JPH09235698A - Electrolytic surface-clad electrode and method for continuously electroplating metallic strip using the electrode - Google Patents

Electrolytic surface-clad electrode and method for continuously electroplating metallic strip using the electrode

Info

Publication number
JPH09235698A
JPH09235698A JP8043372A JP4337296A JPH09235698A JP H09235698 A JPH09235698 A JP H09235698A JP 8043372 A JP8043372 A JP 8043372A JP 4337296 A JP4337296 A JP 4337296A JP H09235698 A JPH09235698 A JP H09235698A
Authority
JP
Japan
Prior art keywords
electrode
electrolysis
plating
discharge
plating solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8043372A
Other languages
Japanese (ja)
Other versions
JP3467954B2 (en
Inventor
Naoki Sakai
直樹 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP04337296A priority Critical patent/JP3467954B2/en
Publication of JPH09235698A publication Critical patent/JPH09235698A/en
Application granted granted Critical
Publication of JP3467954B2 publication Critical patent/JP3467954B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Electroplating Methods And Accessories (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an electrolytic surface-clad electrode with the service life remarkably prolonged and to furnish a method for continuously electroplating a metallic strip using the electrode. SOLUTION: An electrolytic surface-clad electrode having a rugged part consisting of at least one among a protrusion 3, a recess 4, and a groove 5 on the discharge surface 2 of an electrode 1, an electrolytic surface-clad electrode having a rugged part consisting of a pyrmidal protrusion 3 on the discharge surface 2 of the electrode 1 or an electrolytic surface-clad electrode having a rugged part with one surface in the longitudinal direction of the triangular prism 8 or square prism 9 placed on the discharge surface 2 of the electrode 1 is used, and a plating soln. is circulated between the electrode and the metallic strip opposed to the electrode at a flow velocity of 1.0m/sec to conduct plating.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、電気分解用電極お
よびそれを用いた電気めっき方法に関し、特には鋼帯な
ど金属帯の電気めっき設備または前記金属帯の電解洗浄
設備などに用いられる電気分解用表面被覆電極およびそ
れを用いた金属帯の連続電気めっき方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrode for electrolysis and an electroplating method using the same, and particularly to electrolysis used for electroplating equipment for metal strips such as steel strips or for electrolytic cleaning equipment for the metal strips. TECHNICAL FIELD The present invention relates to an electrode for surface coating and a continuous electroplating method for metal strips using the same.

【0002】[0002]

【従来の技術】電気めっき設備などに使用される、Tiな
どの金属基体の表面にIrO2などの被覆層(以下皮膜と記
す)が形成された表面被覆電極は、皮膜により、電極の
基体である金属基体表面の不動態化が防止される。この
場合、一般に、表面被覆電極の寿命決定因子としては、
皮膜と基体との密着性および皮膜自体の耐久性などが挙
げられる。
2. Description of the Related Art Surface-coated electrodes in which a coating layer (hereinafter referred to as a coating) such as IrO 2 is formed on the surface of a metal substrate such as Ti used in electroplating equipment, etc. Passivation of certain metal substrate surfaces is prevented. In this case, generally, as the life determining factor of the surface-coated electrode,
The adhesion between the coating and the substrate and the durability of the coating itself may be mentioned.

【0003】これらの特性を向上させるために、特開昭
63−235493号公報においては、下地層(中間層)を被覆
する方法が、特開平6−200391号公報においては、放電
加工により下地層(中間層)を被覆する方法が、また特
開平7−3497号公報においては、コーテイング剤をスパ
ッタリング法で被覆する方法が開示されている。これら
の従来技術は、いずれも皮膜の成分、被覆方法、または
皮膜と金属基体との間に中間層を被覆するなど、コーテ
イング技術によって、皮膜の密着性や皮膜の耐久性を向
上せしめるという考え方である。
In order to improve these characteristics, Japanese Patent Laid-Open No.
63-235493 discloses a method of coating an underlayer (intermediate layer), and JP-A-6-200391 describes a method of coating an underlayer (intermediate layer) by electric discharge machining. Japanese Patent No. 3497 discloses a method of coating a coating agent by a sputtering method. All of these conventional techniques are based on the idea that coating components and coating methods or coating techniques such as coating an intermediate layer between the coating and the metal substrate can improve the adhesion and durability of the coating. is there.

【0004】しかし、これら従来技術の場合、表面被覆
電極の寿命には限界があり、使用時間が経過するに従
い、めっき時の所要電圧が急激に上昇し電極を交換する
必要があった。
However, in the case of these prior arts, the life of the surface-coated electrode is limited, and the required voltage during plating rises sharply as the time of use elapses, requiring replacement of the electrode.

【0005】[0005]

【発明が解決しようとする課題】本発明は、前記従来技
術の問題を解決し、電極の寿命を大幅に延長可能な電気
分解用表面被覆電極およびそれを用いた金属帯の連続電
気めっき方法の提供を目的とする。
DISCLOSURE OF THE INVENTION The present invention solves the above-mentioned problems of the prior art and provides a surface-coated electrode for electrolysis capable of significantly extending the life of the electrode and a method for continuous electroplating of metal strips using the same. For the purpose of provision.

【0006】[0006]

【課題を解決するための手段】第1の発明は、電極1の
放電面側2の電極面上に突起部3、窪み部4および溝部
5の少なくともいずれかからなる凹凸部を有することを
特徴とする電気分解用表面被覆電極である。第2の発明
は、電極1の放電面側2の電極面上に三角錐型の突起部
3からなる凹凸部を有することを特徴とする電気分解用
表面被覆電極である。
A first aspect of the present invention is characterized by having an uneven portion composed of at least one of a projection 3, a depression 4 and a groove 5 on the electrode surface on the discharge surface side 2 of the electrode 1. Is a surface-coated electrode for electrolysis. A second aspect of the invention is a surface-coated electrode for electrolysis, which is characterized in that it has a concavo-convex portion consisting of triangular pyramidal protrusions 3 on the electrode surface on the discharge surface side 2 of electrode 1.

【0007】第3の発明は、電極1の放電面側2の電極
面上に、三角柱8または四角柱9の長手方向の一つの面
が載置された形状の凹凸部を有することを特徴とする電
気分解用表面被覆電極である。前記第1の発明、第2の
発明、第3の発明においては、前記凹凸部の底部6で形
成される仮想面7における前記電極1の通電面積Sに対
する前記電極1の放電部の表面積の比が、好ましくは1.
2 以上、より好ましくは1.3 〜3.0 、さらに好ましくは
1.3 以上、2.0 未満であることが好ましい。
A third aspect of the invention is characterized in that an uneven portion having a shape in which one surface in the longitudinal direction of the triangular prism 8 or the quadrangular prism 9 is placed on the electrode surface on the discharge surface side 2 of the electrode 1 is characterized. Is a surface-coated electrode for electrolysis. In the first invention, the second invention, and the third invention, the ratio of the surface area of the discharge portion of the electrode 1 to the energization area S of the electrode 1 in the virtual surface 7 formed by the bottom portion 6 of the uneven portion. But preferably 1.
2 or more, more preferably 1.3 to 3.0, and even more preferably
It is preferably 1.3 or more and less than 2.0.

【0008】また、前記第1の発明、第2の発明、第3
の発明においては、前記凹凸部の高さまたは深さhが好
ましくは 0.5〜3.0mm 、より好ましくは、 0.5mm以上、
2.0mm未満であることが好ましい。第4の発明は、前記
第1の発明、第2の発明、第3の発明いずれかに記載の
電気分解用表面被覆電極を用いて、該電極と該電極と相
対向する金属帯との間に、流速が1.0m/sec以上、より好
ましくは 1.0〜3.0m/secの条件下でめっき液を流通し、
めっきを行うことを特徴とする金属帯の連続電気めっき
方法である。
The first invention, the second invention, and the third invention
In the invention, the height or depth h of the uneven portion is preferably 0.5 to 3.0 mm, more preferably 0.5 mm or more,
It is preferably less than 2.0 mm. A fourth invention uses the surface-coated electrode for electrolysis according to any one of the first invention, the second invention, and the third invention, and between the electrode and a metal strip facing the electrode. In addition, the flow rate is 1.0 m / sec or more, and more preferably, the plating solution is circulated under the condition of 1.0 to 3.0 m / sec,
It is a continuous electroplating method for a metal strip, which is characterized by performing plating.

【0009】前記第4の発明においては、より好ましく
は、めっき液が硫酸酸性めっき液であることが好まし
く、さらに好ましくはpHが1.0 〜2.0 であることが好ま
しい。なお、前記第1の発明、第2の発明、第3の発明
において、凹凸部とは、前記のとおり、表面がでこぼこ
を有する状態、すなわち、平らでない状態を示し、第1
の発明においては、でこぼこの形態は制限されるもので
はない。
In the fourth invention, more preferably, the plating solution is a sulfuric acid acidic plating solution, and further preferably the pH is 1.0 to 2.0. In addition, in the said 1st invention, 2nd invention, 3rd invention, the uneven | corrugated | grooved part shows the state which a surface has unevenness, ie, the state which is not flat, as above-mentioned, 1st invention,
In the present invention, the shape of the bumps is not limited.

【0010】[0010]

【発明の実施の形態】以下、本発明をより詳細に説明す
る。本発明は、鋼帯など金属帯の電気めっき設備または
該金属帯の電解洗浄設備などに好適に用いられる電気分
解用表面被覆電極(以下電極と記す)およびそれを用い
た金属帯の連続電気めっき方法に関する。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in more detail. The present invention relates to a surface-coated electrode for electrolysis (hereinafter referred to as an electrode) that is preferably used for electroplating equipment for metal strips such as steel strips or for electrolytic cleaning equipment for the metal strips, and continuous electroplating for metal strips using the same. Regarding the method.

【0011】本発明における電極としては、Ti、Ta、N
b、Zr、Hf、V 、Mo、W またはそれらの合金などの導電
性基体の表面上にIr、Pt、Ruなどの白金族金属やIrO2
どそれらの酸化物を被覆した電極が好ましく例示され
る。なお、この場合、これらの皮膜と導電性基体の中間
に皮膜の密着性や耐久性をさらに向上せしめるためなど
の目的で中間層を有していてもよい。
The electrodes in the present invention include Ti, Ta, N
An electrode in which a platinum group metal such as Ir, Pt or Ru or an oxide thereof such as IrO 2 is coated on the surface of a conductive substrate such as b, Zr, Hf, V 2, Mo, W or an alloy thereof is preferably exemplified. It In this case, an intermediate layer may be provided between these films and the conductive substrate for the purpose of further improving the adhesion and durability of the films.

【0012】また、本発明の金属帯の連続電気めっき方
法は、鋼帯(ストリップ)など金属帯のZnめっき、Niめ
っき、Zn−Ni合金めっき、Snめっき、Feめっき、Crめっ
きなどに好ましく適用されるが、金属帯の種類およびめ
っき金属は制限されるものではない。めっき浴として
は、より好ましくは、硫酸水溶液を母液とするめっき浴
が好ましく、さらに好ましくはpHが1.0 〜2.0 であるこ
とが好ましい。
The continuous electroplating method for metal strips of the present invention is preferably applied to Zn strips, Ni platings, Zn-Ni alloy platings, Sn platings, Fe platings, Cr platings and the like for metal strips such as steel strips (strips). However, the type of metal strip and the plating metal are not limited. As the plating bath, a plating bath containing a sulfuric acid aqueous solution as a mother liquor is more preferable, and a pH of 1.0 to 2.0 is more preferable.

【0013】pHが1.0 未満の場合、得られる金属帯のめ
っき密着性が低下し、また、めっき時の電流効率の低下
を招き、2.0 超えの場合、めっき焼けなどが生じ好まし
くない。また、この場合のめっき槽としては、横形槽
(水平セル)、縦形槽、密閉横形槽(ジェットセル)、
ラジアルセルなどが挙げられ、その形式は制限されな
い。
When the pH is less than 1.0, the plating adhesion of the obtained metal strip is deteriorated, and the current efficiency at the time of plating is deteriorated. When the pH is more than 2.0, the plating burns and the like are not preferable. In addition, as the plating tank in this case, a horizontal tank (horizontal cell), a vertical tank, a closed horizontal tank (jet cell),
The format is not limited, such as radial cell.

【0014】図1(a) および図2(a) 〜(d) に本発明の
電極の一例を、また図3に従来の平板型電極を斜視図に
より示す。また、図1(b) 、図2(e) 、(f) に、これら
本発明に係わる電極の凹凸部A部を、凹凸部の寸法と共
に、それぞれ断面図および斜視図により示す。なお、図
1、図2、図3において、矢印Fは、後記の実施例にお
ける、電極に対するめっき液の流れ方向を示す。
FIGS. 1 (a) and 2 (a)-(d) show an example of the electrode of the present invention, and FIG. 3 shows a conventional flat plate type electrode in perspective view. Further, FIGS. 1 (b), 2 (e), and (f) show the concavo-convex portion A of the electrode according to the present invention, along with the dimensions of the concavo-convex portion, in a sectional view and a perspective view, respectively. In addition, in FIG. 1, FIG. 2, and FIG. 3, the arrow F indicates the flow direction of the plating solution with respect to the electrodes in the examples described later.

【0015】図1は、電極表面にピラミッド(三角錐)
型の凸部を多数有する電極(以下ピラミッド型電極と記
す)である。図2(a) 、(b) は、電極表面に、三角柱の
長手方向の一つの面が平板の上面に載置された形状の凸
部を多数有する電極(以下スリットA型電極と記す)で
あり、図2(c) 、(d) は、断面が四角の四角柱の長手方
向の一つの面が平板の上面に載置された形状の凸部を多
数有する電極(以下スリットB型電極と記す)である。
FIG. 1 shows a pyramid (triangular pyramid) on the electrode surface.
It is an electrode having a large number of mold-shaped convex portions (hereinafter referred to as a pyramid-type electrode). FIGS. 2 (a) and 2 (b) show an electrode (hereinafter referred to as a slit A type electrode) having a large number of convex portions in which one surface in the longitudinal direction of a triangular prism is placed on the upper surface of a flat plate on the electrode surface. 2 (c) and 2 (d), an electrode having a large number of convex portions in which one surface in the longitudinal direction of a quadrangular prism having a square cross section is placed on the upper surface of a flat plate (hereinafter referred to as slit B-type electrode Note).

【0016】表1に、これら本発明に係わる電極並びに
該電極の放電面積の平板型電極の放電面積に対する比率
および電極面上の凹凸部の高さまたは深さhを一括して
示す。
Table 1 collectively shows the electrodes according to the present invention, the ratio of the discharge area of the electrodes to the discharge area of the flat plate type electrode, and the height or depth h of the irregularities on the electrode surface.

【0017】[0017]

【表1】 [Table 1]

【0018】前記したように、従来の方法はいずれも、
皮膜の成分、皮膜の被覆方法、または皮膜と金属基体と
の間に中間層を被覆するなど、コーテイング技術によっ
て、皮膜の密着性や皮膜の耐久性を向上せしめるという
考え方である。本発明は、このような考え方とは異な
り、被コーテイング側の金属基体の表面を機械加工など
の方法により、特定の立体形状とすることによって、皮
膜単位面積当たりの電流負荷を減少させ、電極の長寿命
化を図ったものである。
As described above, all the conventional methods are
The idea is to improve the adhesion of the coating and the durability of the coating by a coating technique such as coating components, coating method of the coating, or coating an intermediate layer between the coating and the metal substrate. The present invention is different from such an idea in that the surface of the metal base on the side to be coated is made into a specific three-dimensional shape by a method such as machining to reduce the current load per unit area of the coating, This is intended to extend the service life.

【0019】すなわち、本発明においては、めっき用電
極などとして用いられる電気分解用電極の長寿命化を達
成するために、電極基体である金属基体の放電側の表面
(放電面)に機械加工などにより溝などの凹凸を設け、
電極表面の実表面積を増加させた後に、皮膜をコーテイ
ングした。これにより、金属基体である平板に皮膜を被
覆した従来法と異なり、電極使用時の電極単位表面積当
たりの電流負荷が減少し、皮膜の消耗速度が小さくな
り、同一電極を長時間使用可能となった。
That is, in the present invention, in order to achieve a long service life of the electrolysis electrode used as a plating electrode or the like, the discharge side surface (discharge surface) of the metal base body which is the electrode base body is machined or the like. By providing irregularities such as grooves,
The coating was coated after increasing the actual surface area of the electrode surface. As a result, unlike the conventional method in which a flat plate, which is a metal substrate, is coated with a film, the current load per electrode surface area when using an electrode is reduced, the wear rate of the film is reduced, and the same electrode can be used for a long time. It was

【0020】さらには、本発明においては、金属基体の
表面形状およびめっき液流速に関して、電解時に電極面
より発生する酸素ガスの泡抜け性をも考慮し、その最適
形状および最適めっき液流速を実験により求めた。すな
わち、電極基体表面に機械加工などにより凹凸を設けた
場合、電極面より発生する酸素ガスの泡抜け性が悪くな
り、電解電圧が高くなる危険性があるが、実験により、
電極表面の最適形状および電気めっき時のめっき液の最
適流速を見出した。
Further, in the present invention, regarding the surface shape of the metal substrate and the flow rate of the plating solution, the optimum shape and the optimum flow rate of the plating solution were tested by taking into consideration the bubble escape property of oxygen gas generated from the electrode surface during electrolysis. Sought by. That is, when irregularities are provided on the surface of the electrode substrate by machining or the like, there is a risk that the degassing of oxygen gas generated from the electrode surface will deteriorate and the electrolysis voltage will increase.
The optimum shape of the electrode surface and the optimum flow rate of the plating solution during electroplating were found.

【0021】図4(a) 、(b−1)および(c) に、それぞ
れ、前記した本発明に係わるピラミッド型電極、スリッ
トA型電極およびスリットB型電極の表面形状を説明す
るための斜視図を示す。なお、図4(b−2)は、スリット
A型電極の凹凸部の高さまたは深さhを示すためのスリ
ットA型電極の断面図である。
4 (a), (b-1) and (c) are perspective views for explaining the surface shapes of the pyramid type electrode, the slit A type electrode and the slit B type electrode according to the present invention, respectively. The figure is shown. 4 (b-2) is a cross-sectional view of the slit A-type electrode for showing the height or depth h of the uneven portion of the slit A-type electrode.

【0022】図4において、1は電極、2は放電面側、
3は突起部、4は窪み部、5は溝部、6は突起部3、窪
み部4、溝部5の少なくともいずれかからなる凹凸部の
底部、7は凹凸部の底部6で形成される仮想面、8は三
角柱、9は四角柱を示す。また、Sは仮想面7における
電極1の通電面積、すなわち図4の仮想面7において直
線l1 、l2 、l3 、l4 に囲まれた部分(点線斜線
部)の面積を示し、hは凹凸部の底部6からの高さ、す
なわち底部6の凹凸部頂点に対する深さを示す。
In FIG. 4, 1 is an electrode, 2 is a discharge surface side,
3 is a protrusion, 4 is a depression, 5 is a groove, 6 is a bottom of an uneven portion including at least one of the protrusion 3, the depression 4, and the groove 5, and 7 is a virtual surface formed by the bottom 6 of the uneven portion. , 8 is a triangular prism, and 9 is a quadrangular prism. Further, S represents the energization area of the electrode 1 on the virtual surface 7, that is, the area of the portion surrounded by the straight lines l 1 , l 2 , l 3 and l 4 (dotted line portion) on the virtual surface 7 in FIG. Indicates the height of the uneven portion from the bottom portion 6, that is, the depth of the bottom portion 6 from the apex of the uneven portion.

【0023】本発明の電気分解用電極においては、前記
凹凸部の底部6で形成される仮想面7における電極1の
通電面積Sに対する電極1の放電部の表面積の比が、好
ましくは 1.2以上、より好ましくは 1.3〜3.0 、さらに
好ましくは 1.3以上、 2.0未満であることが好ましい。
1.2未満の場合、電極の実表面積増加に伴う電極寿命の
延長効果が小さくなり、 3.0超えの場合、電極面より発
生する酸素ガスの泡抜け性が悪くなり、所要電解電圧が
高くなる。
In the electrolysis electrode of the present invention, the ratio of the surface area of the discharge portion of the electrode 1 to the energized area S of the electrode 1 on the virtual surface 7 formed by the bottom portion 6 of the uneven portion is preferably 1.2 or more, It is more preferably 1.3 to 3.0, still more preferably 1.3 or more and less than 2.0.
When it is less than 1.2, the effect of extending the electrode life due to an increase in the actual surface area of the electrode becomes small, and when it is more than 3.0, the degassing property of oxygen gas generated from the electrode surface becomes poor and the required electrolysis voltage becomes high.

【0024】なお、本発明においては、凹凸部の底部6
とは、図4に示される平面に限定されることなく、電極
の金属基体の放電面の形状によっては、曲面の底部をも
含む。また、本発明において、電極1の放電部の表面積
とは、電極の放電面の幾何学的表面積であり、例えば、
図4(a) のピラミッド型電極の場合、三角錐である突起
部3の外表面積および凹凸部の基底部である底部6の外
表面積の合計値、すなわち、電極において、放電が行わ
れる全外表面積を示す。
In the present invention, the bottom portion 6 of the uneven portion is
Is not limited to the plane shown in FIG. 4, and also includes a curved bottom depending on the shape of the discharge surface of the metal base of the electrode. Further, in the present invention, the surface area of the discharge part of the electrode 1 is the geometric surface area of the discharge surface of the electrode, for example,
In the case of the pyramid-type electrode of FIG. 4 (a), the total value of the outer surface area of the protrusion 3 which is a triangular pyramid and the outer surface area of the bottom portion 6 which is the base of the uneven portion, that is, the total outer surface where the electrode is discharged. Indicates the surface area.

【0025】さらに、例えば、鋼帯の電気めっきのめっ
きセルの1種であるラジアルセルなどにおいて用いられ
る、放電面が曲面を有する電極の場合も、前記通電面積
Sおよび放電部の表面積は前記と同様に定義される。ま
た、本発明の電極においては、前記凹凸部の高さまたは
深さであるhは、 0.5〜3.0 mmであることが好ましく、
より好ましくは 0.5mm以上、 2.0 mm 未満の範囲内であ
ることが好ましい。
Further, for example, in the case of an electrode having a curved discharge surface, which is used in a radial cell, which is one type of plating cell for electroplating of steel strip, the current-carrying area S and the surface area of the discharge part are as described above. Defined similarly. Further, in the electrode of the present invention, h, which is the height or depth of the uneven portion, is preferably 0.5 to 3.0 mm,
More preferably, it is in the range of 0.5 mm or more and less than 2.0 mm.

【0026】0.5mm未満の場合、電極の実表面積増加に
伴う、電極寿命の延長効果が小さくなり、 3.0 mm 超え
の場合、電極面より発生する酸素ガスの泡抜け性が悪く
なり、所要電解電圧が高くなる。なお、本発明におい
て、前記凹凸部の高さまたは深さとは、凸部の頂点から
前記した仮想面に下した垂線と該仮想面との交点と凸部
の頂点迄の距離を示し、凹凸の形状が不規則な場合は、
該仮想面全体における平均値を示す。
When it is less than 0.5 mm, the effect of extending the electrode life is reduced due to the increase of the actual surface area of the electrode, and when it is more than 3.0 mm, the degassing of oxygen gas generated from the electrode surface is deteriorated and the required electrolysis voltage is required. Becomes higher. In the present invention, the height or depth of the uneven portion refers to the distance from the vertex of the convex portion to the intersection of the perpendicular line drawn to the virtual surface and the virtual surface and the vertex of the convex portion. If the shape is irregular,
The average value in the entire virtual surface is shown.

【0027】また、電気めっき時の本発明に係わる電極
(陽極)と鋼板などの被めっき金属帯(陰極)の両極の
間のめっき液の流路を極間と定義すると、極間内のめっ
き液流速は、1.0m/sec以上であることが好ましく、さら
に好ましくは、 1.0〜3.0m/secの範囲内であることが好
ましい。1.0m/sec未満の場合、所要電解電圧が高くな
り、逆に3.0m/sec超えてめっき液流速を増加させた場
合、電解電圧低下の効果は飽和し、送液用のポンプなど
における消費電力が大きくなる。
Further, when the flow path of the plating solution between the electrode (anode) according to the present invention and the both electrodes of the metal band (cathode) to be plated such as a steel plate during electroplating is defined as the gap between the electrodes, the plating within the gap is defined. The liquid flow rate is preferably 1.0 m / sec or more, more preferably 1.0 to 3.0 m / sec. If it is less than 1.0 m / sec, the required electrolysis voltage becomes high, and conversely, if the plating solution flow rate is increased to more than 3.0 m / sec, the effect of lowering the electrolysis voltage saturates, and the power consumption of the pump for liquid transfer, etc. Grows larger.

【0028】[0028]

【実施例】以下、本発明を実施例に基づいて具体的に説
明する。 (実施例1)先ず、各種表面形状の電極を用いて、表面
形状および極間内のめっき液流速(以下極間内流速と記
す)が電解電圧に及ぼす影響について調べた。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be specifically described below based on embodiments. (Example 1) First, using electrodes having various surface shapes, the influence of the surface shape and the plating solution flow velocity in the interelectrode (hereinafter referred to as interelectrode flow velocity) on the electrolysis voltage was examined.

【0029】本実施例においては、前記した図1、図2
の本発明に係わるピラミッド型電極、スリットA型電
極、スリットB型電極、および比較として図3の平板型
電極を用いた。すなわち、図1、図2、図3に示す各種
表面形状のTiから成る基体の表面上に、IrO2皮膜を被覆
した電極を用いて実験を行った。
In this embodiment, the above-mentioned FIGS. 1 and 2 are used.
The pyramid type electrode, the slit A type electrode, the slit B type electrode according to the present invention, and the flat plate type electrode of FIG. 3 for comparison were used. That is, an experiment was conducted using an electrode in which an IrO 2 film was coated on the surface of a substrate made of Ti having various surface shapes shown in FIGS. 1, 2, and 3.

【0030】また、電解時に発生する酸素ガスの泡抜け
性を調べるため、スリット型電極の場合は、めっき液流
れ方向Fに対して直角に溝を切った電極(図2(a) 、
(c) )およびめっき液流れ方向Fに対して平行に溝を切
った電極(図2(b) 、(d) )、各々2種類の電極につい
て実験を行った。本実施例で用いた実験装置を図7に示
す。
Further, in order to examine the bubble escape property of oxygen gas generated during electrolysis, in the case of a slit type electrode, an electrode having a groove cut at right angles to the flow direction F of the plating solution (FIG. 2 (a),
(c)) and electrodes having grooves cut in parallel to the flow direction F of the plating solution (Figs. 2 (b) and 2 (d)), two types of electrodes each were tested. The experimental apparatus used in this example is shown in FIG.

【0031】図7において、21はめっき液流路22、陽極
23および陰極24から構成された、水平セル型めっき槽を
モデル化した水平セルであり、25は電流値一定制御のサ
イリスタ整流器、26は循環槽、27はめっき液、28はめっ
き液昇温装置、29はめっき液冷却装置、30は流量計、T
は熱電対、Pはポンプ、Vは弁を示す。本実施例におい
ては、図7の実験装置および下記のモデルめっき液を使
用し、前記した各種表面形状の電極のテストピースを、
陽極23に取り付け、陽極23および陰極24の間に一定電流
を通電し、極間内流速を変えて、下記条件下で電解電圧
を測定した。
In FIG. 7, reference numeral 21 is a plating solution flow path 22, an anode.
A horizontal cell that is a model of a horizontal cell type plating tank composed of 23 and a cathode 24, 25 is a thyristor rectifier with constant current control, 26 is a circulating tank, 27 is a plating solution, 28 is a plating solution temperature raising device. , 29 is a plating solution cooling device, 30 is a flow meter, T
Is a thermocouple, P is a pump, and V is a valve. In this example, the test pieces of electrodes having various surface shapes described above were prepared using the experimental apparatus of FIG. 7 and the model plating solution described below.
It was attached to the anode 23, a constant current was passed between the anode 23 and the cathode 24, the inter-electrode flow velocity was changed, and the electrolytic voltage was measured under the following conditions.

【0032】モデルめっき液:Na2SO4=150g/l、pH=1.
2 〜1.3 、液温=60℃ 電流密度:150A/dm2 極間距離:10mm 図5に前記した試験電極を用いて行った実験結果を示
す。図5より、電極の溝深さを2.0mm と大きくしたスリ
ットB型電極の場合、めっき液流速を増しても、電極の
溝深さが0.7mm と小さいピラミッド型電極およびスリッ
トA型電極と比較して、所定の電流を通電した場合の電
解電圧が高くなり、電極の溝深さを大きくすると、泡抜
け性が悪くなることが分かった。
Model plating solution: Na 2 SO 4 = 150 g / l, pH = 1.
2 to 1.3, liquid temperature = 60 ° C. Current density: 150 A / dm 2 Distance between electrodes: 10 mm FIG. 5 shows the result of an experiment conducted using the test electrode described above. As shown in Fig. 5, in the case of the slit B type electrode with the groove depth of the electrode increased to 2.0 mm, it is compared with the pyramid type electrode and the slit A type electrode in which the electrode groove depth is as small as 0.7 mm even if the plating solution flow rate is increased. Then, it was found that the electrolytic voltage increases when a predetermined current is applied and the groove depth of the electrode is increased, resulting in poor bubble removal.

【0033】すなわち、本発明においては、定常時の電
解電圧低減の上から、電極の溝深さを2.0mm 未満に制限
することが、より好ましい。また、図5に示されるよう
に、極間内流速は、1.0m/sec以上であることが好まし
く、また3.0m/sec以上に大きくした場合、定常時の電解
電圧低下の効果は飽和することが分かった。
That is, in the present invention, it is more preferable to limit the groove depth of the electrode to less than 2.0 mm in order to reduce the electrolytic voltage in the steady state. Further, as shown in FIG. 5, the inter-electrode flow velocity is preferably 1.0 m / sec or more, and when it is increased to 3.0 m / sec or more, the effect of lowering the electrolytic voltage in a steady state is saturated. I understood.

【0034】(実施例2)図8に示す水平セル型の連続
電気めっき装置を使用し、図1、図2に示す本発明に係
わる試験電極(ピラミッド型電極、スリットA型電極)
および図3に示す従来の平板型電極を用いて、下記条件
下で操業実験を行った。なお、図8(a) は、めっき装置
の側面図を示し、図8(b) は、試験電極を取り付けた下
部陽極側のめっきセルの部分側面図を示す。
Example 2 Using the horizontal cell type continuous electroplating apparatus shown in FIG. 8, the test electrodes (pyramid type electrode, slit A type electrode) according to the present invention shown in FIGS. 1 and 2 were used.
And the operation experiment was conducted under the following conditions using the conventional flat plate type electrode shown in FIG. 8 (a) is a side view of the plating apparatus, and FIG. 8 (b) is a partial side view of the plating cell on the lower anode side to which the test electrode is attached.

【0035】また、図8において、40はめっきセル、41
は本実施例において試験電極を取りつけた陽極、42は鋼
帯、43はめっき液、44はコンダクタロール、45はバック
アップロール、46はブスバー、47は鋼帯の進行方向を示
す。 〔試験電極の金属基体、皮膜〕 金属基体:Ti、皮膜:IrO2 〔被めっき材〕アルカリ脱脂、硫酸酸洗後の冷延鋼板 〔めっき浴〕 めっき液含有成分:NiS04 、ZnSO4 、Na2S04 めっき液 pH :1.4 (硫酸酸性) 極間内めっき液流速:1.0m/sec以上 図6に、この間の、実験開始時の所要電圧に対する電圧
上昇率の経時的推移を示す。
Further, in FIG. 8, 40 is a plating cell and 41
In the present embodiment, is an anode to which a test electrode is attached, 42 is a steel strip, 43 is a plating solution, 44 is a conductor roll, 45 is a backup roll, 46 is a bus bar, and 47 is a traveling direction of the steel strip. [Metal substrate of test electrode, coating] Metal substrate: Ti, coating: IrO 2 [Material to be plated] Cold rolled steel sheet after alkaline degreasing and sulfuric acid pickling [Plating bath] Components containing plating solution: NiS0 4 , ZnSO 4 , Na 2 S0 4 Plating solution pH: 1.4 (Sulfate acidity) Velocity of plating solution in the interelectrode: 1.0 m / sec or more Figure 6 shows the time course of the voltage rise rate with respect to the required voltage at the start of the experiment.

【0036】図6に示されるように、電極の実表面積を
増加させた本発明の試験電極を用いた場合、従来の平板
型電極に対し、電極劣化に伴う電圧上昇開始迄の使用可
能時間が大幅に延長可能となり、電極の長寿命化が達成
可能であるという良好な結果が得られた。以上の実施例
で示されるように、本発明においては、めっき電極の放
電面側に機械加工を施す方法などにより、電極の実表面
積を増加し、電極の単位皮膜面積当たりの電流負荷の低
減を図った。
As shown in FIG. 6, when the test electrode of the present invention in which the actual surface area of the electrode is increased is used, the usable time until the start of the voltage rise due to the deterioration of the electrode is higher than that of the conventional flat plate type electrode. It has been possible to obtain a good result that it is possible to greatly extend the life of the electrode. As shown in the above examples, in the present invention, the actual surface area of the electrode is increased and the current load per unit coating area of the electrode is reduced by a method of machining the discharge surface side of the plating electrode. planned.

【0037】この結果、電極の使用可能時間を大幅に延
長し、電極の長寿命化を達成することができた。また、
泡抜け性の良否に伴う定常時の電解電圧の問題に関して
も、機械加工などの方法により設ける溝深さを、より好
ましくは2.0mm 未満とし、さらには、極間内めっき液流
速を1.0m/sec以上とすることにより解決可能となった。
As a result, the usable time of the electrode was greatly extended and the life of the electrode could be extended. Also,
With regard to the problem of electrolytic voltage at steady state due to the quality of bubble removal, the groove depth provided by a method such as machining is more preferably less than 2.0 mm, and the plating solution flow velocity between the electrodes is 1.0 m / m. It became possible to solve it by setting it to sec or more.

【0038】[0038]

【発明の効果】本発明によれば、電気分解用の表面被覆
電極の使用可能時間を大幅に延長し、電極の長寿命化を
達成することができた。さらには、極間内めっき液流速
を規定することにより、定常時の電解電圧を低減するこ
とが可能となった。
According to the present invention, the usable time of the surface-coated electrode for electrolysis can be significantly extended and the life of the electrode can be extended. Furthermore, by regulating the flow velocity of the plating solution in the gap between electrodes, it has become possible to reduce the electrolysis voltage in the steady state.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係わる電極を示す斜視図(a) および該
電極凸部の高さを示す要部拡大断面図(b) である。
FIG. 1 is a perspective view (a) showing an electrode according to the present invention and an enlarged sectional view (b) of a main part showing a height of a convex portion of the electrode.

【図2】本発明に係わる電極を示す斜視図(a) 、(b) 、
(c) 、(d) および該電極凸部の高さを示す要部拡大斜視
図(e) 、(f) である。
FIG. 2 is a perspective view showing an electrode according to the present invention (a), (b),
(c), (d) and an enlarged perspective view (e), (f) of the main part showing the height of the convex portion of the electrode.

【図3】従来の電極を示す斜視図である。FIG. 3 is a perspective view showing a conventional electrode.

【図4】本発明に係わる電極の表面形状を説明するため
の斜視図(a) 、(b−1)、(C) 、およびスリットA型電極
(b−1)の断面図(b−2)である。
FIG. 4 is perspective views (a), (b-1) and (C) for explaining the surface shape of the electrode according to the present invention, and a slit A-type electrode.
It is sectional drawing (b-2) of (b-1).

【図5】本発明に係わる試験電極を用いた実験におけ
る、極間内のめっき液流速と電解電圧の関係を示すグラ
フである。
FIG. 5 is a graph showing a relationship between a plating solution flow velocity in an interelectrode and an electrolytic voltage in an experiment using a test electrode according to the present invention.

【図6】本発明に係わる試験電極を用いた実験におけ
る、電圧上昇率の経時的推移を示すグラフである。
FIG. 6 is a graph showing the time course of the voltage increase rate in an experiment using the test electrode according to the present invention.

【図7】実施例で用いた電解実験装置を示す側面図であ
る。
FIG. 7 is a side view showing an electrolysis test apparatus used in Examples.

【図8】実施例で用いた連続電気めっき装置の側面図
(a) および部分側面図(b) である。
FIG. 8 is a side view of the continuous electroplating apparatus used in the examples.
(a) and a partial side view (b).

【符号の説明】[Explanation of symbols]

1 電極 2 放電面側 3 突起部 4 窪み部 5 溝部 6 凹凸部の底部 7 仮想面 8 三角柱 9 四角柱 21 水平セル 22 めっき液流路 23 陽極 24 陰極 25 サイリスタ整流器 26 循環槽 27 めっき液 28 めっき液昇温装置 29 めっき液冷却装置 40 めっきセル 41 陽極 42 鋼帯 43 めっき液 44 コンダクタロール h 凹凸部の高さまたは深さ S 通電面積 T 熱電対 1 Electrode 2 Discharge surface side 3 Protrusion 4 Depression 5 Groove 6 Bottom of uneven part 7 Virtual surface 8 Triangular prism 9 Square prism 21 Horizontal cell 22 Plating liquid flow path 23 Anode 24 Cathode 25 Thyristor rectifier 26 Circulating tank 27 Plating liquid 28 Plating Liquid temperature raising device 29 Plating liquid cooling device 40 Plating cell 41 Anode 42 Steel strip 43 Plating liquid 44 Conductor roll h Height or depth of irregularities S Current-carrying area T Thermocouple

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 電極の放電面側の電極面上に突起部、窪
み部および溝部の少なくともいずれかからなる凹凸部を
有することを特徴とする電気分解用表面被覆電極。
1. A surface-coated electrode for electrolysis, which has an uneven portion composed of at least one of a protrusion, a depression, and a groove on the electrode surface on the discharge surface side of the electrode.
【請求項2】 電極の放電面側の電極面上に三角錐型の
突起部からなる凹凸部を有することを特徴とする電気分
解用表面被覆電極。
2. A surface-coated electrode for electrolysis, comprising an uneven portion formed of triangular pyramidal protrusions on the electrode surface on the discharge surface side of the electrode.
【請求項3】 電極の放電面側の電極面上に、三角柱ま
たは四角柱の長手方向の一つの面が載置された形状の凹
凸部を有することを特徴とする電気分解用表面被覆電
極。
3. A surface-coated electrode for electrolysis, comprising an uneven portion having a shape in which one surface in the longitudinal direction of a triangular prism or a quadrangular prism is placed on the electrode surface on the discharge surface side of the electrode.
【請求項4】 前記凹凸部の底部で形成される仮想面に
おける前記電極の通電面積に対する前記電極の放電部の
表面積の比が、1.2 以上である請求項1〜3いずれかに
記載の電気分解用表面被覆電極。
4. The electrolysis according to claim 1, wherein the ratio of the surface area of the discharge portion of the electrode to the current-carrying area of the electrode on the virtual surface formed at the bottom of the uneven portion is 1.2 or more. Surface-coated electrode for.
【請求項5】 前記凹凸部の高さまたは深さが、0.5 〜
3.0mm である請求項1〜4いずれかに記載の電気分解用
表面被覆電極。
5. The height or depth of the uneven portion is 0.5 to
The surface-coated electrode for electrolysis according to claim 1, which has a size of 3.0 mm.
【請求項6】 前記請求項1〜5いずれかに記載の電気
分解用表面被覆電極を用いて、該電極と相対向する金属
帯と該電極との間に、流速が1.0m/sec以上の条件下でめ
っき液を流通し、めっきを行うことを特徴とする金属帯
の連続電気めっき方法。
6. The surface-coated electrode for electrolysis according to any one of claims 1 to 5, wherein a flow velocity is 1.0 m / sec or more between a metal strip and the electrode facing each other. A continuous electroplating method for a metal strip, which is characterized in that a plating solution is circulated under the conditions to perform plating.
【請求項7】 めっき液が硫酸酸性めっき液である請求
項6記載の金属帯の連続電気めっき方法。
7. The continuous electroplating method for a metal strip according to claim 6, wherein the plating solution is a sulfuric acid acidic plating solution.
JP04337296A 1996-02-29 1996-02-29 Continuous electroplating method for metal strip Expired - Fee Related JP3467954B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04337296A JP3467954B2 (en) 1996-02-29 1996-02-29 Continuous electroplating method for metal strip

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04337296A JP3467954B2 (en) 1996-02-29 1996-02-29 Continuous electroplating method for metal strip

Publications (2)

Publication Number Publication Date
JPH09235698A true JPH09235698A (en) 1997-09-09
JP3467954B2 JP3467954B2 (en) 2003-11-17

Family

ID=12662021

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04337296A Expired - Fee Related JP3467954B2 (en) 1996-02-29 1996-02-29 Continuous electroplating method for metal strip

Country Status (1)

Country Link
JP (1) JP3467954B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2483769A (en) * 2010-09-14 2012-03-21 Element Six Ltd Diamond electrodes for electrochemical devices
JP2012201889A (en) * 2011-03-23 2012-10-22 Nippon Steel Engineering Co Ltd Electroplating apparatus
WO2017017977A1 (en) * 2015-07-29 2017-02-02 株式会社 東芝 Electrode for electrolysis, electrode unit, and electrolysis apparatus
KR20210060188A (en) * 2019-11-18 2021-05-26 최윤석 Electrolysis cleaner
KR20210060189A (en) * 2019-11-18 2021-05-26 최윤석 Electrolysis cleaner
JP2021515102A (en) * 2018-02-28 2021-06-17 マニュファクチュアリング システムズ リミテッド Catalytic equipment and methods

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6234754B2 (en) 2013-09-18 2017-11-22 株式会社神戸製鋼所 Electrode metal plate and electrode

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2483769A (en) * 2010-09-14 2012-03-21 Element Six Ltd Diamond electrodes for electrochemical devices
GB2483769B (en) * 2010-09-14 2012-11-28 Element Six Ltd Diamond electrodes for electrochemical devices
JP2012201889A (en) * 2011-03-23 2012-10-22 Nippon Steel Engineering Co Ltd Electroplating apparatus
WO2017017977A1 (en) * 2015-07-29 2017-02-02 株式会社 東芝 Electrode for electrolysis, electrode unit, and electrolysis apparatus
JPWO2017017977A1 (en) * 2015-07-29 2017-08-03 株式会社東芝 Electrode for electrolysis, electrode unit, and electrolysis apparatus
JP2021515102A (en) * 2018-02-28 2021-06-17 マニュファクチュアリング システムズ リミテッド Catalytic equipment and methods
KR20210060188A (en) * 2019-11-18 2021-05-26 최윤석 Electrolysis cleaner
KR20210060189A (en) * 2019-11-18 2021-05-26 최윤석 Electrolysis cleaner

Also Published As

Publication number Publication date
JP3467954B2 (en) 2003-11-17

Similar Documents

Publication Publication Date Title
US20180178302A1 (en) Electrochemical system and method for electropolishing superconductive radio frequency cavities
US4310403A (en) Apparatus for electrolytically treating a metal strip
EP0306782A1 (en) Preparation of Zn-Ni alloy plated steel strip
JP3467954B2 (en) Continuous electroplating method for metal strip
EP0701908B1 (en) Aluminum support for planographic printing plate, its production and roughening aluminum support
EP0271924A1 (en) Permanent anode for high current density galvanizing processes
US20090090634A1 (en) Method of plating metal onto titanium
KR19980033150A (en) Method and apparatus for electrolytic acid washing of metal strip
US6217725B1 (en) Method and apparatus for anodizing
US6344131B1 (en) Method of producing aluminum support for planographic printing plate
JPH06146066A (en) Continuous electrolytic processor
JP2002256497A (en) Insoluble anode
JP6988842B2 (en) Manufacturing method of electric Zn—Ni alloy plated steel sheet
JP2000204499A (en) Electrolytical descaling of stainless steel strip
JPH0730690Y2 (en) Split type insoluble electrode for electroplating
JPH09279381A (en) Electrolytic electrode
JP3027118B2 (en) Vertical electroplating apparatus and electrochrome plating method
JPH0670279B2 (en) Horizontal electric plating device
JPH11329465A (en) Separator for fuel cell
JPS5989790A (en) Method for preventing electrodeposition of metal on electrically conductive roll during electroplating
JP2938358B2 (en) Electrolytic pickling equipment
JPS6032121Y2 (en) Horizontal electric mesh cell made of strip metal plate
JP3753114B2 (en) Electroplating electrode and metal strip electroplating method using the same
JPH021391A (en) Production of aluminum support for printing plate
RU2439207C1 (en) Method of cathode manufacturing for copper electrowinning

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees