JP2938358B2 - Electrolytic pickling equipment - Google Patents

Electrolytic pickling equipment

Info

Publication number
JP2938358B2
JP2938358B2 JP32856294A JP32856294A JP2938358B2 JP 2938358 B2 JP2938358 B2 JP 2938358B2 JP 32856294 A JP32856294 A JP 32856294A JP 32856294 A JP32856294 A JP 32856294A JP 2938358 B2 JP2938358 B2 JP 2938358B2
Authority
JP
Japan
Prior art keywords
steel strip
current density
electrolytic
area
electrode plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP32856294A
Other languages
Japanese (ja)
Other versions
JPH08176900A (en
Inventor
正剛 菊山
明 松田
正晴 斎数
俊哉 萩原
義宏 佐竹
洋 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP32856294A priority Critical patent/JP2938358B2/en
Publication of JPH08176900A publication Critical patent/JPH08176900A/en
Application granted granted Critical
Publication of JP2938358B2 publication Critical patent/JP2938358B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Electroplating Methods And Accessories (AREA)
  • Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、電解電流の電流密度分
布を均一化して電気分解を行い、鋼帯表面のスケールを
除去する電解酸洗装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrolytic pickling apparatus for uniformizing the current density distribution of an electrolytic current, performing electrolysis, and removing scale on the surface of a steel strip.

【0002】[0002]

【従来の技術】従来の鋼帯表面のスケールを除去する電
解酸洗装置の概略構成、及びその電解電流の電流密度分
布の一例を、図6に示す。中性塩電解液が満たされた槽
4内には、互いに離間した一対の陽電極板2a,2b、
センタロール5b、及び互いに離間した一対の陰電極板
3a,3bが備えられている。槽4内にデフレクタロー
ル5aを介して導入されたステンレス鋼帯1は、先ず、
陽電極板2a,2b間を通過し、センタロール5bによ
って上方に向きが変えられ、次に、陰電極板3a,3b
間を通過して槽4内から導出され、デフレクタロール5
cを介して次の工程に送出される。
2. Description of the Related Art FIG. 6 shows a schematic configuration of a conventional electrolytic pickling apparatus for removing scale on the surface of a steel strip and an example of a current density distribution of an electrolytic current. In the tank 4 filled with the neutral salt electrolyte, a pair of positive electrode plates 2a, 2b separated from each other are provided.
A center roll 5b and a pair of negative electrode plates 3a and 3b separated from each other are provided. The stainless steel strip 1 introduced into the tank 4 via the deflector roll 5a firstly
It passes between the positive electrode plates 2a and 2b, is turned upward by the center roll 5b, and is then turned to the negative electrode plates 3a and 3b.
Between the tank 4 and the deflector roll 5
c to the next step.

【0003】陽電極板2a,2b及び陰電極板3a,3
b間には電源電圧Eが印加され、これにより、陽電極板
2a,2b間に配設されたステンレス鋼帯1の上下の表
面はマイナスに帯電し、逆に、陰電極板3a,3b間に
配設されたステンレス鋼帯1の上下の表面はプラスに帯
電する。この結果、電源Eの電流は、陽電極板2a,2
bから電解電流となってステンレス鋼帯1のマイナス帯
電部に流れ、さらに、ステンレス鋼帯1を通してプラス
帯電部に達し、プラス帯電部から電解電流となって陰電
極板3a,3bに流れて電源Eに戻る。
The positive electrode plates 2a, 2b and the negative electrode plates 3a, 3
The power supply voltage E is applied between the positive electrode plates 2a and 2b, whereby the upper and lower surfaces of the stainless steel strip 1 disposed between the positive electrode plates 2a and 2b are negatively charged, and conversely, between the negative electrode plates 3a and 3b. The upper and lower surfaces of the stainless steel strip 1 disposed in the above are positively charged. As a result, the current of the power source E is reduced to the positive electrode plates 2a, 2
b, it becomes an electrolytic current and flows to the negatively charged portion of the stainless steel strip 1, further reaches the positively charged portion through the stainless steel strip 1, and becomes an electrolytic current from the positively charged portion and flows to the negative electrode plates 3a and 3b to supply power. Return to E.

【0004】このとき、ステンレス鋼帯1の抵抗成分の
影響により、陽電極板2a,2bにおけるデフレクタロ
ール5a側の端部からステンレス鋼帯1に流れて陰電極
板3a,3bに達する電流は、陽電極板2a,2bにお
けるセンタロール5b側の端部からステンレス鋼帯1に
流れて陰電極板3a,3bに達する電流より小さくな
り、電極長さ方向での電解電流の電流密度分布は、図6
に示すように、センタロール5b側端部で高くなり、デ
フレクタロール5a及び5c側の各端部では低くなる。
なお、図6における電流密度の正負は、電解電流の流れ
る向きを表している。
At this time, due to the influence of the resistance component of the stainless steel strip 1, the current flowing from the end of the positive electrode plates 2a and 2b on the deflector roll 5a side to the stainless steel strip 1 and reaching the negative electrode plates 3a and 3b is: The current flowing through the stainless steel strip 1 from the ends of the positive electrode plates 2a and 2b on the side of the center roll 5b to the stainless steel strip 1 and reaching the negative electrode plates 3a and 3b is smaller than the current density distribution of the electrolytic current in the electrode length direction. 6
As shown in the figure, the height increases at the end of the center roll 5b, and decreases at the ends of the deflector rolls 5a and 5c.
The sign of the current density in FIG. 6 indicates the direction in which the electrolytic current flows.

【0005】この電解酸洗においては陰電極板3a,3
b間に配設されたステンレス鋼帯1のプラス帯電部はア
ノード面となり、アノード面では、化学反応によって金
属及び金属酸化物の溶解及び酸素の発生等が進み、ステ
ンレス鋼帯1の表面のスケールが化学的に除去される。
しかしながら、陰電極板3a,3bでの電解電流の電流
密度が所定の値を越えた高いところでは、酸素発生が優
先的となって金属の溶解反応が抑制され脱スケール性能
が低下する傾向があり、電解電流の電流密度分布の均一
化が望まれていた。
In this electrolytic pickling, the negative electrode plates 3a, 3a
The positively charged portion of the stainless steel strip 1 disposed between the b and b serves as an anode surface. At the anode surface, dissolution of metal and metal oxide and generation of oxygen and the like progress by a chemical reaction, and the scale of the surface of the stainless steel strip 1 is increased. Is chemically removed.
However, where the current density of the electrolytic current in the cathode plates 3a and 3b exceeds a predetermined value, oxygen generation takes precedence, so that the dissolution reaction of the metal is suppressed and the descaling performance tends to decrease. It has been desired to make the current density distribution of the electrolytic current uniform.

【0006】従来、電解電流の電流密度分布を均一化し
て電気分解を行うものとして、例えば、実開昭62−1
36580号公報に記載された電気めっき用電極板があ
る。これは、めっき液が満たされた槽内に鋼帯を引き込
み、この鋼帯の上下に所定の距離を保持して電極板を配
設し、電極板には電極板垂直方向に複数の液吐出口が設
けられ、この液吐出口からめっき液を噴出することによ
り鋼帯の中央部を浮上させて垂下を防止している。さら
に、垂下が生じていないときに、鋼帯板抵抗と電極板及
び鋼帯間のめっき液抵抗との和を一定にするよう、電極
板にその長さ方向の鋼帯側表面に所定の曲率を設けて、
電極板の長さ方向各位置から鋼帯までの距離を変えてい
る。このように、鋼帯の垂下をなくすと共に、鋼帯板抵
抗と液抵抗との和が電極板の長さ方向各点で一定とする
ことにより、電極板の長さ方向での電流密度分布を均一
にしている。
Conventionally, electrolysis is performed by making the current density distribution of the electrolytic current uniform, for example, see Japanese Utility Model Application Laid-Open No. 62-1.
There is an electrode plate for electroplating described in JP-A-36580. In this method, a steel strip is drawn into a bath filled with a plating solution, and an electrode plate is disposed at a predetermined distance above and below the steel strip. An outlet is provided, and by ejecting a plating solution from the solution discharge port, the central portion of the steel strip is floated to prevent dripping. Further, when no droop occurs, the electrode plate has a predetermined curvature on its surface in the length direction of the steel strip so that the sum of the resistance of the steel strip and the plating solution resistance between the electrode plate and the steel strip is kept constant. With
The distance from each position in the length direction of the electrode plate to the steel strip is changed. In this way, by eliminating the droop of the steel strip and by making the sum of the steel strip resistance and the liquid resistance constant at each point in the length direction of the electrode plate, the current density distribution in the length direction of the electrode plate is reduced. It is uniform.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、前記公
報に記載された従来例にあっては、電極板に液吐出孔を
設け、液吐出孔からのめっき液の噴出によって鋼帯中央
部を浮上させ、且つ、電極板表面に曲率を設けて抵抗値
の和を一定にし、電流密度分布を均一にしているが、鋼
帯の重量によって浮上量が変化し、また、めっき溶液ご
とに液抵抗値が変化するため、これらを考慮に入れて液
吐出孔の寸法及び表面の曲率を設定しなければならず、
何種類もの電極板を形成することは容易ではない。ま
た、特に、長さ数メートルに亘る大型の電極板の場合に
は、表面に曲率を設けて電極板を形成することは困難を
要する。
However, in the prior art described in the above publication, a liquid discharge hole is provided in the electrode plate, and the central portion of the steel strip is floated by jetting a plating solution from the liquid discharge hole. And, the curvature is provided on the electrode plate surface to make the sum of the resistance values constant and make the current density distribution uniform, but the flying height changes depending on the weight of the steel strip, and the liquid resistance value varies for each plating solution. Because of these changes, the dimensions of the liquid discharge holes and the curvature of the surface must be set taking these factors into account.
It is not easy to form many types of electrode plates. In particular, in the case of a large-sized electrode plate having a length of several meters, it is difficult to form the electrode plate with a curved surface.

【0008】したがって、本発明は、上記問題点を解消
し、簡単な構成で電解電流の電流密度分布を均一化する
ことのできる電解酸洗装置を提供することを目的とす
る。
Therefore, an object of the present invention is to provide an electrolytic pickling apparatus which can solve the above-mentioned problems and can make the current density distribution of the electrolytic current uniform with a simple structure.

【0009】[0009]

【課題を解決するための手段】上記目的を達成するため
に、本発明のうち請求項1に係る電解酸洗装置は、電解
液が満たされこの液中を鋼帯が通過する酸洗槽と、該酸
洗槽内に前記鋼帯の表裏両面からそれぞれ所定の距離離
間すると共に、前記鋼帯を挟んで互いに対向して配設さ
れた電気分解用の一対の陽電極板と、前記酸洗槽内に前
記鋼帯の両側面からそれぞれ所定の距離離間すると共
に、前記鋼帯を挟んで互いに対向して配設され、且つ、
前記陽電極板から鋼帯通過方向側へ所定の距離離間して
配設された電気分解用の一対の陰電極板とを備え、前記
鋼帯表面のスケールを電気分解を用いて除去する電解酸
洗装置において、少なくとも前記陰電極板は、前記鋼帯
との対向面における電極面積の所定の設定によって、前
記鋼帯との間に流れる電解電流の電流密度の高い部位を
低くすることを特徴とする。
In order to achieve the above object, an electrolytic pickling apparatus according to claim 1 of the present invention comprises a pickling tank filled with an electrolytic solution through which a steel strip passes. A pair of positive electrode plates for electrolysis disposed in the pickling tank at predetermined distances from both the front and back surfaces of the steel strip and opposed to each other with the steel strip interposed therebetween; A predetermined distance from each side surface of the steel strip in the tank, respectively, and are disposed to face each other across the steel strip, and,
A pair of negative electrode plates for electrolysis disposed at a predetermined distance from the positive electrode plate toward the steel strip passing direction, and an electrolytic acid for removing scale on the surface of the steel strip by electrolysis. In the washing apparatus, at least the negative electrode plate, by a predetermined setting of the electrode area on the surface facing the steel strip, by reducing the portion of the high current density of the electrolytic current flowing between the steel strip, I do.

【0010】そして、本発明のうち請求項2に係る電解
酸洗装置は、前記電極面積が、少なくとも前記陰電極板
の前記鋼帯との対向面を所定の面積の絶縁部材で覆うこ
とにより設定することを特徴とする。また、本発明のう
ち請求項3に係る電解酸洗装置は、前記絶縁部材が、絶
縁テープであることを特徴とする。
In the electrolytic pickling apparatus according to a second aspect of the present invention, the electrode area is set by covering at least a surface of the negative electrode plate facing the steel strip with an insulating member having a predetermined area. It is characterized by doing. In the electrolytic pickling apparatus according to a third aspect of the present invention, the insulating member is an insulating tape.

【0011】さらに、本発明のうち請求項4に係る電解
酸洗装置は、前記電極面積が、少なくとも前記陰電極板
に所定の面積の貫通孔を穿設することにより設定するこ
とを特徴とする。
Further, the electrolytic pickling apparatus according to claim 4 of the present invention is characterized in that the electrode area is set at least by forming a through hole having a predetermined area in the negative electrode plate. .

【0012】[0012]

【作用】上記構成により、本発明のうち請求項1に係る
電解酸洗装置によれば、少なくとも陰電極板における鋼
帯に対向する面の電極面積を、陰電極板及び鋼帯間に流
れる電解電流の電流密度の高い部位を低くするように設
定する。電流密度分布を例えば計算により算出し、電流
密度の高いところでは電極面積を小さく設定し、逆に、
電流密度布の低いところでは電極面積を大きく設定し、
陰電極板間の電極長さ方向各位置での電流密度の高低を
電極面積を変えることにより変更し、電流密度分布の均
一化を図る。
According to the above structure, according to the electrolytic pickling apparatus of the present invention, at least the electrode area of the surface of the negative electrode plate facing the steel strip is reduced by the electrolytic flow between the negative electrode plate and the steel strip. The setting is made so that the portion where the current density of the current is high is lowered. The current density distribution is calculated, for example, by calculation, and the electrode area is set to be small at the place where the current density is high.
Set the electrode area large where the current density cloth is low,
The level of the current density at each position in the electrode length direction between the negative electrode plates is changed by changing the electrode area to achieve a uniform current density distribution.

【0013】そして、本発明のうち請求項2に係る電解
酸洗装置によれば、少なくとも陰電極板における鋼帯に
対向する面を、所定の面積の絶縁部材で覆うことによっ
て前記電極面積を変える。電流密度の高いところでは大
きな面積の絶縁部材で覆い、電流密度布の低いところで
は、小さな面積の絶縁部材で覆い、あるいは絶縁部材で
覆わず、電流密度分布の均一化を図る。
According to the electrolytic pickling apparatus of the present invention, at least the surface of the negative electrode plate facing the steel strip is covered with an insulating member having a predetermined area to change the electrode area. . The area where the current density is high is covered with an insulating member having a large area, and the area where the current density cloth is low is covered with an insulating member having a small area or is not covered with an insulating member.

【0014】また、本発明のうち請求項3に係る電解酸
洗装置によれば、絶縁部材として絶縁テープを用い、電
極面積を簡単に変更できるようにする。さらに、本発明
のうち請求項4に係る電解酸洗装置によれば、少なくと
も陰電極板に所定の面積の貫通孔を設けることによって
前記電極面積を変える。電流密度の高いところには大き
な面積の貫通孔を設け、電流密度の低いところには、小
さな面積の貫通孔を設け、あるいは貫通孔を設けず、電
流密度分布の均一化を図る。
According to the electrolytic pickling apparatus of the third aspect of the present invention, an insulating tape is used as an insulating member so that the electrode area can be easily changed. Further, according to the electrolytic pickling apparatus according to claim 4 of the present invention, the electrode area is changed by providing a through-hole having a predetermined area at least in the negative electrode plate. A through-hole with a large area is provided at a place where the current density is high, and a through-hole with a small area is provided at a place where the current density is low, or the through-hole is not provided, thereby achieving a uniform current density distribution.

【0015】[0015]

【実施例】本発明の実施例を図面に基づいて説明する。
図1に、本発明に係る電解酸洗装置の第1実施例の概略
側面図を、図2に電極部の概略正面図及び電流密度分布
をそれぞれ示す。冷間圧延が行われた後に焼鈍された鋼
帯例えばステンレス鋼帯1は、図1に示すように、デフ
レクタロール5aを介して中性塩電解液が満たされた槽
4内の下方へ導入され、槽4内に設けられたセンタロー
ル5bで張力が付与されると共に上方に曲げられて槽4
内から導出され、デフレクタロール5cを介して次工程
の洗浄及び乾燥処理装置に送り出される。デフレクタロ
ール5a及びセンタロール5b間の槽4内には、ステン
レス鋼帯1の上下にそれぞれ所定の距離を保持して一対
の陽電極板2a,2bが、ステンレス鋼帯1と平行にな
るように所定の角度傾けて配設され、センタロール5b
及びデフレクタロール5c間の槽4内には、ステンレス
鋼帯1の上下に陽電極板2a,2bと同様にそれぞれ所
定の距離を保持して一対の陰電極板3a,3bが、ステ
ンレス鋼帯1と平行となるように所定の角度傾けて配設
される。そして、陽電極板2a,2b及び陰電極板3
a,3b間にはそれぞれ直流電源Eが供給されている。
An embodiment of the present invention will be described with reference to the drawings.
FIG. 1 is a schematic side view of a first embodiment of an electrolytic pickling apparatus according to the present invention, and FIG. 2 is a schematic front view of an electrode portion and a current density distribution. As shown in FIG. 1, the steel strip, for example, the stainless steel strip 1 annealed after the cold rolling is performed is introduced downward into the tank 4 filled with the neutral salt electrolyte through the deflector roll 5a. The tension is applied by a center roll 5b provided in the tank 4 and the tank 4 is bent upward and
It is drawn out from the inside and is sent out to the washing and drying processing apparatus of the next step via the deflector roll 5c. In the tank 4 between the deflector roll 5a and the center roll 5b, a pair of positive electrode plates 2a and 2b are kept parallel to the stainless steel strip 1 while maintaining a predetermined distance above and below the stainless steel strip 1, respectively. Arranged at a predetermined angle, the center roll 5b
In the tank 4 between the deflector roll 5c and the stainless steel strip 1, a pair of negative electrode plates 3a and 3b are held above and below the stainless steel strip 1 at a predetermined distance in the same manner as the positive electrode plates 2a and 2b. And are arranged at a predetermined angle so as to be parallel to. Then, the positive electrode plates 2a and 2b and the negative electrode plate 3
DC power E is supplied between a and 3b.

【0016】陽電極板2aのステンレス鋼帯1との対向
面には、図2(A)に示すように、電極幅方向の両端部
に、センタロール5b側の方がデフレクタロール5a側
より広い面積を有して絶縁部材例えば絶縁テープ6a,
6bが付着される。陰電極板3aのステンレス鋼帯1と
の対向面にも同様に、電極幅方向の両端部に、センタロ
ール5b側の方がデフレクタロール5c側より広い面積
を有して絶縁テープ7a,7bが付着される。図6に示
した従来例のように、通常、電極長さ方向での電流密度
分布は、ステンレス鋼帯1の抵抗成分の影響により、電
極の極性が切り換わる陽電極板2a,2b及び陰電極板
3a,3bのセンタロール5b側で電流密度が高くなる
ので、絶縁テープ6a〜7bは、これを抑制するように
センタロール5b側の方に広い面積を有して付着され
る。ステンレス鋼帯1の下側に配設された陽電極板2b
及び陰電極板3bについても同様に、ステンレス鋼帯1
との対向面には、センタロール5b側の方に広い面積を
有して絶縁テープが付着される。
On the surface of the positive electrode plate 2a facing the stainless steel strip 1, at both ends in the electrode width direction, the center roll 5b is wider than the deflector roll 5a, as shown in FIG. An insulating member such as an insulating tape 6a,
6b is deposited. Similarly, on the opposite surface of the negative electrode plate 3a to the stainless steel strip 1, the insulating tapes 7a and 7b are provided at both ends in the electrode width direction so that the center roll 5b has a larger area than the deflector roll 5c. Is attached. As in the conventional example shown in FIG. 6, the current density distribution in the electrode length direction usually has the positive electrode plates 2a, 2b and the negative electrode, whose polarity switches due to the resistance component of the stainless steel strip 1. Since the current density increases on the center roll 5b side of the plates 3a, 3b, the insulating tapes 6a to 7b are attached to the center roll 5b side with a larger area so as to suppress this. Positive electrode plate 2b disposed below stainless steel strip 1
Similarly, the stainless steel strip 1 is used for the negative electrode plate 3b.
An insulating tape having a large area on the side of the center roll 5b is attached to the surface facing the center roll 5b.

【0017】このときの絶縁テープの付着面積は、電極
長さ方向での電流密度分布が均一になるように設定され
る。例えば、絶縁テープ6aの付着面積を変えたとき
の、陽電極板2aの電極長さ方向での電流密度分布を図
3に示す。図3(A)には、マスク1〜3状態の陽電極
板2a(2b)のステンレス鋼帯1との対向面の正面図
が示されており、マスク1状態は、ライン進行方向先端
における陽電極板2aの電極幅方向を1:2:1に分割
して、各分割点からライン進行方向後端の各角部に直線
を引いたときの外側の部分にそれぞれ絶縁テープ6a,
6bを付着した状態を表す。同様に、マスク2状態は、
ライン進行方向先端における陽電極板2aの幅方向を
3:2:3に分割し、マスク3状態は同じく1:1に分
割し、それぞれ絶縁テープ6a,6bを付着した状態を
表す。
At this time, the adhesion area of the insulating tape is set so that the current density distribution in the electrode length direction becomes uniform. For example, FIG. 3 shows the current density distribution in the electrode length direction of the positive electrode plate 2a when the attachment area of the insulating tape 6a is changed. FIG. 3A shows a front view of the surface of the positive electrode plate 2a (2b) facing the stainless steel strip 1 in the state of the masks 1 to 3, and the state of the mask 1 is positive at the leading end in the line traveling direction. The electrode width direction of the electrode plate 2a is divided into 1: 2: 1, and insulating tapes 6a and 6a are provided on outer portions when straight lines are drawn from each division point to each corner at the rear end in the line traveling direction.
6b is attached. Similarly, the mask 2 state is
The width direction of the positive electrode plate 2a at the front end in the line traveling direction is divided into 3: 2: 3, and the state of the mask 3 is similarly divided into 1: 1 and the insulating tapes 6a and 6b are respectively attached.

【0018】このように絶縁テープ6a,6bの付着面
積を変えたときの電流密度分布Jは、次のように算出さ
れる。先ず、絶縁テープ6aを付着していないときのマ
スク無し状態の、電極長さ方向各位置X(m)における
電流密度J0 (A/m2 )を下記(1)及び(2)式に
基づいて算出する。 J0 =J1 αL・cosh(αX)/sinh(αL)…(1) α=(2 ρs /ρl1 2 1/2 …(2) ここで、J1 は平均電流密度(A/m2 )を表し、電気
量密度(C/dm2 )を所定の時間で除算することによっ
て求められ、ρは液抵抗(Ωm)、ρs は鋼板抵抗(Ω
m)、l1 は鋼板厚(m)、l2 は電極・鋼板間距離
(m)、Lは電極長(m)をそれぞれ表す。
The current density distribution J when the adhesion area of the insulating tapes 6a and 6b is changed as described above is calculated as follows. First, the current density J 0 (A / m 2 ) at each position X (m) in the electrode length direction in a state without a mask when the insulating tape 6a is not attached is calculated based on the following equations (1) and (2). And calculate. J 0 = J 1 αL · cosh (αX) / sinh (αL) ... (1) α = (2 ρ s / ρl 1 l 2) 1/2 ... (2) where, J 1 is the average current density (A / m 2) represents, determined by dividing the quantity of electricity density (C / dm 2) at a given time, [rho is liquid resistance (Ωm), ρ s is a steel sheet resistance (Omega
m) and l 1 indicate the steel plate thickness (m), l 2 indicates the distance between the electrode and the steel plate (m), and L indicates the electrode length (m).

【0019】そして、絶縁テープ6aを図3(A)のよ
うに付着し、マスク1〜3状態のときの電流密度J(A
/m2 )を下記(3)式に基づいて算出する。 J=J0 (1−Rvt/L)…(3) ここで、Rは、陽電極板2aにおけるライン進行方向先
端での電極幅方向のマスク比率を表し、例えば、マスク
3状態では、R=1となり、マスク1状態では、R=
0.5となる。vはライン速度(mpm)を表し、t
は、陽電極板2aにおけるライン進行方向後端をt=0
としたときに、ライン速度vでライン進行方向先端に移
動したときの時間を表し、vtにより電極長さ方向各位
置Xが算出される。そして、(1−Rvt/L)によ
り、電極長さ方向各位置Xでの電極幅方向の有効電極幅
比率が得られる。
Then, an insulating tape 6a is attached as shown in FIG. 3A, and the current density J (A
/ M 2 ) is calculated based on the following equation (3). J = J 0 (1−Rvt / L) (3) Here, R represents the mask ratio in the electrode width direction at the leading end in the line traveling direction of the positive electrode plate 2a. 1 and in the mask 1 state, R =
0.5. v represents the line speed (mpm), t
Indicates that the rear end of the positive electrode plate 2a in the line traveling direction is t = 0.
Represents the time when the head moves in the line traveling direction at the line speed v, and each position X in the electrode length direction is calculated from vt. Then, the effective electrode width ratio in the electrode width direction at each position X in the electrode length direction is obtained by (1−Rvt / L).

【0020】マスク1〜3状態に示すように絶縁テープ
6aの付着面積を変え、(1)〜(3)式において、例
えば、下記に示すように各値を設定すると、電極長さ方
向での電流密度分布Jは、図3(B)に示すように、マ
スク1〜3状態に応じて変化する。マスクがないときに
は、電極長さ方向の大きい値、即ち、センタロール5b
側では、高い電流密度を示し、平均電流密度を越えると
ころでは酸素発生が優先し脱スケール性能が低下する。
そして、マスク1からマスク3へと覆う面積を増加させ
るに従って、センタロール5b側での高い電流密度が低
下する。
When the adhesion area of the insulating tape 6a is changed as shown in the states of the masks 1 to 3, and in the formulas (1) to (3), for example, each value is set as shown below, the values in the electrode length direction can be obtained. The current density distribution J changes according to the state of the masks 1 to 3, as shown in FIG. When there is no mask, a large value in the electrode length direction, that is, the center roll 5b
On the side, high current density is shown, and above the average current density, oxygen generation takes precedence and the descaling performance decreases.
Then, as the area covered from the mask 1 to the mask 3 increases, the high current density on the center roll 5b side decreases.

【0021】 J1 :平均電流密度(A/m 2 )=20(C/dm2 )/
(L/v60) ρ :液抵抗(Ωm) =0.0670 ρs :鋼板抵抗(Ωm) =7×10-71 :鋼板厚(m) =1.5×10-32 :電極・鋼板間距離(m) =8×10-2 L :電極長(m) =3.78 v :ライン速度(mpm) =80 上記のように各値を設定したときには、絶縁テープ6a
の付着面積をマスク1とマスク2との中間あたりのマス
ク比率を選択することにより、電流密度分布は均一にな
り、電流密度のスパイク(尖った部分)を抑制すること
ができる。この第1実施例では、絶縁テープ6aの最適
な付着面積は、液抵抗値、鋼板厚、及びライン速度等に
応じて適宜選択され、電流密度分布を均一にする所定の
付着面積が設定される。
J 1 : average current density (A / m 2 ) = 20 (C / dm 2 ) /
(L / v60) ρ: liquid resistance (Ωm) = 0.0670 ρ s: steel resistance (Ωm) = 7 × 10 -7 l 1: steel plate thickness (m) = 1.5 × 10 -3 l 2: electrode・ Distance between steel plates (m) = 8 × 10 −2 L: electrode length (m) = 3.78 v: line speed (mpm) = 80 When each value is set as described above, the insulating tape 6a
The current density distribution becomes uniform and the spikes (pointed portions) of the current density can be suppressed by selecting a mask ratio in the middle between the mask 1 and the mask 2 for the adhesion area of the mask 1. In the first embodiment, the optimum adhesion area of the insulating tape 6a is appropriately selected according to the liquid resistance value, the thickness of the steel sheet, the line speed, and the like, and a predetermined adhesion area for making the current density distribution uniform is set. .

【0022】次に、この第1実施例の動作を説明する。
ステンレス鋼帯1は各ロールに沿って所定の速度例えば
毎分80mで走行し、陰電極板3a,3b間を通過する
ステンレス鋼帯1の表面はプラスに帯電してアノード面
が形成される。アノード面では、化学反応によって金属
の溶解及び酸素の発生等の反応が進み、ステンレス鋼帯
1の表面のスケールが化学的に除去される。上記に示す
ように液抵抗値、鋼板厚、及びライン速度等の値を設定
したときには、各電極にマスク1とマスク2との中間あ
たりのマスク比率を有した絶縁テープ6aを付着するこ
により、図2(B)に示すように、電極長さ方向での電
流密度のスパイクは抑制され、電流密度分布は均一にな
り、ステンレス鋼帯1のアノード面での過剰な酸素発生
は抑制され、脱スケール性能を低下させずに電解酸洗が
継続される。
Next, the operation of the first embodiment will be described.
The stainless steel strip 1 travels along each roll at a predetermined speed, for example, 80 m / min, and the surface of the stainless steel strip 1 passing between the negative electrode plates 3a and 3b is positively charged to form an anode surface. On the anode surface, reactions such as dissolution of metal and generation of oxygen proceed by a chemical reaction, and scale on the surface of the stainless steel strip 1 is chemically removed. When the values such as the liquid resistance value, the steel plate thickness, and the line speed are set as described above, the insulating tape 6a having a mask ratio around the middle between the mask 1 and the mask 2 is attached to each electrode. As shown in FIG. 2 (B), spikes in the current density in the electrode length direction are suppressed, the current density distribution becomes uniform, excessive oxygen generation on the anode surface of the stainless steel strip 1 is suppressed, and Electrolytic pickling is continued without reducing the scale performance.

【0023】このように、第1実施例においては、各電
極に絶縁テープを所定のマスク比率で付着しているた
め、簡単な構成で電解電流の電流密度分布を均一にする
ことができ、ステンレス鋼帯1のアノード面での過剰な
酸素発生を抑制することができ、脱スケール性能を低下
させることなく電解酸洗を行うことが可能となる。そし
て、電流密度の高いところは低く抑えられるため、使用
電力を低減することができる。また、液抵抗やライン速
度等が変更されても絶縁テープ6aの付着面積を変更す
るだけでよいので、酸洗工程の変更に柔軟に対応するこ
とができる。
As described above, in the first embodiment, since the insulating tape is attached to each electrode at a predetermined mask ratio, the current density distribution of the electrolytic current can be made uniform with a simple configuration, and Excessive oxygen generation on the anode surface of the steel strip 1 can be suppressed, and electrolytic pickling can be performed without lowering the descaling performance. Since a portion having a high current density can be suppressed low, power consumption can be reduced. Further, even if the liquid resistance, the line speed and the like are changed, it is only necessary to change the adhesion area of the insulating tape 6a, so that it is possible to flexibly cope with a change in the pickling process.

【0024】次に、本発明に係る電解酸洗装置の第2実
施例を、図4に示した陽電極板2a(2b)の正面図に
基づいて説明する。基本構成は第1実施例と同じであ
り、各電極2a〜3bに絶縁部材の代わりに貫通孔が設
けられていることが第1実施例と異なる。例えば、陽電
極板2a(2b)について説明すると、図4に示すよう
に、陽電極板2aのライン進行方向先端部側の貫通され
た部分の面積が、ライン進行方向後端部側より大きくな
るように陽電極板2aに貫通孔8が設けられる。この貫
通孔8の形状は電流密度分布が均一になるように設定さ
れる。即ち、第1実施例と同様に、電極長さ方向各位置
Xでの電極幅方向における貫通孔8と非貫通孔の比率を
算出し、有効電極幅比率に基づいて(3)式により電流
密度分布Jを求め、この電流密度分布Jが均一になるよ
うに液抵抗やライン速度等に応じて貫通孔8の面積を設
定する。そして、各電極には同じ形状の貫通孔8が形成
され、各陽電極板2a,2bにはそれぞれ面対称の形状
をした貫通孔が設けられ、陰電極板3a,3bにもそれ
ぞれ面対称であってセンタロール5b側の貫通された面
積が大きくなるように貫通孔が設けられる。
Next, a second embodiment of the electrolytic pickling apparatus according to the present invention will be described with reference to the front view of the positive electrode plate 2a (2b) shown in FIG. The basic configuration is the same as that of the first embodiment, and is different from the first embodiment in that the electrodes 2a to 3b are provided with through holes instead of the insulating members. For example, as for the positive electrode plate 2a (2b), as shown in FIG. 4, the area of the penetrated portion of the positive electrode plate 2a at the front end side in the line traveling direction is larger than that at the rear end side in the line traveling direction. As described above, through-hole 8 is provided in positive electrode plate 2a. The shape of the through hole 8 is set so that the current density distribution becomes uniform. That is, as in the first embodiment, the ratio between the through hole 8 and the non-through hole in the electrode width direction at each position X in the electrode length direction is calculated, and the current density is calculated by the equation (3) based on the effective electrode width ratio. The distribution J is obtained, and the area of the through hole 8 is set according to the liquid resistance, the line speed, and the like so that the current density distribution J becomes uniform. Each electrode is formed with a through hole 8 having the same shape, each of the positive electrode plates 2a, 2b is provided with a through hole having a plane-symmetric shape, and each of the negative electrode plates 3a, 3b is formed with a plane symmetry. A through-hole is provided so that the area penetrated on the side of the center roll 5b increases.

【0025】このように、第2実施例においては、各電
極に所定の形状の貫通孔8を設けることにより、簡単な
構成で電解電流の電流密度分布を均一にすることがで
き、第1実施例と同様にアノード面での過剰な酸素発生
を抑制することができ、脱スケール性能を低下させるこ
となく電解酸洗を行うことが可能となる。また、貫通孔
8の形成により電極表面におけるガス溜まり及びスラッ
ジの堆積を回避することができ、効率良く電気分解を行
うことができる。この第2実施例では、ライン進行方向
先端部の電極幅は従来と同様な形状をしており、電極の
極性が切り換わるライン進行方向先端部では電流密度の
スパイクが生じるが、スパイクは狭い範囲に限定される
のでスパイクの影響を最小限にとどめることができ、脱
スケール性能は高い状態に維持することができる。
As described above, in the second embodiment, by providing the through holes 8 having a predetermined shape in each electrode, the current density distribution of the electrolytic current can be made uniform with a simple configuration. As in the example, excessive oxygen generation on the anode surface can be suppressed, and electrolytic pickling can be performed without lowering the descaling performance. In addition, the formation of the through holes 8 can prevent gas accumulation and sludge accumulation on the electrode surface, and can perform electrolysis efficiently. In the second embodiment, the electrode width at the front end in the line traveling direction has the same shape as the conventional one, and a spike in the current density occurs at the front end in the line traveling direction where the polarity of the electrode switches, but the spike is within a narrow range. Therefore, the effect of spikes can be minimized, and the descaling performance can be maintained at a high level.

【0026】なお、上記各実施例では、中性塩液が満た
された槽4内で電解酸洗を行っているが、中性塩の代わ
りに硝酸又は硫酸等の酸性溶液を用いてもよい。また、
絶縁テープ6a及び貫通孔8の形状は、上記実施例に限
定されるものでなく、所定の曲線形状であってもよい。
また、丸又は角の任意の形状の絶縁部材及び貫通孔を、
電解電流の電流密度分布に対応して所定の間隔を有して
複数設けるようにしてもよい。また、絶縁テープ6aの
代わりに、絶縁塗料を電極部に塗ることによって、電極
の有効面積を設定してもよい。また、電極の縁部にコの
字形状の絶縁板を挟持させて電極の有効面積を設定して
もよい。
In each of the above embodiments, the electrolytic pickling is performed in the tank 4 filled with the neutral salt solution, but an acidic solution such as nitric acid or sulfuric acid may be used instead of the neutral salt. . Also,
The shapes of the insulating tape 6a and the through-hole 8 are not limited to the above-described embodiment, and may be a predetermined curved shape.
In addition, an insulating member and a through-hole of any shape of a circle or a corner,
A plurality may be provided at predetermined intervals corresponding to the current density distribution of the electrolytic current. Further, instead of the insulating tape 6a, an effective area of the electrode may be set by applying an insulating paint to the electrode portion. Alternatively, an effective area of the electrode may be set by sandwiching a U-shaped insulating plate between the edges of the electrode.

【0027】また、上記各実施例では、陰電極板部及び
陽電極板部の各電極部に絶縁部材を付着し、あるいは貫
通孔を設けているが、陰電極板部のみに絶縁部材を付着
し、あるいは貫通孔を設けることによっても、図5に示
すように、陰電極板での電解電流の電流密度分布を均一
にすることができ、ステンレス鋼帯1のアノード面での
過剰な酸素発生をある程度抑制することができ、脱スケ
ール性能を向上することが可能となる。
In each of the above embodiments, an insulating member is attached to each of the negative electrode plate portion and the positive electrode plate portion or through holes are provided. However, an insulating member is attached only to the negative electrode plate portion. Also, by providing a through hole, the current density distribution of the electrolytic current in the negative electrode plate can be made uniform as shown in FIG. 5, and excessive oxygen generation on the anode surface of the stainless steel strip 1 can be achieved. Can be suppressed to some extent, and the descaling performance can be improved.

【0028】[0028]

【発明の効果】以上説明したように、請求項1に係る発
明においては、少なくとも陰電極板における鋼帯との対
向面の電極面積が、電極及び鋼帯間に流れる電解電流の
電流密度の高い部位を低くするように設定される。これ
により、電流密度分布を均一化することができ、鋼帯の
アノード面で発生する酸素の抑制によって酸洗性が増し
脱スケール性能を向上することができる。また、電流を
有効に使用することにより使用電力の削減を達成するこ
とが可能となる。さらに、電極面が均一に使用されるの
で、電極の局所的な消耗を回避することが可能となる。
As described above, in the invention according to the first aspect, at least the electrode area of the negative electrode plate on the surface facing the steel strip has a high current density of the electrolytic current flowing between the electrode and the steel strip. It is set to lower the site. As a result, the current density distribution can be made uniform, and the acid generated on the anode surface of the steel strip can be suppressed, so that pickling properties can be increased and descaling performance can be improved. Further, it is possible to achieve a reduction in power consumption by effectively using the current. Furthermore, since the electrode surface is used uniformly, it is possible to avoid local consumption of the electrode.

【0029】そして、請求項2に係る発明においては、
電極の鋼帯側の表面を所定の面積の絶縁部材で覆うこと
により、電極面積を変える。このため、簡単な構成で電
流密度分布の均一化を実現することができる。また、請
求項3に係る発明においては、絶縁部材として絶縁テー
プを用いている。これにより、液抵抗やライン速度等が
変更されても絶縁テープを取り替えるだけで付着面積を
変更することができ、酸洗工程の変更に柔軟に対応する
ことができる。
Then, in the invention according to claim 2,
The electrode area is changed by covering the surface of the electrode on the steel strip side with an insulating member having a predetermined area. Therefore, it is possible to achieve a uniform current density distribution with a simple configuration. In the invention according to claim 3, an insulating tape is used as the insulating member. Thus, even if the liquid resistance, the line speed, and the like are changed, the adhesion area can be changed only by replacing the insulating tape, and it is possible to flexibly cope with a change in the pickling process.

【0030】そして、請求項4に係る発明においては、
電極に所定の面積の貫通孔を穿設することにより、電極
面積を変える。このため、簡単な構成で電流密度分布の
均一化を実現することができる。また、貫通孔が設けら
れているので、電極表面におけるガス溜まり及びスラッ
ジの堆積を回避することができ、効率良く電気分解を行
うことができるため脱スケール性能が更に向上する。
In the invention according to claim 4,
The electrode area is changed by forming a through hole having a predetermined area in the electrode. Therefore, it is possible to achieve a uniform current density distribution with a simple configuration. Further, since the through holes are provided, accumulation of gas and accumulation of sludge on the electrode surface can be avoided, and electrolysis can be performed efficiently, so that descaling performance is further improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る電解酸洗装置の概略側面図であ
る。
FIG. 1 is a schematic side view of an electrolytic pickling apparatus according to the present invention.

【図2】(A)は、本発明の第1実施例に係る電極部の
概略正面図である。(B)は、電極長さ方向における電
流密度を示す分布図である。
FIG. 2A is a schematic front view of an electrode unit according to the first embodiment of the present invention. (B) is a distribution diagram showing the current density in the electrode length direction.

【図3】(A)は、マスク形状を示す説明図である。
(B)は、マスク比率を変えたときの電流密度を示す分
布図である。
FIG. 3A is an explanatory diagram showing a mask shape.
(B) is a distribution diagram showing the current density when the mask ratio is changed.

【図4】第2実施例の電解酸洗装置に係る電極の説明図
である。
FIG. 4 is an explanatory view of an electrode according to the electrolytic pickling apparatus of the second embodiment.

【図5】陰電極板のみに絶縁部材を付着し又は貫通孔を
形成したときの電流密度を示す分布図である。
FIG. 5 is a distribution diagram showing a current density when an insulating member is attached to only the negative electrode plate or a through hole is formed.

【図6】従来例の電解酸洗装置を示す説明図である。FIG. 6 is an explanatory view showing a conventional electrolytic pickling apparatus.

【符号の説明】[Explanation of symbols]

1 ステンレス鋼帯 2a,2b 陽電極板 3a,3b 陰電極板 4 槽 6a〜7b 絶縁テープ 8 貫通孔 DESCRIPTION OF SYMBOLS 1 Stainless steel strip 2a, 2b Positive electrode plate 3a, 3b Negative electrode plate 4 Bath 6a-7b Insulating tape 8 Through hole

───────────────────────────────────────────────────── フロントページの続き (72)発明者 萩原 俊哉 千葉県千葉市中央区川崎町1番地 川崎 製鉄株式会社千葉製鉄所内 (72)発明者 佐竹 義宏 千葉県千葉市中央区川崎町1番地 川崎 製鉄株式会社千葉製鉄所内 (72)発明者 斎藤 洋 千葉県千葉市中央区川崎町1番地 川崎 製鉄株式会社千葉製鉄所内 (58)調査した分野(Int.Cl.6,DB名) C25F 7/00 C25F 1/06 ──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Toshiya Hagiwara 1 Kawasaki-cho, Chuo-ku, Chiba-shi, Chiba Kawasaki Steel Corporation Chiba Works (72) Inventor Yoshihiro Satake 1 Kawasaki-cho, Chuo-ku, Chiba-shi, Chiba Kawasaki Steel Inside Chiba Works (72) Inventor Hiroshi Saito 1 Kawasaki-cho, Chuo-ku, Chiba City, Chiba Prefecture Kawasaki Steel Works Chiba Works (58) Fields investigated (Int. Cl. 6 , DB name) C25F 7/00 C25F 1/06

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 電解液が満たされこの液中を鋼帯が通過
する酸洗槽と、該酸洗槽内に前記鋼帯の表裏両面からそ
れぞれ所定の距離離間すると共に、前記鋼帯を挟んで互
いに対向して配設された電気分解用の一対の陽電極板
と、前記酸洗槽内に前記鋼帯の両側面からそれぞれ所定
の距離離間すると共に、前記鋼帯を挟んで互いに対向し
て配設され、且つ、前記陽電極板から鋼帯通過方向側へ
所定の距離離間して配設された電気分解用の一対の陰電
極板とを備え、前記鋼帯表面のスケールを電気分解を用
いて除去する電解酸洗装置において、 少なくとも前記陰電極板は、前記鋼帯との対向面におけ
る電極面積の所定の設定によって、前記鋼帯との間に流
れる電解電流の電流密度の高い部位を低くすることを特
徴とする電解酸洗装置。
1. An acid pickling tank filled with an electrolytic solution through which a steel strip passes, and the pickling tank is separated from the front and back surfaces of the steel strip by a predetermined distance in the pickling tank, and sandwiches the steel strip. A pair of positive electrode plates for electrolysis disposed opposite to each other, while being separated from the both sides of the steel strip by a predetermined distance in the pickling tank, and facing each other across the steel strip. And a pair of negative electrode plates for electrolysis disposed at a predetermined distance from the positive electrode plate in the steel strip passing direction side, and a scale on the surface of the steel strip is electrolyzed. In the electrolytic pickling apparatus that removes at least the negative electrode plate, at least a portion where the current density of the electrolytic current flowing between the steel strip and the steel strip is high, by a predetermined setting of the electrode area on the surface facing the steel strip. An electrolytic pickling apparatus characterized by lowering the temperature.
【請求項2】 前記電極面積は、少なくとも前記陰電極
板の前記鋼帯との対向面を所定の面積の絶縁部材で覆う
ことにより設定することを特徴とする請求項1に記載の
電解酸洗装置。
2. The electrolytic pickling according to claim 1, wherein the electrode area is set by covering at least a surface of the negative electrode plate facing the steel strip with an insulating member having a predetermined area. apparatus.
【請求項3】 前記絶縁部材は、絶縁テープであること
を特徴とする請求項2に記載の電解酸洗装置。
3. The electrolytic pickling apparatus according to claim 2, wherein the insulating member is an insulating tape.
【請求項4】 前記電極面積は、少なくとも前記陰電極
板に所定の面積の貫通孔を穿設することにより設定する
ことを特徴とする請求項1に記載の電解酸洗装置。
4. The electrolytic pickling apparatus according to claim 1, wherein the electrode area is set by forming at least a through hole having a predetermined area in the negative electrode plate.
JP32856294A 1994-12-28 1994-12-28 Electrolytic pickling equipment Expired - Fee Related JP2938358B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32856294A JP2938358B2 (en) 1994-12-28 1994-12-28 Electrolytic pickling equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32856294A JP2938358B2 (en) 1994-12-28 1994-12-28 Electrolytic pickling equipment

Publications (2)

Publication Number Publication Date
JPH08176900A JPH08176900A (en) 1996-07-09
JP2938358B2 true JP2938358B2 (en) 1999-08-23

Family

ID=18211667

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32856294A Expired - Fee Related JP2938358B2 (en) 1994-12-28 1994-12-28 Electrolytic pickling equipment

Country Status (1)

Country Link
JP (1) JP2938358B2 (en)

Also Published As

Publication number Publication date
JPH08176900A (en) 1996-07-09

Similar Documents

Publication Publication Date Title
DE3108615C2 (en) Device and method for the electrolytic treatment of a metal strip
US6979391B1 (en) Method and device for the electrolytic treatment of electrically conducting structures which are insulated from each other and positioned on the surface of electrically insulating film materials and use of the method
KR100487646B1 (en) Process and a device for electrolytic pickling of metallic strip
MX2007000707A (en) Method and device for descaling metals.
EP0502537A1 (en) Apparatus for continuous electrolytic treatment of aluminum article
JP2938358B2 (en) Electrolytic pickling equipment
JPS6125800B2 (en)
JP3467954B2 (en) Continuous electroplating method for metal strip
JP3027118B2 (en) Vertical electroplating apparatus and electrochrome plating method
CA1165271A (en) Apparatus and method for plating one or both sides of metallic strip
US6911137B2 (en) Method and device for the electrolytic coating of a metal strip
JPS6121319B2 (en)
JP3911227B2 (en) How to extend the life of electroplated electrodes
JP3288229B2 (en) Electroplating equipment
JP3370896B2 (en) Method and apparatus for supplying Zn ions to a Zn-Ni alloy electroplating bath
JP3361203B2 (en) Soluble anode for electroplating equipment
JPH06220699A (en) Device for electrolytically pickling steel material
JP3855336B2 (en) Continuous electrolytic etching equipment
JPS5915997B2 (en) Strip proximity electrolyzer
JPS6122040B2 (en)
JP2001064798A (en) Electrolytic cleaning method for steel strip
JP2000290800A (en) Electrolytic cleaning method and device for steel strip
JPH0126771Y2 (en)
JPS6176698A (en) Device for controlling flow rate of plating liquid
JP2003105592A (en) Electrolytic treating equipment for metallic web

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees