JPH09241716A - Desulfurization method for electric arc furnace molten iron for stainless steel - Google Patents

Desulfurization method for electric arc furnace molten iron for stainless steel

Info

Publication number
JPH09241716A
JPH09241716A JP8079445A JP7944596A JPH09241716A JP H09241716 A JPH09241716 A JP H09241716A JP 8079445 A JP8079445 A JP 8079445A JP 7944596 A JP7944596 A JP 7944596A JP H09241716 A JPH09241716 A JP H09241716A
Authority
JP
Japan
Prior art keywords
slag
refining
arc furnace
ladle
electric arc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8079445A
Other languages
Japanese (ja)
Other versions
JP3462659B2 (en
Inventor
Kenichi Katayama
賢一 片山
Takashi Yamauchi
隆 山内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP07944596A priority Critical patent/JP3462659B2/en
Publication of JPH09241716A publication Critical patent/JPH09241716A/en
Application granted granted Critical
Publication of JP3462659B2 publication Critical patent/JP3462659B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)
  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce the costs of a slag forming agent, electric power consumption and oxide raw materials in arc furnace operation by improving the desulfurization effect of ladle refining after tapping of the electric arc furnace molten iron for stainless steels. SOLUTION: At the time of melting the stainless steel molten iron in the electric arc furnace, tapping the molten iron together with slag into a ladle after refining and subjecting the molten iron to in-ladle refining, the refining in the electric arc furnace is executed by low-basicity slag and the in-ladle refining is executed by inert gaseous stirring under a nonoxidizing atmosphere condition, by which chromium oxide is reduced by Si in the molten iron and the desulfurization reaction is accelerated. The cost of the slag forming agent by the low-basicity slag and the electric power consumption are thus reduced and the recovery of the useful metal is executed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電気アーク炉によるス
テンレス溶銑の精練技術に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a technique for refining stainless hot metal in an electric arc furnace.

【0002】[0002]

【従来の技術】電気アーク炉によるステンレス鋼の製造
においては、原料となる各種の合金鉄やスクラップある
いは添加成分となる酸化物などを溶解し、粗鋼(溶銑)
を製造した後、真空脱ガス炉やAOD炉による仕上げ精
練工程、鋳造工程を経て中間製品が製造される。電気ア
ーク炉の操業では、チャージ毎に目標となる成分・組成
に応じた配合計画を立て、それに従って、炉内に順次ス
クラップ、合金鉄などの主原料と、場合により製鋼工場
内で発生するダスト、スケール、スラグや造滓剤等の副
原料を装入し、通電して溶解する。その際、主原料とし
て溶融金属をホットチャージしたり、クロム鉱石やNi
鉱石などの酸化物原料をコークスなどの還元剤と共に供
給することも行われている。主原料が溶解し、スラグ層
が形成されると、その組成を調整することがその精練作
用上ひいては操業上重要な要件となる。脱硫能を適正に
保つ上からはスラグの塩基度等の調整が必要であるが、
通常、必要とするCaOやCaF2 の量を経験的に求め
て溶解前や溶解中供給することによって適切な範囲に調
整している。溶解後は、ある程度の精練期を設けて、成
分チェックの後、ステンレス鋼用の溶銑として電気アー
ク炉から出銑する。このような精練過程においては、ス
ラグは速やかに溶解して溶鋼と共に攪拌され、その脱硫
能を最大限に発揮することが望まれる。このため、電気
炉に底吹き羽口を設けて窒素などのガスを吹き込み、バ
ブリングによる攪拌を行って、造滓剤などの溶解や精練
反応を促進させる方法などが取られているが、底吹方式
の攪拌作用には限界があり、電気炉のようなシャローバ
スの炉など構造上制約のある場合や溶落後の精練期を十
分に取れない場合には有効ではない。また、特開昭64
−25938号公報には、アーク加熱時に中空電極から
造滓剤を吹き込んで溶解、精練する方法が示されている
が、中空電極方式による設備コストは高く、電極の比例
費を上昇させることとなる。
2. Description of the Related Art In the production of stainless steel by an electric arc furnace, various ferroalloys as raw materials, scraps or oxides as additional components are melted to produce crude steel (hot metal).
After manufacturing, the intermediate product is manufactured through a finishing refining process and a casting process using a vacuum degassing furnace or an AOD furnace. When operating an electric arc furnace, make a mix plan according to the target components and compositions for each charge, and in accordance with it, the main raw materials such as scrap, ferroalloys, etc., and dust generated in the steel factory in the furnace in order. , Auxiliary materials such as scale, slag and slag forming agent are charged, and they are melted by applying electricity. At that time, molten metal as a main raw material is hot-charged, or chrome ore and Ni are used.
Oxide raw materials such as ores are also supplied together with reducing agents such as coke. When the main raw material is dissolved and the slag layer is formed, adjusting the composition thereof is an important requirement in terms of its refining action and eventually in operation. To maintain the desulfurization ability properly, it is necessary to adjust the basicity of the slag, etc.
Usually, the required amount of CaO or CaF 2 is empirically determined and is adjusted to an appropriate range by supplying it before or during the dissolution. After the melting, a refining period is provided to some extent, and after checking the components, the molten iron for stainless steel is tapped from the electric arc furnace. In such a refining process, it is desired that the slag is quickly dissolved and stirred with molten steel to maximize its desulfurization ability. For this reason, a method has been adopted in which a bottom blowing tuyere is installed in an electric furnace, gas such as nitrogen is blown, and stirring is performed by bubbling to accelerate the dissolution or scouring reaction of the slag-making agent. There is a limit to the stirring action of the system, and it is not effective when there are structural restrictions such as a shallow bath furnace such as an electric furnace or when the refining period after the burn through cannot be sufficiently taken. Also, Japanese Patent Application Laid-Open
No. 25938 discloses a method in which a slag-forming agent is blown from a hollow electrode at the time of arc heating to melt and refine it, but the equipment cost by the hollow electrode method is high, and the proportional cost of the electrode is increased. .

【0003】また、最近では、原料コストの削減や工場
で発生する廃材などの有効利用のため、ダスト、スケー
ルやスラグなどのほか各種の様々な形態の原料が用いら
れるようになっている。特に酸化物原料を還元してメタ
ル原料として利用できれば原料コストの面で非常に有利
である。このため、これらの多種、多様な原料を加えて
溶解することとなるが、このような電気炉の操業におい
ては、これらの原料の由来に起因する粉化ロス、未滓
化、原料品位のバラツキなどがあり、炉内におけるスラ
グの溶解や調整を一律に行うことが困難である。このよ
うな炉内におけるスラグは、出銑時においても溶解せず
不均一のままで未反応であったり、適切な調整ができな
いため、精練上の作用を完全には発揮できないこととな
る。このような事情に対処するため、実際の操業におい
ては、安全度を見込んで、過剰な量の造滓剤を装入する
などしているが、その結果、最終的に生成するスラグ量
は増加する傾向にあり、100kg/T−メタル以上に
もなることもある。このことは、本来の金属の溶解以外
のスラグのために消費される電力が大きくなることとな
り、電力コストの上昇が問題となる。
Recently, in order to reduce the cost of raw materials and to effectively use the waste materials generated in factories, various kinds of raw materials such as dust, scale and slag have been used. In particular, if the oxide raw material can be reduced and used as a metal raw material, it is very advantageous in terms of raw material cost. For this reason, these various and various raw materials are added and melted.However, in the operation of such an electric furnace, pulverization loss due to the origin of these raw materials, unslagging, and variation in raw material quality are caused. Therefore, it is difficult to uniformly dissolve and adjust the slag in the furnace. The slag in such a furnace does not melt even when tapping, remains non-uniform and unreacted, or cannot be properly adjusted, so that the scouring action cannot be fully exhibited. In order to deal with such a situation, in actual operation, in consideration of safety, an excessive amount of slag-making agent is charged, but as a result, the amount of slag finally produced increases. There is also a tendency to do so, and it may exceed 100 kg / T-metal. This means that the electric power consumed for the slag other than the original melting of the metal becomes large, and the increase in the electric power cost becomes a problem.

【0004】[0004]

【発明が解決しようとする課題】本発明は、このような
問題を解消すべく、ステンレス鋼用電気アーク炉溶銑の
出銑後取鍋精練の脱硫作用を向上して、スラグの脱硫能
などの精練作用を最大限に発揮させることにより、アー
ク炉操業における造滓剤、消費電力、原料のコストを低
減する。
DISCLOSURE OF THE INVENTION In order to solve such problems, the present invention improves the desulfurization effect of slag desulfurization ability by improving the desulfurization after ladle refining of electric arc furnace for stainless steel. By maximizing the refining effect, the cost of slag-making agent, power consumption, and raw materials in arc furnace operation is reduced.

【0005】[0005]

【課題を解決するための手段】本発明は、その目的を達
成するため、電気アーク炉でステンレス溶銑を溶解し、
精練後取鍋にスラグと共に出銑して、取鍋内精練を行う
方法において、電気アーク炉における精練を低塩基度に
おいて行い、取鍋内の精練を非酸化性雰囲気条件下で不
活性ガス攪拌して行うものであり、上記溶銑成分とし
て、[Cr]=10〜35%、[Si]=0.1〜1.
2%、[C]=2.0〜5.0%、及び出銑前のスラグ
塩基度(CaO/SiO2 )が1.3〜2.2、であっ
て、取鍋内雰囲気の酸素濃度を10%以下に保持するこ
とにより行う。
In order to achieve the object, the present invention is to melt stainless hot metal in an electric arc furnace,
In the method of tapping the ladle with slag after refining and refining in the ladle, refining in an electric arc furnace is performed at low basicity, and refining in the ladle is agitated with an inert gas under non-oxidizing atmosphere conditions. As the above-mentioned hot metal component, [Cr] = 10 to 35%, [Si] = 0.1-1.
2%, [C] = 2.0 to 5.0%, and the slag basicity (CaO / SiO 2 ) before tapping is 1.3 to 2.2, and the oxygen concentration in the ladle atmosphere Is maintained at 10% or less.

【0006】[0006]

【作用】電気アーク炉によりステンレス溶銑を溶解する
場合、生成するスラグは、前記したような副原料中の成
分として加えられるもののほか、Cr、Ni鉱石成分や
ライニングの耐火物が溶損してなるもの等を含んでい
る。電気アーク炉における主なスラグ成分としては、C
aO、SiO2 、MgO、Al23 等がある。電気ア
ーク炉におけるスラグの作用は、精練上の作用のほか、
保熱やアークからの耐火物の保護などの作用がある。本
発明者等は、電気アーク炉におけるスラグの作用に関し
て種々の検討を行ってきた結果、出銑後の取鍋内のスラ
グと溶銑とを、溶銑中の[Si]が酸化クロムの還元反
応に寄与する一定条件下で十分に攪拌することによって
スラグが本来有する精練能力を完全に発揮させることが
できることを見い出し、造滓剤の添加量を最小限に抑
え、過剰の造滓材の添加による造滓剤や消費電力のコス
トを低減して、経済的な脱硫処理を可能にし、品質の安
定化を可能としたものである。
When the stainless hot metal is melted by the electric arc furnace, the slag produced is not only the one added as a component in the auxiliary raw material as described above, but also the one in which the Cr or Ni ore component and the refractory of the lining are melted and lost. Etc. are included. The main slag component in the electric arc furnace is C
Examples include aO, SiO 2 , MgO, Al 2 O 3 and the like. The action of slag in the electric arc furnace is in addition to the action on refining,
It has functions such as heat retention and protection of refractories from arcs. As a result of various studies on the action of slag in the electric arc furnace, the present inventors have found that [Si] in the hot metal causes reduction reaction of chromium oxide with slag and hot metal in the ladle after tapping. It was found that the slag's original refining ability can be fully exerted by sufficient stirring under the constant conditions that contribute to it, and the amount of the slag additive added was minimized to produce the slag by adding excess slag material. The cost of slag and power consumption is reduced, economical desulfurization is possible, and quality is stabilized.

【0007】図1に従来の方法において得られる、電気
アーク炉における塩基度と電力原単位(コスト)の関
係、及び塩基度と出銑後の溶銑[S]の関係を示す。こ
の図から、スラグの塩基度が上昇するほど脱硫能も向上
し、溶銑[S]が低下するが、反面、それにつれて電力
原単位が上昇することが解る。しかしながら、本発明者
らは、種々の研究結果及び実際の操業条件下における実
験により、一定の条件下でスラグの脱硫能を最大限に発
揮させ、より低い塩基度で充分な脱硫をすることが可能
であることを明らかにした。すなわち、電気炉内の精錬
後、スラグと共に取鍋内に出銑して取鍋内精錬を行うに
際して、取鍋内雰囲気を非酸化性雰囲気において、浸漬
ランスから不活性ガスを吹き込んで攪拌することによ
り、スラグと溶銑の反応を促進するものであり、その結
果を出銑後の[S]すなわち従来方法によるものと共に
図2に示す。図2に見るとおり、従来方法と比較して、
より低いスラグ塩基度によって著しく低い溶銑[S]を
実現しており、脱硫能が向上していることが解る。従来
は電気炉精錬後、出銑時の落下エネルギーによる攪拌力
を利用した「出銑脱硫」が行われている。この攪拌方式
の相違による攪拌強度の差もさることながら、本発明と
の最大の違いは雰囲気にある。従来は出銑は大気下で行
われるため、大気を巻き込んだ酸化性雰囲気になる。こ
れに対し、本発明では雰囲気の酸素濃度を10%以下に
しており、大気と直接接することを回避している。これ
により、酸化クロムの還元がより進行しやすくなり脱硫
に有利となる。
FIG. 1 shows the relationship between basicity and electric power consumption (cost) in an electric arc furnace and the relationship between basicity and hot metal [S] after tapping, which are obtained by the conventional method. From this figure, it is understood that as the basicity of the slag increases, the desulfurization ability also improves and the hot metal [S] decreases, but on the other hand, the power consumption rate also increases accordingly. However, the present inventors have shown through various research results and experiments under actual operating conditions that the desulfurization ability of slag can be maximized under certain conditions, and sufficient desulfurization can be performed at a lower basicity. Clarified that it is possible. That is, after refining in the electric furnace, when tapping into the ladle together with slag and refining in the ladle, the atmosphere in the ladle is a non-oxidizing atmosphere, and an inert gas is blown from the immersion lance to stir. 2 promotes the reaction between the slag and the hot metal, and the results are shown in FIG. 2 together with [S] after tapping, that is, by the conventional method. As shown in FIG. 2, compared to the conventional method,
It can be seen that the extremely low hot metal [S] is realized by the lower slag basicity, and the desulfurization ability is improved. Conventionally, after refining in an electric furnace, "deposited iron desulfurization" is carried out using the stirring force by the falling energy during tapping. The greatest difference from the present invention lies in the atmosphere, not to mention the difference in stirring intensity due to the difference in this stirring method. Conventionally, tapping is performed in the atmosphere, so that the atmosphere becomes an oxidative atmosphere. On the other hand, in the present invention, the oxygen concentration in the atmosphere is set to 10% or less to avoid direct contact with the atmosphere. This facilitates the reduction of chromium oxide, which is advantageous for desulfurization.

【0008】本発明者らの研究によれば、この場合の出
銑前のスラグ塩基度を1.3〜2.2とすることが最も
経済的にかつ目標とする脱硫反応を達成し得ることを見
い出した。図2に示すように、出銑前のスラグ塩基度を
1.3〜2.2とすることで目標とする溶銑中「S]を
100ppm以下とすることができる。塩基度を1.3
未満とすると、目標とする脱硫反応([S]≦100p
pm)を達成できず、塩基度2.2を越えると、もはや
それ以上の塩基度の増加は脱流効果の向上をもたらさ
ず、却って、造滓剤費用の上昇と電力原単価の上昇を招
くことになる。
According to the studies by the present inventors, it is possible to achieve the desulfurization reaction which is the most economical and the target, when the slag basicity before tapping in this case is 1.3 to 2.2. Found out. As shown in Fig. 2, by setting the slag basicity before tapping to 1.3 to 2.2, the target "S" in the hot metal can be 100 ppm or less.
If it is less than, the target desulfurization reaction ([S] ≦ 100 p
If the basicity exceeds 2.2 and basicity exceeds 2.2, further increase in basicity will no longer improve the drainage effect, but rather will increase the cost of slag waste agent and the unit price of electricity. It will be.

【0009】本発明においては、溶銑とスラグを攪拌す
ることによって、脱硫反応が促進するが、この反応は非
酸化性雰囲気下でスラグ中の酸化クロムを主とする酸性
成分の還元反応と関連して脱硫が進行する。反応系の酸
素ポテンシャルである酸化クロムを還元し、その濃度を
低下させることは脱硫反応上重要である。このように、
非酸化性雰囲気下の酸化クロムの還元反応は、脱硫の面
から必要であると同時に、ステンレス鋼の主成分である
Crのコスト低減においても重要である。この場合、還
元反応の還元剤としては、スラグ及びメタル中の炭素も
寄与するが、主としてメタル中のSiが利用される。し
たがって、効率的な脱硫を行うためにはメタル中のSi
を有効に作用させる必要がある。メタル中のSiを酸化
クロムの還元に効率よく作用させるためには、非酸化性
雰囲気とすることが重要である。これは、大気中ではS
iは酸化消費され、酸化クロムの還元に利用されないこ
とによる。また、脱硫能を上げるための手段として、C
aOを増やして塩基度を上げるという方法があるが、本
発明はむしろ塩基度は下げても、酸化クロム濃度を低下
させる効果を発揮させ、目的の脱硫を達成しようとする
ことが狙いである。
In the present invention, the desulfurization reaction is promoted by stirring the hot metal and the slag. This reaction is associated with the reduction reaction of an acidic component mainly containing chromium oxide in the slag under a non-oxidizing atmosphere. Desulfurization proceeds. It is important for desulfurization reaction to reduce chromium oxide, which is the oxygen potential of the reaction system, and reduce its concentration. in this way,
The reduction reaction of chromium oxide in a non-oxidizing atmosphere is necessary from the viewpoint of desulfurization, and at the same time, it is important in reducing the cost of Cr, which is the main component of stainless steel. In this case, slag and carbon in the metal also contribute as a reducing agent for the reduction reaction, but Si in the metal is mainly used. Therefore, in order to carry out efficient desulfurization,
Must work effectively. In order for Si in the metal to efficiently act on the reduction of chromium oxide, it is important to use a non-oxidizing atmosphere. This is S in the atmosphere
i is consumed by oxidation and is not used for reduction of chromium oxide. Further, as a means for increasing the desulfurization ability, C
Although there is a method of increasing aO to increase basicity, the present invention aims to achieve the desired desulfurization by exerting the effect of decreasing the chromium oxide concentration even if the basicity is decreased.

【0010】本発明においては、取鍋内の攪拌中の雰囲
気の酸素濃度を10%以下とすることで、前記の溶銑中
のSiを有効に作用させることができる。酸素濃度が上
昇すると、攪拌中にSiが雰囲気中の酸素によって酸化
消費され、スラグの還元反応に利用される割合が低下す
る。本発明者らの調査によれば、雰囲気中の酸素濃度は
酸化クロムの還元速度、ひいては脱硫反応速度にも影響
する。例えば、雰囲気中の酸素濃度の上昇で脱硫反応速
度は著しく低下することが解っているが、これは目標
[S]を得るためには、長時間の攪拌が必要になってく
ることを意味する。長時間の攪拌を行うと、溶銑の大幅
な温度低下を生じ、また、酸化雰囲気での長時間の攪拌
によってスラグ中の酸化物の還元反応以外にSiの消費
が生じ、Siコストの上昇をも意味する。このように、
酸化物の還元による回収メリット、脱流効果向上による
低塩基度化、造滓材低減、電力原単位の低減のメリット
と、他方、Si消費及び温度低下のデメリットなどを総
合的に見て、許容できる攪拌時間内で目標メタル[S]
を達成するに必要なSi効率(スラグ中酸化物の還元に
消費されたSi量/総Si消費量)が算出されるが、図
3に雰囲気中の酸素濃度とメタル中の[S]及びSi効
率の関係を示す。図3に見るとおり、溶銑中[S]は酸
素濃度10%以下の領域で100ppm以下に低減さ
れ、また、Si効率も酸素濃度10%以下とすることに
より25%以上の効率が達成される。
In the present invention, Si in the hot metal can be made to act effectively by setting the oxygen concentration in the stirring atmosphere in the ladle to 10% or less. When the oxygen concentration increases, Si is oxidatively consumed by oxygen in the atmosphere during stirring, and the ratio used for the reduction reaction of slag decreases. According to the research conducted by the present inventors, the oxygen concentration in the atmosphere also affects the reduction rate of chromium oxide and thus the desulfurization reaction rate. For example, it has been found that the desulfurization reaction rate decreases remarkably as the oxygen concentration in the atmosphere increases, but this means that long-term stirring is required to obtain the target [S]. . If the stirring is carried out for a long time, the temperature of the hot metal is drastically lowered, and the stirring for a long time in an oxidizing atmosphere consumes Si in addition to the reduction reaction of the oxide in the slag, thereby increasing the Si cost. means. in this way,
Acceptable by comprehensively looking at the merit of recovery by reduction of oxides, lower basicity by improving defluxing effect, reduction of slag material, reduction of power consumption, and demerit of Si consumption and temperature decrease. Target metal [S] within possible stirring time
The Si efficiency (Si amount consumed for reduction of oxides in slag / total Si consumption amount) required to achieve the above is calculated. Fig. 3 shows the oxygen concentration in the atmosphere and [S] and Si in the metal. The relation of efficiency is shown. As shown in FIG. 3, [S] in the hot metal is reduced to 100 ppm or less in the region where the oxygen concentration is 10% or less, and the Si efficiency is 25% or more by setting the oxygen concentration to 10% or less.

【0011】不活性ガスとしては、窒素、Ar等が使用
できる。経済性からは窒素が好ましいが、鋼種によって
は窒素ピックアップが有害である場合などArが使用さ
れる。また、不活性ガスには必要によりH2 、COなど
の還元性ガスを混合してもよい。不活性ガスによる攪拌
は、吹き込むガス流量、深さなどの攪拌条件を自由に設
定できることから、浸漬ランスによることが好ましい。
例えば、溶銑量50〜100T規模の取鍋に対して、浸
漬ランスから吹込むガス流量200〜1500NL/
分、ランスの浸漬深さ50〜200cmが好適とされる
が、スラグ量(厚さ)溶銑量、目標[S]によって最適
な条件を設定する。また、ランス形状、ノズル径、ノズ
ル数を変更することによって、最適なスラグ/メタル攪
拌状態を調整することができる。
As the inert gas, nitrogen, Ar or the like can be used. Nitrogen is preferable from the economical viewpoint, but Ar is used depending on the type of steel such as when nitrogen pickup is harmful. If necessary, a reducing gas such as H 2 or CO may be mixed with the inert gas. It is preferable to use an immersion lance for stirring with an inert gas, because the stirring conditions such as gas flow rate and depth can be freely set.
For example, for a ladle with a scale of hot metal of 50 to 100 T, a gas flow rate of 200 to 1500 NL /
Although the immersion depth of the lance is preferably 50 to 200 cm, optimum conditions are set depending on the amount of slag (thickness) hot metal and the target [S]. Further, the optimum slag / metal stirring state can be adjusted by changing the lance shape, the nozzle diameter, and the number of nozzles.

【0012】本発明では、攪拌中の雰囲気酸素濃度を常
に10%以下に維持することが重要である。不活性ガス
の吹き込み開始時には、あらかじめシールガスとして不
活性ガスを取鍋内に供給して、取鍋内雰囲気の酸素濃度
を低下させたうえで浸漬ランスによる吹き込みを開始す
る。吹き込み開始後は、攪拌用ガスとシールガスが供給
されることにより上記雰囲気を維持することができる。
この場合、これらの雰囲気条件を確実に維持するために
は、取鍋を覆う蓋を設けることが有効であって、これに
よって、シールガス供給量も低減することができる。本
発明の溶銑のCr、C等の成分には格別の制限はなく、
通常のステンレス溶銑の組成である[Cr]=10〜3
5%、[C]=2.0〜5.0%の範囲でよい。[S
i]については、0.1%未満では、前記の脱硫作用を
規定する酸化クロムの還元に不十分であり、攪拌後残存
する[Si]はその後の転炉精錬における熱源としても
不足である。また、1.2%を越えると転炉吹錬の際、
熱量過大となって過昇温となる。同時に、塩基度低下と
なり耐火物の溶損を招いたり、原料コストの面からも好
ましくない。
In the present invention, it is important to always maintain the atmospheric oxygen concentration during stirring at 10% or less. At the start of blowing the inert gas, the inert gas is supplied as a seal gas into the ladle in advance to lower the oxygen concentration of the atmosphere inside the ladle, and then the blowing with the immersion lance is started. After the start of blowing, the atmosphere can be maintained by supplying the stirring gas and the seal gas.
In this case, in order to reliably maintain these atmospheric conditions, it is effective to provide a lid that covers the ladle, which can also reduce the supply amount of the seal gas. There is no particular limitation on the components such as Cr and C of the hot metal of the present invention,
Ordinary stainless hot metal composition [Cr] = 10 to 3
5% and [C] = 2.0 to 5.0%. [S
With regard to i], if it is less than 0.1%, it is insufficient for the reduction of chromium oxide that regulates the desulfurization action, and [Si] remaining after stirring is insufficient as a heat source in the subsequent converter refining. Also, if it exceeds 1.2%, when blowing the converter,
The amount of heat becomes excessive and the temperature rises excessively. At the same time, the basicity is reduced, causing refractory erosion and unfavorable raw material costs.

【0013】[0013]

【発明の実施の形態】次に実施例に基づき説明する。9
0トン電気アーク炉により、各種スクラップ及び酸化物
原料を溶解して、目標成分がCr:18%、C:3.5
%、Si:0.25%のステンレス鋼用溶銑を3チャー
ジ(チャージNo.1〜3)溶製したが、原料配合変更に
よる低Si操業のため、溶銑Si消費の効率化が必要と
なった。溶解中及び原料溶落後に脱硫剤としてCaOを
炉内に断続供給して塩基度を調整した。メタル成分調整
後、出銑直前にスラグサンプルを採取して分析した結
果、塩基度は1.8前後であった。次に、専用の取鍋に
出銑/出滓し、あらかじめ、専用の取鍋に蓋を設置し、
Arガスによって取鍋内を充満してから浸漬ランスによ
るガス攪拌を開始した。攪拌中の取鍋内雰囲気の酸素濃
度は、固体電池型酸素センサーによって測定しながら、
シールガス(Ar)の供給量によって調整した。攪拌中
の平均濃度は、1.5〜9.8%と10%以下であっ
た。10分間の攪拌後、溶銑サンプルを採取、分析、確
認後、次工程の転炉工場へと取鍋を移送した。表1に示
すように、ガス攪拌後の[S]は、39〜45ppmと
目標値(≦100ppm)を達成できた。また、電力原
単位は460〜465KWH/Tであり、攪拌前後の分
析値[Si]から推定したSi効率(スラグ中酸化物の
還元に消費されたSi/総Si消費量)は30〜62%
であった。
BEST MODE FOR CARRYING OUT THE INVENTION Next, a description will be given based on Examples. 9
Using a 0-ton electric arc furnace, various scraps and oxide raw materials are melted, and the target components are Cr: 18%, C: 3.5.
%, Si: 0.25% of hot metal for stainless steel was smelted for 3 charges (charge No. 1 to 3), but due to low Si operation by changing the raw material composition, it was necessary to improve the efficiency of hot metal Si consumption. . During the dissolution and after the raw materials were dropped, CaO as a desulfurizing agent was intermittently supplied into the furnace to adjust the basicity. After adjusting the metal components, a slag sample was collected and analyzed immediately before tapping, and as a result, the basicity was about 1.8. Next, tap / slag in the special ladle, put the lid on the special ladle in advance,
After filling the ladle with Ar gas, gas stirring with the immersion lance was started. The oxygen concentration of the atmosphere in the ladle during stirring is measured by a solid battery type oxygen sensor,
It was adjusted by the supply amount of the seal gas (Ar). The average concentration during stirring was 1.5 to 9.8% and 10% or less. After stirring for 10 minutes, a hot metal sample was collected, analyzed and confirmed, and then the ladle was transferred to the converter factory in the next step. As shown in Table 1, [S] after gas stirring was 39 to 45 ppm, which was a target value (≦ 100 ppm). The power consumption rate is 460 to 465 KWH / T, and the Si efficiency (Si consumed for reduction of oxides in slag / total Si consumption) estimated from the analysis value [Si] before and after stirring is 30 to 62%.
Met.

【0014】これに対し、比較例として、90トン電気
アーク炉において、各種スクラップ及び酸化物原料を溶
解して、目標成分がCr:18%、C:3.5%、S
i:0.25%のステンレス鋼用溶銑を3チャージ(チ
ャージNo.4〜6)を溶製したが、実施例と同様に原料
配合変更による低Si操業のため、溶銑Si消費の効率
化が必要であった。溶解中及び原料溶落後に脱硫剤とし
てCaOを炉内に断続供給して塩基度を調整した。メタ
ル成分調整後、出銑直前にスラグサンプルを採取して分
析した結果、塩基度は1.8〜1.6であった。次に、
専用の取鍋に出銑/出滓し、あらかじめ、Arガスによ
って、取鍋内を充満してから浸漬ランスによるガス攪拌
を開始した。攪拌中の取鍋内へのシールガス(Ar)の
供給量は意識的に少なくし、取鍋内雰囲気の酸素濃度
は、固体電池型酸素センサーによって測定しながら11
〜12%に調整した。チャージNo.4、5では、ガス攪
拌後の[S]はそれぞれ62ppm、60ppmであ
り、出銑前の[S]と比べてみて、低下幅が小さかっ
た。また、Si効率は20〜21%と低かった。これ
は、低溶銑Siにより脱硫速度が低下しているために、
10分間の攪拌では脱硫が進行しなかったためと考えら
れる。そこで次に、チャージNo.6では、攪拌時間を2
0分間に延長した。出銑前のスラグ塩基度は1.60、
メタル[S]は82ppmであった。しかしながら、高
酸素濃度雰囲気のために、Si効率は、19%に低下
し、また、攪拌後のメタル[S]は85ppmと、逆に
復硫する結果となった。このように比較例ではSiの無
効消費量が多いため、次の転炉工程以降の温度補償を考
慮すると、溶銑「Si」不足となり、結局、転炉操業直
前にSi合金の追加が必要になってコスト増を引き起こ
す結果となった。
On the other hand, as a comparative example, in a 90 ton electric arc furnace, various scraps and oxide raw materials were melted, and the target components were Cr: 18%, C: 3.5% and S.
i: 0.25% of hot metal for stainless steel was melted for 3 charges (charge No. 4 to 6). However, as in the case of the embodiment, the low Si operation by changing the raw material composition improves the efficiency of hot metal Si consumption. Was needed. During the dissolution and after the raw materials were dropped, CaO as a desulfurizing agent was intermittently supplied into the furnace to adjust the basicity. After adjusting the metal components, a slag sample was collected and analyzed immediately before tapping, and as a result, the basicity was 1.8 to 1.6. next,
The iron / slag was tapped into a dedicated ladle, and the inside of the ladle was filled with Ar gas in advance, and then gas agitation by the immersion lance was started. The amount of seal gas (Ar) supplied to the ladle during stirring was intentionally reduced, and the oxygen concentration in the ladle atmosphere was measured by a solid-state oxygen sensor.
Adjusted to ~ 12%. In Charge Nos. 4 and 5, [S] after gas stirring was 62 ppm and 60 ppm, respectively, and the decrease range was smaller than that of [S] before tapping. Further, the Si efficiency was as low as 20 to 21%. This is because the desulfurization rate is reduced due to the low hot metal Si,
It is considered that desulfurization did not proceed with stirring for 10 minutes. Therefore, next, with charge No. 6, the stirring time is 2
It was extended to 0 minutes. The slag basicity before tapping is 1.60,
Metal [S] was 82 ppm. However, due to the high oxygen concentration atmosphere, the Si efficiency was lowered to 19%, and the metal [S] after stirring was 85 ppm, which was the result of re-sulfurization. As described above, in the comparative example, since the amount of ineffective consumption of Si is large, when the temperature compensation after the next converter process is taken into consideration, the hot metal “Si” becomes insufficient, and eventually, it is necessary to add the Si alloy immediately before the converter operation. Resulting in increased costs.

【0015】 [0015]

【0016】[0016]

【発明の効果】以上に説明したように、本発明方法によ
ると、攪拌時の取鍋内雰囲気を調整することにより、溶
銑中のSiの還元反応に対する消費効率を高めることに
よって、スラグ中のCrの回収メリットが得られると同
時に、脱硫反応を促進することができ、短時間での攪拌
処理で目標とする脱硫を達成することが可能となる。出
銑後のこれら非酸化性雰囲気での攪拌によって本来スラ
グが有する精錬能を十分に発揮させることにより、従来
必要とされていたレベルよりも低い塩基度で操業を行っ
ても、目標とする脱硫作用を達成することができる。こ
のため、石灰原単位を低減できる同時に、スラグ量を低
減でき、電力原単位も低減できる。さらには、このため
長時間の攪拌時間を必要とせず、その間の温度低下も最
小限に抑えることができる。このように、本発明は、電
気炉によるステンレス鋼の製造方法におけるコスト低減
を可能にし、利用価値の高い酸化物原料を有効に使用し
て、資源の有効利用、環境保護の立場からも産業発展に
貢献することができる。
As described above, according to the method of the present invention, by adjusting the atmosphere in the ladle at the time of stirring, the efficiency of consumption of Si in the hot metal for the reduction reaction is improved, and the Cr content in the slag is increased. At the same time, the desulfurization reaction can be promoted and the target desulfurization can be achieved by the stirring process in a short time. Even after operating at a basicity lower than the level conventionally required, the target desulfurization can be achieved by fully exerting the refining ability of the slag by stirring in these non-oxidizing atmospheres after tapping. The action can be achieved. Therefore, the lime basic unit can be reduced, at the same time, the slag amount can be reduced, and the electric power basic unit can be reduced. Furthermore, for this reason, a long stirring time is not required, and the temperature decrease during that time can be suppressed to a minimum. As described above, the present invention enables cost reduction in the manufacturing method of stainless steel by an electric furnace, effectively uses an oxide raw material having a high utility value, effectively utilizes resources, and industrially develops from the standpoint of environmental protection. Can contribute to.

【図面の簡単な説明】[Brief description of drawings]

【図1】 従来法による出銑後の塩基度と[S]及び電
力原単位の関係
Fig. 1 Relationship between basicity after tapping and [S] and electric power consumption by conventional method

【図2】 出銑前塩基度と出銑後[S]及び攪拌後の
[S]関係
[Fig. 2] Relation between basicity before tapping, [S] after tapping, and [S] after stirring

【図3】 取鍋内雰囲気の酸素濃度が攪拌後の[S]、
Si効率に及ぼす影響
[Fig. 3] Oxygen concentration of the atmosphere in the ladle is [S] after stirring,
Effect on Si efficiency

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 電気アーク炉でステンレス溶銑を溶解
し、精練後取鍋にスラグと共に出銑して、取鍋内精練を
行う方法において、電気アーク炉における精練を低塩基
度スラグにより行い、取鍋内の精練を非酸化性雰囲気条
件下で不活性ガス攪拌して行うことを特徴とするステン
レス鋼用アーク炉溶銑の脱硫方法。
1. A method of melting stainless hot metal in an electric arc furnace, refining it with slag in a ladle after refining, and refining in a ladle, wherein refining in an electric arc furnace is performed with low basicity slag. A method for desulfurizing molten metal in an arc furnace for stainless steel, characterized in that refining in a pan is carried out by stirring an inert gas under non-oxidizing atmosphere conditions.
【請求項2】 溶銑成分として、[Cr]=10〜35
%、[Si]=0.1〜1.2%、[C]=2.0〜
5.0%、及び出銑前のスラグ塩基度(CaO/SiO
2 )が1.3〜2.2、であって、取鍋内雰囲気の酸素
濃度を10%以下に保持することを特徴とする請求項1
記載のステンレス鋼用アーク炉溶銑の脱硫方法。
2. As a hot metal component, [Cr] = 10 to 35
%, [Si] = 0.1 to 1.2%, [C] = 2.0 to
5.0%, and slag basicity (CaO / SiO 2 before tapping)
2 ) is 1.3 to 2.2, and the oxygen concentration of the atmosphere in the ladle is maintained at 10% or less.
A method for desulfurizing the hot metal of the arc furnace for stainless steel described.
JP07944596A 1996-03-07 1996-03-07 Method for desulfurizing hot metal of electric arc furnace for stainless steel Expired - Fee Related JP3462659B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07944596A JP3462659B2 (en) 1996-03-07 1996-03-07 Method for desulfurizing hot metal of electric arc furnace for stainless steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07944596A JP3462659B2 (en) 1996-03-07 1996-03-07 Method for desulfurizing hot metal of electric arc furnace for stainless steel

Publications (2)

Publication Number Publication Date
JPH09241716A true JPH09241716A (en) 1997-09-16
JP3462659B2 JP3462659B2 (en) 2003-11-05

Family

ID=13690088

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07944596A Expired - Fee Related JP3462659B2 (en) 1996-03-07 1996-03-07 Method for desulfurizing hot metal of electric arc furnace for stainless steel

Country Status (1)

Country Link
JP (1) JP3462659B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100402018B1 (en) * 1999-12-01 2003-10-17 주식회사 포스코 Method For Manufacturing Austenite Stainless Steel
JP2008190015A (en) * 2007-02-07 2008-08-21 Nisshin Steel Co Ltd Method for producing molten stainless steel

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100402018B1 (en) * 1999-12-01 2003-10-17 주식회사 포스코 Method For Manufacturing Austenite Stainless Steel
JP2008190015A (en) * 2007-02-07 2008-08-21 Nisshin Steel Co Ltd Method for producing molten stainless steel

Also Published As

Publication number Publication date
JP3462659B2 (en) 2003-11-05

Similar Documents

Publication Publication Date Title
JP4195106B2 (en) Alloy steel manufacturing method and alloy steel manufacturing plant
JP5625654B2 (en) Hot metal production method
CA2133918C (en) Method and device for producing stainless steel
RU2044061C1 (en) Composition burden for steel melting
JP3462659B2 (en) Method for desulfurizing hot metal of electric arc furnace for stainless steel
JPS6250545B2 (en)
JP2001234226A (en) Method for treating refining slag for molten stainless steel
JP3158912B2 (en) Stainless steel refining method
JP3765092B2 (en) Ladle stirring method for electric arc furnace hot metal
JP3804143B2 (en) Atmosphere control method during ladle stirring
JP3717625B2 (en) Electric arc furnace slag reduction method
JPH09256024A (en) Method for preventing powdering of slag in electric arc furnace
SU1027227A1 (en) Method for making steel
SU1071645A1 (en) Method for making steel
US5156671A (en) Method for dephosphorization of chromium-containing molten pig iron with reduced oxidation loss of chromium
JP3297997B2 (en) Hot metal removal method
SU1754784A1 (en) Charge for steelmaking in open hearth furnace and method of charging
RU2153023C1 (en) Method of processing raw materials containing manganese with recovery of metals
SU1092189A1 (en) Method for making stainless steel
RU2102496C1 (en) Method of steel melting in basic open-hearth furnace
RU2201970C2 (en) Method of making steel in high-power electric arc furnaces
JP2001032009A (en) Method for refining molten steel containing chromium
RU2197538C2 (en) Method of making bearing steel
SU1086019A1 (en) Method of smelting manganese austenitic steel
SU821501A1 (en) Method of steel production

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030805

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080815

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090815

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090815

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100815

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100815

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110815

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120815

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees