JPH09237896A - Semiconductor device and manufacture thereof - Google Patents

Semiconductor device and manufacture thereof

Info

Publication number
JPH09237896A
JPH09237896A JP7100096A JP7100096A JPH09237896A JP H09237896 A JPH09237896 A JP H09237896A JP 7100096 A JP7100096 A JP 7100096A JP 7100096 A JP7100096 A JP 7100096A JP H09237896 A JPH09237896 A JP H09237896A
Authority
JP
Japan
Prior art keywords
substrate
drain
mixed crystal
crystal layer
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7100096A
Other languages
Japanese (ja)
Inventor
Masanori Funaki
正紀 舟木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Victor Company of Japan Ltd
Original Assignee
Victor Company of Japan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Victor Company of Japan Ltd filed Critical Victor Company of Japan Ltd
Priority to JP7100096A priority Critical patent/JPH09237896A/en
Publication of JPH09237896A publication Critical patent/JPH09237896A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To alleviate the bent of the bottom of the conduction band on the surface of a substrate when an inverted layer is formed by forming an SiGe mixed crystal layer so that the Ge concentration becomes deepest in a predetermined depth by ion implanting or epitaxial growth in the thickness direction of the mixed crystal layer. SOLUTION: A source 2 and drain 3 having an n-type layer are held and formed at a predetermined interval in an Si substrate 1 by As ion implanting. An SiGe mixed crystal layer 10 containing Ge of the concentration of several percent is formed so as to obtain the Ge concentration to the maximum value in a predetermined depth between the source 2 and drain 3 by ion implanting. A gate insulating film 5 is formed over the part of the source 2 and the drain 3 between the source 2 and the drain 3 on the p-type Si substrate 1. A gate electrode 4 and metal 11 are laminated on the film 5.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明はMOS−FETを含
む半導体装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device including a MOS-FET.

【0002】[0002]

【従来の技術】以下、図面を参照して説明する。図4は
従来技術によるnチャネル型MOS−FET(Meta
l−Oxide−Semiconnductor−Fi
eld−Effect−Transistor)の構造
を示す断面図である。1はp型Si基板、2はソ−ス、
3はドレイン、4はゲ−ト電極、5はゲ−ト絶縁膜、6
はソ−ス電極、7はドレイン電極、8は空乏層、11は
金属、l0 はゲ−ト長である。
2. Description of the Related Art A description will be given below with reference to the drawings. FIG. 4 shows a conventional n-channel MOS-FET (Meta).
l-Oxide-Semiconductor-Fi
It is sectional drawing which shows the structure of (eld-Effect-Transistor). 1 is a p-type Si substrate, 2 is a source,
3 is a drain, 4 is a gate electrode, 5 is a gate insulating film, 6
Is a source electrode, 7 is a drain electrode, 8 is a depletion layer, 11 is a metal, and l 0 is a gate length.

【0003】p型Si基板1中には所定の深さまでn型
拡散されたソ−ス2とドレイン3とが所定の間隔だけ保
たれて形成されている。p型Si基板1上ではソ−ス2
とドレイン3の一部に跨がってゲ−ト絶縁膜5が形成さ
れ、前記ゲ−ト絶縁膜5上にはゲ−ト電極4及び金属1
1が積層されている。ソ−ス2及びドレイン3上にはソ
−ス電極6及びドレイン電極7が形成されている。通
常、p型Si基板1中に形成されたソ−ス2及びドレイ
ン3中のn型層のキャリア濃度はp型Si基板1のキャ
リア濃度よりも高いため、空乏層8の大部分はソ−ス2
及びドレイン3側からp型Si基板1側に広がってい
る。
In the p-type Si substrate 1, a source 2 and a drain 3 which have been n-type diffused to a predetermined depth are formed with a predetermined space therebetween. Source 2 on p-type Si substrate 1
A gate insulating film 5 is formed so as to extend over a part of the gate 3 and the drain 3, and the gate electrode 4 and the metal 1 are formed on the gate insulating film 5.
1 are stacked. A source electrode 6 and a drain electrode 7 are formed on the source 2 and the drain 3. Usually, since the carrier concentration of the n-type layer in the source 2 and the drain 3 formed in the p-type Si substrate 1 is higher than the carrier concentration of the p-type Si substrate 1, most of the depletion layer 8 is a source. Space 2
And spreads from the drain 3 side to the p-type Si substrate 1 side.

【0004】次に、nチャネル型MOS−FETの動作
について説明する。図5はゲ−ト電圧Vg を金属11に
印加し、反転層8を生じた時の図4のAA断面のエネル
ギ−バンド図である。ゲ−ト電圧Vg がしきい値電圧V
THよりも高くなると、ゲ−ト絶縁膜5とp型Si基板1
の界面に反転層9が形成され、ソ−ス2とドレイン3と
の間で繋がるようになる。この結果、ドレイン3から注
入された電流は反転層9を通りソ−ス2へ流れるように
なる。
Next, the operation of the n-channel MOS-FET will be described. FIG. 5 is an energy band diagram of the AA cross section of FIG. 4 when the gate voltage V g is applied to the metal 11 to form the inversion layer 8. The gate voltage V g is the threshold voltage V
When it becomes higher than TH , the gate insulating film 5 and the p-type Si substrate 1
An inversion layer 9 is formed at the interface between the source 2 and the drain 3, and the source 2 and the drain 3 are connected to each other. As a result, the current injected from the drain 3 flows through the inversion layer 9 to the source 2.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、MOS
−FETを高集積化する場合にはMOS−FETの微細
化に伴い、ゲ−ト長l0 が短くなってくると、ソ−ス2
側とドレイン3側に形成された空乏層8はゲ−ト電圧V
g の印加の有無にかかわらず繋がりパンチスル−が生じ
る。また、MOS−FETのしきい値電圧VTHの絶対値
が小さくなるという短チャネル効果が発生する。これを
解決する方法として、p型Si基板1の不純物濃度を高
くし、空乏層8の広がりを抑制する方法がある。しか
し、ゲ−ト電圧Vg は空乏層8に印加されるため空乏層
8の広がりが抑制されると反転層9中を流れる電流の進
行方向に対して垂直方向の電界は強くなる。電界強度が
大きくなると反転層9に沿ってドレイン3からソ−ス2
へ流れる電流は進行方向に対して垂直方向に電界作用を
受けながら流れるため移動度は小さくなる。その結果、
導電率が低くなり、駆動電流も減少する。
SUMMARY OF THE INVENTION However, MOS
-When the FET is highly integrated, if the gate length l 0 becomes shorter with the miniaturization of the MOS-FET, the source 2
The depletion layer 8 formed on the drain side and the drain 3 side is the gate voltage V
A punch punch through occurs regardless of whether or not g is applied. Further, a short channel effect occurs in which the absolute value of the threshold voltage V TH of the MOS-FET becomes small. As a method of solving this, there is a method of increasing the impurity concentration of the p-type Si substrate 1 and suppressing the expansion of the depletion layer 8. However, since the gate voltage V g is applied to the depletion layer 8, when the expansion of the depletion layer 8 is suppressed, the electric field perpendicular to the traveling direction of the current flowing in the inversion layer 9 becomes strong. When the electric field strength increases, the drain 3 and the source 2 move along the inversion layer 9.
The mobility of the current flowing to the device becomes small because it flows while receiving an electric field effect in the direction perpendicular to the traveling direction. as a result,
The conductivity is low and the drive current is also low.

【0006】そこで、本発明は上記の点に着目してなさ
れたものであり、基板濃度を上げても大きな移動度が得
られる半導体装置及びその製造方法を提供することを目
的とするものである。
Therefore, the present invention has been made in view of the above points, and an object of the present invention is to provide a semiconductor device which can obtain a large mobility even if the substrate concentration is increased, and a manufacturing method thereof. .

【0007】[0007]

【課題を解決するための手段】本発明になる半導体装置
は、第1の発明として、第1の導電型を有するSi基板
1と、前記Si基板中に形成されたSiGe混晶層10
と、前記SiGe混晶層10上に形成されたゲ−ト絶縁
膜5と、前記ゲ−ト絶縁膜上に形成されたゲ−ト電極4
と、前記Si基板中に形成され、かつ前記SiGe混晶
層10を介して互いに近接配置された第2の導電型の一
対の拡散層2,3とを備え、前記一対の拡散層2,3の
間に前記SiGe混晶層10を設けたことを特徴とす
る。
A semiconductor device according to the present invention is, as a first invention, a Si substrate 1 having a first conductivity type, and a SiGe mixed crystal layer 10 formed in the Si substrate.
, A gate insulating film 5 formed on the SiGe mixed crystal layer 10, and a gate electrode 4 formed on the gate insulating film.
And a pair of second conductivity type diffusion layers 2 and 3 formed in the Si substrate and arranged close to each other through the SiGe mixed crystal layer 10, the pair of diffusion layers 2 and 3 being provided. The SiGe mixed crystal layer 10 is provided between the two.

【0008】第2の発明になる請求項1記載の半導体装
置において、前記SiGe混晶層は10前記Si基板1
中の所定深さ位置でGe濃度が最大値を得るようにした
層とすることを特徴とする。
According to a second aspect of the present invention, in the semiconductor device according to the first aspect, the SiGe mixed crystal layer is 10 of the Si substrate 1.
The layer is characterized in that the Ge concentration is maximized at a predetermined depth position inside.

【0009】第3の発明になる請求項1記載の半導体装
置において、前記ゲ−ト電極4は金属膜または半導体膜
14からなることを特徴とする。
In the semiconductor device according to the first aspect of the present invention, the gate electrode 4 is made of a metal film or a semiconductor film 14.

【0010】第4の発明になる半導体装置の製造方法に
おいて、第1導電型Si基板1にGeをイオン注入する
工程と、Geをイオン注入された前記第1導電型Si基
板1上にゲ−ト絶縁膜5を順次形成する工程と、前記ゲ
−ト絶縁膜5上に金属膜又は半導体膜14を形成する工
程と、前記金属膜または半導体膜14をエッチングして
ゲ−ト電極4を形成する工程と、前記ゲ−ト電極4をマ
スクとして第2の導電型の一対の拡散層2、3を形成す
る工程とを有することを特徴とする。
In the method for manufacturing a semiconductor device according to the fourth aspect of the present invention, a step of ion-implanting Ge into the first conductivity type Si substrate 1 and a step on the first conductivity-type Si substrate 1 into which the Ge ions are ion-implanted A step of sequentially forming a gate insulating film 5, a step of forming a metal film or a semiconductor film 14 on the gate insulating film 5, and a step of etching the metal film or the semiconductor film 14 to form a gate electrode 4. And a step of forming the pair of diffusion layers 2 and 3 of the second conductivity type by using the gate electrode 4 as a mask.

【0011】第5の発明になる半導体装置の製造方法に
おいて、第1導電型Si基板1上にSiGe層をエピタ
キシャル成長する工程と、SiGe層をエピタキシャル
成長した前記第1導電型Si基板1上にゲ−ト絶縁膜5
を形成する工程と、前記ゲ−ト絶縁膜5上に金属膜又は
半導体膜14を形成する工程と、前記金属膜または半導
体膜14をエッチングしてゲ−ト電極4を形成する工程
と、前記ゲ−ト電極4をマスクとして第2の導電型の一
対の拡散層2、3を形成する工程とを有することを特徴
とする。
In the method of manufacturing a semiconductor device according to the fifth aspect of the invention, a step of epitaxially growing a SiGe layer on the first conductivity type Si substrate 1 and a step of gaining the first conductivity type Si substrate 1 on which the SiGe layer is epitaxially grown. Insulating film 5
A step of forming a metal film or a semiconductor film 14 on the gate insulating film 5, a step of etching the metal film or the semiconductor film 14 to form a gate electrode 4, And a step of forming a pair of second conductivity type diffusion layers 2 and 3 using the gate electrode 4 as a mask.

【0012】SiGe混晶層10はイオン注入またはエ
ピタキシャル成長により前記SiGe混晶層10の厚さ
の所定深さ位置において、Ge濃度が高くなるように形
成しているので、ゲ−ト電極に電圧を印加すると従来の
Si基板のみの場合に比較し、SiGe混晶層の表面の
エネルギ−バンドの伝導帯の曲りは緩やかになる。この
ため、動作時において、前記SiGe混晶層10を介し
て互いに近接配置された第2の導電型の一対の拡散層
2,3間を流れる電流に垂直方向の電界は緩和される。
その結果、移動度は向上し、大きな駆動電流が得られ
る。
Since the SiGe mixed crystal layer 10 is formed by ion implantation or epitaxial growth so that the Ge concentration becomes high at a predetermined depth position of the thickness of the SiGe mixed crystal layer 10, a voltage is applied to the gate electrode. When applied, the bending of the conduction band of the energy band on the surface of the SiGe mixed crystal layer becomes gentle as compared with the case of only the conventional Si substrate. Therefore, during operation, the electric field in the direction perpendicular to the current flowing between the pair of diffusion layers 2 and 3 of the second conductivity type that are arranged close to each other through the SiGe mixed crystal layer 10 is relaxed.
As a result, the mobility is improved and a large drive current can be obtained.

【0013】[0013]

【発明の実施の形態】以下、図面を参照して本発明の一
実施例を説明する。本発明の第1の実施例を図1及び図
2により説明する。図1は、本発明のMOS−FETの
構造を示す断面図である。図2はゲ−ト電圧Vg を金属
11に印加し、反転層9を生じた時の図1のAA断面の
エネルギ−バンド図である。前述した構成と同一構成部
分は同一符号を付し、その説明を省略する。10はSi
Ge混晶層、Ea はSiGe混晶層の伝導帯の底、EC
はSiの伝導帯の底、Ev はSi及びSiGe混晶層の
価電子帯の頂上である。本発明のMOS−FETの構造
は前述した従来例の図4においてソ−ス2とドレイン3
との間にSiとGeとの混晶層を設けたものに等しい。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. A first embodiment of the present invention will be described with reference to FIGS. FIG. 1 is a sectional view showing the structure of a MOS-FET of the present invention. FIG. 2 is an energy band diagram of the AA cross section of FIG. 1 when the gate voltage V g is applied to the metal 11 to form the inversion layer 9. The same components as those described above are designated by the same reference numerals, and the description thereof will be omitted. 10 is Si
Ge mixed crystal layer, E a is the bottom of the conduction band of the SiGe mixed crystal layer, E C
Is the bottom of the conduction band of Si, and E v is the top of the valence band of the Si and SiGe mixed crystal layer. The structure of the MOS-FET of the present invention is the same as that of the conventional example shown in FIG.
It is equivalent to a mixed crystal layer of Si and Ge provided between and.

【0014】以下、詳細に説明する。Si基板1中には
Asのイオン注入によりn型層を有したソ−ス2とドレ
イン3とが所定の間隔に保たれ、形成されている。ソ−
ス2とドレイン3との間にはイオン注入により所定の深
さでGe濃度が最大値を得るように数%濃度のGeを含
んだSiGe混晶層10が形成されている。p型Si基
板1上ではソ−ス2とドレイン3との間にはソ−ス2と
ドレイン3の一部に跨がってゲ−ト絶縁膜5が形成さ
れ、前記ゲ−ト絶縁膜5上にはゲ−ト電極4、金属11
が積層されている。ソ−ス2及びドレイン3上にはソ−
ス電極6及びドレイン電極7が形成されている。通常、
Si基板1中に形成されたソ−ス2及びドレイン3中の
n型層のキャリア濃度はp型Si基板1のキャリア濃度
よりも高くしているため、空乏層8はソ−ス2及びドレ
イン3側からp型Si基板1側に広がっている。
The details will be described below. A source 2 and a drain 3 each having an n-type layer are formed in the Si substrate 1 by ion implantation of As while being kept at a predetermined interval. Saw
A SiGe mixed crystal layer 10 containing several% of Ge is formed between the drain 2 and the drain 3 by ion implantation so that the maximum Ge concentration can be obtained at a predetermined depth. On the p-type Si substrate 1, a gate insulating film 5 is formed between the source 2 and the drain 3 so as to extend over a part of the source 2 and the drain 3. A gate electrode 4 and a metal 11 are provided on the surface 5.
Are laminated. Sources on source 2 and drain 3
A drain electrode 6 and a drain electrode 7 are formed. Normal,
Since the carrier concentration of the n-type layer in the source 2 and the drain 3 formed in the Si substrate 1 is higher than the carrier concentration of the p-type Si substrate 1, the depletion layer 8 is the source 2 and the drain. It spreads from the 3 side to the p-type Si substrate 1 side.

【0015】次に、図2を用いてMOS−FETの動作
について説明する。破線はSiの伝導帯EC である。数
%濃度のGeを含んだSiGe混晶層10のエネルギ−
バンドギャップはSiよりも約0.2eV程度狭く、G
e濃度の変化に応じてバンドギャップは変化している。
前記SiGe混晶層10のフェルミレベルEF とSiG
e混晶層10の価電子帯の頂上EV の差はSiのフェル
ミレベルEF とSiGe混晶層10の価電子帯の頂上E
V の差と略等しいので、SiGe混晶層10の価電子帯
v はSiと略等しいが、SiGe混晶層10の伝導帯
の底Ec はエネルギ−バンドギャップの差に相当してS
iの伝導帯の底Ec よりも低くなっている。ゲ−ト電極
4に正のゲ−ト電圧Vg を印加すると、ゲ−ト絶縁膜5
に接するSiGe混晶層10表面のバンドは下向きに曲
り、SiGe混晶層10中の正孔がゲ−ト電極4側と反
対側に追いやられ、空乏層8が形成される。更に、大き
な正のゲ−ト電圧Vg を印加していくと、SiGe混晶
層10表面のバンドは更に下向きに曲り、SiGe混晶
層10表面の電子濃度はp型Si基板1中の正孔濃度よ
りも大きくなり、ソ−ス2からドレイン3間に反転層9
が形成される。ドレイン電圧VD をドレイン電極7に印
加すると反転層9表面の電子はソ−ス2側からドレイン
3側へ即ち、ドレイン3側からソ−ス2側に電流は流れ
る。SiGe混晶層10表面の伝導帯Ea の曲りはp型
Siの伝導帯Ec の曲りよりも小さくなるため、反転層
9中を流れる電流に対して垂直方向に印加されているゲ
−ト電圧Vgの電界(垂直電界)による電流が受ける力
は小さくなる。このため、電子の移動度は従来よりも大
きくなり、大きな電流を流すことができるようになる。
このようにしたMOS−FETは微小化しても垂直電界
の影響を軽減することができるので、移動度が高く駆動
電流を向上させることができる。
Next, the operation of the MOS-FET will be described with reference to FIG. The broken line is the conduction band E C of Si. Energy of SiGe mixed crystal layer 10 containing several% concentration of Ge
The band gap is narrower than Si by about 0.2 eV, and G
The band gap changes in accordance with the change in the e concentration.
Fermi level E F and SiG of the SiGe mixed crystal layer 10
The difference between the top E V of the valence band of the e mixed crystal layer 10 is the Fermi level E F of Si and the top E of the valence band of the SiGe mixed crystal layer 10.
Since the difference is substantially equal to V , the valence band E v of the SiGe mixed crystal layer 10 is substantially equal to Si, but the bottom E c of the conduction band of the SiGe mixed crystal layer 10 corresponds to the energy-bandgap difference.
It is lower than the bottom E c of the conduction band of i. When a positive gate voltage V g is applied to the gate electrode 4, the gate insulating film 5
The band on the surface of the SiGe mixed crystal layer 10 in contact with is bent downward, holes in the SiGe mixed crystal layer 10 are driven to the side opposite to the gate electrode 4 side, and the depletion layer 8 is formed. Further, when a large positive gate voltage V g is applied, the band on the surface of the SiGe mixed crystal layer 10 bends further downward, and the electron concentration on the surface of the SiGe mixed crystal layer 10 becomes positive in the p-type Si substrate 1. It becomes larger than the hole concentration, and the inversion layer 9 is formed between the source 2 and the drain 3.
Is formed. When the drain voltage V D is applied to the drain electrode 7, the electrons on the surface of the inversion layer 9 flow from the source 2 side to the drain 3 side, that is, from the drain 3 side to the source 2 side. Since the bend of the conduction band E a on the surface of the SiGe mixed crystal layer 10 is smaller than the bend of the conduction band E c of p-type Si, the gate applied in the direction perpendicular to the current flowing in the inversion layer 9. The force received by the current due to the electric field (vertical electric field) of the voltage Vg becomes small. Therefore, the mobility of electrons becomes higher than that of the conventional one, and a large current can flow.
Since the influence of the vertical electric field can be reduced even if the MOS-FET thus configured is miniaturized, the mobility is high and the drive current can be improved.

【0016】次に本発明の半導体装置のイオン注入法に
よる製造工程を図3(a)〜(e)に示す第1工程から
第5工程を参照しながら順次説明する。 (第1工程)p型Si基板1上に犠牲酸化膜12を形成
し、イオン注入法によりp型Si基板1中の所定の深さ
で所定濃度になるようにGeを注入する(図3
(a))。その後、所定温度でアニ−ルを行うことによ
って、SiGe混晶層10を形成する。 (第2工程)犠牲酸化膜12を除去後、SiO2 膜13
からなるゲ−ト絶縁膜5、CVD(Chemikal
Vapor Dposition)法により、半導体膜
14を順次積層し、更にレジスト15を塗布する(図3
(b))。 (第3工程)次に、レジストパタ−ニングを行い、半導
体膜14をエッチングし、ゲ−ト電極4を形成する(図
3(c))。 (第4工程)その後レジスト15を除去し、ゲ−ト電極
4をマスクとして、イオン注入法によりゲ−ト絶縁膜5
を通してp型Si基板1中にAsを注入し、n拡散を
行い、ソ−ス2及びドレイン3を形成する(図3
(d))。この後、活性化するために800℃でアニ−
ルを行う。 (第5工程)更に、レジストパタ−ニングを行い、ソ−
ス2及びドレイン3上のゲ−ト絶縁膜5を除去する。こ
の後、ゲ−ト電極4、ソ−ス2及びドレイン3上にそれ
ぞれ金属11、ソ−ス電極6及びドレイン電極7を形成
する(図3(e))。なお工程中、ゲ−ト電極4を形成
した後、ソ−ス2及びドレイン3を形成したが、ソ−ス
2及びドレイン3を形成した後、ゲ−ト電極4を形成し
ても良い。
Next, the steps of manufacturing the semiconductor device of the present invention by the ion implantation method will be sequentially described with reference to the first to fifth steps shown in FIGS. (First Step) A sacrificial oxide film 12 is formed on the p-type Si substrate 1, and Ge is implanted by an ion implantation method so that the p-type Si substrate 1 has a predetermined depth and a predetermined concentration (FIG. 3).
(A)). After that, the SiGe mixed crystal layer 10 is formed by annealing at a predetermined temperature. (Second step) After removing the sacrificial oxide film 12, a SiO 2 film 13 is formed.
Gate insulating film 5 made of, CVD (Chemical)
The semiconductor films 14 are sequentially laminated by the vapor deposition method, and a resist 15 is further applied (FIG. 3).
(B)). (Third step) Next, resist patterning is performed to etch the semiconductor film 14 to form the gate electrode 4 (FIG. 3C). (Fourth step) After that, the resist 15 is removed, and the gate insulating film 5 is formed by ion implantation using the gate electrode 4 as a mask.
As is implanted into the p-type Si substrate 1 through the n-type Si substrate 1 and n + diffusion is performed to form the source 2 and the drain 3 (FIG. 3).
(D)). After this, annealed at 800 ° C. for activation.
Do (Fifth step) Further, resist patterning is performed, and the
The gate insulating film 5 on the drain 2 and the drain 3 is removed. After that, a metal 11, a source electrode 6 and a drain electrode 7 are formed on the gate electrode 4, the source 2 and the drain 3 respectively (FIG. 3 (e)). In the process, the source 2 and the drain 3 are formed after forming the gate electrode 4, but the gate electrode 4 may be formed after forming the source 2 and the drain 3.

【0017】また本発明の半導体装置は化学気相エピタ
キシャル成長法によっても作製することができる。化学
気相エピタキシャル成長法では、イオン注入法による製
造工程中、SiGe混晶層10の形成をエピタキシャル
成長により行うようにしたものに等しい。即ち、図3に
おける第1工程において、p型Si基板1上には犠牲酸
化膜12は形成せず、p型Si基板1上に直接、化学気
相エピタキシャル成長法により、成長層厚さ方向のGe
濃度が所定の深さ位置で最大値を得られるようにSiG
e層10を成長する。以下における製造工程は図3にお
ける第2工程から第5工程まではイオン注入法の場合と
同様である。なお、第2工程から第5工程において形成
しされるゲ−ト電極4は、半導体膜14の代わりに金属
膜を用いても良い。本実施例ではp型Si基板を使用し
た場合で説明したが、n型Si基板に適用しても同様の
効果が得られることはいうまでもない。
The semiconductor device of the present invention can also be manufactured by the chemical vapor deposition method. The chemical vapor phase epitaxy method is equivalent to a method in which the SiGe mixed crystal layer 10 is formed by epitaxial growth during the manufacturing process by the ion implantation method. That is, in the first step in FIG. 3, the sacrificial oxide film 12 is not formed on the p-type Si substrate 1, and the Ge in the growth layer thickness direction is directly formed on the p-type Si substrate 1 by the chemical vapor deposition method.
SiG so that the concentration can reach the maximum value at a predetermined depth position
The e-layer 10 is grown. The manufacturing process below is the same as the case of the ion implantation method from the second step to the fifth step in FIG. The gate electrode 4 formed in the second to fifth steps may use a metal film instead of the semiconductor film 14. In this embodiment, the case of using the p-type Si substrate has been described, but it goes without saying that the same effect can be obtained even when applied to the n-type Si substrate.

【0018】[0018]

【発明の効果】以上説明したように、本発明の半導体装
置及び製造方法によれば、SiGe混晶層の厚さ方向に
おいて、イオン注入またはエピタキシャル成長によりG
e濃度が所定の深さで最も高くなるように形成している
ので、反転層が形成された時の基板表面の伝導帯の底の
曲りは緩和させることができる。このため、動作時にお
いて、ゲ−ト絶縁膜とSiGe混晶層の界面に形成され
る反転層を流れる電流に垂直方向の電界は緩和されるの
で、半導体装置の移動度を高くすることができ、高速応
答が可能となる。
As described above, according to the semiconductor device and the manufacturing method of the present invention, G is formed by ion implantation or epitaxial growth in the thickness direction of the SiGe mixed crystal layer.
Since the e concentration is formed so as to be the highest at a predetermined depth, the bending of the bottom of the conduction band on the substrate surface when the inversion layer is formed can be relaxed. Therefore, during operation, the electric field in the direction perpendicular to the current flowing through the inversion layer formed at the interface between the gate insulating film and the SiGe mixed crystal layer is relaxed, so that the mobility of the semiconductor device can be increased. It enables high-speed response.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のMOS−FETの構造を示す断面図で
ある。
FIG. 1 is a sectional view showing a structure of a MOS-FET of the present invention.

【図2】図1に示すMOS−FETにゲ−ト電圧を印加
した時のAA断面のエネルギ−バンド図である。
FIG. 2 is an energy band diagram of an AA cross section when a gate voltage is applied to the MOS-FET shown in FIG.

【図3】本発明のMOS−FETの製造工程図である。FIG. 3 is a manufacturing process diagram of a MOS-FET of the present invention.

【図4】従来例のMOS−FETの構造を示す断面図で
ある。
FIG. 4 is a sectional view showing the structure of a conventional MOS-FET.

【図5】図4に示すMOS−FETにゲ−ト電圧を印加
した時のAA断面のエネルギ−バンド図である。
5 is an energy band diagram of an AA cross section when a gate voltage is applied to the MOS-FET shown in FIG.

【符号の説明】[Explanation of symbols]

1…p型Si基板、2…ソ−ス、3…ドレイン、4…ゲ
−ト電極、5…ゲ−ト絶縁膜、6…ソ−ス電極、7…ド
レイン電極、8…反転層、9…空乏層、10…SiGe
混晶層、11…金属、12…犠牲酸化膜、13…SiO
2 膜、14…半導体膜、15…レジスト、l0 …ゲ−ト
長、Ec …Siの伝導帯の底、Ea …SiGe混晶層の
伝導帯の底、Ev …Si及びSiGe混晶層の価電子帯
の頂上、Vg …ゲ−ト電圧、VD …ドレイン電圧
DESCRIPTION OF SYMBOLS 1 ... P-type Si substrate, 2 ... Source, 3 ... Drain, 4 ... Gate electrode, 5 ... Gate insulating film, 6 ... Source electrode, 7 ... Drain electrode, 8 ... Inversion layer, 9 ... Depletion layer, 10 ... SiGe
Mixed crystal layer, 11 ... Metal, 12 ... Sacrificial oxide film, 13 ... SiO
2 film, 14 ... semiconductor film, 15 ... resist, l 0 ... gate - DOO length, the bottom of the conduction band of E c ... Si, E a ... bottom of the conduction band of the SiGe mixed crystal layer, E v ... Si and SiGe mixed Top of valence band of crystal layer, V g ... gate voltage, V D ... drain voltage

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】第1の導電型を有するSi基板と、 前記Si基板中に形成されたSiGe混晶層と、 前記SiGe混晶層上に形成されたゲ−ト絶縁膜と、 前記ゲ−ト絶縁膜上に形成されたゲ−ト電極と、 前記Si基板中に形成され、かつ前記SiGe混晶層を
介して互いに近接配置された第2の導電型の一対の拡散
層とを備え、 前記一対の拡散層の間に前記SiGe混晶層を設けたこ
とを特徴とする半導体装置。
1. A Si substrate having a first conductivity type, a SiGe mixed crystal layer formed in the Si substrate, a gate insulating film formed on the SiGe mixed crystal layer, and the gate. A gate electrode formed on the gate insulating film, and a pair of diffusion layers of the second conductivity type formed in the Si substrate and arranged close to each other via the SiGe mixed crystal layer. A semiconductor device, wherein the SiGe mixed crystal layer is provided between the pair of diffusion layers.
【請求項2】前記SiGe混晶層は前記Si基板中の所
定深さ位置でGe濃度が最大値を得るようにした層とす
ることを特徴とする請求項1記載の半導体装置。
2. The semiconductor device according to claim 1, wherein the SiGe mixed crystal layer is a layer which has a maximum Ge concentration at a predetermined depth position in the Si substrate.
【請求項3】前記ゲ−ト電極は金属膜または半導体膜か
らなることを特徴とする請求項1記載の半導体装置。
3. The semiconductor device according to claim 1, wherein the gate electrode is made of a metal film or a semiconductor film.
【請求項4】第1導電型Si基板にGeをイオン注入す
る工程と、 Geをイオン注入された前記第1導電型Si基板上にゲ
−ト絶縁膜を形成する工程と、前記ゲ−ト絶縁膜上に金
属膜又は半導体膜を形成する工程と、 前記金属膜又は半導体膜をエッチングしてゲ−ト電極を
形成する工程と、 前記ゲ−ト電極をマスクとして第2の導電型の一対の拡
散層を形成する工程とを有することを特徴とする半導体
装置の製造方法。
4. A step of implanting Ge into a first conductivity type Si substrate, a step of forming a gate insulating film on the first conductivity type Si substrate into which Ge ions have been implanted, and the gate. A step of forming a metal film or a semiconductor film on the insulating film; a step of etching the metal film or the semiconductor film to form a gate electrode; and a pair of the second conductivity type using the gate electrode as a mask. And a step of forming a diffusion layer.
【請求項5】第1導電型Si基板上にSiGe層をエピ
タキシャル成長する工程と、 SiGe層をエピタキシャル成長した前記第1導電型S
i基板上にゲ−ト絶縁膜形成する工程と、 前記ゲ−ト絶縁膜上に金属膜又は半導体膜を形成する工
程と、 前記金属膜又は半導体膜をエッチングしてゲ−ト電極を
形成する工程と、 前記ゲ−ト電極をマスクとして第2の導電型の一対の拡
散層を形成する工程とを有することを特徴とする半導体
装置の製造方法。
5. A step of epitaxially growing a SiGe layer on a first conductivity type Si substrate, and the first conductivity type S obtained by epitaxially growing a SiGe layer.
forming a gate insulating film on the i substrate; forming a metal film or a semiconductor film on the gate insulating film; and etching the metal film or the semiconductor film to form a gate electrode. And a step of forming a pair of second conductivity type diffusion layers using the gate electrode as a mask.
JP7100096A 1996-02-29 1996-02-29 Semiconductor device and manufacture thereof Pending JPH09237896A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7100096A JPH09237896A (en) 1996-02-29 1996-02-29 Semiconductor device and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7100096A JPH09237896A (en) 1996-02-29 1996-02-29 Semiconductor device and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH09237896A true JPH09237896A (en) 1997-09-09

Family

ID=13447806

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7100096A Pending JPH09237896A (en) 1996-02-29 1996-02-29 Semiconductor device and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH09237896A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100705233B1 (en) * 2001-12-18 2007-04-06 매그나칩 반도체 유한회사 Method of manufacturing a semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100705233B1 (en) * 2001-12-18 2007-04-06 매그나칩 반도체 유한회사 Method of manufacturing a semiconductor device

Similar Documents

Publication Publication Date Title
JP2826924B2 (en) Method of manufacturing MOSFET
US7701010B2 (en) Method of fabricating transistor including buried insulating layer and transistor fabricated using the same
KR20020066191A (en) MOS FIELD-EFFECT TRANSISTOR COMPRISING LAYERED STRUCTURE INCLUDING Si LAYER AND SiGe LAYER OR SiGeC LAYER AS CHANNEL REGIONS
JP2000243854A (en) Semiconductor device and its manufacture
US20080283918A1 (en) Ultra Thin Channel (UTC) MOSFET Structure Formed on BOX Regions Having Different Depths and Different Thicknesses Beneath the UTC and SourceDrain Regions and Method of Manufacture Thereof
JPH06204469A (en) Field-effect transistor and manufacture thereof
US5705439A (en) Method to make an asymmetrical LDD structure for deep sub-micron MOSFETS
JP2780670B2 (en) Manufacturing method of epitaxial channel MOS transistor
JP2925008B2 (en) Method for manufacturing semiconductor device
US7148130B2 (en) Semiconductor device and method of manufacturing the same
JP5070935B2 (en) Method for manufacturing silicon carbide semiconductor device
JPH0519979B2 (en)
JPH10284722A (en) Mosfet and manufacture therefor
JPH09237896A (en) Semiconductor device and manufacture thereof
JPH07297393A (en) Semiconductor device and manufacture thereof
JP3166911B2 (en) Method for manufacturing semiconductor device
JPH09191106A (en) Semiconductor device and its manufacture
JPH0350771A (en) Semiconductor device
US20070037369A1 (en) Method of manufacturing silicon carbide semiconductor device
JP2006114523A (en) Semiconductor device and its manufacturing method
JPH11243065A (en) Manufacture of semiconductor device and formation of conductive silicon film
JPH08125172A (en) Vertical field effect transistor and fabrication thereof
JP2004221245A (en) Semiconductor device and its manufacturing method
JP2000277730A (en) Semiconductor device and its manufacture
JPH07249762A (en) Fabrication of semiconductor device