JPH09243683A - Method and device for measurement of resistivity, electric conductivity and/or permittivity - Google Patents

Method and device for measurement of resistivity, electric conductivity and/or permittivity

Info

Publication number
JPH09243683A
JPH09243683A JP8073147A JP7314796A JPH09243683A JP H09243683 A JPH09243683 A JP H09243683A JP 8073147 A JP8073147 A JP 8073147A JP 7314796 A JP7314796 A JP 7314796A JP H09243683 A JPH09243683 A JP H09243683A
Authority
JP
Japan
Prior art keywords
voltage
pole
converter
electric field
field detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8073147A
Other languages
Japanese (ja)
Inventor
Shigeru Makino
繁 牧野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RES KK
Original Assignee
RES KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RES KK filed Critical RES KK
Priority to JP8073147A priority Critical patent/JPH09243683A/en
Publication of JPH09243683A publication Critical patent/JPH09243683A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Resistance Or Impedance (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method and an apparatus by which a resistivity, an electric conductivity and/or a permittivity can be measured stably, at high-speed response and with high accuracy by a method wherein a circuit whose scale is small and which is fabricated easily is used and a feedbak loop is not required. SOLUTION: A voltage is applied to a voltage application pole PB at a measuring probe 1 from a D/A converter 2, and another voltage application pole PA is connected to a current amplifier 4. Arbitrary two out of respective electric- field detection poles P1 to Pn are selected by analog multiplexers 5a, 5b, and a voltage across them is detected by a differential amplifier 6. The output of the current amplifier and that of the differential amplifier are changed over by an analog switch 7, and any of the outputs is connected to an A/D converter 8. In a DSP(digital signal processor) 3, a voltage waveform which is input to the A/D converter and which is detected by an electric-field detection pole and a current waveform which flows to the voltage application pole are multiplied respectively by a plurality of sine waves which are output from the D/A converter, and a smoothing numerical value is then computed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、電気化学計測、電
磁気学的物性計測における抵抗率、電気伝導率及び/又
は誘電率の測定方法及び装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and apparatus for measuring resistivity, electric conductivity and / or permittivity in electrochemical measurement and electromagnetic property measurement.

【0002】[0002]

【従来の技術】従来、抵抗率、電気伝導率、誘電率の測
定には、2端子回路としてブリッジ回路を構成するのが
一般的であった。しかし、この方法は、ブリッジの平衡
を手動で調整する必要があり、しかも電極と被測定物の
間の接触抵抗が誤差になるという問題がある。その為、
電圧印加極と電界検出極とを分離した4電極法による測
定法が提案された。本発明者も、この原理を応用した電
気伝導率測定装置を考案し、既に実用新案登録第207
7834号として登録されている(実公平6−4843
6号参照)。
2. Description of the Related Art Heretofore, it has been common to construct a bridge circuit as a two-terminal circuit for measuring resistivity, electric conductivity and permittivity. However, this method has a problem that the balance of the bridge needs to be manually adjusted, and the contact resistance between the electrode and the object to be measured causes an error. For that reason,
A measurement method by a four-electrode method in which a voltage application electrode and an electric field detection electrode are separated has been proposed. The present inventor has also devised an electric conductivity measuring device applying this principle, and has already registered the utility model registration No. 207.
Registered as No. 7834 (Actual fair 6-4843
No. 6).

【0003】[0003]

【発明が解決しようとする課題】従来の4電極法による
方法は、安定な発振器、位相誤差の小さい増幅器、高精
度のアナログ乗算器を必要とするため、装置が複雑で大
規模になり、高価なものになるという欠点がある。この
傾向は、電界検出極を多数必要とする応用、例えば皮膚
に印加された電圧により生じる電界を2本以上の電界検
出極で検出し、電圧−電流の関係から電気伝導率もしく
は抵抗率を算出し、水分量を推定する皮膚水分量の測定
などにおいては甚大となる。また、従来の方法は、電気
伝導率の場合には電界検出極間の電圧を一定にする様
に、抵抗率の場合には電圧印加極に流れる電流を一定に
する様に、それぞれ印加電圧を制御するフィードバック
制御を行うのが普通である。この為に、測定の安定度が
低下したり、応答時間が長時間必要になるという欠点が
ある。
The conventional four-electrode method requires a stable oscillator, an amplifier with a small phase error, and a high-precision analog multiplier, which makes the device complicated, large-scale, and expensive. It has the drawback of becoming This tendency is due to applications requiring a large number of electric field detection poles, for example, an electric field generated by a voltage applied to the skin is detected by two or more electric field detection poles, and electric conductivity or resistivity is calculated from the voltage-current relationship. However, it becomes extremely large in the measurement of the skin water content for estimating the water content. In the conventional method, the applied voltage is adjusted so that the voltage between the electric field detection electrodes is constant in the case of electrical conductivity and the current flowing through the voltage application electrode is constant in the case of resistivity. It is usual to perform feedback control. For this reason, there are drawbacks such that the stability of measurement is lowered and a long response time is required.

【0004】従って、本発明の目的は、上記従来技術の
欠点を解決し、小規模で作製容易な回路を用い、フィー
ドバックループの必要がなく、安定で高速に応答でき、
しかも高精度で抵抗率、電気伝導率及び/又は誘電率を
測定できる方法及び装置を提供することにある。
Therefore, an object of the present invention is to solve the above-mentioned drawbacks of the prior art, to use a circuit which is small-scale and easy to manufacture, does not require a feedback loop, and can respond stably and at high speed.
Moreover, it is an object of the present invention to provide a method and apparatus capable of measuring resistivity, electrical conductivity and / or permittivity with high accuracy.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
に、本発明によれば、被測定物に対し、2本の電圧印加
極と2本以上の電界検出極とを用いて、抵抗率、電気伝
導率及び誘電率よりなる群から選ばれた少なくとも1つ
を測定する方法において、被測定物に対して電圧印加極
を介して電圧を印加し、これによって生じた電界を電界
検出極で検出し、検出した電圧波形及び電圧印加極に流
れる電流波形をデジタル変数に変換し、被測定物の抵抗
率、電気伝導率又は誘電率を算出することを特徴とする
測定方法が提供される。好適な態様においては、電界検
出極で検出する電圧波形と電圧印加極に流れる電流波形
を時分割してそれぞれデジタル変数に変換する。また、
電圧印加極に印加する電圧を正弦波とし、電界検出極で
検出した電圧波形及び電圧印加極に流れる電流波形に上
記正弦波と同一周期で一定の位相差をもつ複数の正弦波
をそれぞれ乗算した後、平滑化する。
In order to achieve the above object, according to the present invention, the resistivity is measured for an object to be measured by using two voltage applying poles and two or more electric field detecting poles. In the method for measuring at least one selected from the group consisting of electrical conductivity and dielectric constant, a voltage is applied to the object to be measured through a voltage applying electrode, and the electric field generated thereby is detected by the electric field detecting electrode. There is provided a measuring method characterized by detecting, converting a detected voltage waveform and a detected current waveform flowing through a voltage application electrode into a digital variable, and calculating a resistivity, an electrical conductivity or a permittivity of an object to be measured. In a preferred mode, the voltage waveform detected by the electric field detection pole and the current waveform flowing through the voltage application pole are time-divided and converted into digital variables. Also,
The voltage applied to the voltage application pole is a sine wave, and the voltage waveform detected by the electric field detection pole and the current waveform flowing in the voltage application pole are each multiplied by a plurality of sine waves with the same period as the sine wave but with a constant phase difference. After that, it is smoothed.

【0006】さらに本発明によれば、上記方法に好適に
用いることができる装置も提供される。すなわち、本発
明によれば、被測定物に対し、2本の電圧印加極と2本
以上の電界検出極とを用いて、抵抗率、電気伝導率及び
誘電率よりなる群から選ばれた少なくとも1つを測定す
る装置において、電圧印加極に印加する電圧波形を発生
するD/A変換器と、電界検出極で検出した電圧波形及
び電圧印加極に流れる電流波形をデジタル変数に変換す
るA/D変換器と、該A/D変換器からの出力信号に基
づいて抵抗率、電気伝導率又は誘電率を算出する数値演
算器とを含むことを特徴とする測定装置が提供される。
Further, according to the present invention, there is also provided an apparatus which can be suitably used in the above method. That is, according to the present invention, at least one selected from the group consisting of resistivity, electric conductivity and dielectric constant is used for the object to be measured by using two voltage applying electrodes and two or more electric field detecting electrodes. In a device for measuring one, a D / A converter that generates a voltage waveform to be applied to a voltage application pole and an A / A converter that converts a voltage waveform detected by an electric field detection pole and a current waveform flowing through the voltage application pole into a digital variable There is provided a measuring device including a D converter and a numerical calculator that calculates a resistivity, an electric conductivity or a permittivity based on an output signal from the A / D converter.

【0007】好適な態様においては、使用するA/D変
換器の数が、電界検出極で検出する電圧波形の数と電圧
印加極に流れる電流波形の数との合計数よりも少なく、
時分割してそれぞれをA/D変換器に入力する。また、
D/A変換器より電圧印加極に与える電圧は正弦波であ
ることが好ましく、前記数値演算器が、A/D変換器に
入力される電界検出極で検出した電圧波形及び電圧印加
極に流れる電流波形に、D/A変換器より出力した正弦
波と同一周期で一定の位相差をもつ複数の正弦波をそれ
ぞれ乗算した後、平滑化する数値演算を行う。
In a preferred mode, the number of A / D converters used is less than the total number of the number of voltage waveforms detected by the electric field detection pole and the number of current waveforms flowing through the voltage application pole,
The signals are time-divided and input to the A / D converter. Also,
The voltage applied from the D / A converter to the voltage application pole is preferably a sine wave, and the numerical calculator flows into the voltage waveform detected by the electric field detection pole input to the A / D converter and the voltage application pole. The current waveform is multiplied by a plurality of sine waves having a constant phase difference in the same cycle as the sine wave output from the D / A converter, and then a numerical operation for smoothing is performed.

【0008】[0008]

【発明の実施の形態】本発明の方法及び装置では、アナ
ログ発振器を用いず、D/A変換器で発生させた電圧波
形を電圧印加極に印加する。また電界検出極で検出した
電圧波形及び電圧印加極に流れる電流波形を直接A/D
変換器で変換した後、数値演算する。数値演算には、ロ
ジック回路、高速CPU等も使用できるが、DSP(デ
ジタルシグナルプロセッサ)を用いるのが性能価格比の
点で良好である。
BEST MODE FOR CARRYING OUT THE INVENTION In the method and apparatus of the present invention, the voltage waveform generated by the D / A converter is applied to the voltage application pole without using the analog oscillator. In addition, the voltage waveform detected by the electric field detection pole and the current waveform flowing in the voltage application pole are directly A / D
Numerical calculation is performed after conversion by the converter. A logic circuit, a high-speed CPU, or the like can be used for the numerical calculation, but using a DSP (digital signal processor) is preferable in terms of performance price ratio.

【0009】電界検出極が複数ある場合、また、各電界
検出極で検出した電圧波形と電圧印加極に流れる電流波
形をA/D変換する場合、それぞれにA/D変換器を設
けても良いが、アナログマルチプレクサで切り換え、1
個のA/D変換器を時分割して使用することも可能であ
る。
When there are a plurality of electric field detection poles, and when the voltage waveform detected by each electric field detection pole and the current waveform flowing through the voltage application pole are A / D converted, an A / D converter may be provided for each. But, switch with analog multiplexer, 1
It is also possible to use one A / D converter in a time division manner.

【0010】電圧印加極にD/A変換器を介して印加す
る電圧は、様々な交流波形が利用できるが、正弦波を用
いるのが、演算が簡単になり、かつ誤差を生じ難い点で
好ましい。またこの場合、D/A変換器に入力した数値
と電圧印加極に印加される電圧との間の位相遅れ、及び
電界検出極で検出した電圧とA/D変換器で変換した数
値の間の位相遅れ、並びに電圧印加極に流れる電流波形
とA/D変換器で変換した数値との位相遅れは、それぞ
れ独立に存在しても時間的に変化しなければ、演算によ
り測定に誤差を生じないように補正することが可能であ
る。
Although various AC waveforms can be used for the voltage applied to the voltage application pole via the D / A converter, it is preferable to use a sine wave because the calculation is simple and an error is unlikely to occur. . In this case, the phase lag between the numerical value input to the D / A converter and the voltage applied to the voltage application pole, and the voltage between the voltage detected by the electric field detection pole and the numerical value converted by the A / D converter The phase delay and the phase delay between the current waveform flowing through the voltage application pole and the numerical value converted by the A / D converter will not cause an error in the calculation if they do not change with time even if they exist independently. Can be corrected as follows.

【0011】次に、図面を参照しながら本発明の作用に
ついて説明する。図1は4電極によるインピーダンス測
定の原理を示したもので、PA 、PB は電圧印加極、P
1 、P2 は電界検出極を示す。図1において、Ze1、Z
e2、Ze3、Ze4は各電極と被測定物との間の接触インピ
ーダンスであり、Zは測定すべきインピーダンスを示し
ている。
Next, the operation of the present invention will be described with reference to the drawings. Fig. 1 shows the principle of impedance measurement with four electrodes. P A and P B are voltage application electrodes and P
Reference numerals 1 and P 2 denote electric field detection poles. In FIG. 1, Z e1 , Z
e2 , Z e3 , and Z e4 are contact impedances between the electrodes and the object to be measured, and Z represents the impedance to be measured.

【0012】電界検出極P1 、P2 で検出した電圧をe
(t)、電圧印加極PA 、PB 間に流れた電流をi
(t)、電圧印加極に印加した電圧を√2 Asin ωtと
すれば、下記数1に示す各式の関係が成立する。
The voltage detected by the electric field detection poles P 1 and P 2 is e
(T), the current flowing between the voltage application poles P A and P B is i
(T), assuming that the voltage applied to the voltage application pole is √2 Asin ωt, the relationship of each equation shown in the following Expression 1 is established.

【数1】 式(1)のEは記号法により表わした複素数表示での交
流電圧、式(2)のIは同様に複素数表示での交流電
流、式(3)のZは複素インピーダンス、式(4)のY
は複素アドミタンス、jは虚数単位である。また、tは
時間、ωは角周波数、Aは任意の定数である。式(1)
及び(2)において、nはデータを平滑化するための周
期数であり、任意の自然数でよいが、実装置では、S/
N比から10以上が良好である。Zの実数部が抵抗率
に、Yの実数部が電気伝導率に、Zの虚数部が誘電率に
それぞれ比例するのは、各々の定義より明らかである。
また、e(t)として観測されるものは、P1 、P2
には電流が流れないため、Ze1〜Ze4の値に拘わらず、
Z両端の電圧であり、i(t)は電流の連続性によりZ
を流れる電流であることから、こうして計算されたZ、
YはZe1〜Ze4の影響は受けない。
[Equation 1] E in the formula (1) is an AC voltage in the complex number representation expressed by the notation, I in the formula (2) is also an AC current in the complex number representation, Z in the formula (3) is a complex impedance, and E in the formula (4) is Y
Is a complex admittance, and j is an imaginary unit. Further, t is time, ω is angular frequency, and A is an arbitrary constant. Equation (1)
In (2) and (2), n is the number of cycles for smoothing the data, which may be any natural number, but in the actual device, S /
From the N ratio, 10 or more is good. It is clear from the respective definitions that the real part of Z is proportional to the resistivity, the real part of Y is proportional to the electrical conductivity, and the imaginary part of Z is proportional to the dielectric constant.
Also, what is observed as e (t) does not flow a current between P 1 and P 2 , so that regardless of the values of Z e1 to Z e4 ,
Is the voltage across Z, i (t) is Z due to the continuity of the current
Z is calculated in this way because it is the current flowing through
Y is not affected by Z e1 to Z e4 .

【0013】前記式(1)及び(2)は連続時間系で示
したが、これを離散時間系に置き換えても、サンプリン
グ周期Δtが、印加電極に印加する正弦波Asin ωtの
周期、即ちω/2πに対し1/2以下であれば、理論上
等価になるが、実装置では1/8以下の方が回路を簡略
化でき好ましい。被測定物が経時的に不変であれば、
E、Iは定数となるので、必ずしも同時に測定する必要
はない。また、経時的に変化するものでも、その変化率
に比べ充分短時間の内に測定すれば、同時測定の必要は
ない。これにより、複数の電界検出極で検出する複数の
電圧波形及び電圧印加極の電流波形を、一台のA/D変
換器で順次切り換えながら測定することができ、大幅に
回路を簡略化できる。
Although the above equations (1) and (2) are shown in the continuous time system, even if they are replaced with the discrete time system, the sampling period Δt is the period of the sine wave Asin ωt applied to the application electrode, that is, ω. If it is 1/2 or less with respect to / 2π, it is theoretically equivalent, but in an actual device, 1/8 or less is preferable because the circuit can be simplified. If the DUT does not change over time,
Since E and I are constants, it is not always necessary to measure them simultaneously. Further, even if it changes with time, it is not necessary to perform simultaneous measurement if it is measured within a sufficiently short time compared to the rate of change. Accordingly, it is possible to measure a plurality of voltage waveforms detected by a plurality of electric field detection poles and a current waveform of a voltage application pole while sequentially switching with one A / D converter, and the circuit can be greatly simplified.

【0014】さらに、これまでの説明では、電圧印加極
に印加する電圧Asin ωtと、前記式(1)、(2)で
用いる正弦波、余弦波は位相が同一であることを前提と
したが、以下に説明するような演算を付加することによ
り、この前提条件を緩和し、一定の位相差があっても正
しい測定ができるようになる。なお、以下の説明は、多
数の電界検出極を持つ例について図面を参照しながら行
なうが、電界検出極として1組(2個)のものを用いた
場合についても全く同様である。
Further, in the above description, it is assumed that the voltage Asin ωt applied to the voltage application pole and the sine wave and the cosine wave used in the above equations (1) and (2) have the same phase. By adding the calculation described below, this precondition can be relaxed and correct measurement can be performed even if there is a constant phase difference. Although the following description will be made with reference to the drawings regarding an example having a large number of electric field detection electrodes, the same applies to the case where one set (two pieces) of electric field detection electrodes is used.

【0015】[0015]

【実施例】以下、添付図面に示す実施例について説明す
る。図2において、符号1は各電極を組み込んだ測定プ
ローブを示し、そのうちPA 及びPB は電圧印加極、P
1、P2 ‥‥Pn は電界検出極を示す。電圧印加極PB
にはD/A変換器2により電圧が印加され、もう一方の
電圧印加極PA は電流増幅器4に接続されている。各電
界検出極P1 、P2 ‥‥Pn は、それぞれアナログマル
チプレクサ5a及び5bに接続されているが、図示の都
合上、各配線の束を太い実線で示している(各電界検出
極同士が結線されているわけではない)。多数の電界検
出極のうちの任意の2本がアナログマルチプレクサ5
a,5bにより選択され、その間の電圧が増幅器A1
3 から構成される差動増幅器6により検出される。電
流増幅器4と差動増幅器6の出力は、アナログスイッチ
7で切り換えられ、いずれかの出力がA/D変換器8に
接続される。DSP(デジタルシグナルプロセッサ)3
は、アナログマルチプレクサ5a,5b、アナログスイ
ッチ7、A/D変換器8、D/A変換器2を動作し、こ
れまで述べてきた演算処理を行なう。具体的には、図4
に示すフローチャートに対応するプログラムを実行す
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The embodiments shown in the accompanying drawings will be described below. In FIG. 2, reference numeral 1 denotes a measurement probe incorporating each electrode, of which P A and P B are voltage application electrodes and P
1 , P 2 ... P n denote electric field detection electrodes. Voltage application pole P B
Is applied with a voltage by the D / A converter 2, and the other voltage application pole P A is connected to the current amplifier 4. The electric field detection poles P 1 , P 2 ... P n are respectively connected to the analog multiplexers 5 a and 5 b, but for convenience of illustration, a bundle of wiring lines are shown by thick solid lines (between the electric field detection poles). Is not connected). Any two of the many electric field detection poles are analog multiplexers 5.
a, 5b, and the voltage between them is selected by the amplifier A 1 ~
It is detected by the differential amplifier 6 composed of A 3 . The outputs of the current amplifier 4 and the differential amplifier 6 are switched by the analog switch 7, and either output is connected to the A / D converter 8. DSP (Digital Signal Processor) 3
Operates the analog multiplexers 5a and 5b, the analog switch 7, the A / D converter 8 and the D / A converter 2 to perform the arithmetic processing described so far. Specifically, FIG.
The program corresponding to the flowchart shown in is executed.

【0016】まず、測定に先だち、測定プローブ1の代
わりに図3に示す純抵抗ネットワークを装置に接続す
る。PA 、PB は電圧印加極端子に、P1 、P2 ‥‥P
n は電界検出極端子にそれぞれ接続し、測定を行なう。
本来測定されるべき値はR1 、R2 ‥‥Rn-1 となるは
ずだが、印加電圧と前記式(1)、(2)の計算で用い
た正弦波、余弦波の位相差のため虚数部が0にならず、
複素インピーダンスとして観測される。これをZ0 1、Z
0 2、‥‥Z0 n-1として記憶させておく。実際の測定時に
は、これらの値を用いてそれぞれ下記数2の式(5)の
演算を行なえばよい。
First, prior to the measurement, the pure resistance network shown in FIG. 3 is connected to the device instead of the measurement probe 1. P A and P B are terminals for voltage application, P 1 , P 2 ... P
n is connected to each of the electric field detection pole terminals and measured.
The values that should be measured should be R 1 , R 2, ..., R n-1 , but because of the phase difference between the applied voltage and the sine wave and cosine wave used in the calculation of equations (1) and (2) above. The imaginary part does not become 0,
Observed as complex impedance. This is Z 0 1 , Z
It is stored as 0 2 , ... Z 0 n-1 . At the time of actual measurement, these values may be used to perform the calculation of Equation (5) below.

【数2】 式(5)において、RK は図2に示す純抵抗ネットワー
クの各エレメントの抵抗値R1 、R2 ‥‥Rn-1 を表わ
す値、Z0 Kはこれを測定した時の前記式(1)〜(3)
による演算結果の値、Zm Kは被測定物による同様の演算
結果の値、ZX Kは補正された測定値である。
[Equation 2] In the equation (5), R K represents the resistance values R 1 , R 2 ... R n-1 of each element of the pure resistance network shown in FIG. 2, and Z 0 K represents the above equation ( 1) to (3)
Is a calculation result value, Z m K is a similar calculation result value by the object to be measured, and Z X K is a corrected measurement value.

【0017】その後、測定プローブ1を装置に接続した
後、被測定物に接触させ、図4に示すプログラムを実行
して測定を行う。以下、図4に示す本発明の実施例のフ
ローチャートを説明する。まずステップaにおいて、タ
イマ等による50μs毎の周期割込により当該タスクが
起動する。これは、20kHzのサンプリング周期に対
応するためである。次に、ステップbにおいて、A/D
変換器8から、以前にセットしておいたチャンネルから
の電圧又は電流値の変換結果をとり出し、変数“inp
ut”に格納する。次に、ステップcにおいて、以前に
用意した変数“DAout”の内容をD/A変換器2に
送り、D/A変換器2の出力を更新する。
After that, the measuring probe 1 is connected to the apparatus, brought into contact with the object to be measured, and the program shown in FIG. 4 is executed to perform the measurement. The flowchart of the embodiment of the present invention shown in FIG. 4 will be described below. First, in step a, the task is activated by a periodic interrupt every 50 μs by a timer or the like. This is because it corresponds to a sampling period of 20 kHz. Next, in step b, A / D
From the converter 8, the conversion result of the voltage or current value from the channel that was previously set is taken out, and the variable "inp
Then, in step c, the content of the previously prepared variable “DAout” is sent to the D / A converter 2 and the output of the D / A converter 2 is updated.

【0018】次いで、ステップdにおいて、メモリに予
め作製、保存しておいた正弦波の関数表(予めtsin
[k]=sin (k*2π/20)及びtcos [k]=co
s (k*2π/20)により各々k=0、1‥‥19に
ついて計算し、メモリに保持しておく)から、現在の位
相に相当するsin 及びcos のデータ(s及びc)をとり
出す。ステップeにおいて、このデータ(s,c)と、
変数“input”に格納したA/D変換器からの入力
により、積和演算を行なう。次の周期の準備として、ス
テップfで、DAoutに今使用したcos のデータ
(c)を保持する。次いで、ステップgにおいて位相保
持用カウンタ変数“k”をインクリメント(増加)して
更新する。もし、ステップhにおいて、このカウンタ変
数“k”が20以上になれば、測定周波数である1kH
zの1周期分を終了したことになるので、以下の処理を
続けるが、そうでなければ割込は終了する。1周期分が
終了していれば、ステップiにおいて、測定周期カウン
タ変数“n”をインクリメントして更新する。もし、ス
テップjにおいて、このカウンタ変数“n”が20以上
になれば、規定の積算回数である20サイクルに達した
ので以下の処理を続けるが、そうでなければ、割込は終
了する。
Next, in step d, a sine wave function table (tsin previously created and stored in the memory).
[K] = sin (k * 2π / 20) and tcos [k] = co
From s (k * 2π / 20), k = 0, 1, ... 19 are calculated and stored in memory), and the sin and cos data (s and c) corresponding to the current phase are extracted. . In step e, this data (s, c)
The sum of products operation is performed by the input from the A / D converter stored in the variable "input". In preparation for the next cycle, in step f, the data (c) of cos that has just been used is held in DAout. Next, in step g, the phase holding counter variable "k" is incremented (incremented) and updated. If the counter variable “k” becomes 20 or more in step h, the measured frequency is 1 kHz.
Since one cycle of z is completed, the following processing is continued, but if not, the interrupt is completed. If one cycle is completed, the measurement cycle counter variable "n" is incremented and updated in step i. If, in step j, this counter variable "n" becomes 20 or more, the prescribed number of times of integration, 20 cycles, has been reached, so the following processing is continued. If not, the interruption ends.

【0019】規定の積算回数に達した場合、ステップk
において前記式(5)による補正をし、外部に出力をす
る。これは通信を行って別のCPUに送ってもよいし、
LCD等に表示したり、メモリや、外部記憶装置に記録
してもよい。その後、ステップlにおいて、積算用作業
変数“sumRe”、“sumIm”及びカウンタ変数
nをリセットし、0に戻す。そして、ステップmにおい
て、次の別の入力チャンネルの測定のために、次の電界
検出極間の電圧又は電圧印加極の電流がA/D変換器8
に入力されるようにアナログマルチプレクサ5a,5b
及びアナログスイッチ7を切り換え、1つの割込を終了
する。ここでは、測定周波数1kHz、サンプリング周
波数20kHz、データを平滑化する積算周期20サイ
クルの例を示したが、状況に応じて変更できるのは当然
である。
When the specified number of times of integration is reached, step k
In step (1), the correction is performed according to the equation (5), and the result is output to the outside. It may communicate and send to another CPU,
It may be displayed on an LCD or the like, or may be recorded in a memory or an external storage device. Then, in step 1, the integration work variables “sumRe” and “sumIm” and the counter variable n are reset to 0. Then, in step m, the voltage between the next electric field detection poles or the current of the voltage application pole is measured by the A / D converter 8 for the measurement of the next another input channel.
To be input to the analog multiplexers 5a, 5b
And the analog switch 7 is switched to complete one interruption. Here, an example in which the measurement frequency is 1 kHz, the sampling frequency is 20 kHz, and the integration period is 20 cycles for smoothing the data is shown, but it goes without saying that it can be changed according to the situation.

【0020】[0020]

【発明の効果】以上のように、本発明によれば、従来の
4電極法のように安定な発振器、位相誤差の小さい増幅
器、高精度のアナログ乗算器は不要となり、多数の電界
検出極が必要な場合でも小規模な回路で装置を構成でき
る。このため作製が容易で安価であり、かつ高精度な装
置を小型で実現できる。また、本発明の方法及び装置に
よれば、フィードバックループがなく、安定で高速応答
が可能となる。本発明で必要なD/A変換器、A/D変
換器、差動増幅器、電流増幅器は、位相遅れが時間的に
不変でありさえすれば、任意の遅れを生じても誤差には
ならないため、実現は極めて容易かつ安価であり、調整
を要しないという利点が得られる。従って、本発明の方
法及び装置は、各種導体、半導体等の抵抗率の測定、皮
膚水分量の測定、ボイラー用水等の水質管理や農業分野
での肥料の濃度管理等のための種々の溶液の電気伝導率
の測定、各種誘電体の誘電率の測定などに有利に用いる
ことができる。
As described above, according to the present invention, a stable oscillator, an amplifier with a small phase error, and a high-precision analog multiplier as in the conventional four-electrode method are not required, and a large number of electric field detection poles are provided. The device can be configured with a small-scale circuit even when necessary. For this reason, a device that is easy to manufacture, inexpensive, and highly accurate can be realized in a small size. Further, according to the method and apparatus of the present invention, there is no feedback loop, and stable and fast response is possible. The D / A converter, the A / D converter, the differential amplifier, and the current amplifier required in the present invention do not cause an error even if an arbitrary delay is generated as long as the phase delay is constant in time. The advantages are that it is extremely easy and cheap to implement, and no adjustment is required. Therefore, the method and apparatus of the present invention, various conductors, measurement of resistivity of semiconductors, measurement of skin water content, water quality control of boiler water etc. and various solutions for concentration control of fertilizers in the agricultural field. It can be advantageously used for measurement of electric conductivity, measurement of dielectric constant of various dielectrics, and the like.

【図面の簡単な説明】[Brief description of drawings]

【図1】4電極によるインピーダンス測定の原理を示す
基本概念図である。
FIG. 1 is a basic conceptual diagram showing the principle of impedance measurement with four electrodes.

【図2】本発明の装置の一実施例を示す回路図である。FIG. 2 is a circuit diagram showing an embodiment of the device of the present invention.

【図3】試験用の純抵抗ネットワークを示す概略構成図
である。
FIG. 3 is a schematic configuration diagram showing a pure resistance network for testing.

【図4】本発明の図2に示す実施例の実行のフローチャ
ート図である。
FIG. 4 is a flow chart diagram of execution of the embodiment shown in FIG. 2 of the present invention.

【符号の説明】[Explanation of symbols]

1 測定プローブ(電極) 2 D/A変換器 3 デジタルシグナルプロセッサ 4 電流増幅器 5a,5b アナログマルチプレクサ 6 差動増幅器 7 アナログスイッチ 8 A/D変換器 1 Measuring Probe (Electrode) 2 D / A Converter 3 Digital Signal Processor 4 Current Amplifier 5a, 5b Analog Multiplexer 6 Differential Amplifier 7 Analog Switch 8 A / D Converter

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 被測定物に対し、2本の電圧印加極と2
本以上の電界検出極とを用いて、抵抗率、電気伝導率及
び誘電率よりなる群から選ばれた少なくとも1つを測定
する方法において、被測定物に対して電圧印加極を介し
て電圧を印加し、これによって生じた電界を電界検出極
で検出し、検出した電圧波形及び電圧印加極に流れる電
流波形をデジタル変数に変換し、被測定物の抵抗率、電
気伝導率又は誘電率を算出することを特徴とする測定方
法。
1. A voltage measuring electrode and two voltage applying electrodes are provided for an object to be measured.
In the method of measuring at least one selected from the group consisting of resistivity, electric conductivity and dielectric constant by using at least one electric field detection pole, a voltage is applied to an object to be measured through a voltage application pole. The applied electric field is detected by the electric field detection pole, the detected voltage waveform and the current waveform flowing in the voltage application pole are converted into digital variables, and the resistivity, electrical conductivity or permittivity of the DUT is calculated. A measuring method characterized by:
【請求項2】 電界検出極で検出する電圧波形と電圧印
加極に流れる電流波形を時分割してそれぞれデジタル変
数に変換することを特徴とする請求項1に記載の方法。
2. The method according to claim 1, wherein the voltage waveform detected by the electric field detection pole and the current waveform flowing through the voltage application pole are time-divided and converted into digital variables.
【請求項3】 電圧印加極に印加する電圧が正弦波であ
り、電界検出極で検出した電圧波形及び電圧印加極に流
れる電流波形に上記正弦波と同一周期で一定の位相差を
もつ複数の正弦波をそれぞれ乗算した後、平滑化するこ
とを特徴とする請求項1又は2に記載の方法。
3. The voltage applied to the voltage application pole is a sine wave, and a plurality of voltage waveforms detected by the electric field detection pole and a current waveform flowing through the voltage application pole have a constant phase difference with the same period as the sine wave. Method according to claim 1 or 2, characterized in that each sine wave is multiplied and then smoothed.
【請求項4】 被測定物に対し、2本の電圧印加極と2
本以上の電界検出極とを用いて、抵抗率、電気伝導率及
び誘電率よりなる群から選ばれた少なくとも1つを測定
する装置において、電圧印加極に印加する電圧波形を発
生するD/A変換器と、電界検出極で検出した電圧波形
及び電圧印加極に流れる電流波形をデジタル変数に変換
するA/D変換器と、該A/D変換器からの出力信号に
基づいて抵抗率、電気伝導率又は誘電率を算出する数値
演算器とを含むことを特徴とする測定装置。
4. A voltage measuring electrode and two voltage applying electrodes for the object to be measured.
D / A for generating a voltage waveform to be applied to a voltage applying pole in an apparatus for measuring at least one selected from the group consisting of resistivity, electric conductivity and dielectric constant using at least one electric field detecting pole A converter, an A / D converter for converting the voltage waveform detected by the electric field detection pole and the current waveform flowing through the voltage application pole into a digital variable, and the resistivity and electric power based on the output signal from the A / D converter. A measuring device comprising: a numerical calculator for calculating conductivity or permittivity.
【請求項5】 使用するA/D変換器の数が、電界検出
極で検出する電圧波形の数と電圧印加極に流れる電流波
形の数との合計数よりも少なく、時分割してそれぞれを
A/D変換器に入力することを特徴とする請求項4に記
載の装置。
5. The number of A / D converters used is smaller than the total number of the voltage waveforms detected by the electric field detection poles and the number of current waveforms flowing through the voltage application poles. The device according to claim 4, wherein the device is input to an A / D converter.
【請求項6】 各電界検出極に接続されたアナログマル
チプレクサと、該アナログマルチプレクサの出力電圧を
検出してA/D変換器に出力する差動増幅器をさらに含
むことを特徴とする請求項4又は5に記載の装置。
6. The method according to claim 4, further comprising an analog multiplexer connected to each electric field detection pole, and a differential amplifier that detects an output voltage of the analog multiplexer and outputs it to an A / D converter. 5. The device according to item 5.
【請求項7】 D/A変換器より電圧印加極に与える電
圧が正弦波であり、前記数値演算器が、A/D変換器に
入力される電界検出極で検出した電圧波形及び電圧印加
極に流れる電流波形に、D/A変換器より出力した正弦
波と同一周期で一定の位相差をもつ複数の正弦波をそれ
ぞれ乗算した後、平滑化する数値演算を行うことを特徴
とする請求項4乃至6のいずれか一項に記載の装置。
7. A voltage waveform and a voltage application pole detected by the electric field detection pole input to the A / D converter by the numerical calculator, wherein the voltage applied from the D / A converter to the voltage application pole is a sine wave. The numerical calculation for smoothing is performed after multiplying each of the current waveforms flowing through the sine wave by a plurality of sine waves having a constant phase difference in the same cycle as the sine wave output from the D / A converter. 7. The device according to any one of 4 to 6.
JP8073147A 1996-03-05 1996-03-05 Method and device for measurement of resistivity, electric conductivity and/or permittivity Pending JPH09243683A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8073147A JPH09243683A (en) 1996-03-05 1996-03-05 Method and device for measurement of resistivity, electric conductivity and/or permittivity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8073147A JPH09243683A (en) 1996-03-05 1996-03-05 Method and device for measurement of resistivity, electric conductivity and/or permittivity

Publications (1)

Publication Number Publication Date
JPH09243683A true JPH09243683A (en) 1997-09-19

Family

ID=13509802

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8073147A Pending JPH09243683A (en) 1996-03-05 1996-03-05 Method and device for measurement of resistivity, electric conductivity and/or permittivity

Country Status (1)

Country Link
JP (1) JPH09243683A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000088691A (en) * 1998-09-09 2000-03-31 Nishimatsu Constr Co Ltd Apparatus and method for measurement of leak of water
JP2001037735A (en) * 1999-07-27 2001-02-13 Matsushita Electric Ind Co Ltd Biological impedance measuring instrument
WO2006021985A1 (en) * 2004-08-23 2006-03-02 Incorporated Administrative Agency National Agriculture And Food Research Organization Non-destructive measuring method and instrument of water content of matter to be dried
CN104914295A (en) * 2014-03-10 2015-09-16 广东易事特电源股份有限公司 AD voltage conditioning circuit
CN108700618A (en) * 2016-03-17 2018-10-23 德克萨斯仪器股份有限公司 The crosstalk of multi-channel system is calibrated
JPWO2019155592A1 (en) * 2018-02-09 2020-12-03 株式会社島津製作所 Method for finding the phase adjustment value of the electrical conductivity detector and the background subtraction signal
JP2021506524A (en) * 2017-12-27 2021-02-22 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Determining skin water and lipid levels
CN114371346A (en) * 2022-03-22 2022-04-19 江苏游隼微电子有限公司 Capacitance value detection circuit and detection method of capacitor

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000088691A (en) * 1998-09-09 2000-03-31 Nishimatsu Constr Co Ltd Apparatus and method for measurement of leak of water
JP2001037735A (en) * 1999-07-27 2001-02-13 Matsushita Electric Ind Co Ltd Biological impedance measuring instrument
WO2006021985A1 (en) * 2004-08-23 2006-03-02 Incorporated Administrative Agency National Agriculture And Food Research Organization Non-destructive measuring method and instrument of water content of matter to be dried
US7459920B2 (en) 2004-08-23 2008-12-02 Incorporated Adminstrative Agency National Agriculture And Food Research Organization Method of and apparatus for non-destructively measuring moisture content of dried objects
CN104914295A (en) * 2014-03-10 2015-09-16 广东易事特电源股份有限公司 AD voltage conditioning circuit
CN108700618A (en) * 2016-03-17 2018-10-23 德克萨斯仪器股份有限公司 The crosstalk of multi-channel system is calibrated
JP2019509491A (en) * 2016-03-17 2019-04-04 日本テキサス・インスツルメンツ合同会社 Crosstalk calibration for multi-channel systems
JP2021506524A (en) * 2017-12-27 2021-02-22 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Determining skin water and lipid levels
US11596323B2 (en) 2017-12-27 2023-03-07 Koninklijke Philips N.V. Determining a water and a lipid level of skin
JPWO2019155592A1 (en) * 2018-02-09 2020-12-03 株式会社島津製作所 Method for finding the phase adjustment value of the electrical conductivity detector and the background subtraction signal
CN114371346A (en) * 2022-03-22 2022-04-19 江苏游隼微电子有限公司 Capacitance value detection circuit and detection method of capacitor
CN114371346B (en) * 2022-03-22 2022-05-24 江苏游隼微电子有限公司 Capacitance value detection circuit and detection method of capacitor

Similar Documents

Publication Publication Date Title
US6185508B1 (en) Power meter for determining parameters of multi-phase power lines
US4931725A (en) Electronic electricity meters
US6429637B1 (en) Electronic power meter with phase and non-linearity compensation
EP0710846B1 (en) Apparatus for generating a signal representative of the total harmonic distortion in waveforms of an AC electrical system
CN100353169C (en) Method for testing electronic component and its instrument
CN109061259A (en) A kind of intelligent electric energy meter analysis of metering error method, metering device and intelligent electric energy meter
JPH09243683A (en) Method and device for measurement of resistivity, electric conductivity and/or permittivity
CN102472781A (en) Current measurement device, current measurement method and current measurement program
GB2408808A (en) Electric power meter with phase shift compensation
CN110133366A (en) The metering system and metering method of a kind of grid power under harmonic condition
US4174499A (en) Method and apparatus for the measurement of alternating-current power in transient and subtransient processes
CN201417260Y (en) Fractional-octave type insulator equivalent salt deposit density measuring instrument
Bucci et al. Power measurements on high distorted signals: experimental comparison between two alternative developed device solutions
RU2120623C1 (en) Capacitance proximate moisture meter
JP2004132797A (en) Method and apparatus for measuring internal impedance of storage battery
JPH04131769A (en) Sampling type electric power meter
GB2093292A (en) Apparatus and methods for analogue-to-digital conversion and for deriving in-phase and quadrature components of voltage and current in an impedance
RU2462185C1 (en) Device for measuring impedance of biological media
Zhang et al. A novel fast balance technique for the digital AC bridge
RU2143701C1 (en) Process determining energy consumption in a c circuits and device for its implementation
JPH07325115A (en) Correction method for pq operation
RU2096789C1 (en) Device which measures characteristics of electric power supply line
JP2005189184A (en) Automatic balanced circuit for measuring impedance
JPH0648436Y2 (en) Electrical conductivity measuring device
Auckland et al. A multiplier wattmeter

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041015

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041026

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050322