wt.% (3
Immerse in an aqueous boric acid solution having a wt% of optimum of 40 to 70 ° C. (optimal of 60 ° C.) for 30 seconds to 5 minutes (optimally 1.5 minutes) and wash. Then, it is immersed in an alcohol solution (methanol or ethanol) of 0.5 to 5 wt% (1 wt% is optimal) of γ-glycidoxypropyltrimethoxysilane or octadecyltriethoxysilane for 1 hour, and at 105 ° C. for 10 minutes, for example. After drying and curing, a silane thin film layer 4 of γ-glycidoxypropyltrimethoxysilane or octadecyltriethoxysilane is formed on the aluminum anodic oxide film 2 as shown in FIG.

【0011】続いて、同図(d)に示すように、シラン
薄膜層4の上に電解酸化重合により導電性機能高分子膜
層5を形成する。この導電性機能高分子膜層5の形成
は、アセトニトリル溶媒中に、ピロールを溶解させ、電
解質として、ホウ素化合物(アンモニウムボロジ・サリ
シレート、ボロジ・クエン酸等)又は、硫黄化合物(ド
デシルベンゼンスルホン酸、テトラエチルアンモニウム
パラトルエンスルホン酸等)を溶解させた溶液中で、電
解酸化重合でなされる。
Subsequently, as shown in FIG. 1D, a conductive functional polymer film layer 5 is formed on the silane thin film layer 4 by electrolytic oxidation polymerization. The conductive functional polymer film layer 5 is formed by dissolving pyrrole in an acetonitrile solvent and using a boron compound (ammonium borodi salicylate, borodi citric acid, etc.) or a sulfur compound (dodecylbenzene sulfonic acid) as an electrolyte. , Tetraethylammonium paratoluenesulfonic acid, etc.) in a solution in which electrolytic oxidation polymerization is performed.

【0012】続いて、上記導電性機能高分子膜層5の上
に公知の方法でグラファイト層6、銀ペースト層7を順
次形成して固体コンデンサ素子ができる。
Subsequently, a graphite layer 6 and a silver paste layer 7 are sequentially formed on the conductive functional polymer film layer 5 by a known method to form a solid capacitor element.

【0013】上記のようにアルミニウム陽極酸化皮膜2
の表面を硼酸水溶液で浸漬・洗浄した後、γ−グリシド
キシプロピルトリメトキシシラン又はオクタデシルトリ
エトキシシランのシラン薄膜層4を形成し、その上に導
電性機能高分子膜層5を形成する方法を採用することに
より、アルミニウム陽極酸化皮膜2の表面とシラン薄膜
層4が密着し、該シラン薄膜層4の上に容易に導電性機
能高分子膜層5が形成できる。
As described above, the aluminum anodic oxide coating 2
A method of forming a silane thin film layer 4 of γ-glycidoxypropyltrimethoxysilane or octadecyltriethoxysilane on the surface of which is dipped and washed with an aqueous solution of boric acid, and then forming a conductive functional polymer film layer 5 thereon. By adopting, the surface of the aluminum anodic oxide film 2 and the silane thin film layer 4 are brought into close contact with each other, and the conductive functional polymer film layer 5 can be easily formed on the silane thin film layer 4.

【0014】表1にホウ酸・ホウ酸アンモニウム・リン
酸アンモニウムの3成分を含む電解水溶液中で100V
のアルミニウム陽極酸化皮膜を形成したアルミニウム化
成箔上に導電性高分子膜層を形成した従来例と、該アル
ミニウム化成箔を硼酸水溶液で浸漬・洗浄した後、γ−
グリシドキシプロピルトリメトキシシラン又はオクタデ
シルトリエトキシシランのシラン薄膜層を形成し、該シ
ラン薄膜層上に導電性機能高分子膜層を形成した本実施
の形態例との導電性機能高分子の外観良品率の比較例を
示す。なお、導電性機能高分子膜層を形成する面積は2
0mm×20mmである。
Table 1 shows 100 V in an electrolytic aqueous solution containing three components of boric acid, ammonium borate and ammonium phosphate.
And a conventional example in which a conductive polymer film layer is formed on an aluminum chemical conversion foil having an aluminum anodic oxide film formed thereon, and the aluminum chemical conversion foil is dipped and washed with an aqueous boric acid solution, and then γ-
Appearance of conductive functional polymer with the present embodiment in which a silane thin film layer of glycidoxypropyltrimethoxysilane or octadecyltriethoxysilane is formed, and a conductive functional polymer film layer is formed on the silane thin film layer. A comparative example of the non-defective rate is shown below. The area for forming the conductive functional polymer film layer is 2
It is 0 mm × 20 mm.

【0015】[0015]

【表1】 上記表1に示すように、従来例に比較し、本実施の形態
例の方が導電性高分子膜層の外観良品率が大幅に向上し
ている。
[Table 1] As shown in Table 1 above, in comparison with the conventional example, the appearance non-defective rate of the conductive polymer film layer is significantly improved in the present embodiment.

【0016】図2は図1(e)に示す構成の本願発明の
固体コンデンサと、従来の固体コンデンサ{図1(e)
において薄膜層4の無いもの}の漏れ電流値の比較例を
示す図である。図2から明らかなように、本願発明の固
体コンデンサは、従来例のコンデンサに比較し、漏れ電
流値が大幅に小さくなっている。なお、図2において、
試験に用いたコンデンサの数は本願発明、従来例とも各
15個である。
FIG. 2 shows the solid-state capacitor of the present invention having the structure shown in FIG. 1 (e) and a conventional solid-state capacitor {FIG. 1 (e).
FIG. 7 is a diagram showing a comparative example of the leakage current value of the device without the thin film layer 4 in FIG. As is clear from FIG. 2, the leakage current value of the solid-state capacitor of the present invention is significantly smaller than that of the conventional capacitor. In FIG. 2,
The number of capacitors used in the test is 15 in each of the present invention and the conventional example.

【0017】[0017]

【発明の効果】以上説明したように本願発明によれば下
記のような効果が得られる。 (1)請求項1に記載の発明によれば、陽極酸化皮膜上
に、γ−グリシドキシプロピルトリメトキシシラン又は
オクタデシルトリエトキシシランのシラン薄膜層を形成
し、該シラン薄膜層の上に導電性機能高分子膜を形成し
たので、漏れ電流の小さい固体コンデンサを提供でき
る。
As described above, according to the present invention, the following effects can be obtained. (1) According to the invention of claim 1, a silane thin film layer of γ-glycidoxypropyltrimethoxysilane or octadecyltriethoxysilane is formed on the anodic oxide film, and the silane thin film layer is electrically conductive. Since the functional functional polymer film is formed, it is possible to provide a solid-state capacitor having a small leakage current.

【0018】(2)請求項2に記載の発明によれば、陽
極酸化皮膜を形成した後、硼酸水溶液中に浸漬・洗浄
し、その後にγ−グリシドキシプロピルトリメトキシシ
ラン又はオクタデシルトリエトキシシランのシラン薄膜
層を形成し、しかる後該シラン薄膜層の上に導電性機能
高分子膜を形成することにより、陽極酸化皮膜表面と該
薄膜層とが密着し、該薄膜層上に欠陥の少ない導電性機
能高分子膜が形成できる。
(2) According to the invention described in claim 2, after forming the anodic oxide film, it is immersed and washed in an aqueous solution of boric acid, and then γ-glycidoxypropyltrimethoxysilane or octadecyltriethoxysilane. By forming a silane thin film layer of, and then forming a conductive functional polymer film on the silane thin film layer, the surface of the anodic oxide film and the thin film layer adhere to each other, and there are few defects on the thin film layer. A conductive functional polymer film can be formed.

【図面の簡単な説明】[Brief description of drawings]

【図1】本願発明の固体コンデンサの製造工程を示す図
である。
FIG. 1 is a diagram showing a manufacturing process of a solid capacitor of the present invention.

【図2】本願発明の固体コンデンサと従来の固体コンデ
ンサの漏れ電流値の比較例を示す図である。
FIG. 2 is a diagram showing a comparative example of leakage current values of a solid capacitor of the present invention and a conventional solid capacitor.

【符号の説明】[Explanation of symbols]

1 アルミニウム箔 2 アルミニウム陽極酸化皮膜 3 絶縁性材 4 シランの薄膜層 5 導電性機能高分子膜層 6 グラファイト層 7 銀ペースト層 DESCRIPTION OF SYMBOLS 1 Aluminum foil 2 Aluminum anodic oxide film 3 Insulating material 4 Thin film layer of silane 5 Conductive functional polymer film layer 6 Graphite layer 7 Silver paste layer

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 粗面化したアルミニウム箔の表面に化成
化処理により、陽極酸化皮膜を形成し、該陽極酸化皮膜
上にピロールとアンモニウムボロ・ジサリシレート又
は、ドデシルベンゼンスルホン酸を含むアセトニトリル
溶液中で、電解酸化重合により形成した導電性機能高分
子膜を電解質とする固体コンデンサにおいて、 前記アルミニウム箔の表面に形成した陽極酸化皮膜上
に、γ−グリシドキシプロピルトリメトキシシラン又は
オクタデシルトリエトキシシランのシラン薄膜層を形成
し、該シラン薄膜層の上に前記電解質となる導電性機能
高分子膜を形成したことを特徴とする固体コンデンサ。
1. An acetonitrile solution containing pyrrole and ammonium borodisalicylate or dodecylbenzenesulfonic acid on the surface of a roughened aluminum foil by chemical conversion treatment to form an anodized film. Then, in a solid capacitor using a conductive functional polymer film formed by electrolytic oxidation polymerization as an electrolyte, γ-glycidoxypropyltrimethoxysilane or octadecyltriethoxysilane is formed on the anodized film formed on the surface of the aluminum foil. And a conductive functional polymer film serving as the electrolyte is formed on the silane thin film layer.
【請求項2】 粗面化したアルミニウム箔の表面に化成
化処理により、陽極酸化皮膜を形成した後、所定の部分
を絶縁性材でマスキングし、該マスキングが施されてい
ない部分に、ピロールとアンモニウムボロ・ジサリシレ
ート又は、ドデシルベンゼンスルホン酸を含むアセトニ
トリル溶液中で、電界酸化重合により、該陽極酸化皮膜
上に導電性機能高分子膜を形成する固体コンデンサの導
電性機能高分子膜の形成方法において、 前記アルミニウム箔の表面に陽極酸化皮膜を形成した
後、該アルミニウム箔を1〜5wt・%(重量%)硼酸
水溶液中に浸漬・洗浄し、しかる後該陽極酸化皮膜上に
γ−グリシドキシプロピルトリメトキシシラン又はオク
タデシルトリエトキシシランのシラン薄膜層を形成し、
しかる後該シラン薄膜層の上に前記導電性機能高分子膜
を形成したことを特徴とする固体コンデンサの導電性機
能高分子膜の形成方法。
2. A roughened aluminum foil surface is subjected to a chemical conversion treatment to form an anodized film, and then a predetermined portion is masked with an insulating material, and the portion not masked is treated with pyrrole. Method for forming a conductive functional polymer film of a solid capacitor in which a conductive functional polymer film is formed on the anodic oxide film by electrolytic oxidation polymerization in an acetonitrile solution containing ammonium borodisalicylate or dodecylbenzenesulfonic acid In the above, after forming an anodized film on the surface of the aluminum foil, the aluminum foil is dipped and washed in a 1-5 wt% (weight%) boric acid aqueous solution, and then γ-glycid is formed on the anodized film. Forming a silane thin film layer of oxypropyltrimethoxysilane or octadecyltriethoxysilane,
After that, the conductive functional polymer film is formed on the silane thin film layer, and the conductive functional polymer film for a solid capacitor is formed.
JP7839396A 1996-03-05 1996-03-05 Solid capacitor and formation of conductive functional polymer film Pending JPH09246106A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7839396A JPH09246106A (en) 1996-03-05 1996-03-05 Solid capacitor and formation of conductive functional polymer film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7839396A JPH09246106A (en) 1996-03-05 1996-03-05 Solid capacitor and formation of conductive functional polymer film

Publications (1)

Publication Number Publication Date
JPH09246106A true JPH09246106A (en) 1997-09-19

Family

ID=13660778

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7839396A Pending JPH09246106A (en) 1996-03-05 1996-03-05 Solid capacitor and formation of conductive functional polymer film

Country Status (1)

Country Link
JP (1) JPH09246106A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000019469A1 (en) * 1998-09-30 2000-04-06 Kemet Electronics Corporation Process for improving leakage and dissipation factor of solid electrolytic capacitors employing conductive polymer cathodes
US20150085428A1 (en) * 2012-06-26 2015-03-26 Panasonic Intellectual Property Management Co., Ltd. Solid electrolytic capacitor and method for manufacturing same
CN108155016A (en) * 2016-12-02 2018-06-12 东莞东阳光科研发有限公司 A kind of formation processing method for reducing aluminum electrolysis capacitor formed foil leakage current

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000019469A1 (en) * 1998-09-30 2000-04-06 Kemet Electronics Corporation Process for improving leakage and dissipation factor of solid electrolytic capacitors employing conductive polymer cathodes
US6191013B1 (en) 1998-09-30 2001-02-20 Kemet Electronics Corporation Process for improving leakage and dissipation factor of solid electrolytic capacitors employing conductive polymer cathodes
GB2360129A (en) * 1998-09-30 2001-09-12 Kemet Electronics Corp Process for improving leakage and dissipation factor of solid electrolytic capacitors employing conductive polymer cathodes
US20150085428A1 (en) * 2012-06-26 2015-03-26 Panasonic Intellectual Property Management Co., Ltd. Solid electrolytic capacitor and method for manufacturing same
US9653215B2 (en) * 2012-06-26 2017-05-16 Panasonic Intellectual Property Management Co., Ltd. Solid electrolyte capacitor including multiple silane coupling layers provided on a dielectric layer and method for manufacturing the same
CN108155016A (en) * 2016-12-02 2018-06-12 东莞东阳光科研发有限公司 A kind of formation processing method for reducing aluminum electrolysis capacitor formed foil leakage current

Similar Documents

Publication Publication Date Title
JP2014060231A (en) Method of manufacturing solid electrolytic capacitor
JP2005109252A (en) Method of manufacturing solid electrolytic capacitor
JPH11121281A (en) Method for manufacturing solid electrolytic capacitor
JPH0473924A (en) Solid-state electrolytic capacitor and its manufacture
KR100365370B1 (en) Method for producing a solid electrolytic capacitor
JP4325354B2 (en) Manufacturing method of solid electrolytic capacitor
JPH09246106A (en) Solid capacitor and formation of conductive functional polymer film
JP2615712B2 (en) Manufacturing method of solid electrolytic capacitor
JPH0267708A (en) Manufacture of organic semiconductor solid electrolytic capacitor
JP3864651B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JPH0794369A (en) Solid electrolytic capacitor
JPH0645199A (en) Solid-state electrolytic capacitor
JPH03228305A (en) Manufacture of aluminum solid electrolytic capacitor
JPH0318009A (en) Manufacture of solid tantalum electrolytic capacitor
JP3669191B2 (en) Manufacturing method of solid electrolytic capacitor
JPH10154639A (en) Method for manufacturing solid capacitor
JP4126746B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP2995109B2 (en) Method for manufacturing solid electrolytic capacitor
JPH11121280A (en) Solid electrolytic capacitor and manufacturing method therefor
JPH11251191A (en) Solid electrolytic capacitor and its manufacture
JP2786331B2 (en) Method for manufacturing solid electrolytic capacitor
US3156633A (en) Film-forming metal capacitors
JPH0430409A (en) Manufacture of solid electrolytic capacitor
JPS62185307A (en) Solid electrolytic capacitor
JPH0513285A (en) Solid electrolytic capacitor