JPH09256024A - Method for preventing powdering of slag in electric arc furnace - Google Patents

Method for preventing powdering of slag in electric arc furnace

Info

Publication number
JPH09256024A
JPH09256024A JP8093268A JP9326896A JPH09256024A JP H09256024 A JPH09256024 A JP H09256024A JP 8093268 A JP8093268 A JP 8093268A JP 9326896 A JP9326896 A JP 9326896A JP H09256024 A JPH09256024 A JP H09256024A
Authority
JP
Japan
Prior art keywords
slag
ladle
basicity
molten iron
hot metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8093268A
Other languages
Japanese (ja)
Other versions
JP3462660B2 (en
Inventor
Kenichi Katayama
賢一 片山
Takashi Yamauchi
隆 山内
Tetsukazu Terakawa
哲一 寺川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP09326896A priority Critical patent/JP3462660B2/en
Publication of JPH09256024A publication Critical patent/JPH09256024A/en
Application granted granted Critical
Publication of JP3462660B2 publication Critical patent/JP3462660B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Abstract

PROBLEM TO BE SOLVED: To prevent the powdering of molten iron slag for stainless steel in an electric arc furnace without lowering desulfurizing facility. SOLUTION: In a method in which, after melting raw material and slag of the molten iron for stainless steel in the electric arc furnace, the molten iron and slag are tapped into a ladle, and after executing the stirring in the ladle, the slag is removed, the basicity of the slag before tapping the molten iron and slag is made to 1.4-2.2 and Si concn. in the molten iron is adjusted in the range from 0.02 CR% to 0.07 CR% according to the chromium oxide concn. (CR%) in the slag, and the slag and the molten iron are stirred under controlling the oxygen atmosphere in the ladle, and the basicity is lowered by oxidizing Si in the molten iron with the chromium oxide in the slag. In this case, B2 O3 containing material as a reforming agent is added in the ratio of<= 0.45wt% in terms of B2 O3 per the slag quantity. The ioorking environment for the slag treatment is improved and the slag treatment cost is reduced, and also, the reformed slag can be used as a resorce.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電気アーク炉において
ステンレス鋼溶銑を溶製する際に生成するスラグの粉化
防止に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to preventing slag from being pulverized when smelting stainless steel hot metal in an electric arc furnace.

【0002】[0002]

【従来の技術】電気アーク炉による製鋼では、原料とし
て各種のスクラップが用いられることが一般であるが、
これに加えて近年では製鋼ダストやスラッジあるいは鉱
石等の酸化物原料も多く使用される。電気アーク炉によ
ってステンレス溶銑を溶製する場合も、製鋼所内副産物
の再資源化と共に有用メタルの回収による原料原単位低
減のため、このような酸化物の使用が行われている。こ
のことは、溶解の際に生成するスラグ量の増加を来し、
溶解のための電力費の上昇を招いたり、スラグの成分調
整を困難にする。また、これらの原料を用いた操業にお
いても、原料溶落ち後、生産性向上や電力費低減のた
め、精錬及び成分・温度調整過程を可能な限り短時間で
終了し、出銑して次工程に搬送することが望まれる。こ
のため、炉内で生成したスラグもしくは酸化物成分には
溶け残って未反応であったり、不均一なままで十分に精
錬反応が行われていない場合がある。これらの精錬過程
においては、原料から混入するSに対処するため、脱硫
作用が重要であるが、このような事情からスラグの脱硫
能を確保するため、過剰のCaOを投入して対処するこ
とが行われている。その結果、スラグの量がますます増
加する上、その塩基度(CaO/SiO2 )は高くなる
傾向にあり、2.5を越えるような高塩基度となること
がしばしばである。また、普通鋼の分野においては、特
に還元性スラグはその冷却時に粉化しやすいことが言わ
れているが、ステンレス鋼の分野においても酸化物原料
の使用が増加するにつれ、有用成分の還元回収のため、
電気炉内の操業末期の雰囲気を還元性に保つことが必要
であり、このような事情からステンレス溶銑スラグは高
塩基度で還元性雰囲気の下で生成され、その粉化現象は
避けられない。このようなスラグは、通常スラグ中にロ
スしたメタルを回収したり、フラックスとして再利用す
るための処理工程に送られる。しかしながら、上記した
ようにこれらのスラグは粉化しやすく、処理中に風化崩
壊して、粉状スラグが多量に発生する。このため、取扱
いが困難であり、スラグ処理場などの作業環境を著しく
悪化させるものであり、粉状であるため道路用バラスや
建設用骨材などにも使えず、再資源化の途もないため、
その量が多いことと相俟つてその後の処分に莫大な費用
を投じている。
2. Description of the Related Art In steelmaking using an electric arc furnace, various scraps are generally used as raw materials.
In addition to this, in recent years, many oxide raw materials such as steelmaking dust, sludge, ore are also used. Even when the molten iron is smelted in an electric arc furnace, such oxides are used in order to recycle the by-products in the steel mill and to reduce the raw material consumption by recovering useful metals. This leads to an increase in the amount of slag produced during melting,
This causes an increase in power cost for melting and makes it difficult to adjust the slag composition. Even in operations using these raw materials, after the raw materials have burned out, the refining and component / temperature adjustment processes are completed in the shortest possible time in order to improve productivity and reduce electric power costs, and then the tapping process is carried out. It is desirable to transport to. Therefore, the slag or oxide component generated in the furnace may remain unreacted and may remain ununiform, or the refining reaction may not be carried out sufficiently while being non-uniform. In these refining processes, desulfurization action is important in order to deal with S mixed from the raw material, but in order to secure desulfurization ability of slag from such a situation, it is necessary to add excess CaO to deal with it. Has been done. As a result, the amount of slag increases more and more, and its basicity (CaO / SiO 2 ) tends to be high, and the basicity often exceeds 2.5. Further, in the field of ordinary steel, it is said that reducing slag is particularly likely to be pulverized during cooling, but also in the field of stainless steel, as the use of oxide raw materials increases, it is possible to reduce and recover useful components. For,
It is necessary to maintain the reducing atmosphere in the final stage of operation in the electric furnace. For this reason, stainless hot metal slag is generated in a reducing atmosphere with high basicity, and its pulverization phenomenon is unavoidable. Such slag is usually sent to a processing step for recovering the metal lost in the slag and reusing it as a flux. However, as described above, these slags are easily pulverized and are weathered and disintegrated during the treatment to generate a large amount of pulverized slag. For this reason, it is difficult to handle, and it significantly deteriorates the working environment of the slag processing plant, etc. Since it is powdery, it cannot be used for road ballasts, construction aggregates, etc., and there is no way to recycle it. For,
Combined with the large amount, they are spending enormous costs on subsequent disposal.

【0003】製鋼スラグのこのような性質は、スラグ中
の主成分であるCaO及びSiO2が2CaO・SiO2
の結晶の形で存在し、その冷却時の結晶転移の際に大
きな体積変化によって、粉末状態にまで崩壊するためで
あるが、これに対して、ほう酸塩系安定化剤(改質剤)
をスラグに添加して、2CaO・SiO2 結晶構造を相
転移に際して大きな体積変化を伴わない型にして、スラ
グの粉化を防止することが提案されている(川崎製鉄技
報Vol.18、No.1(1986)、p.20−2
4、特開昭64−37444号公報、特開昭63−79
743号公報、特開平1−259114号公報、特開平
3−23243号公報)。しかしながら、高塩基度かつ
還元性のステンレス溶銑スラグに対しては、改質剤のB
23 を多量に添加する必要があり、含B23 は鉱物
資源として高価であるため、その使用量の増加は不経済
である。また、本発明者らは種々研究した結果、高塩基
度かつ還元性のステンレス溶銑スラグに対して、B2
3 の添加による粉化防止効果は認められるものの、スラ
グ中への均一な溶解分散作用が厳しく求められ、現実的
には、その添加条件を満たしてその効果を発揮すること
は困難であった。また、このようなスラグについて、塩
基度が高いほど添加による粉化防止効果は低いことが明
らかとなった。一方、このようなスラグの粉化現象は、
前記のようにスラグ中の2CaO・SiO2 結晶による
ものであるから、スラグ組成中のSiO2 成分の添加量
を増してやればよいが、SiO2 の添加により塩基度を
低下させることは、高融点のSiO2 原料の溶解に加熱
エネルギーを必要として不経済であるのみでなく、この
ような塩基度の低下はスラグの脱硫能を低下させること
となり、前記のような精錬条件において、十分な脱硫反
応を行うことは望めない。
Such a property of the steelmaking slag is that CaO and SiO 2 which are the main components in the slag are 2CaO.SiO 2
It exists in the form of crystals, and because it undergoes a large volume change during the crystal transition during cooling, it collapses to a powder state. On the other hand, it is a borate-based stabilizer (modifier).
Is added to the slag to form a 2CaO.SiO 2 crystal structure that does not cause a large volume change at the phase transition to prevent slag pulverization (Kawasaki Steel Technical Report Vol. 18, No. 18). .1 (1986), p.20-2.
4, JP-A-64-37444, JP-A-63-79
743, JP-A-1-259114, and JP-A-3-23243). However, for high basicity and reducing stainless hot metal slag, the modifier B
Since it is necessary to add a large amount of 2 O 3, and B 2 O 3 containing is expensive as a mineral resource, it is uneconomical to increase the amount used. Further, as a result of various studies by the present inventors, B 2 O was added to stainless steel hot slag having high basicity and reducing property.
Although the powdering prevention effect by the addition of 3 is recognized, a uniform dissolution and dispersion action in the slag is strictly required, and it is practically difficult to satisfy the addition conditions and exert the effect. Further, it was revealed that the higher the basicity of such slag, the lower the dusting preventing effect by addition. On the other hand, such a slag dusting phenomenon is
Since it is due to the 2CaO.SiO 2 crystals in the slag as described above, it is sufficient to increase the amount of addition of the SiO 2 component in the slag composition. However, decreasing the basicity by adding SiO 2 has a high melting point. Not only is it uneconomical to heat the SiO 2 raw material to require heating energy, but such a decrease in basicity reduces the desulfurization ability of the slag, and under the above refining conditions, a sufficient desulfurization reaction is required. Can't hope to do.

【0004】[0004]

【発明が解決しようとする課題】本発明は、このような
問題を解消すべく案出されたものであり、電気アーク炉
におけるスラグの脱硫能を維持すると共に、スラグの粉
化を防止することを目的とする。また、使用するB2
3 の添加量を最小限として有効に作用させ、原料単位を
低下させることを目的とする。
DISCLOSURE OF THE INVENTION The present invention has been devised to solve such problems, and to maintain the desulfurization ability of slag in an electric arc furnace and prevent the slag from being pulverized. With the goal. Also used B 2 O
The purpose is to reduce the amount of 3 added to a minimum and make it work effectively, and to reduce the raw material unit.

【0005】[0005]

【課題を解決するための手段】本発明は、その目的を達
成するため、電気アーク炉でステンレス溶銑用の原料及
びスラグを溶解後、取鍋に出銑/出滓し、取鍋内攪拌を
行った後に除滓する方法において、スラグ中に含B2
3 物質をスラグ量に対してB23 換算で、0.45重
量%以下の割合で添加すると共に、出銑/出滓前のスラ
グ塩基度を1.4〜2.2とし、溶銑中のSi濃度をス
ラグ中酸化クロム濃度(CR%)に応じて、[Si]=
0.02・CR〜0.07・CR%の範囲として、取鍋
中で酸素雰囲気の制御の下でスラグと溶銑の攪拌を行
い、スラグ中の酸化クロムによる溶銑Siの酸化によっ
て塩基度を低下させることを特徴とする。
Means for Solving the Problems In order to achieve the object, the present invention melts raw materials for stainless hot metal and slag in an electric arc furnace, and then taps / slags to a ladle and agitates in the ladle. In the method of removing slag after the operation, the slag containing B 2 O
The three substances were added in a ratio of 0.45% by weight or less in terms of B 2 O 3 with respect to the amount of slag, and the slag basicity before tapping / slag was set to 1.4 to 2.2, and in the hot metal The Si concentration of [Si] = [Si] =, depending on the chromium oxide concentration (CR%) in the slag.
The slag and hot metal are agitated under the control of oxygen atmosphere in the ladle within the range of 0.02 · CR to 0.07 · CR%, and the basicity is lowered by the oxidation of the hot metal Si by the chromium oxide in the slag. It is characterized by

【0006】電気アーク炉においてステンレス溶銑を溶
製する際に生成するスラグは、前記したように高塩基
度、還元性であるが、このような高塩基度スラグは脱硫
能は満足できてもそのまま出銑/除滓すると、その冷却
時に前記したような粉化現象が生じ、問題となる。塩基
度の粉化現象に及ぼす影響はこれまで種々研究されてい
るが、一般に塩基度が高くなるにつれて粉化現象が著し
くなる。一方で、塩基度が低下すると、肝心の脱硫能の
低下を来し、溶銑は使用に堪えないものとなる。本発明
者らは、これに対して出銑前の溶銑[Si]とスラグ塩
基度を調整した後、取鍋に出銑し、取鍋中で雰囲気中の
酸素を制御した条件下で浸漬ランスなどによりガス攪拌
を行うことにより、出銑前の上記スラグ塩基度を比較的
低くしても脱硫効果を十分に発揮できることを見い出し
た。
[0006] The slag produced during the production of molten stainless steel in an electric arc furnace has high basicity and reducibility as described above, but even if such high basicity slag can satisfy the desulfurization ability, it remains as it is. When tapping / slagging, the pulverization phenomenon as described above occurs during cooling, which is a problem. Although various studies have been conducted on the influence of basicity on the pulverization phenomenon, generally, the pulverization phenomenon becomes more remarkable as the basicity increases. On the other hand, when the basicity is lowered, the desulfurization ability of the core is lowered, and the hot metal becomes unusable. On the other hand, the present inventors adjusted the hot metal [Si] and the slag basicity before tapping, then tapped it in a ladle and immersed it in a ladle under the condition that controlled the oxygen in the atmosphere. It has been found that by performing gas agitation by, for example, the desulfurization effect can be sufficiently exhibited even if the slag basicity before tapping is relatively low.

【0007】この取鍋内の精錬反応においては、溶銑
[Si]がスラグ中の酸化クロムを還元し、自らは酸化
されてSiO2 源となることから、最終過程の除滓時に
おけるスラグ塩基度は更に低下することとなる。また、
このことは、前述したようにスラグ塩基度が高い場合に
は粉化防止に十分な効果を発揮できないB23 の安定
剤としての効果を増進することを意味する。したがっ
て、これらの効果が相俟つて、スラグの粉化防止に著し
い効果を発揮する。
In the refining reaction in the ladle, the hot metal [Si] reduces the chromium oxide in the slag and is itself oxidized to become a SiO 2 source. Therefore, the slag basicity at the time of slag removal in the final process. Will be further reduced. Also,
This means that, as described above, when the slag basicity is high, the effect as a stabilizer of B 2 O 3 that cannot exhibit sufficient effect for preventing pulverization is enhanced. Therefore, these effects are combined, and a remarkable effect is exhibited in preventing slag dusting.

【0008】これら取鍋内精錬においては、雰囲気中の
酸素濃度が上昇すると攪拌中に[Si]が酸素によって
酸化消費され、スラグ中のCr23 の還元反応に利用
される割合が低くなる。本発明者らの検討結果による
と、雰囲気の酸素濃度と還元反応速度は関連があり、酸
素濃度の上昇で還元反応速度が著しく低下することがわ
かっている。これは、目標還元率を得るためには、長時
間の攪拌が必要になって来ることを意味するが、長時間
の攪拌を行うと、溶銑の大幅な温度低下を来して、その
デメリットが生じてくる。また、酸化雰囲気での長時間
の攪拌によってスラグ中酸化物の還元反応以外に[S
i]が消費損失することは、Siコストの上昇を意味す
る。ここで、溶銑とスラグとを攪拌することによって、
その界面で脱硫反応が起きるが、この反応はスラグ中の
酸化クロムを主とする酸性成分の還元反応と関連して脱
硫反応は進行する。すなわち、反応系の酸素ポテンシャ
ルである酸化クロムを還元し、濃度を低下させることは
脱硫の上で重要である。したがって、先に述べたように
低酸素濃度の雰囲気下で攪拌することが効果的となる。
脱硫能を上げるための手段としては、CaOを増やし
て、塩基度そのものを上げるという方法もあるが、本発
明の目的に反することから、むしろ、塩基度は下げて
も、酸化クロム濃度を低下させた効果を発揮させ、目的
の脱硫を達成しようとする狙いである。クロム酸化物の
還元によるCr回収メリット、及び塩基度低下の粉化低
減効果と、他方、Si消費及び温度低下のデメリットを
総合的に検討して、最大限許容できる攪拌時間で目標の
クロム酸化物の還元を達成するに必要なSi効率(スラ
グ中酸化物の還元に使用されたSi量/総Si消費量)
が算出されるが、雰囲気の酸素濃度とクロム酸化物の還
元(攪拌後のスラグ中酸化クロム濃度)及びSi効率の
関係から、取鍋内の雰囲気中酸素濃度を10VOL.%以下
にすることが望ましい。
In these ladle refining processes, when the oxygen concentration in the atmosphere rises, [Si] is oxidized and consumed by oxygen during stirring, and the ratio used for the reduction reaction of Cr 2 O 3 in the slag decreases. . According to the results of studies by the present inventors, it is known that the oxygen concentration in the atmosphere and the reduction reaction rate are related to each other, and that the reduction reaction rate remarkably decreases as the oxygen concentration increases. This means that stirring for a long time is required to obtain the target reduction rate, but if stirring for a long time, the temperature of the hot metal will drop significantly, which is a disadvantage. Will occur. In addition to the reduction reaction of oxides in slag by stirring for a long time in an oxidizing atmosphere, [S
The consumption loss of i] means an increase in Si cost. Here, by stirring the hot metal and the slag,
A desulfurization reaction occurs at the interface, and the desulfurization reaction proceeds in association with the reduction reaction of an acidic component mainly containing chromium oxide in the slag. That is, it is important for desulfurization to reduce the concentration of chromium oxide, which is the oxygen potential of the reaction system, to reduce the concentration. Therefore, it is effective to stir in an atmosphere of low oxygen concentration as described above.
As a means for increasing the desulfurization ability, there is a method of increasing CaO to increase the basicity itself. However, this is contrary to the object of the present invention, so rather, even if the basicity is decreased, the chromium oxide concentration is decreased. The purpose is to achieve the desired desulfurization by exerting the above effect. By comprehensively examining the merit of recovering Cr by reduction of chromium oxide and the effect of reducing powdering by lowering basicity, and the demerit of lowering Si consumption and temperature, the target chromium oxide can be obtained with the maximum allowable stirring time. Efficiency required to achieve reduction of carbon (amount of Si used for reduction of oxides in slag / total Si consumption)
However, due to the relationship between the oxygen concentration in the atmosphere, the reduction of chromium oxide (chromium oxide concentration in slag after stirring) and the Si efficiency, it is possible to keep the oxygen concentration in the ladle atmosphere at 10 VOL.% Or less. desirable.

【0009】[0009]

【発明の実施の形態】本発明に使用する電気アーク炉
は、炭素または黒鉛電極を使用する鉄、鋼あるいは非鉄
金属の溶解用アーク炉でよく、交流、直流あるいは単極
式、多極式の形式を問わない。電気アーク炉においてス
テンレス鋼用溶銑を溶製する際に生成するスラグは、原
料、副原料に前述したように各種のスクラップを始め、
工場内で産出する各種の精錬ダストのような廃棄物をも
含む多種類のものを使用するため、その成分も多様であ
って、CaOを35〜56%、SiO2 を20〜40
%、CaF2 を2.0〜12%含み、その他、MgO、
Al23 、Cr23 、MnOなどを含んでいる。
BEST MODE FOR CARRYING OUT THE INVENTION The electric arc furnace used in the present invention may be an arc furnace for melting iron, steel or non-ferrous metal using a carbon or graphite electrode, and may be of an AC, DC or monopolar type, or a multipolar type. It doesn't matter the format. The slag generated when the molten iron for stainless steel is smelted in an electric arc furnace is used as a raw material and various raw materials such as various scraps as described above.
Since various kinds of wastes such as various kinds of smelting dust produced in the factory are used, the components are various, and CaO is 35 to 56% and SiO 2 is 20 to 40%.
%, Wherein the CaF 2 2.0 to 12%, other, MgO,
It contains Al 2 O 3 , Cr 2 O 3 , MnO and the like.

【0010】スラグ中の酸化クロム源としてはクロム鉱
石、製鋼ダスト、熱延スケール、スラッジなどが挙げら
れる。含クロム酸化物原料は、電気炉操業において通電
開始前や通電中に投入される。本発明においては、この
酸化クロムを[Si]の酸化剤として利用し、塩基度を
低下させると同時に、酸化クロムの還元により、クロム
回収のメリットも期待できる。Si源としては、原料の
スクラップ、フェロアロイ中のSiやSi合金などがあ
るが、調整用としてはフェロシリコンなどの各種Si合
金が適している。本発明では、出銑前のスラグ塩基度及
び溶銑[Si]について調整した後取鍋に出銑し、酸素
濃度を制御した雰囲気中で浸漬ランスによるガス攪拌を
行うことによって、効率的な酸化クロムの還元と同時に
塩基度の低下によるスラグの粉化量の低減が可能にな
る。酸素濃度を制御するために、取鍋には蓋を設置し、
攪拌開始時に、Arなどのシールガスを取鍋内に導入
し、エアーと置換しておいて、ガス攪拌を開始すること
が望ましい。また、シールガスを攪拌中も取鍋内に導入
し続けることによって、一層効率的に酸化クロムの還元
ができる。不活性ガスとしては、例えば窒素、アルゴン
などが使用できる。経済性の面では窒素を使用するとよ
いが、鋼種によっては窒素ピックアップが有害である場
合があり、そのような場合はアルゴンを使用する。ま
た、不活性ガスにH2 、CO2 等の還元性ガスを混合し
てもよい。不活性ガスは、浸漬ランスを用いてメタル浴
中に吹き込む方法が、吹き込む流量、浸漬深さによって
攪拌の強度を自由に設定できるため望ましい。ランスか
ら吹き込むガス流量としては、200〜1500NL/
分、ランスの浸漬深さとしては50〜200cmである
が、スラグ量(スラグ層厚み)、溶銑量、目標[S]な
どによって、最適な条件を設定する。また、ランス形
状、ノズル径、ノズル数を変更することによって、最適
なスラグ/メタル混合状態を得ることができる。その
他、鍋底部に設けたノズルやポーラスプラグからのガス
吹き込みや、機械的攪拌を行ってもよい。
Examples of the chromium oxide source in the slag include chromium ore, steelmaking dust, hot rolled scale and sludge. The chromium-containing oxide raw material is introduced before or during the start of energization in the electric furnace operation. In the present invention, this chromium oxide is used as an oxidizing agent of [Si] to reduce the basicity, and at the same time, the merit of chromium recovery can be expected by reducing the chromium oxide. As the Si source, there are scraps of raw materials, Si and Si alloys in ferroalloy, and various Si alloys such as ferrosilicon are suitable for adjustment. In the present invention, after adjusting the slag basicity and hot metal [Si] before tapping, tapping into a ladle and performing gas stirring with an immersion lance in an atmosphere with controlled oxygen concentration, an efficient chromium oxide is obtained. It is possible to reduce the amount of slag powdered due to the decrease in basicity simultaneously with the reduction of slag. In order to control the oxygen concentration, the ladle has a lid,
At the start of stirring, it is desirable to introduce a seal gas such as Ar into the ladle and replace it with air before starting the gas stirring. Further, by continuously introducing the seal gas into the ladle even during stirring, the chromium oxide can be reduced more efficiently. As the inert gas, for example, nitrogen or argon can be used. From the economical aspect, it is preferable to use nitrogen, but depending on the steel type, nitrogen pickup may be harmful, and in such a case, argon is used. Further, a reducing gas such as H 2 or CO 2 may be mixed with the inert gas. A method of blowing an inert gas into a metal bath using an immersion lance is desirable because the strength of stirring can be freely set depending on the flow rate and the immersion depth. The flow rate of gas blown from the lance is 200 to 1500 NL /
Although the immersion depth of the lance is 50 to 200 cm, optimum conditions are set depending on the amount of slag (slag layer thickness), the amount of hot metal, the target [S], and the like. Further, by changing the lance shape, the nozzle diameter, and the number of nozzles, the optimum slag / metal mixed state can be obtained. In addition, gas may be blown from a nozzle or a porous plug provided at the bottom of the pot, or mechanical stirring may be performed.

【0011】このように、本発明では、出銑前の溶銑
[Si]及びスラグ塩基度の範囲、取鍋内攪拌の条件を
適正化することによってスラグ中の酸化クロムによる溶
銑Siの酸化によって、取鍋からの出銑前の塩基度は更
に低下し、粉化作用が軽減されたスラグとなる。このよ
うなスラグの条件とすることで、これにスラグ改質剤を
少量添加するだけでスラグの粉化防止が可能になる。す
なわち、スラグを塊状化するために、従来用いられてい
るようなB23 を含む改質剤をスラグに添加する。高
価な改質剤を少量で効果的に作用させるためには、添加
方法が重要である。本発明では、出銑/出滓時の取鍋内
に、望ましくは出銑流に乗せて投入することが望まし
い。また、あらかじめ出銑/出滓前の電気炉内のスラグ
に投入してもよい。この時、改質剤をスラグ量に対して
23換算で、0.45%以下の割合で添加する。従
来、ステンレス鋼の還元性スラグに対しては少なくとも
0.5%以上は必要であったものが、本発明ではB2
3添加前後の各種条件を適正化し、出銑前スラグの塩基
度を取鍋攪拌によって更に低下することにより、また、
攪拌によるのスラグ中へのB23 の均一分散により、
従来よりも少量の添加量でスラグの完全な塊状化が可能
になる。
As described above, in the present invention, the range of the hot metal [Si] and slag basicity before tapping and the conditions of stirring in the ladle are optimized to oxidize the hot metal Si by the chromium oxide in the slag. The basicity before tapping from the ladle is further reduced, and the slag has a reduced powdering action. By setting such slag conditions, it becomes possible to prevent the slag from being pulverized by adding a small amount of a slag modifier thereto. That is, in order to agglomerate the slag, a modifier containing B 2 O 3 as conventionally used is added to the slag. The addition method is important in order to effectively operate the expensive modifier in a small amount. In the present invention, it is desirable to put in the ladle at the time of tapping / slagging, preferably on the tapping flow. Further, it may be charged in advance into the slag in the electric furnace before tapping / slagging. At this time, the modifier is added at a ratio of 0.45% or less in terms of B 2 O 3 with respect to the amount of slag. Conventionally, at least 0.5% or more was required for the reducing slag of stainless steel, but in the present invention, B 2 O is used.
3 By optimizing various conditions before and after addition and further reducing the basicity of the slag before tapping by stirring the pan,
Due to the uniform dispersion of B 2 O 3 in the slag by stirring,
It is possible to completely agglomerate the slag with a smaller addition amount than before.

【0012】また、Bのピックアップが問題となる場合
には取鍋攪拌後の除滓時のスラグ鍋に投入する。溶銑が
存在しないため、改質剤の添加後、温度が低下しがちで
改質剤のスラグ中への均一な溶解が困難となる場合があ
る。そのような場合には、スラグ鍋への改質剤の投入と
同時に、速やかに攪拌を行うことが望ましいが、雰囲気
についての格別の制限はないから、攪拌は不活性ガスや
エアー、場合によっては酸素ガスなどを用いて行う。そ
の他適当な材質のパドルにより機械的に攪拌してもよ
い。含B23 改質剤としては、コレマナイト、硼砂等
のB含有鉱物を適度に粉砕し、粒度調整したもの、また
は、これらを適度に選鉱濃縮処理を行ったものなどを用
いてもよい。あるいは、既存の市販品のように、人工的
に物性値を調整したB23 含有スラグを作成し、粒度
調整したものを用いてもよい。また、その投入方法は、
最小単位に袋に梱包して投入するか、または、粉体専用
のシューターを用いて、そのまま粉粒状で投入してもよ
い。あるいは、添加時の均一溶解、攪拌効果を狙って粉
体吹き込み装置を用いて、インジェクションすることも
望ましい。
When the pickup of B becomes a problem, the B is put into the slag pan at the time of removing the slag after stirring the ladle. Since there is no hot metal, the temperature tends to decrease after the addition of the modifier, which may make it difficult to uniformly dissolve the modifier in the slag. In such a case, it is desirable to stir promptly as soon as the modifier is added to the slag pan, but there is no particular restriction on the atmosphere, so stir the inert gas or air, depending on the case. It is performed using oxygen gas or the like. You may mechanically stir with a paddle of other suitable material. As the B 2 O 3 -containing modifier, a B-containing mineral such as colemanite or borax, which has been appropriately pulverized and the particle size thereof has been adjusted, or those which have been appropriately subjected to beneficiation and concentration treatment may be used. Alternatively, it is also possible to use a B 2 O 3 -containing slag whose physical properties are artificially adjusted and whose particle size is adjusted, as in the case of existing commercial products. Also, the input method is
It may be packed into a minimum unit in a bag and then charged, or may be charged as a powder by using a shooter exclusively for powder. Alternatively, it is also desirable to inject using a powder blowing device aiming at uniform dissolution and stirring effect at the time of addition.

【0013】このように出銑前の溶銑[Si]とスラグ
塩基度を調整した後、取鍋に出銑し、取鍋内の雰囲気酸
素濃度を10VOL.%以下に制御して浸漬ランスによるガ
ス攪拌を行った場合の、これらの出銑前の溶銑[Si]
とスラグ塩基度がスラグの粉化率及び溶銑[S]に及ぼ
す影響を図1、2に示す。 なお、粉化率の定義として
は、スラグ専用の鍋を転倒し、スラグを排出後、任意の
場所数カ所からスラグをサンプリングして、42メッシ
ュの篩を通して篩下の重量割合を粉化率とした。
After adjusting the hot metal [Si] and slag basicity before tapping in this way, tapping is done in a ladle, and the atmospheric oxygen concentration in the ladle is controlled to 10 VOL. Hot metal [Si] before tapping when agitating
The effects of slag basicity and slag on the slag pulverization rate and hot metal [S] are shown in FIGS. In addition, as the definition of the pulverization rate, the pan dedicated to the slag was turned over, the slag was discharged, the slag was sampled from several places at arbitrary places, and the weight ratio under the sieve was passed through a 42-mesh sieve as the powder rate. .

【0014】図1に、溶銑[Si]と粉化率の関係を示
すように、[Si]が0.02・CR%未満であると、
SiO2 源の不足により、塩基度が十分に低下せずにス
ラグの粉化が低減できない。一方、0.07・CR%を
越えると、SiO2 過剰となり塩基度が低下し過ぎて、
脱硫が不十分となるばかりか攪拌後に、例えば[S]の
目標値の130ppm以上に復硫することもある。した
がって、[Si]はスラグ中酸化クロム濃度に応じて、
上記の最適な範囲内とする。
As shown in FIG. 1, which shows the relationship between the hot metal [Si] and the pulverization rate, when [Si] is less than 0.02 · CR%,
Due to the shortage of the SiO 2 source, the basicity does not sufficiently decrease and the slag dusting cannot be reduced. On the other hand, when it exceeds 0.07 · CR%, SiO 2 becomes excessive and the basicity is lowered too much.
In addition to insufficient desulfurization, there is also a case where the material is re-sulfurized to, for example, 130 ppm or more, which is the target value of [S], after stirring. Therefore, [Si] depends on the chromium oxide concentration in the slag,
Within the optimum range above.

【0015】本発明では、出銑前のスラグ塩基度は1.
4〜2.2の範囲とすることが最も効果的である。図2
にスラグ塩基度が粉化率と[S]に及ぼす影響を示した
が、塩基度1.4未満では粉化率は低くなるが、脱硫能
が著しく低下する。逆に塩基度が2.2を越えると、粉
化率が著しく増加し、いずれも望ましくないことが解
る。したがって、出銑/出滓前の溶銑中[Si]濃度
は、スラグ中Cr23 濃度(CR%)に応じて、[S
i]=0.02・CR〜0.07CR%の範囲内とし、
スラグ塩基度(CaO/SiO2 )は1.4〜2.2と
することがステンレス溶銑スラグの脱硫能と粉化防止が
両立する条件であることが解る。ステンレス鋼溶銑を溶
製する場合、クロム源として酸化クロム原料を多量に使
用するほどコスト的に有利となるが、電力費や生産性、
スラグ原単位などの諸条件を考慮すると、最適な範囲が
存在する。出銑前のスラグ中酸化クロム濃度(CR%)
の最適範囲として、5〜20%が望ましく、これを酸化
クロムの使用量の目安とすることができる。以下に具体
的な実施例を示す。
In the present invention, the slag basicity before tapping is 1.
The most effective range is from 4 to 2.2. FIG.
The effect of slag basicity on the pulverization rate and [S] was shown. When the slag basicity is less than 1.4, the pulverization rate is low, but the desulfurization ability is significantly reduced. On the contrary, if the basicity exceeds 2.2, the pulverization rate remarkably increases, which is not desirable. Therefore, the [Si] concentration in the hot metal before tapping / slagging is [S] depending on the Cr 2 O 3 concentration (CR%) in the slag.
i] = 0.02 · CR to within 0.07 CR%,
It can be seen that setting the slag basicity (CaO / SiO 2 ) to 1.4 to 2.2 is a condition for achieving both desulfurization ability and pulverization prevention of the hot metal hot slag. When smelting stainless steel hot metal, the more costly the chromium oxide raw material is used as the chromium source, the more cost effective, but the power cost, productivity,
Considering various conditions such as slag intensity, there is an optimum range. Chromium oxide concentration (CR%) in slag before tapping
The optimum range of 5 to 20% is desirable, and this can be used as a guide for the amount of chromium oxide used. Hereinafter, specific examples will be described.

【0016】実施例 90トン電気アーク炉において、各種スクラップ及び
製鋼ダストなどの含クロム酸化物原料を溶解して、ステ
ンレス鋼用溶銑を溶製した。出銑前の塩基度はCaOを
供給して1.4〜2.2の範囲内に調整し、Si源とし
てフェロシリコンを供給し、スラグ中のCr23 濃度
に応じて、[Si]を調整した。例えば、各チャージに
ついて、CH.No.101ではCR%(Cr23
=11%であったので、[Si]=0.03・CR(=
0.33%)に、CH.No.102では、CR%(C
23 )=13%であったので、[Si]=0.03
・CR(=0.39%)とした。メタル成分の調整、確
認後、出銑直前にサンプルを採取して分析した。次に、
専用の取鍋に出銑/出滓し、浸漬ランスによる10分間
のガス攪拌を行った。攪拌開始前に耐熱レンガを内張り
した専用の蓋を取鍋に設置し、蓋に設けた炉内へのガス
導入管を通じて、Arガスをシールガスとして流し込
み、取鍋内の雰囲気の酸素濃度を10VOL.%以下に低下
させてN2 ガスによる攪拌を行った。攪拌終了後、スラ
グ専用の取鍋に出銑し、溶銑は次工程の転炉へと搬送し
た。スラグ冷却後、スラグ処理場にて取鍋を転倒して固
化したスラグの塊状化の状況を確認した。なお、CH.
No.101〜103では、電気炉において、CaOと
同時に改質剤をB23 換算でスラグ量に対して0.4
%添加した。また、CH.No.104〜106では出
銑/出滓中に、改質剤を専用のシューターを用いて取鍋
に連続的に投入した。用いた改質剤は硼砂を処理して製
造した含B23 物質であり、その添加量はB23
算でスラグ量に対して0.4%とした。また、CH.N
o.107〜108ではスラグ鍋にあらかじめ改質剤を
入れ置きしておいた。改質剤の添加量は、B23 換算
でスラグ量に対して、0.3〜0.45%である。スラ
グ冷却後、スラグ処理場において取鍋を転倒してスラグ
を排出し、塊状化の状況を観察した。その結果を表1に
示すが、いずれも塊状化しており粉化を完全に防止でき
た。
Example A variety of scraps and scraps were produced in a 90 ton electric arc furnace.
Chromium-containing oxide raw materials such as steelmaking dust were melted to produce molten iron for stainless steel. The basicity before tapping was adjusted by supplying CaO within the range of 1.4 to 2.2, supplying ferrosilicon as the Si source, and [Si] depending on the Cr 2 O 3 concentration in the slag. Was adjusted. For example, for each charge, CH. No. CR% (Cr 2 O 3 ) for 101
Since it was 11%, [Si] = 0.03.CR (=
0.33%), CH. No. In 102, CR% (C
Since r 2 O 3 ) was 13%, [Si] = 0.03
・ CR (= 0.39%). After adjusting and confirming the metal components, a sample was taken and analyzed immediately before tapping. next,
It was tapped / slagged in a dedicated ladle, and gas stirring was carried out for 10 minutes by an immersion lance. Before starting agitation, install a special lid with a heat resistant brick lined inside the ladle, and pour Ar gas as a seal gas through the gas introduction pipe into the furnace installed in the lid to adjust the oxygen concentration in the ladle to 10 vol. .% Or less, and stirring was performed with N 2 gas. After completion of stirring, the hot metal was tapped into a ladle exclusively for slag, and the hot metal was conveyed to the converter in the next step. After cooling the slag, the ladle was turned over at the slag processing plant to confirm the solidified slag. Note that CH.
No. In Nos. 101 to 103, in the electric furnace, the modifier was simultaneously added to the slag amount in terms of B 2 O 3 at the same time as CaO.
% Was added. In addition, CH. No. In 104 to 106, the modifier was continuously added to the ladle during the tapping / slagging operation using a special shooter. The modifier used was a B 2 O 3 substance produced by treating borax, and its addition amount was 0.4% based on the amount of slag in terms of B 2 O 3 . In addition, CH. N
o. In 107 to 108, the modifier was placed in the slag pot in advance. The addition amount of the modifying agent, based on the amount of slag in terms of B 2 O 3 is from 0.3 to 0.45 percent. After cooling the slag, the ladle was turned over at the slag processing plant to discharge the slag, and the state of agglomeration was observed. The results are shown in Table 1. All of them were lumpy and could be completely prevented from being pulverized.

【0017】比較例1 実施例と同様に、90トン電気アーク炉において、各種
スクラップ及び製鋼ダストなどのクロム酸化物原料を溶
解して、ステンレス鋼用溶銑を溶製した。スラグ中Cr
23 濃度分析結果に応じて、[Si]をフェロシリコ
ンで調整した。ここで、CH.No.114〜117で
は、[Si]を0.02・CR(%Cr23 )〜0.
07・CR(%Cr23 )の範囲外になるようにし、
CH.No.118〜121では0.05・CR(%C
23 )程度とした。また、スラグ塩基度はCaOを
供給して調整したが、CH.No.114〜117では
1.8とし、CH.No.118〜121では、意識的
にCaOを過剰及び不足気味に供給して1.4〜2.2
の範囲外とした。メタル成分の調整、確認後、出銑前に
サンプルを採取して分析した。次に、実施例と同様に、
専用の取鍋に出銑/出滓し、浸漬ランスによる10分間
のガス攪拌を行った後、スラグ専用の取鍋に出銑し、溶
銑は次工程の転炉へと搬送した。スラグ冷却後、スラグ
処理場にて取鍋を転倒して固化したスラグの塊状化の状
況を調査した。なお、改質剤は、電気アーク炉において
CaOと同時に、B23 換算でスラグ量に対して0.
4%添加した。結果を表1に示すが、[Si]を0.0
2・CR(%Cr23 )未満としたチャージまたは塩
基度を2.3以上と高くしたチャージでは塊状化はでき
なかった。また、[Si]を0.07・CR(%Cr2
3 )を越えたチャージ及び塩基度を1.4未満とした
チャージでは塊状化は可能であったが、攪拌後[S]が
目標値まで低下できなかった。
Comparative Example 1 In the same manner as in Example 1, various scraps and chromium oxide raw materials such as steelmaking dust were melted in a 90 ton electric arc furnace to produce molten pig iron for stainless steel. Cr in slag
[Si] was adjusted with ferrosilicon according to the result of the 2 O 3 concentration analysis. Here, CH. No. In 114 to 117, [Si] a 0.02 · CR (% Cr 2 O 3) ~0.
07 · CR (% Cr 2 O 3 ) outside the range,
CH. No. For 118 to 121, 0.05 / CR (% C
r 2 O 3 ). Also, the slag basicity was adjusted by supplying CaO, but CH. No. 114-117, it is set to 1.8, and CH. No. In 118 to 121, CaO was consciously supplied in excess and in shortage, and 1.4 to 2.2.
It was out of the range. After adjusting and confirming the metal components, samples were taken and analyzed before tapping. Then, as in the example,
After tapping / slagging to a dedicated ladle and performing gas stirring for 10 minutes with an immersion lance, the tapping was carried out to a ladle dedicated to slag, and the hot metal was conveyed to the converter in the next step. After cooling the slag, the ladle was tumbled at the slag processing plant to investigate the state of the solidified slag. The modifying agent was CaO in the electric arc furnace at the same time as B 2 O 3 with respect to the amount of slag.
4% was added. The results are shown in Table 1, where [Si] is 0.0
Agglomeration could not be achieved by a charge less than 2 · CR (% Cr 2 O 3 ) or a charge having a high basicity of 2.3 or more. Also, [Si] was added to 0.07 · CR (% Cr 2
Agglomeration was possible with a charge exceeding O 3 ) and a charge with a basicity of less than 1.4, but [S] could not be reduced to the target value after stirring.

【0018】比較例2 実施例と同様に、90トン電気アーク炉において、各種
スクラップ及び酸化物原料を溶解して、ステンレス鋼用
溶銑を溶製した。ただし、実施例のような出銑前の塩基
度及び[Si]の調整は行わなかった。次に、粉化防止
のため改質剤を入れ置きした取鍋内に出銑/出滓した
が、用いた改質剤は実施例と同様の含B23 物質であ
り、その添加量は、B23 換算でスラグ量に対して
0.4〜0.7%とした。また、取鍋内での浸漬ランス
によるガス攪拌は行わなかった。スラグは専用の取鍋に
除滓し、冷却後スラグ処理場にて取鍋を転倒してスラグ
を排出し、塊状化の状況を調査した、その結果は表1に
示すように0.45%以下では確実に塊状化することは
できなかった。
Comparative Example 2 Various scraps and oxide raw materials were melted in a 90 ton electric arc furnace in the same manner as in the example, and molten pig iron for stainless steel was melted. However, the basicity and [Si] before the tapping as in the example were not adjusted. Next, tapping / slagging was carried out in a ladle containing a modifier for preventing pulverization. The modifier used was the same B 2 O 3 substance as in the example, and the amount added It was set to 0.4 to 0.7% relative to the amount of slag in terms of B 2 O 3. Further, gas agitation by the immersion lance in the ladle was not performed. The slag was removed to a dedicated ladle, and after cooling, the ladle was tumbled at the slag processing plant to discharge the slag, and the state of agglomeration was investigated. The result is 0.45% as shown in Table 1. In the following, it was not possible to surely agglomerate.

【0019】 [0019]

【0020】[0020]

【発明の効果】以上に説明したように、本発明によれ
ば、電気アーク炉溶銑スラグの脱硫能を低下させること
なく粉化防止してスラグ処理の作業環境を改善し、スラ
グ処理費を低減すると共にその資源化を図ることができ
る。また、クロム酸化物からのクロムの回収及び含B2
3 改質剤の添加量を少なくすることができる。
As described above, according to the present invention, the working environment of slag treatment is improved by preventing pulverization without lowering the desulfurization ability of the electric arc furnace hot metal slag, and the slag treatment cost is reduced. In addition, it is possible to promote resource utilization. In addition, the recovery of chromium from chromium oxide and the inclusion of B 2
The amount of the O 3 modifier added can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】 出銑前[Si]と粉化率及び攪拌後溶銑
[S]の関係
FIG. 1 shows the relationship between the [Si] before tapping, the pulverization rate, and the hot metal [S] after stirring.

【図2】 出銑前塩基度と粉化率及び攪拌後溶銑[S]
の関係
[Fig. 2] Basicity and powdering ratio before tapping and hot metal [S] after stirring
connection of

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 電気アーク炉でステンレス溶銑用の原料
及びスラグを溶解後、取鍋に出銑/出滓し、取鍋内攪拌
を行った後に除滓する方法において、スラグ中に含B2
3 物質をスラグ量に対してB23 換算で、0.45
重量%以下の割合で添加すると共に、出銑/出滓前のス
ラグ塩基度を1.4〜2.2とし、溶銑中のSi濃度を
スラグ中酸化クロム濃度(CR%)に応じて、[Si]
=0.02・CR〜0.07・CR%の範囲として、取
鍋中で酸素雰囲気の制御の下でスラグと溶銑の攪拌を行
い、スラグ中の酸化クロムによる溶銑[Si]の酸化に
よって塩基度を低下させることを特徴とする電気アーク
炉スラグの粉化防止方法。
1. A method in which the raw material for stainless hot metal and slag are melted in an electric arc furnace, then tapped / slagged in a ladle, stirred in the ladle, and then slag removed, in which B 2 is contained in the slag.
O 3 substance is 0.45 in terms of B 2 O 3 with respect to the amount of slag.
In addition to adding at a ratio of not more than wt%, the slag basicity before tapping / slagging is set to 1.4 to 2.2, and the Si concentration in the hot metal is adjusted according to the chromium oxide concentration (CR%) in the slag. Si]
= 0.02 · CR to 0.07 · CR%, the slag and hot metal are stirred in a ladle under the control of an oxygen atmosphere, and the base is obtained by oxidizing the hot metal [Si] with chromium oxide in the slag. A method for preventing pulverization of electric arc furnace slag, which is characterized by decreasing the degree of slag.
JP09326896A 1996-03-22 1996-03-22 Method of preventing electric arc furnace slag from powdering Expired - Fee Related JP3462660B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09326896A JP3462660B2 (en) 1996-03-22 1996-03-22 Method of preventing electric arc furnace slag from powdering

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09326896A JP3462660B2 (en) 1996-03-22 1996-03-22 Method of preventing electric arc furnace slag from powdering

Publications (2)

Publication Number Publication Date
JPH09256024A true JPH09256024A (en) 1997-09-30
JP3462660B2 JP3462660B2 (en) 2003-11-05

Family

ID=14077730

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09326896A Expired - Fee Related JP3462660B2 (en) 1996-03-22 1996-03-22 Method of preventing electric arc furnace slag from powdering

Country Status (1)

Country Link
JP (1) JP3462660B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11264011A (en) * 1998-03-17 1999-09-28 Kawasaki Steel Corp Method for effective use of slag
KR100363418B1 (en) * 1998-12-24 2003-01-24 주식회사 포스코 Slag eruption prevention method of ferritic stainless steel
KR100435449B1 (en) * 1999-07-16 2004-06-10 주식회사 포스코 Method for preventing slag from differentiating in refining process of stainless steel in refining process of stainless steel
CN113710819A (en) * 2019-04-22 2021-11-26 日本制铁株式会社 Method for producing chromium-containing iron liquid

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11264011A (en) * 1998-03-17 1999-09-28 Kawasaki Steel Corp Method for effective use of slag
KR100363418B1 (en) * 1998-12-24 2003-01-24 주식회사 포스코 Slag eruption prevention method of ferritic stainless steel
KR100435449B1 (en) * 1999-07-16 2004-06-10 주식회사 포스코 Method for preventing slag from differentiating in refining process of stainless steel in refining process of stainless steel
CN113710819A (en) * 2019-04-22 2021-11-26 日本制铁株式会社 Method for producing chromium-containing iron liquid
CN113710819B (en) * 2019-04-22 2022-08-16 日本制铁株式会社 Method for producing chromium-containing iron liquid

Also Published As

Publication number Publication date
JP3462660B2 (en) 2003-11-05

Similar Documents

Publication Publication Date Title
KR101560512B1 (en) Steel slag reduction method
US5882375A (en) Process for the production of hydraulic binders and/or alloys, such as for examples, ferrochromium or ferrovanadium
EP3464653B1 (en) Method for the production of cast iron
JPWO2002022891A1 (en) Refining agent and refining method
US20080156144A1 (en) Method for reducing to metallic chromium the chromium oxide in slag from stainless steel processing
KR20150106661A (en) Manufacturing method of Fe-Si from Fe-Ni slag
CA2398344C (en) Method for treating slags or slag mixtures on an iron bath
CN110073161B (en) Electric stove
JP2006274349A (en) Method for refining steel
JP5625654B2 (en) Hot metal production method
JP5205799B2 (en) Method for melting Cr-containing low alloy steel
JPH09256024A (en) Method for preventing powdering of slag in electric arc furnace
JP2000319047A (en) Reforming treatment of stainless steel refining slag
RU2044061C1 (en) Composition burden for steel melting
JP2021134386A (en) Method for melting cold iron source with slag reduction
JP4630031B2 (en) Methods for reducing and dissolving iron raw materials containing iron oxide
JP3765092B2 (en) Ladle stirring method for electric arc furnace hot metal
JP2002235124A (en) Method for recovering chromium from chromium- containing slag
JP3462659B2 (en) Method for desulfurizing hot metal of electric arc furnace for stainless steel
JP7255326B2 (en) Steel scrap melting method by electric furnace
JP2002069520A (en) Method for recovering chromium in slag
JPH10265827A (en) Regenerating/utilizing method of refined slag in chromium-containing steel and regenerating/utilizing method of metallic component contained in the slag
JP2004010935A (en) Method for manufacturing molten steel
RU2201970C2 (en) Method of making steel in high-power electric arc furnaces
JP3994988B2 (en) Method of recovering and using metal components contained in slag slag containing chromium

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030805

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080815

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090815

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090815

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100815

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100815

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110815

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120815

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees