JPH0923889A - メタロプロテイナーゼ−3の組織インヒビターに対する新規なプロモーターを用いる細胞特異的遺伝子療法 - Google Patents

メタロプロテイナーゼ−3の組織インヒビターに対する新規なプロモーターを用いる細胞特異的遺伝子療法

Info

Publication number
JPH0923889A
JPH0923889A JP8181760A JP18176096A JPH0923889A JP H0923889 A JPH0923889 A JP H0923889A JP 8181760 A JP8181760 A JP 8181760A JP 18176096 A JP18176096 A JP 18176096A JP H0923889 A JPH0923889 A JP H0923889A
Authority
JP
Japan
Prior art keywords
promoter
gene
timp
metalloproteinase
tissue inhibitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8181760A
Other languages
English (en)
Inventor
Hans-Harald Dr Sedlacek
ハンス−ハーラルト・ゼトラツエク
Marisa Wick
マリーサ・ヴイツク
Rolf Mueller
ロルフ・ミユラー
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoechst AG
Original Assignee
Hoechst AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoechst AG filed Critical Hoechst AG
Publication of JPH0923889A publication Critical patent/JPH0923889A/ja
Pending legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2830/00Vector systems having a special element relevant for transcription
    • C12N2830/008Vector systems having a special element relevant for transcription cell type or tissue specific enhancer/promoter combination

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Biotechnology (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Public Health (AREA)
  • Medicinal Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Epidemiology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Saccharide Compounds (AREA)

Abstract

(57)【要約】 【課題】 細胞特異的遺伝子療法を可能にするメタロプ
ロテイナーゼ−3の組織インヒビターに対するプロモー
ターの提供。 【解決手段】 以下のヌクレオチド配列 【化1】 の位置≦463〜≧−2からなるプロモーター活性DN
Aフラグメントより構成されるメタロプロテイナーゼ−
3の組織インヒビターの遺伝子に対するプロモーターを
提供する。

Description

【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明はメタロプロテイナー
ゼ−3の組織インヒビター(TIMP−3)の遺伝子に
対するプロモーター配列に関する。このインヒビターは
とくに、マクロファージおよび関節の滑膜細胞に見出さ
れている。
【0002】
【発明が解決しようとする課題】遺伝子療法のためのベ
クターのインビボ投与における本質的な問題の一つは、
投与されたベクターの標的細胞特異的な発現である。こ
れは原理的には、細胞特異的な転写因子によって活性化
され、その3′末端に結合する遺伝子配列を活性化する
細胞特異的プロモーターエレメントによって達成される
[Mullenの総説、Pharmac.Ther. 63, 199 (1994);Har
risら,Gene Therapy 1, 170 (1994)]。したがって、
新規な細胞特異的プロモーターにはきわめて大きな需要
がある。
【0003】
【課題を解決するための手段】本発明は、新規な細胞特
異的プロモーターとしてTIMP−3の遺伝子に対する
プロモーター配列を提供する。すなわち、本発明は以下
のヌクレオチド配列
【化2】 の位置≦463〜≧−2からなるプロモーター活性DN
Aフラグメントより構成されるTIMP−3遺伝子に対
するプロモーターを提供するものである。
【0004】本発明はまた、上記ヌクレオチド配列の位
置≦463〜≧−10、または位置≦112〜≧−2、
または位置≦112〜≧−10より構成されるTIMP
−3遺伝子に対するプロモーターを提供する。
【0005】本発明はまたさらに、上記遺伝子の発現を
調整するための上記プロモーターの使用、医薬の製造の
ための上記プロモーターの使用、ならびに遺伝子診断お
よび遺伝子療法のための上記プロモーターの使用を包含
する。
【0006】
【発明の実施の形態】本発明のプロモーター配列の特徴
を以下に詳述する。 1.ヒトTIMP−3遺伝子の5′フランキングプロモ
ーター配列の単離および配列分析 G0→S進行時におけるTIMP−3mRNAの誘導は
主としてTIMP−3遺伝子の転写活性化に由来する
[Wickら,J.Biol. Chem. 269, 18963 (1994)]。ヒト
TIMP−3遺伝子の5′フランキング配列がクローン
化され、TIMP−3mRNAの転写開始点が決定さ
れ、隣接プロモーター領域が構造/機能分析に付され
た。これらの検討により、G0→SおよびG1→S進行
時における特異的TIMP−3発現の基盤を形成する調
節機構が解明されるはずである。
【0007】それに先立って、ゲノムのサザンブロット
分析により、TIMP−3がヒトゲノムにおいて単一遺
伝子を表すのか、またはTIMP−3遺伝子あるいはさ
らにTIMP−3偽似遺伝子には幾つかの遺伝子座が存
在するのかを決定した。この目的では、ゲノムDNAを
WI−38細胞から単離し、制限エンドヌクレアーゼE
coRI、PstIならびにHind IIIで処理し、サ
ザンブロット分析に付した。放射標識プローブとしては
690bp長の3′−TIMP−3cDNAフラグメン
トを使用した。このプローブはすべての場合、1個の特
異的DNAフラグメントのみを認識したことから、ヒト
ゲノムには1個のユニークなTIMP−3遺伝子のみが
存在すると推定できた。
【0008】5′フランキングTIMP−3遺伝子配列
を単離するためには、ゲノムWI−38遺伝子ライブラ
リーからの約7×105個のファージを、300bp長
の5′−TIMP−3cDNAフラグメントとハイブリ
ダイズさせた。この初期の検討後に単離された13個の
組換えファージクローン中の4個はTIMP−3cDN
Aの5′末端領域からの30bp長オリゴヌクレオチド
によっても認識された。これらのファージは多分ATG
開始コドンに隣接する5′配列領域も含有すると考えら
れたことから、ファージクローンの一つを選択して詳細
な特徴の解明と分析を実施した。各種制限エンドヌクレ
アーゼを組み合わせて処理し、ついでサザンブロット分
析を行い、このファージにおける13kb長のゲノムD
NAインサートは約47kbの5′フランキングTIM
P−3遺伝子配列を含有することが決定できた。約15
00bpの5′フランキング遺伝子領域のヌクレオチド
配列が二本鎖の配列分析によって決定された。この目的
で、エキソヌクレアーゼ III処理によって調製されたク
ローン化5′遺伝子領域の5′トランケーションを図1
に例示する。
【0009】以下に記載する構造/機能分析によりTI
MP−3プロモーター機能にとくに重要なことが明らか
にされた配列領域を図2に示す。TIMP−3プロモー
ター配列中に、既知の転写因子の結合部位、とくに4S
p1結合部位、NF1と考えられる結合部位およびC/
EBP結合部位(図2中に表示)に類似する多数のエレ
メントを同定するためにはコンピューター支援分析を使
用した。
【0010】2.TIMP−3mRNAの転写開始点の
マッピング 転写の開始のための開始点を確立するためには、TIM
P−3mRNAの5′末端をプライマー伸長分析によっ
て決定した。これによって、ATG開始コドン(図2に
表示)から364bp5′に位置する転写開始点(ヌク
レオチド配列:CCGCCCGGGGTTGTCGG)
が同定された。開始点の上流に位置するヌクレオチド配
列の詳細な検討にもかかわらず、TATAボックスもT
ATA様配列も見出されなかった。
【0011】3.TIMP−3プロモーター配列の活性
の検討 正常に増殖している細胞、静止期細胞および血清刺激細
胞におけるTIMP−3プロモーター配列の活性を決定
し、機能的に重要なプロモーター領域の冒頭の指標を得
るためには、配列決定に用いられた5′がトランケート
されたプロモーターフラグメント(図1参照)を、プロ
モーターをもたないpXP−2ベクター[Nordeen, Bio
techniques 6, 454 (1988)]中のルシフェラーゼ遺伝子
の上流にクローニングした。その著しく低いベースライ
ン活性により、このレポーター構築体は一時的発現分析
の実施にとくに適している。
【0012】3.1.正常増殖および血清刺激NIH3
T3細胞におけるTIMP−3プロモーター配列の活性 単離されたTIMP−3プロモーター配列が一時的発現
分析において活性であること、すなわち、ルシフェラー
ゼレポーター遺伝子の転写を制御できることを示すため
には、TIMP−3プロモーター欠失構築体−1010
(ヌクレオチド−1010〜+281から構成される。
図1参照)をNIH3T3細胞にトランスフェクトし、
これらの正常増殖または血清刺激トランスフェクト細胞
におけるルシフェラーゼ活性を測定した。比較のため、
ヘルペスウイルスtkプロモーター[pT81;Lucibe
llo & Mueller, Meth.Mol. Cell Biol. 1, 9 (198
9)]、5×TRE最小プロモーター[Angelら, Mol. Cel
l Biol. 7, 2256 (1987)]、RSV−LTR[Setoyama
ら, Proc. Natl. Acad. Sci. USA 83, 3213 (1986)]も
しくはヒトサイクリンD1プロモーターの937bp長
フラグメント[Herberら, Oncogene 9, 1295 (1994)]
を含有する他のルシフェラーゼ−プロモーター構築体に
ついてさらに発現を測定した。これらの検討の結果を表
1に示す。
【0013】
【表1】
【0014】正常増殖NIH3T3細胞中TIMP−3
プロモーター構築体Δ−1010の発現(表1A)は、
5×TRE最小プロモーター構築体の場合よりも約3
倍、サイクリンD1プロモーター構築体の場合よりも7
倍、高かった。RSV−LTRレポータープラスミドの
みがより高い活性を示し、TIMP−3プロモーター構
築体の場合よりも約2倍高かった。これらの結果は、ヒ
トTIMP−3プロモーターは比較的高い転写活性をも
つことを指示している。表1Bおよび図3に示すよう
に、TIMP−3プロモーター構築体Δ−1010はま
た、2日間血清を枯渇させたのちに20%FCSで4時
間刺激した細胞中でも明らかに誘導された。静止期(G
0)細胞と比較して、この場合の発現は約7〜8倍まで
増大し、これは5×TREレポーター構築体およびサイ
クリンD1プロモーター構築体の場合に認められた誘導
より、それぞれ約35倍および24倍高かった。これに
対し、単純ヘルペスtkプロモーター−ルシフェラーゼ
構築体(pT81)では、血清刺激後、その発現を認め
なかった
【0015】図3は、静止期細胞の血清刺激後における
Δ−1010TIMP−3プロモーター構築体の誘導の
キネティクスを示す。ルシフェラーゼ活性は1時間後に
のみ上昇を示し、4時間後に最高値、7倍誘導に到達し
た。
【0016】要約すると、これらの結果から、使用した
Δ−1010TIMP−3プロモーター構築体は、効率
的な転写および血清による誘導性に要求される、すべて
ではないとしても必須の調整エレメントを有すると結論
できる。
【0017】3.2.TIMP−3プロモーター配列の
構造および機能分析 単離されたTIMP−3プロモーター配列の構造および
機能分析では、ベースライン発現および血清誘導性のた
めに機能的に重要なプロモーター領域の冒頭の指標の提
供が意図された。この目的では、プロモーターの配列決
定のために調製しpXP2ベクター中に再クローン化さ
れた各種TIMP−3プロモーター欠失構築体(図1参
照)の活性を一時的発現分析で測定した。正常増殖NI
H3T3細胞中での各種欠失構築体のベースライン発現
の分析により(図4)3つの重要な結果が得られた。
【0018】1.最も強い発現はプロモーター構築体Δ
−1010によって示された.さらに85bpまでトラ
ンケートすると(構築体Δ−925)、プロモーター活
性にほぼ2分の1までの低下を生じた。これは転写の活
性化に関与する1もしくは2以上のエレメントが位置−
1010〜−925の間の領域に存在することを指示す
るものである。
【0019】2.5′末端を位置−112までさらにト
ランケートしてもプロモーター活性には有意な影響はな
かった。したがって、この−925〜−112の領域に
は、多分プロモーター活性に重要な配列領域は含まれて
いないと考えられる。
【0020】3.これに対し、位置−1300〜−10
10の領域はプロモーター活性に悪影響を及ぼすものと
思われ、これはプロモーター構築体Δ−1010に比較
してΔ−1300欠失構築体の発現における約4分の1
への低下として表れる。
【0021】最後の実験では、各種TIMP−3プロモ
ーター欠失構築体の血清誘導性を分析した。表1に記載
のようにして実施されたこれらの発現分析の結果を図4
bに示す。正常増殖細胞(図4a)、静止期細胞および
血清刺激細胞(図4b)の間の発現像には顕著な類似性
が認められる。しかしながら、静止期細胞における発現
レベルは増殖細胞の場合の約2分の1程度低く、4時間
の血清刺激後に29〜85倍に誘導された。増殖細胞で
示されたように(図4a)、静止期細胞および血清刺激
細胞においても、位置−1300〜−1010の領域は
プロモーター活性に悪影響を及ぼすが、構築体Δ−13
00の血清誘導性には影響はみられなかった(85倍の
誘導)。この場合にも、最高のルシフェラーゼ活性は同
様に欠失構築体−1010で測定された。さらに、位置
−660までの5′末端のトランケーションでもプロモ
ーター活性には15分の1から2分の1への低下を生じ
たのみであった。しかしながら、これらの構築体(Δ−
1300、Δ−1010、Δ−925、Δ−660)は
すべて、血清添加後に6〜8倍の明らかな誘導を示し
た。さらに200bpの位置−463までのトランケー
ション(Δ−463)でも、活性はさらに約2分の1に
低下したが、構築体の血清誘導性には同様に影響はなか
った。構築体Δ−112ではじめて血清誘導性に50〜
65%の低下を示し、血清刺激後にも発現は3倍にしか
増大しなかった。これは位置−463〜−112の領域
に、TIMP−3プロモーターの血清誘導性に重要な1
もしくは2以上のエレメントが含まれていることを指示
するものである。位置−463と−660の間および−
925と−1010の間の付加的な領域は、一般に、細
胞周期非依存性に、血清誘導プロモーター活性を増大さ
せる。
【0022】5′フランキングTIMP−3遺伝子領域
の特徴の解明ならびに構造および機能分析の結果は次の
ようにまとめることができる。すなわち、TIMP−3
はTATAボックスを含まない遺伝子である。しかしな
がら転写は、ATG開始コドンの364bp上流の1個
の開始点のみで開始される。他のプロモーターに比べて
TIMP−3プロモーター配列は比較的高い活性を有
し、これには最初の112bpで十分である。この領域
には多くのSp1結合部位が配置されている。さらに、
静止期細胞の血清刺激後にはその活性の明らかな誘導が
認められ、そのキネティクスはG0→S進行時における
TIMP−3mRNAの発現に相当する。その血清誘導
性に関与する調整エレメントは位置−112と−463
の間の領域に配置されている。
【図面の簡単な説明】
【図1】5′フランキングTIMP−3遺伝子領域のエ
キソヌクレアーゼ IIIトランケーションの模式図であ
る。配列決定を容易にするために、5′フランキングT
IMP−3遺伝子領域の約1600bpを5′末端から
始めエキソヌクレアーゼ IIIで処理してトランケート
し、Bluescript SK (-) ベクターにクローニングした。
プラスミドの名称は5′トランケーションを表示する
(たとえばΔ−1300は転写開始点から1300bp
5′を含有する)。転写開始点は+1で示す(図2参
照)。
【図2】ヒトTIMP−3プロモーターの500bpお
よび5′非翻訳領域101bpのヌクレオチド配列を示
す図である。GCボックス(Sp1結合部位)、NF1
結合部位の可能性のある両半分、およびC/EBP結合
部位に類似するエレメントに表示を付す。転写開始点は
矢印で指示する。
【図3】20%FCSによる刺激後静止期NIH3T3
RT細胞におけるΔ−1010−TIMP−3プロモータ
ー−ルシフェラーゼ構築体の誘導キネティクスを示すグ
ラフである。7μgのプラスミドDNAをDEAEトラ
ンスフェクトしたのち、NIH3T3RT細胞を無血清培
地中にて40時間インキュベートし、20%FCSで刺
激し、ルシフェラーゼレポーター遺伝子の発現を指示さ
れた時間に測定した。
【図4】正常増殖、静止期および血清刺激NIH3T3
RT細胞における5′トランケートTIMP−3プロモー
ター−ルシフェラーゼ構築体の一時的発現分析を示す図
であり、プラスミドはそれらのトランケーションに従っ
て命名された(図1参照)。(a)は正常増殖NIH3
T3RT細胞における分析結果を示し、(b)は静止期お
よび20%FCSで4時間刺激後のNIH3T3RT細胞
における(a)の場合と同じ構築体の分析結果を示す。
(a)および(b)における実験は表1の場合と同様
に、互いに独立に調製されたプラスミドDNAを用いて
3回行われた。標準偏差はバーで示す。バーがない場合
は標準偏差がきわめて小さく、グラフに表示できないこ
とを示す。

Claims (6)

    【特許請求の範囲】
  1. 【請求項1】 以下のヌクレオチド配列 【化1】 の位置≦463〜≧−2からなるプロモーター活性DN
    Aフラグメントより構成されるメタロプロテイナーゼ−
    3の組織インヒビターの遺伝子に対するプロモーター。
  2. 【請求項2】 請求項1に掲げたヌクレオチド配列の 位置≦463〜≧−10、または 位置≦112〜≧−2、または 位置≦112〜≧−10 より構成されるメタロプロテイナーゼ−3の組織インヒ
    ビターの遺伝子に対するプロモーター。
  3. 【請求項3】 遺伝子の発現を調整するための請求項1
    または2に記載のプロモーターの使用。
  4. 【請求項4】 医薬の製造のための請求項1〜3に記載
    のプロモーターの使用。
  5. 【請求項5】 診断方法のための請求項1〜3に記載の
    プロモーターの使用。
  6. 【請求項6】 遺伝子療法のための請求項1〜3に記載
    のプロモーターの使用。
JP8181760A 1995-07-12 1996-07-11 メタロプロテイナーゼ−3の組織インヒビターに対する新規なプロモーターを用いる細胞特異的遺伝子療法 Pending JPH0923889A (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19524720:5 1995-07-12
DE19524720A DE19524720A1 (de) 1995-07-12 1995-07-12 Zellspezifische Gentherapie mit Hilfe eines neuen Promotors für den "Tissue Inhibitor of Metalloproteinasn-3"

Publications (1)

Publication Number Publication Date
JPH0923889A true JPH0923889A (ja) 1997-01-28

Family

ID=7766219

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8181760A Pending JPH0923889A (ja) 1995-07-12 1996-07-11 メタロプロテイナーゼ−3の組織インヒビターに対する新規なプロモーターを用いる細胞特異的遺伝子療法

Country Status (5)

Country Link
US (1) US5854019A (ja)
EP (1) EP0753580A3 (ja)
JP (1) JPH0923889A (ja)
CA (1) CA2181022A1 (ja)
DE (1) DE19524720A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999038429A1 (fr) * 1998-01-28 1999-08-05 Toto Ltd. Radiateur thermique
US6906036B2 (en) 2001-08-16 2005-06-14 Kimberly-Clark Worldwide, Inc. Anti-aging and wound healing compounds
US7071164B2 (en) 2001-08-16 2006-07-04 Kimberly-Clark Worldwide, Inc. Anti-cancer and wound healing compounds
US7094754B2 (en) 2001-08-16 2006-08-22 Kimberly-Clark Worldwide, Inc. Anti-aging and wound healing compounds
US7148194B2 (en) 2002-12-30 2006-12-12 Kimberly-Clark Worldwide, Inc. Method to increase fibronectin
US7186693B2 (en) 2001-08-16 2007-03-06 Kimberly - Clark Worldwide, Inc. Metalloproteinase inhibitors for wound healing
US7189700B2 (en) 2003-06-20 2007-03-13 Kimberly-Clark Worldwide, Inc. Anti-chrondrosarcoma compounds

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9506466D0 (en) 1994-08-26 1995-05-17 Prolifix Ltd Cell cycle regulated repressor and dna element
CA2198462A1 (en) 1994-08-26 1996-03-07 Hans-Harald Sedlacek Genetic therapy of diseases caused by the immune system, said therapy using a cell-specific active substance regulated by the cell cycle
DE19605279A1 (de) 1996-02-13 1997-08-14 Hoechst Ag Zielzellspezifische Vektoren für die Einschleusung von Genen in Zellen, Arzneimittel enthaltend derartige Vektoren und deren Verwendung
DE19617851A1 (de) 1996-05-03 1997-11-13 Hoechst Ag Nukleinsäurekonstrukte mit Genen kodierend für Transportsignale
DE19639103A1 (de) * 1996-09-24 1998-03-26 Hoechst Ag Nukleinsäurekonstrukte mit Hybridpromotoren für gentherapeutische Maßnahmen
DE19651443A1 (de) 1996-12-11 1998-06-18 Hoechst Ag Selbstverstärkende, pharmakologisch kontrollierbare Expressionssysteme
DE19701141C1 (de) * 1997-01-16 1998-04-09 Hoechst Ag Genkonstrukte für durch Proteasen aktivierbare Wirksubstanzen
EP0860445A1 (en) 1997-02-18 1998-08-26 Hoechst Aktiengesellschaft New nucleotide sequences for the cell cycle regulated expression of structural genes
DE19751587A1 (de) 1997-11-21 1999-07-29 Hoechst Marion Roussel De Gmbh Onkogen- oder virusgesteuerte Expressionssysteme
DE19756975A1 (de) 1997-12-20 1999-06-24 Hoechst Marion Roussel De Gmbh Bindungspartner für Inhibitoren von cyclinabhängigen Kinasen und ihre Verwendung zur Suche nach Inhibitoren, zur Diagnose oder zur Therapie einer Erkrankung
CZ121599A3 (cs) * 1998-04-09 1999-10-13 Aventis Pharma Deutschland Gmbh Jednořetězcová molekula vázající několik antigenů, způsob její přípravy a léčivo obsahující tuto molekulu
DE19900743A1 (de) 1999-01-12 2000-07-13 Aventis Pharma Gmbh Neue komplexbildende Proteine
US20040248826A1 (en) * 2003-06-03 2004-12-09 Alberto Auricchio Treatment of cancer by in vivo gene-transfer induced TIMP-3 expression
US7943374B2 (en) * 2005-08-21 2011-05-17 Markus Hildinger Super-size adeno-associated viral vector harboring a recombinant genome larger than 5.7 kb
US20090074733A1 (en) * 2005-12-09 2009-03-19 Medin Jeffrey A Thymidylate kinase mutants and uses thereof
US20090068158A1 (en) * 2005-12-09 2009-03-12 Medin Jeffrey A Thymidylate kinase mutants and uses thereof
EP2514823B1 (en) 2006-03-03 2018-05-02 ProMIS Neurosciences Inc. Methods and compositions to treat and detect misfolded-SOD1 mediated diseases
CA2584494A1 (en) * 2007-03-27 2008-09-27 Jeffrey A. Medin Vector encoding therapeutic polypeptide and safety elements to clear transduced cells
ES2654303T3 (es) 2007-05-04 2018-02-13 University Health Network Inmunoterapia de IL-12 contra el cáncer
AU2008307643B9 (en) 2007-09-28 2014-04-17 Intrexon Corporation Therapeutic gene-switch constructs and bioreactors for the expression of biotherapeutic molecules, and uses thereof
US8568709B2 (en) 2008-03-20 2013-10-29 University Health Network Thymidylate kinase fusions and uses thereof
EP2920319B1 (en) 2012-11-16 2020-02-19 Poseida Therapeutics, Inc. Site-specific enzymes and methods of use
EP3929286A1 (en) 2015-06-17 2021-12-29 Poseida Therapeutics, Inc. Compositions and methods for directing proteins to specific loci in the genome
WO2019126578A1 (en) 2017-12-20 2019-06-27 Poseida Therapeutics, Inc. Compositions and methods for directing proteins to specific loci in the genome

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6562596B1 (en) * 1993-10-06 2003-05-13 Amgen Inc. Tissue inhibitor of metalloproteinase type three (TIMP-3) composition and methods
CA2198462A1 (en) * 1994-08-26 1996-03-07 Hans-Harald Sedlacek Genetic therapy of diseases caused by the immune system, said therapy using a cell-specific active substance regulated by the cell cycle

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999038429A1 (fr) * 1998-01-28 1999-08-05 Toto Ltd. Radiateur thermique
US6294758B1 (en) 1998-01-28 2001-09-25 Toto Ltd Heat radiator
US6906036B2 (en) 2001-08-16 2005-06-14 Kimberly-Clark Worldwide, Inc. Anti-aging and wound healing compounds
US7071164B2 (en) 2001-08-16 2006-07-04 Kimberly-Clark Worldwide, Inc. Anti-cancer and wound healing compounds
US7094754B2 (en) 2001-08-16 2006-08-22 Kimberly-Clark Worldwide, Inc. Anti-aging and wound healing compounds
US7186693B2 (en) 2001-08-16 2007-03-06 Kimberly - Clark Worldwide, Inc. Metalloproteinase inhibitors for wound healing
US7196162B2 (en) 2001-08-16 2007-03-27 Kimberly-Clark Worldwide, Inc. Anti-aging and wound healing compounds
US7148194B2 (en) 2002-12-30 2006-12-12 Kimberly-Clark Worldwide, Inc. Method to increase fibronectin
US7189700B2 (en) 2003-06-20 2007-03-13 Kimberly-Clark Worldwide, Inc. Anti-chrondrosarcoma compounds

Also Published As

Publication number Publication date
EP0753580A2 (de) 1997-01-15
EP0753580A3 (de) 1998-10-07
DE19524720A1 (de) 1997-01-16
CA2181022A1 (en) 1997-01-13
US5854019A (en) 1998-12-29

Similar Documents

Publication Publication Date Title
JPH0923889A (ja) メタロプロテイナーゼ−3の組織インヒビターに対する新規なプロモーターを用いる細胞特異的遺伝子療法
Alam et al. Isolation and characterization of the mouse heme oxygenase-1 gene. Distal 5'sequences are required for induction by heme or heavy metals.
Nerlov et al. A regulatory element that mediates co‐operation between a PEA3‐AP‐1 element and an AP‐1 site is required for phorbol ester induction of urokinase enhancer activity in HepG2 hepatoma cells.
Mazo et al. Suppression in Drosophila: su (Hw) and su (f) gene products interact with a region of gypsy (mdg4) regulating its transcriptional activity.
Wick et al. Structure of the human TIMP-3 gene and its cell cycle-regulated promoter
US6653132B1 (en) IRES sequences with high translational efficiency and expression vectors containing the sequence
WO1998037189A9 (en) Ires sequences with high translational efficiency and expression vectors containing the sequence
US20070134735A1 (en) Transcriptional regulation of the human beta3-adrenergic receptor gene
JP2003519462A (ja) ヒト触媒テロメラーゼサブユニット遺伝子の調節性dna配列、その診断的および治療的使用
Donoviel et al. Structural analysis and expression of the human thrombospondin gene promoter.
Kunze et al. Structural characterization of the human DNA topoisomerase I gene promoter
Zhu et al. Unique organization of the human BCR gene promoter
Tanaka et al. Expression of heat-shock and glucose-regulated genes: differential effects of glucose starvation and hypertonicity
JP2002520043A (ja) 成長分化因子プロモーターおよびその用途
Manabe et al. Isolation of the embryonic form of smooth muscle myosin heavy chain (SMemb/NMHC-B) gene and characterization of its 5′-flanking region
Zhou et al. A 60-bp core promoter sequence of murine lactate dehydrogenase C is sufficient to direct testis-specific transcription in vitro
Harland et al. Transcriptional regulation of the human TATA binding protein gene
Hoffman et al. The rat amyloid precursor protein promoter contains two DNA regulatory elements which influence high level gene expression
EP0894866B1 (en) Tec tyrosine kinase promoter
EP1170372B1 (en) Regulatory sequences of the human MCP-1 gene
Lee et al. Transcriptional promoter of the human α 1 (V) collagen gene (COL5A1)
Akiyama et al. Cloning, sequence analysis, and chromosomal assignment of the mouse Apex gene
Xu et al. Last intron of the chemokine-like factor gene contains a putative promoter for the downstream CKLF super family member 1 gene
Weir et al. Characterization of the nonmuscle myosin heavy chain IIB promoter: regulation by E2F
CA2025960A1 (en) Methods for modulating promoter responsible for beta amyloid precursor protein expression