JP2004132797A - Method and apparatus for measuring internal impedance of storage battery - Google Patents

Method and apparatus for measuring internal impedance of storage battery Download PDF

Info

Publication number
JP2004132797A
JP2004132797A JP2002296819A JP2002296819A JP2004132797A JP 2004132797 A JP2004132797 A JP 2004132797A JP 2002296819 A JP2002296819 A JP 2002296819A JP 2002296819 A JP2002296819 A JP 2002296819A JP 2004132797 A JP2004132797 A JP 2004132797A
Authority
JP
Japan
Prior art keywords
storage battery
internal impedance
alternating current
measuring
electromotive force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002296819A
Other languages
Japanese (ja)
Other versions
JP4054652B2 (en
Inventor
Kiyoshi Takahashi
高橋 清
Yuichi Watakabe
渡壁 雄一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Battery Co Ltd
Original Assignee
Furukawa Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Battery Co Ltd filed Critical Furukawa Battery Co Ltd
Priority to JP2002296819A priority Critical patent/JP4054652B2/en
Publication of JP2004132797A publication Critical patent/JP2004132797A/en
Application granted granted Critical
Publication of JP4054652B2 publication Critical patent/JP4054652B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for measuring the internal impedance of a storage battery without increasing costs in the measurement of electromotive force component to be measured buried in a noise component. <P>SOLUTION: In the method for measuring the internal impedance of the storage battery, the internal impedance of each storage battery of a group of storage batteries to which a plurality of storage batteries are connected in series is measured by using an AC current generation means and an AC voltage measurement means. The method includes a process of substantially setting the waveform of an AC current generated by the AC current generation means to be a sinusoidal wave and a process of treating each of an AC electromotive force component generated at both the ends of the storage battery whose internal impedance is to be measured and that generated at both the ends of a measurement current detection means connected to the AC current generation means in series by a common analog filter and then by a common digital filter. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、蓄電池の内部インピーダンスを測定する方法に関する。
【0002】
【従来の技術】
多数の蓄電池が直列接続された蓄電池群の各蓄電池の内部インピーダンスを測定する方法として、いわゆる交流4端子法が知られている。
【0003】
交流4端子法とは、内部インピーダンス測定対象の蓄電池に交流電流を流し、その際の発生起電力を計測することにより蓄電池の内部インピーダンスを求めるものである。
【0004】
交流4端子法による蓄電池の内部インピーダンス測定の原理図を図5に示す。図5において、1は蓄電池、2は蓄電池群、3は交流電流発生手段、4は交流電圧計測手段であり、蓄電池1と並列に交流電流発生手段3および交流電圧計測手段4が接続されている。
【0005】
ここで、蓄電池群2とは、目的の電圧値を得るために複数の蓄電池1が直列接続されたものである。例えば、鉛蓄電池の場合は蓄電池1個あたりの起電力が約2Vであり、これを6個直列接続して約12Vの起電力を得るようにしたものなどを本明細書では蓄電池群2と定義している。
【0006】
交流電流発生手段3は、蓄電池1の内部インピーダンスを測定するための交流電流(本明細書では計測電流と表記する)を発生させるものである。この交流電流発生手段3は、例えば交流定電流源として機能するものであって、原理的に内部インピーダンスは無限大である。
【0007】
交流電圧計測手段4は、交流電流発生手段3が発生した計測電流により蓄電池1に生じた起電力を計測するものである。この交流電圧計測手段4は、例えば交流電圧計として機能するものであって、原理的に内部インピーダンスは無限大である。
【0008】
ところで、蓄電池1の内部インピーダンスの値は、一般に5mΩ以下であることが多く、内部インピーダンスの測定精度を高めるためには大きな計測電流を流す必要がある。
【0009】
また、蓄電池群2は、電源装置のバックアップ用として使用されることが多く、この場合には商用電源の周波数である50Hzまたは60Hz、および商用電源の周波数の高調波成分のリップル電流が蓄電池1に流れるため、場合によっては、計測電流による交流起電力成分がリップル電流等のノイズ成分による交流起電力成分に埋もれてしまい、内部インピーダンスの測定精度が大きく低下する。
【0010】
ところで、蓄電池の内部インピーダンスを測定するにあたり、蓄電池において発生した被計測起電力を同期検波手段により計測する手法が知られている(特許文献1)。この手法は、被計測起電力成分の周期性を利用して、被計測起電力成分の周期と一致しないノイズ成分を除去するものである。
【0011】
【特許文献1】
特表2000−502177号公報(請求項13、請求項26、明細書12ページ2行〜19ページ27行参照)
【0012】
【発明が解決しようとする課題】
しかし、同期検波をするための回路および装置は一般に複雑なものであり、蓄電池の内部インピーダンスを測定する際のコストアップの原因となる。
【0013】
そこで、本発明では、ノイズ成分に埋もれた被計測起電力成分を計測する際のコストアップを招くことなく蓄電池の内部インピーダンスを測定する手法を提供することを目的とする。
【0014】
【課題を解決するための手段】
請求項1の発明は、複数の蓄電池が直列接続された蓄電池群の各蓄電池の内部インピーダンスを、交流電流発生手段および交流電圧計測手段を用いて測定する蓄電池の内部インピーダンス測定方法において、前記交流電流発生手段が発生する交流電流の波形を実質的に正弦波とし、内部インピーダンス測定対象の前記蓄電池の両端に生じる被計測起電力成分および前記交流電流発生手段に直列接続された計測電流検出手段の両端に生じる交流起電力成分のそれぞれを、実質的に同一の特性を有するアナログフィルタで処理した後、実質的に同一の特性を有するディジタルフィルタで処理する工程を含むことを特徴とする。
【0015】
請求項2の発明は、請求項1の発明において、内部インピーダンス測定対象の前記蓄電池の両端に生じる被計測起電力成分および前記計測電流検出手段の両端に生じる交流起電力成分のそれぞれを、共通のアナログフィルタで処理した後、共通のディジタルフィルタで処理する工程を含むことを特徴とする。
【0016】
請求項3の発明は、複数の蓄電池が直列接続された蓄電池群の各蓄電池の内部インピーダンスの測定を行うための、交流電流発生手段および交流電圧計測手段を有する蓄電池の内部インピーダンス測定装置において、前記交流電流発生手段には計測電流検出手段が直列接続されており、前記交流電流発生手段が発生する交流電流の波形は実質的に正弦波であり、前記交流電圧計測手段は、単一のアナログフィルタを含むアナログ信号処理手段と、単一のディジタルフィルタを含むディジタル信号処理手段と、前記アナログ信号処理手段への入力を切り替える入力切替手段とを有することを特徴とする。
【0017】
すなわち、本発明は、蓄電池の内部インピーダンス測定にあたり、交流電流発生手段が発生する交流電流の波形を実質的に正弦波とし、内部インピーダンス測定対象の前記蓄電池の両端に生じる被計測起電力成分および前記交流電流発生手段に直列接続された計測電流検出手段の両端に生じる交流起電力成分のそれぞれを、実質的に同一の特性を有するアナログフィルタで処理した後、実質的に同一の特性を有するディジタルフィルタで処理する工程を含むため、同期検波手段を用いた場合やディジタルフィルタのみで処理した場合と比較して、交流電流発生手段が発生する交流電流の周波数成分以外のノイズ成分の影響を最小限にすることがきわめて安価に実現可能となり、ノイズ成分に埋もれた被計測起電力成分を計測する際のコストアップを招くことなく蓄電池の内部インピーダンスを測定することができる。
【0018】
【発明の実施の形態】
本発明の実施の形態を、図面を用いて説明する。
【0019】
図1は、本発明の実施形態である蓄電池の内部インピーダンス測定装置の概略を示すブロック図である。図1において、1は蓄電池、2は蓄電池群、3は交流電流発生手段、4は交流電圧計測手段であり、蓄電池1と並列に交流電流発生手段3および交流電圧計測手段4が接続されている点は、図5と同様である。さらに図1では、交流電流発生手段3と直列に計測電流検出手段5が設けられ、計測電流検出手段5の両端には交流電圧計測手段4が接続されている。
【0020】
蓄電池群2を構成する各蓄電池1としては、鉛蓄電池などが用いられるが、液面の変化などで劣化の判断をすることが困難な密閉型鉛蓄電池を用いることが効果的である。
【0021】
蓄電池群2とは、前述のとおり、目的の電圧値を得るために複数の蓄電池1が直列接続されたものである。蓄電池1が起電力約2Vの鉛蓄電池の場合、6個、12個、24個直列接続してそれぞれ約12V、約24V、約48Vの起電力を得ることができる。
【0022】
交流電流発生手段3は、前述のとおり、蓄電池1の内部インピーダンスを測定するための交流電流(計測電流)を発生させるものであって、交流定電流源として機能する。この交流電流発生手段3は、蓄電池1に対して交流電流を供給するようにしてもよく、蓄電池1から交流電流を放電させるようにしてもよい。
【0023】
交流電流発生手段3が発生する交流電流の波形は、実質的に正弦波とすることにより、高調波成分の影響を少なくして蓄電池1の内部インピーダンスを測定することが可能となる。
【0024】
交流電圧計測手段4は、前述のとおり、交流電流発生手段3が発生した電流により蓄電池1に生じた被計測起電力を計測するものである。
【0025】
計測電流検出手段5は、交流電流発生手段3が発生する交流電流を検出するものであって、例えば0.1Ω程度の抵抗器(シャント抵抗)などを用いることができる。また、計測電流検出手段5の両端に交流電圧計測手段4が接続されていることにより、交流電圧計測手段4を計測電流の管理に用いることが可能となる。
【0026】
また、図1において、交流電圧測定手段4は、アナログ信号処理手段41、A/D変換手段42、ディジタル信号処理手段43、記憶手段44、入力切替手段45を有する。
【0027】
アナログ信号処理手段41は、交流電流発生手段3が発生する交流電流の周波数と同一の周波数を通過させるバンドパスフィルタなどのアナログフィルタ機能を有し、必要に応じて当該周波数に利得帯域を有する交流増幅器を有する。アナログフィルタ機能は、演算増幅器に抵抗器およびコンデンサを接続したアクティブフィルタ回路などのような回路を用いて容易に得ることができる。アナログ信号処理手段41で処理された信号は、A/D変換手段42に送られる。
【0028】
A/D変換手段42は、アナログ信号処理手段41からの信号をアナログ信号からディジタル信号に変換するものである。A/D変換手段42で処理された信号は、ディジタル信号処理手段43に送られる。
【0029】
ディジタル信号処理手段43は、A/D変換手段42から送られた信号から、交流電流発生手段3が発生する交流電流の周波数と同一の周波数を抽出するためにディジタルフィルタ処理を行う。また、ディジタル信号処理手段43は、ディジタルフィルタ処理された信号を計測結果として記憶手段44に記憶させる機能と、記憶手段44に記憶された計測手順に基づいて入力切替手段45を制御する機能とを有する。さらに、記憶手段44に記憶された計測手順に基づいて交流電流発生手段3を制御する信号を交流電流発生手段3に送る機能を有していることが望ましい。
【0030】
また、ディジタル信号処理手段43は、計測された電流値および起電力のデータに基づいて内部インピーダンスを算出する機能を有する。内部インピーダンスの算出結果は、記憶手段44で記憶される。必要に応じて、交流電圧測定手段4の内部または外部に、内部インピーダンスの算出結果を表示する手段を設けてもよい。
【0031】
記憶手段44は、ディジタル信号処理手段43における処理結果を記憶し、さらに入力切替手段45を制御する信号を含む計測手順に関する信号を記憶する。この計測手順に関する信号には、交流電流発生手段3を制御する信号が含まれていることが望ましい。
【0032】
入力切替手段45は、アナログ信号処理手段41に入力される信号を、蓄電池1側または計測電流検出手段5に切り替えるものである。入力切替手段45としては、例えば継電器(リレー)が用いられるが、その他の切替手段も状況に応じて適用可能である。入力切替手段45が蓄電池1に接続されている場合には、交流電圧測定手段4は蓄電池1の起電力を計測し、入力切替手段45が計測電流検出手段5に接続されている場合には、交流電圧測定手段4は交流電流発生手段3が発生する交流電流が計測電流検出手段5に流れることにより生じる起電力を計測する。
【0033】
本実施形態では、交流電圧測定手段4にアナログ信号処理手段41とディジタル信号処理手段43とを設け、アナログ信号処理手段41はアナログフィルタ機能を有するため、例えば交流電流発生手段3が発生する正弦波状の交流電流の周波数を16Hzとした場合、蓄電池群2が接続された図示しない電源装置からのノイズの主要成分の周波数である50Hzまたは60Hzの成分を、電圧比で20dB以上抑制することが可能となり、ディジタル信号処理手段43に入力されるノイズ成分を効率よく抑制することができる。
【0034】
もし、アナログ信号処理手段41を用いることなくディジタル信号処理手段43のディジタルフィルタ機能のみで本実施形態と同レベルの機能を実現しようとした場合、本実施形態の10倍以上の分解能を有するA/D変換手段42が必要となる。例えば、本実施形態で12bitのA/D変換手段42を用いている場合、その10倍以上の分解能を有する16bit以上のA/D変換手段42が必要となり、A/D変換手段42が高価になるという問題点がある。
【0035】
すなわち、本実施形態によれば、ディジタル信号処理手段43におけるディジタルフィルタ処理の分解能を上げることなくノイズ成分の影響を最小限にして交流電流発生手段3が発生する正弦波周波数の成分を抽出することがきわめて安価に実現可能となる。すなわち、ノイズ成分に埋もれた被計測起電力成分を計測する際のコストアップを招くことなく蓄電池の内部インピーダンスを測定することができる。
【0036】
ところで、アナログ信号処理手段41のアナログフィルタ機能は、前述のとおり、抵抗器およびコンデンサを含んでおり、これらの温度特性等によりアナログフィルタ機能のフィルタ特性が変化することがある。例えば、計測電流の周波数において温度25℃で28.8dBのゲインを有するように設計されたアナログ信号処理手段41の特性値が、温度変化によりコンデンサ容量が+5%変動することにより、27.9dBのゲインとなり、約−0.9dB変化する。この値は、電圧値として約5%計測値が変動することと等価であり、高精度の計測状態を維持するためには、蓄電池の内部インピーダンス測定装置の使用温度範囲において5%よりきわめて変動の少ない特性の良い部品を選択する必要がある。抵抗器では蓄電池の内部インピーダンス測定装置の使用温度範囲において±0.2%以内の特性のものを得ることが十分可能であるが、コンデンサでこのレベルの温度特性を実現することはきわめて難しく、またきわめて高価となってしまう。
【0037】
そこで、アナログ信号処理手段41への蓄電池1の起電力および計測電流検出手段5の起電力の入力を、入力切替手段45により切り替えることにより、共通のアナログフィルタを含むアナログ信号処理手段41で処理した後、共通のディジタルフィルタを含むディジタル信号処理手段43で処理し、これらの起電力の計測誤差の直接の原因となるアナログフィルタのゲイン変動を、計測電流検出手段5の温度特性等による起電力の変動分程度にとどめることができ、蓄電池1の内部インピーダンスの測定誤差を小さくすることができる。
【0038】
なお、本実施形態は、図1のように、蓄電池1の両端に生じる被計測起電力成分および前記計測電流検出手段5の両端に生じる交流起電力成分を、共通のアナログフィルタを含むアナログ信号処理手段41で処理した後、共通のディジタルフィルタを含むディジタル信号処理手段43で処理するような装置を用いることが望ましいが、本発明の実施形態はこれに限らず、蓄電池1の両端に生じる被計測起電力成分および前記計測電流検出手段5の両端に生じる交流起電力成分のそれぞれを、実質的に同一の(すなわち計測精度に大きな影響を与えない程度に近い)特性を有する個別のアナログフィルタで処理した後、実質的に同一の特性を有するディジタルフィルタで処理するようなものであればよいことはいうまでもない。
【0039】
次に、本発明の蓄電池の内部インピーダンス測定方法について説明する。図2は、本発明の実施形態である蓄電池の内部インピーダンス測定方法の概略を示す流れ図である。図2のように、本実施形態は、計測電流Iの測定(ステップ−1)、被計測起電力Vの測定(ステップ−2)、内部インピーダンスZ(=V/I)の測定(ステップ−3)の3つのステップからなっている。
【0040】
次に、上記ステップ−1、ステップ−2の詳細を図面に基づいて説明する。以下では、図1の符号を利用して説明する。
【0041】
図3は、図2のステップ−1の詳細の一例を示す流れ図である。その内容を以下に説明する。
【0042】
(ステップ−1A)
交流電流発生手段3を作動させる。この場合、図1に示されるように、ディジタル信号処理手段43から交流電流発生手段3を制御する制御信号が送られる。
(ステップ−1B)
ディジタル信号処理手段43から入力切替手段45に制御信号を送り、入力切替手段45を計測電流検出手段5側に切り替える。
(ステップ−1C)
交流電流発生手段3が発生する交流電流が計測電流検出手段5に流れることにより生じる起電力の信号をアナログ信号処理手段41により処理し、交流電流発生手段3が発生する交流電流の周波数以外の周波数成分を低下させる。
(ステップ−1D)
上記ステップ−1Cで得られた信号を、A/D変換手段42でディジタル信号に変換する。
(ステップ−1E)
ディジタル信号処理手段43により、上記ステップ−1Dで得られたディジタル信号にディジタルフィルタ処理を施す。
(ステップ−1F)
上記ステップ−1Eで得られたディジタル信号のうち、交流電流発生手段3が発生する交流電流の周波数と同一の周波数を有する成分をディジタル信号処理手段43によりピックアップし、計測電流Iとして記憶手段44に保存する。なお、交流電流発生手段3が発生する交流電流の周波数と同一の周波数を有する成分そのものは電圧であるため、計測電流検出手段5の係数を考慮したうえ(例えば抵抗値0.1Ωのシャント抵抗であればその値で割る)で電流として取り扱う。
【0043】
ここで、上記ステップ−1Fの処理が終了した時点でステップ−1の処理は終了するが、図2に示したように、引き続きステップ−2の処理が行われる。
【0044】
図4は、図2のステップ−2の詳細の一例を示す流れ図である。その内容を以下に説明する。
【0045】
(ステップ−2A)
ディジタル信号処理手段43から入力切替手段45に制御信号を送り、入力切替手段45を蓄電池1側に切り替える。
(ステップ−2B)
交流電流発生手段3が発生する交流電流が蓄電池1に流れることにより生じる被計測起電力の信号をアナログ信号処理手段41により処理し、交流電流発生手段3が発生する交流電流の周波数以外の周波数成分を低下させる。
(ステップ−2C)
上記ステップ−2Bで得られた信号を、A/D変換手段42でディジタル信号に変換する。
(ステップ−2D)
ディジタル信号処理手段43により、上記ステップ−2Cで得られたディジタル信号にディジタルフィルタ処理を施す。
(ステップ−2E)
上記ステップ−2Dで得られたディジタル信号のうち、交流電流発生手段3が発生する交流電流の周波数と同一の周波数を有する成分をディジタル信号処理手段43によりピックアップし、被計測起電力Vとして記憶手段44に保存する。
(ステップ−2F)
交流電流発生手段3を停止させる。この場合、図1に示されるように、ディジタル信号処理手段43から交流電流発生手段3を制御する制御信号が送られる。なお、交流電流発生手段3の停止は、ステップ−2Fでなく、ステップ−3の終了後に実行してもよいことはいうまでもない。
【0046】
ここで、上記ステップ−2Fの処理が終了した時点でステップ−1の処理は終了するが、図2に示したように、引き続きステップ−3の処理が行われる。
【0047】
図2に示されたステップ−3の処理は、ステップ1において測定された計測電流Iのデータと、ステップ2において測定された被計測起電力Vのデータとを用いて、蓄電池1の内部インピーダンスZ(=V/I)を求めるものである。この演算はディジタル信号処理手段43の内部で行われる。
【0048】
なお、図2の流れ図は、蓄電池群2を構成する蓄電池1の1個分の内部インピーダンスを測定する場合について示したものであり、複数個の蓄電池1の内部インピーダンスを測定したい場合には、図2の流れ図における計測終了の後に、計測開始に戻って繰り返し測定を行えばよいことはいうまでもない。
【0049】
このように、本実施形態によれば、交流電流発生手段が発生する交流電流の周波数成分以外のノイズ成分の影響を最小限にすることが可能となり、ノイズ成分に埋もれた被計測起電力成分を計測する際のコストアップを招くことなく蓄電池の内部インピーダンスを測定することができるが、その実施形態は上述したものに限られることはなく、特許請求の範囲に記載した事項の範囲内で、適宜変更が可能であることはいうまでもない。
【0050】
【発明の効果】
以上のとおり、本発明によれば、蓄電池の内部インピーダンス測定にあたり、交流電流発生手段が発生する交流電流の波形を実質的に正弦波とし、内部インピーダンス測定対象の前記蓄電池の両端に生じる被計測起電力成分および前記交流電流発生手段に直列接続された計測電流検出手段の両端に生じる交流起電力成分のそれぞれを、実質的に同一の特性を有するアナログフィルタで処理した後、実質的に同一の特性を有するディジタルフィルタで処理する工程を含むため、同期検波手段を用いた場合と比較して、交流電流発生手段が発生する交流電流の周波数成分以外のノイズ成分の影響を最小限にすることがきわめて安価に実現可能となり、ノイズ成分に埋もれた被計測起電力成分を計測する際のコストアップを招くことなく蓄電池の内部インピーダンスを測定することができる。
【図面の簡単な説明】
【図1】本発明の実施形態である蓄電池の内部インピーダンス測定装置の概略を示すブロック図である。
【図2】本発明の実施形態である蓄電池の内部インピーダンス測定方法の概略を示す流れ図である。
【図3】図2のステップ−1の詳細の一例を示す流れ図である。
【図4】図2のステップ−2の詳細の一例を示す流れ図である。
【図5】交流4端子法による蓄電池の内部インピーダンス測定の原理を示す概略説明図である。
【符号の説明】
1 蓄電池
2 蓄電池群
3 交流電流発生手段
4 交流電圧計測手段
5 計測電流検出手段
41 アナログ信号処理手段
42 A/D変換手段
43 ディジタル信号処理手段
44 記憶手段
45 入力切替手段
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for measuring the internal impedance of a storage battery.
[0002]
[Prior art]
As a method for measuring the internal impedance of each storage battery of a storage battery group in which a large number of storage batteries are connected in series, a so-called AC four-terminal method is known.
[0003]
The AC four-terminal method is to obtain an internal impedance of a storage battery by passing an alternating current through the storage battery whose internal impedance is to be measured and measuring the generated electromotive force.
[0004]
FIG. 5 shows a principle diagram of the internal impedance measurement of the storage battery by the AC four-terminal method. In FIG. 5, 1 is a storage battery, 2 is a storage battery group, 3 is an alternating current generating means, 4 is an alternating voltage measuring means, and the alternating current generating means 3 and the alternating voltage measuring means 4 are connected in parallel with the storage battery 1. .
[0005]
Here, the storage battery group 2 is a group in which a plurality of storage batteries 1 are connected in series in order to obtain a target voltage value. For example, in the case of a lead storage battery, the electromotive force per storage battery is about 2 V, and six of these are connected in series to obtain an electromotive force of about 12 V, etc., as defined in this specification as storage battery group 2 doing.
[0006]
The alternating current generating means 3 generates an alternating current (denoted as a measurement current in this specification) for measuring the internal impedance of the storage battery 1. The AC current generating means 3 functions as, for example, an AC constant current source, and has an infinite internal impedance in principle.
[0007]
The AC voltage measuring means 4 measures the electromotive force generated in the storage battery 1 by the measurement current generated by the AC current generating means 3. This AC voltage measuring means 4 functions as, for example, an AC voltmeter, and the internal impedance is infinite in principle.
[0008]
By the way, in general, the value of the internal impedance of the storage battery 1 is often 5 mΩ or less, and it is necessary to flow a large measurement current in order to increase the measurement accuracy of the internal impedance.
[0009]
In addition, the storage battery group 2 is often used as a backup for a power supply device. In this case, a ripple current of 50 Hz or 60 Hz, which is the frequency of the commercial power supply, and a harmonic component of the frequency of the commercial power supply is supplied to the storage battery 1. In some cases, the AC electromotive force component due to the measurement current is buried in the AC electromotive force component due to the noise component such as the ripple current, and the measurement accuracy of the internal impedance is greatly reduced.
[0010]
By the way, when measuring the internal impedance of a storage battery, the method of measuring the to-be-measured electromotive force which generate | occur | produced in the storage battery by a synchronous detection means is known (patent document 1). This technique uses a periodicity of the measured electromotive force component to remove a noise component that does not match the cycle of the measured electromotive force component.
[0011]
[Patent Document 1]
JP 2000-502177 A (refer to claim 13, claim 26, specification page 12 line 2 to page 19 line 27)
[0012]
[Problems to be solved by the invention]
However, a circuit and a device for performing synchronous detection are generally complicated and cause an increase in cost when measuring the internal impedance of the storage battery.
[0013]
Accordingly, an object of the present invention is to provide a technique for measuring the internal impedance of a storage battery without incurring an increase in cost when measuring a measured electromotive force component buried in a noise component.
[0014]
[Means for Solving the Problems]
The invention of claim 1 is a storage battery internal impedance measurement method for measuring internal impedance of each storage battery of a storage battery group in which a plurality of storage batteries are connected in series using an alternating current generation means and an alternating voltage measurement means. The waveform of the alternating current generated by the generating means is substantially a sine wave, the measured electromotive force component generated at both ends of the storage battery to be measured for internal impedance, and both ends of the measuring current detecting means connected in series to the alternating current generating means Each of the AC electromotive force components generated in the above is processed by an analog filter having substantially the same characteristics, and then processed by a digital filter having substantially the same characteristics.
[0015]
According to a second aspect of the present invention, in the first aspect of the present invention, the measured electromotive force component generated at both ends of the storage battery to be measured for internal impedance and the AC electromotive force component generated at both ends of the measured current detecting means are shared. The method includes a step of processing with a common digital filter after processing with an analog filter.
[0016]
The invention of claim 3 is an internal impedance measuring device for a storage battery having an alternating current generating means and an alternating voltage measuring means for measuring the internal impedance of each storage battery of a storage battery group in which a plurality of storage batteries are connected in series. A measuring current detecting means is connected in series to the alternating current generating means, the waveform of the alternating current generated by the alternating current generating means is substantially a sine wave, and the alternating voltage measuring means is a single analog filter. An analog signal processing means, a digital signal processing means including a single digital filter, and an input switching means for switching an input to the analog signal processing means.
[0017]
That is, according to the present invention, when measuring the internal impedance of the storage battery, the waveform of the alternating current generated by the alternating current generating means is substantially a sine wave, and the measured electromotive force component generated at both ends of the storage battery to be measured for internal impedance and the above A digital filter having substantially the same characteristics after each of the AC electromotive force components generated at both ends of the measurement current detecting means connected in series to the AC current generating means is processed by an analog filter having substantially the same characteristics Therefore, the influence of noise components other than the frequency component of the alternating current generated by the alternating current generating means is minimized compared to the case where the synchronous detection means is used or the case where only the digital filter is used. Can be realized at a very low cost, and the cost of measuring the measured electromotive force component buried in the noise component can be reduced. It can be measured internal impedance of the battery without causing the flop.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described with reference to the drawings.
[0019]
FIG. 1 is a block diagram showing an outline of a storage battery internal impedance measuring apparatus according to an embodiment of the present invention. In FIG. 1, 1 is a storage battery, 2 is a storage battery group, 3 is an alternating current generating means, 4 is an alternating voltage measuring means, and the alternating current generating means 3 and the alternating voltage measuring means 4 are connected in parallel with the storage battery 1. The point is the same as in FIG. Further, in FIG. 1, a measurement current detection unit 5 is provided in series with the AC current generation unit 3, and an AC voltage measurement unit 4 is connected to both ends of the measurement current detection unit 5.
[0020]
As each storage battery 1 constituting the storage battery group 2, a lead storage battery or the like is used, but it is effective to use a sealed lead storage battery in which it is difficult to judge deterioration due to a change in liquid level or the like.
[0021]
As described above, the storage battery group 2 includes a plurality of storage batteries 1 connected in series in order to obtain a target voltage value. When the storage battery 1 is a lead storage battery having an electromotive force of about 2 V, six, twelve, and twenty-four can be connected in series to obtain electromotive forces of about 12 V, about 24 V, and about 48 V, respectively.
[0022]
As described above, the AC current generating means 3 generates an AC current (measurement current) for measuring the internal impedance of the storage battery 1 and functions as an AC constant current source. The alternating current generating means 3 may supply an alternating current to the storage battery 1 or may discharge the alternating current from the storage battery 1.
[0023]
By making the waveform of the alternating current generated by the alternating current generating means 3 substantially a sine wave, it is possible to measure the internal impedance of the storage battery 1 with less influence of harmonic components.
[0024]
As described above, the AC voltage measuring unit 4 measures the measured electromotive force generated in the storage battery 1 by the current generated by the AC current generating unit 3.
[0025]
The measurement current detection means 5 detects the alternating current generated by the alternating current generation means 3, and can use, for example, a resistor (shunt resistance) of about 0.1Ω. Further, since the AC voltage measuring means 4 is connected to both ends of the measurement current detecting means 5, the AC voltage measuring means 4 can be used for management of the measurement current.
[0026]
In FIG. 1, the AC voltage measuring unit 4 includes an analog signal processing unit 41, an A / D conversion unit 42, a digital signal processing unit 43, a storage unit 44, and an input switching unit 45.
[0027]
The analog signal processing means 41 has an analog filter function such as a band-pass filter that passes the same frequency as the frequency of the alternating current generated by the alternating current generating means 3, and an alternating current having a gain band at the frequency as necessary. Has an amplifier. The analog filter function can be easily obtained by using a circuit such as an active filter circuit in which a resistor and a capacitor are connected to an operational amplifier. The signal processed by the analog signal processing means 41 is sent to the A / D conversion means 42.
[0028]
The A / D conversion means 42 converts the signal from the analog signal processing means 41 from an analog signal to a digital signal. The signal processed by the A / D conversion means 42 is sent to the digital signal processing means 43.
[0029]
The digital signal processing means 43 performs digital filter processing in order to extract the same frequency as the frequency of the alternating current generated by the alternating current generating means 3 from the signal sent from the A / D conversion means 42. The digital signal processing unit 43 has a function of storing the digital filter processed signal in the storage unit 44 as a measurement result, and a function of controlling the input switching unit 45 based on the measurement procedure stored in the storage unit 44. Have. Further, it is desirable to have a function of sending a signal for controlling the alternating current generating means 3 to the alternating current generating means 3 based on the measurement procedure stored in the storage means 44.
[0030]
The digital signal processing means 43 has a function of calculating an internal impedance based on the measured current value and electromotive force data. The calculation result of the internal impedance is stored in the storage unit 44. If necessary, a means for displaying the calculation result of the internal impedance may be provided inside or outside the AC voltage measuring means 4.
[0031]
The storage unit 44 stores the processing result in the digital signal processing unit 43 and further stores a signal relating to the measurement procedure including a signal for controlling the input switching unit 45. It is desirable that the signal relating to the measurement procedure includes a signal for controlling the alternating current generating means 3.
[0032]
The input switching unit 45 switches a signal input to the analog signal processing unit 41 to the storage battery 1 side or the measured current detection unit 5. As the input switching means 45, for example, a relay (relay) is used, but other switching means can also be applied depending on the situation. When the input switching means 45 is connected to the storage battery 1, the AC voltage measurement means 4 measures the electromotive force of the storage battery 1, and when the input switching means 45 is connected to the measured current detection means 5, The AC voltage measuring unit 4 measures an electromotive force generated when the AC current generated by the AC current generating unit 3 flows to the measurement current detecting unit 5.
[0033]
In this embodiment, the AC voltage measuring means 4 is provided with an analog signal processing means 41 and a digital signal processing means 43. Since the analog signal processing means 41 has an analog filter function, for example, a sinusoidal wave generated by the AC current generating means 3 is used. When the frequency of the alternating current is 16 Hz, the 50 Hz or 60 Hz component, which is the frequency of the main component of noise from the power supply device (not shown) to which the storage battery group 2 is connected, can be suppressed by 20 dB or more in terms of voltage ratio. The noise component input to the digital signal processing means 43 can be efficiently suppressed.
[0034]
If the analog signal processing unit 41 is not used and the digital signal function of the digital signal processing unit 43 is used to achieve the same level of function as that of the present embodiment, the A / The D conversion means 42 is required. For example, in the case where the 12-bit A / D conversion means 42 is used in the present embodiment, the 16-bit or more A / D conversion means 42 having a resolution 10 times higher than that is required, and the A / D conversion means 42 is expensive. There is a problem of becoming.
[0035]
That is, according to the present embodiment, the sinusoidal frequency component generated by the alternating current generating means 3 is extracted while minimizing the influence of the noise component without increasing the resolution of the digital filter processing in the digital signal processing means 43. Can be realized at a very low cost. That is, the internal impedance of the storage battery can be measured without incurring a cost increase when measuring the measured electromotive force component buried in the noise component.
[0036]
Incidentally, as described above, the analog filter function of the analog signal processing means 41 includes a resistor and a capacitor, and the filter characteristics of the analog filter function may change depending on the temperature characteristics thereof. For example, the characteristic value of the analog signal processing means 41 designed to have a gain of 28.8 dB at a temperature of 25 ° C. at the frequency of the measurement current varies by 5% due to the temperature change. It becomes a gain and changes by about -0.9 dB. This value is equivalent to a fluctuation of the measured value of about 5% as a voltage value, and in order to maintain a highly accurate measurement state, the fluctuation is much more than 5% in the operating temperature range of the internal impedance measuring device of the storage battery. It is necessary to select a good part with few characteristics. It is sufficiently possible to obtain a resistor with a characteristic within ± 0.2% in the operating temperature range of the internal impedance measuring device of the storage battery, but it is extremely difficult to achieve this level of temperature characteristic with a capacitor. It becomes very expensive.
[0037]
Therefore, by switching the input of the electromotive force of the storage battery 1 to the analog signal processing means 41 and the electromotive force of the measurement current detection means 5 by the input switching means 45, the analog signal processing means 41 including a common analog filter performs processing. Thereafter, the digital signal processing means 43 including a common digital filter processes the gain fluctuation of the analog filter, which directly causes the measurement error of the electromotive force, and the electromotive force due to the temperature characteristic of the measurement current detection means 5 or the like. The variation can be limited to about the fluctuation amount, and the measurement error of the internal impedance of the storage battery 1 can be reduced.
[0038]
In the present embodiment, as shown in FIG. 1, the measured electromotive force component generated at both ends of the storage battery 1 and the alternating electromotive force component generated at both ends of the measurement current detecting means 5 are analog signal processing including a common analog filter. It is desirable to use an apparatus that performs processing by means 41 and then processing by digital signal processing means 43 including a common digital filter. However, the embodiment of the present invention is not limited to this, and the measurement target that occurs at both ends of storage battery 1 is used. Each of the electromotive force component and the AC electromotive force component generated at both ends of the measurement current detection means 5 is processed by an individual analog filter having substantially the same characteristics (that is, close to a level that does not greatly affect the measurement accuracy). After that, it goes without saying that the processing may be performed by a digital filter having substantially the same characteristics.
[0039]
Next, a method for measuring the internal impedance of the storage battery of the present invention will be described. FIG. 2 is a flowchart showing an outline of a method for measuring internal impedance of a storage battery according to an embodiment of the present invention. As shown in FIG. 2, in the present embodiment, measurement current I is measured (step-1), measured electromotive force V is measured (step-2), and internal impedance Z (= V / I) is measured (step-3). 3).
[0040]
Next, details of Step-1 and Step-2 will be described with reference to the drawings. Below, it demonstrates using the code | symbol of FIG.
[0041]
FIG. 3 is a flowchart showing an example of details of Step-1 in FIG. The contents will be described below.
[0042]
(Step-1A)
The alternating current generating means 3 is operated. In this case, as shown in FIG. 1, a control signal for controlling the alternating current generating means 3 is sent from the digital signal processing means 43.
(Step-1B)
A control signal is sent from the digital signal processing means 43 to the input switching means 45 to switch the input switching means 45 to the measured current detection means 5 side.
(Step-1C)
The signal of electromotive force generated when the alternating current generated by the alternating current generating means 3 flows to the measurement current detecting means 5 is processed by the analog signal processing means 41, and the frequency other than the frequency of the alternating current generated by the alternating current generating means 3 is used. Reduce ingredients.
(Step-1D)
The signal obtained in step-1C is converted into a digital signal by the A / D conversion means 42.
(Step-1E)
The digital signal processing means 43 performs digital filter processing on the digital signal obtained in step -1D.
(Step-1F)
Of the digital signal obtained in the step-1E, a component having the same frequency as the frequency of the alternating current generated by the alternating current generating means 3 is picked up by the digital signal processing means 43 and stored in the storage means 44 as the measured current I. save. Since the component itself having the same frequency as the frequency of the alternating current generated by the alternating current generating means 3 is a voltage, the coefficient of the measuring current detecting means 5 is taken into account (for example, with a shunt resistance having a resistance value of 0.1Ω). Divide by that value if any) and treat as current.
[0043]
Here, when the process of Step-1F is completed, the process of Step-1 is completed, but the process of Step-2 is continued as shown in FIG.
[0044]
FIG. 4 is a flowchart showing an example of details of Step-2 in FIG. The contents will be described below.
[0045]
(Step-2A)
A control signal is sent from the digital signal processing means 43 to the input switching means 45 to switch the input switching means 45 to the storage battery 1 side.
(Step-2B)
A signal of the electromotive force to be measured generated when the alternating current generated by the alternating current generating means 3 flows to the storage battery 1 is processed by the analog signal processing means 41, and the frequency components other than the frequency of the alternating current generated by the alternating current generating means 3 Reduce.
(Step-2C)
The signal obtained in step-2B is converted into a digital signal by the A / D conversion means 42.
(Step-2D)
The digital signal processing means 43 applies digital filter processing to the digital signal obtained in step-2C.
(Step-2E)
Of the digital signal obtained in step -2D, a component having the same frequency as the frequency of the alternating current generated by the alternating current generating means 3 is picked up by the digital signal processing means 43 and stored as measured electromotive force V. 44.
(Step-2F)
The alternating current generating means 3 is stopped. In this case, as shown in FIG. 1, a control signal for controlling the alternating current generating means 3 is sent from the digital signal processing means 43. Needless to say, the AC current generating means 3 may be stopped not after Step-2F but after Step-3.
[0046]
Here, when the process of Step-2F is finished, the process of Step-1 is finished, but the process of Step-3 is continuously performed as shown in FIG.
[0047]
The process of Step-3 shown in FIG. 2 uses the data of the measured current I measured in Step 1 and the data of the measured electromotive force V measured in Step 2, to store the internal impedance Z of the storage battery 1. (= V / I) is obtained. This calculation is performed inside the digital signal processing means 43.
[0048]
2 shows the case where the internal impedance of one storage battery 1 constituting the storage battery group 2 is measured. When the internal impedance of a plurality of storage batteries 1 is to be measured, FIG. Needless to say, after the end of the measurement in the flowchart of FIG.
[0049]
Thus, according to this embodiment, it becomes possible to minimize the influence of noise components other than the frequency component of the alternating current generated by the alternating current generating means, and the measured electromotive force component buried in the noise component can be reduced. Although it is possible to measure the internal impedance of the storage battery without incurring a cost increase in measurement, the embodiment is not limited to the above-described embodiment, and is appropriately within the scope of the matters described in the claims. It goes without saying that changes are possible.
[0050]
【The invention's effect】
As described above, according to the present invention, when measuring the internal impedance of a storage battery, the waveform of the alternating current generated by the alternating current generating means is substantially a sine wave, and the measurement target generated at both ends of the storage battery to be measured for internal impedance. After processing each of the power component and the AC electromotive force component generated at both ends of the measurement current detecting means connected in series with the AC current generating means with an analog filter having substantially the same characteristics, substantially the same characteristics Therefore, it is extremely important to minimize the influence of noise components other than the frequency component of the alternating current generated by the alternating current generating means, compared to the case where the synchronous detecting means is used. It can be realized at low cost, and it does not increase the cost when measuring the measured electromotive force component buried in the noise component. It is possible to measure the impedance.
[Brief description of the drawings]
FIG. 1 is a block diagram showing an outline of a storage battery internal impedance measuring apparatus according to an embodiment of the present invention.
FIG. 2 is a flowchart showing an outline of a method for measuring internal impedance of a storage battery according to an embodiment of the present invention.
FIG. 3 is a flowchart showing an example of details of Step-1 in FIG. 2;
FIG. 4 is a flowchart showing an example of details of step-2 in FIG. 2;
FIG. 5 is a schematic explanatory diagram showing the principle of measuring internal impedance of a storage battery by the AC four-terminal method.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Storage battery 2 Storage battery group 3 AC current generation means 4 AC voltage measurement means 5 Measurement current detection means 41 Analog signal processing means 42 A / D conversion means 43 Digital signal processing means 44 Storage means 45 Input switching means

Claims (3)

複数の蓄電池が直列接続された蓄電池群の各蓄電池の内部インピーダンスを、交流電流発生手段および交流電圧計測手段を用いて測定する蓄電池の内部インピーダンス測定方法において、
前記交流電流発生手段が発生する交流電流の波形を実質的に正弦波とし、内部インピーダンス測定対象の前記蓄電池の両端に生じる被計測起電力成分および前記交流電流発生手段に直列接続された計測電流検出手段の両端に生じる交流起電力成分のそれぞれを、実質的に同一の特性を有するアナログフィルタで処理した後、実質的に同一の特性を有するディジタルフィルタで処理する工程を含むことを特徴とする蓄電池の内部インピーダンス測定方法。
In the internal impedance measurement method of a storage battery that measures the internal impedance of each storage battery of a storage battery group in which a plurality of storage batteries are connected in series using an alternating current generation means and an alternating voltage measurement means,
A waveform of an alternating current generated by the alternating current generating means is substantially a sine wave, a measured electromotive force component generated at both ends of the storage battery to be measured for internal impedance, and a measurement current detection connected in series to the alternating current generating means A storage battery comprising a step of processing each of the AC electromotive force components generated at both ends of the means with an analog filter having substantially the same characteristics, and then processing with a digital filter having substantially the same characteristics Internal impedance measurement method.
内部インピーダンス測定対象の前記蓄電池の両端に生じる被計測起電力成分および前記計測電流検出手段の両端に生じる交流起電力成分のそれぞれを、共通のアナログフィルタで処理した後、共通のディジタルフィルタで処理する工程を含むことを特徴とする、請求項1記載の蓄電池の内部インピーダンス測定方法。The measured electromotive force component generated at both ends of the storage battery to be measured for internal impedance and the AC electromotive force component generated at both ends of the measurement current detecting means are processed by a common analog filter and then processed by a common digital filter. The method for measuring internal impedance of a storage battery according to claim 1, further comprising a step. 複数の蓄電池が直列接続された蓄電池群の各蓄電池の内部インピーダンスの測定を行うための、交流電流発生手段および交流電圧計測手段を有する蓄電池の内部インピーダンス測定装置において、
前記交流電流発生手段には計測電流検出手段が直列接続されており、前記交流電流発生手段が発生する交流電流の波形は実質的に正弦波であり、前記交流電圧計測手段は、単一のアナログフィルタを含むアナログ信号処理手段と、単一のディジタルフィルタを含むディジタル信号処理手段と、前記アナログ信号処理手段への入力を切り替える入力切替手段とを有することを特徴とする蓄電池の内部インピーダンス測定装置。
In the internal impedance measuring device of the storage battery having the alternating current generating means and the alternating voltage measuring means for measuring the internal impedance of each storage battery of the storage battery group in which a plurality of storage batteries are connected in series,
A measuring current detecting means is connected in series to the alternating current generating means, the waveform of the alternating current generated by the alternating current generating means is substantially a sine wave, and the alternating voltage measuring means is a single analog An apparatus for measuring internal impedance of a storage battery, comprising: analog signal processing means including a filter; digital signal processing means including a single digital filter; and input switching means for switching an input to the analog signal processing means.
JP2002296819A 2002-10-10 2002-10-10 Storage battery internal impedance measurement method and storage battery internal impedance measurement device Expired - Fee Related JP4054652B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002296819A JP4054652B2 (en) 2002-10-10 2002-10-10 Storage battery internal impedance measurement method and storage battery internal impedance measurement device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002296819A JP4054652B2 (en) 2002-10-10 2002-10-10 Storage battery internal impedance measurement method and storage battery internal impedance measurement device

Publications (2)

Publication Number Publication Date
JP2004132797A true JP2004132797A (en) 2004-04-30
JP4054652B2 JP4054652B2 (en) 2008-02-27

Family

ID=32286676

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002296819A Expired - Fee Related JP4054652B2 (en) 2002-10-10 2002-10-10 Storage battery internal impedance measurement method and storage battery internal impedance measurement device

Country Status (1)

Country Link
JP (1) JP4054652B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006220629A (en) * 2005-02-14 2006-08-24 Furukawa Battery Co Ltd:The Internal impedance measuring device for storage battery, and internal impedance measuring method of the storage battery
JP2008175687A (en) * 2007-01-18 2008-07-31 Furukawa Battery Co Ltd:The Method and apparatus for measuring internal impedance of storage battery
JP2016070660A (en) * 2014-09-26 2016-05-09 日置電機株式会社 Measuring apparatus and measuring method, and program
JP2017070024A (en) * 2015-09-29 2017-04-06 日立オートモティブシステムズ株式会社 Battery monitoring device
JP2017203726A (en) * 2016-05-12 2017-11-16 日置電機株式会社 Impedance measurement device and impedance measurement method
WO2019123904A1 (en) * 2017-12-19 2019-06-27 三洋電機株式会社 Management device, and electricity storage system

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006220629A (en) * 2005-02-14 2006-08-24 Furukawa Battery Co Ltd:The Internal impedance measuring device for storage battery, and internal impedance measuring method of the storage battery
JP2008175687A (en) * 2007-01-18 2008-07-31 Furukawa Battery Co Ltd:The Method and apparatus for measuring internal impedance of storage battery
JP2016070660A (en) * 2014-09-26 2016-05-09 日置電機株式会社 Measuring apparatus and measuring method, and program
JP2017070024A (en) * 2015-09-29 2017-04-06 日立オートモティブシステムズ株式会社 Battery monitoring device
JP2017203726A (en) * 2016-05-12 2017-11-16 日置電機株式会社 Impedance measurement device and impedance measurement method
WO2019123904A1 (en) * 2017-12-19 2019-06-27 三洋電機株式会社 Management device, and electricity storage system
JPWO2019123904A1 (en) * 2017-12-19 2021-01-21 三洋電機株式会社 Management device and power storage system
JP7152420B2 (en) 2017-12-19 2022-10-12 三洋電機株式会社 Management device and power storage system

Also Published As

Publication number Publication date
JP4054652B2 (en) 2008-02-27

Similar Documents

Publication Publication Date Title
EP1203963B1 (en) Battery voltage measurement device
JP2006266960A (en) Method and apparatus for measuring internal impedance of storage battery
JPS61292067A (en) Method for measuring electric energy
JP4054652B2 (en) Storage battery internal impedance measurement method and storage battery internal impedance measurement device
US6820017B1 (en) Method for determining the amplitude and phase angle of a measuring signal corresponding to a current or voltage of an electrical power supply network
WO2003010546A1 (en) Capacitor insulation resistance measuring method and insulation resistance measuring instrument
JP2006098287A (en) Harmonic component measuring apparatus
KR20170014671A (en) Power loss measuring system for measuring power loss at harmonic filter included in high voltage direct current(hvdc) ststem and method for measuring power loss thereof
JP2010261722A (en) Voltage detecting apparatus and line voltage detecting apparatus
JPH1010163A (en) Effective voltage value measuring apparatus
JPH09243683A (en) Method and device for measurement of resistivity, electric conductivity and/or permittivity
RU2486532C1 (en) Device to control deformation of power transformer windings
JP2007121125A (en) Current detector and capacitance measurement device
JP4996992B2 (en) Impedance measuring device
JP3805478B2 (en) Method and apparatus for measuring equivalent series resistance of capacitive element
JP7111075B2 (en) battery monitor
JP2008076337A (en) Input impedance measuring instrument and method
JP4387093B2 (en) Battery evaluation device
JP4799307B2 (en) Power measuring device
KR20070006020A (en) Body fat analysis technique using multi-frequency bipolar-electrode method
JPH11326428A (en) Parameter measuring device for inverter circuit
RU2223509C1 (en) Method measuring power of distortion in a c single-phase network
CN114487613A (en) Buck converter output capacitance tan delta monitoring method
JP2003167010A (en) Instrument for measuring information on current conduction
JPH07229934A (en) Digital electric power measurement device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050620

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070522

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070821

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071018

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071210

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101214

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4054652

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101214

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111214

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111214

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121214

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121214

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131214

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees