JP3911227B2 - How to extend the life of electroplated electrodes - Google Patents

How to extend the life of electroplated electrodes Download PDF

Info

Publication number
JP3911227B2
JP3911227B2 JP2002297167A JP2002297167A JP3911227B2 JP 3911227 B2 JP3911227 B2 JP 3911227B2 JP 2002297167 A JP2002297167 A JP 2002297167A JP 2002297167 A JP2002297167 A JP 2002297167A JP 3911227 B2 JP3911227 B2 JP 3911227B2
Authority
JP
Japan
Prior art keywords
electrode
plating
current
path
line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002297167A
Other languages
Japanese (ja)
Other versions
JP2004131786A (en
Inventor
俊洋 丸橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2002297167A priority Critical patent/JP3911227B2/en
Publication of JP2004131786A publication Critical patent/JP2004131786A/en
Application granted granted Critical
Publication of JP3911227B2 publication Critical patent/JP3911227B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Electroplating Methods And Accessories (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、鋼板等の連続メッキラインに適した電気メッキ電極の長寿命化方法に関するものである。
【0002】
【従来の技術】
【特許文献1】
特開2001−200397号公報
【0003】
鋼板等の金属ストリップに連続メッキを施すためには、メッキ槽の内部に多数のパスを直列に設けたメッキラインが用いられている。各パスはそれぞれ電気メッキ電極を備え、金属ストリップはコンダクターロールとターンロールとの間に縦方向または横方向にジグザグ状に掛け渡されて連続走行しつつ、各パスで電気メッキを施される。
【0004】
このようなメッキラインにおける目付量の制御には、トータル電流が用いられる。トータル電流は金属ストリップがメッキライン内の全パスを走行する間に、各パスの電気メッキ電極から通電される電流の積算値である。このトータル電流は、要求される目付量、板幅、メッキ効率、ライン速度に基づいて算出され、各パスに配分される。トータル電流は目付量、板幅、ライン速度に比例し、例えばライン速度が低下するとトータル電流は減少する。
【0005】
ところで、電気メッキ電極には最適電流密度があり、この範囲を外れるとメッキ効率が低下する。このために、従来は目付量またはライン速度の低下によりメッキラインのトータル電流が低下した場合には、全パスの通電量を均等に低下させるのではなく、使用するパス数を減少させることにより、通電されるパスの電気メッキ電極の最適電流密度を維持している。
【0006】
図1はこの関係を示す説明図である。直線OAは3パスを使用する場合の各パスの電気メッキ電極の電流密度を示しており、ライン速度(またはこれに比例するトータル電流)がABの区間にあるときには、最適電流密度範囲内に収まっている。しかしライン速度がBよりもさらに低下すると、最適電流密度範囲を下回りメッキ効率が低下してしまうため、1つのパスへの通電を停止して直線OCで示される2パス使用に切り替える。そしてライン速度がDよりもさらに低下すると、最適電流密度範囲を確保するために直線OEで示される1パス使用に切り替える。
【0007】
上記した従来技術は、通電される電極のメッキ効率を高く維持するうえで効果が大きい。しかし特定の電極では、トータル電流の変化に応じて通電と通電停止とが繰り返されることとなるため、次のような問題があることが判明した。
【0008】
例えば鋼板のクロムメッキには、フッ化物を含有するpHが1程度のメッキ液が用いられ、電気メッキ電極には前記の特許文献1に示すように、PbO2電極が用いられている。図2のプルベ曲線(pH−電位線図)に示すように、pH1のメッキ液中において電位が1.5V以上ではPbO2の状態で安定しているが、電位が-0.35〜1.5VではPb2+の状態が安定となり、電位が-0.35V以下ではPbの状態で安定する。すなわち、PbO2電極は電位が0付近では不安定となる。
【0009】
従って、通電中の電位は1.8〜2.0Vであるために電気メッキ電極はPbO2の状態で安定しているが、通電が停止され電位が0V以下となるとPb2+の状態が安定となり、メッキ液中のクロムイオンと反応して通電停止中にPbCrO4の不溶物を生成する。そして再度通電されるとPbCrO4の下層に再びPbO2の安定層が形成されてPbCrO4が剥離し、スラッジを生成する。このようにして通電と通電停止とを繰り返すと、PbO2電極は次第に消耗して行き、短期間で交換を余儀なくされることとなる。
【0010】
なお上記した問題はPbO2電極のみならず、プルベ曲線(pH−電位線図)上において電位が0以下のとき不安定な特性を示す材料からなる電気メッキ電極に共通するものであり、他の例としては、スズメッキ液または亜鉛めっき液中のIrO2電極を挙げることができる。図3のプルベ曲線に示されるように、IrO2電極もpHが低いメッキ液中では通電中と通電停止中で安定状態が異なり、通電停止中には不安定な状態となる。
【0011】
【発明が解決しようとする課題】
本発明は上記した従来の問題点を解決し、トータル電流が変化するメッキラインに設置された電気メッキ電極におけるスラッジの発生を防止するとともに、電気メッキ電極の使用寿命を大幅に延長することができる電気メッキ電極の長寿命化方法を提供するためになされたものである。
【0012】
【課題を解決するための手段】
上記の課題を解決するためになされた請求項1の発明の電気メッキ電極の長寿命化方法は、クロムメッキ液中にPbO 電極が配置された多数のパスからなるメッキラインにおいて、目付量またはライン速度の低下によりメッキラインのトータル電流が減少した際にも、どのパスにおいても電極が安定するのに必要な最低通電電流が確保されるように各パスへの電流配分を行なうことを特徴とするものである。また請求項2の発明の電気メッキ電極の長寿命化方法は、スズメッキ液または亜鉛めっき液中にIrO 電極が配置された多数のパスからなるメッキラインにおいて、目付量またはライン速度の低下によりメッキラインのトータル電流が減少した際にも、どのパスにおいても電極が安定するのに必要な最低通電電流が確保されるように各パスへの電流配分を行なうことを特徴とするものである。
【0013】
本発明によれば、目付量またはライン速度の低下によりメッキラインのトータル電流が減少した際にも、従来のように使用パス数を削減して特定パスの通電を停止するのではなく、どのパスにおいても電極が安定するのに必要な最低通電電流が確保されるように各パスへの電流配分を行なう。このように本発明ではトータル電流が減少した際にも電極保護のための電流を流すことにより、全パスの電気メッキ電極の電位が高く保たれる。この結果、電極が化学的に不安定にならず、スラッジの発生を防止することができるとともに、電気メッキ電極の使用寿命を大幅に延長することが可能となる。
【0014】
【発明の実施の形態】
以下に本発明の好ましい実施形態を示す。
図4は10のパスからなるメッキラインを示す図であり、鋼板などの金属ストリップはコンダクターロール1とターンロール2との間にジグザグ状に掛け渡されて各パスを連続走行しつつ、電気メッキを施されるようになっている。図4では豎パスの場合を示したが、横パスの場合も同様である。各パスには電気メッキ電極3が配置されているが、その材質は前記したようにパスが不使用の状態において不安定な特性を示すもの、例えばクロムメッキに用いられるPb、PbO2、スズメッキまたは亜鉛めっきに用いられるIrO2などである。このほか電極の材料としては、Pt,Ta,IrO2-Ta25などを挙げることができ、電極基体の材料としては、Ti,Zr,Nb,Taなどを挙げることができる。
【0015】
各パスの電気メッキ電極3への通電量の配分は、制御器4により行われる。制御器4は要求される目付量、板幅、メッキ効率、ライン速度に基づいてトータル電流を算出し、トータル電流の大きい高速通板時には、全パスに通電する。このときにはどのパスの電気メッキ電極3も、最適電流密度の範囲内にある。このようにトータル電流の大きい高速通板時には、本発明も従来法と変わらない。
【0016】
しかし目付量またはライン速度の低下によりメッキラインのトータル電流が減少した際には、従来法では使用するパス数を減少させ、通電を完全に停止するパスを生じたのに対し、本発明ではどのパスでも電極が安定するのに必要な最低通電電流が確保されるように各パスへの電流配分を行なう。
【0017】
例えば10パスのメッキラインのトータル電流を定格の40%にまで減少させるべき場合、従来法では第1〜第4のパスへの通電量を100%に維持したままで、第5〜第10のパスへの通電量を0とすることにより、トータル電流を目標値である40%にまで減少させようとする。即ち(1×4+0×6)/1×10=0.4とする。これにより第1〜第4のパスでは最適電流密度が確保されて高いメッキ効率が保たれるが、通電を停止した第5〜第10のパスでは、前記したように電極の消耗が進行する。
【0018】
これに対して本発明では、例えば10パスのメッキラインのトータル電流を定格の40%にまで減少させるべき場合、第1〜第4のパスへの通電量を例えば85%に減少させる一方、第5〜第10のパスへの通電量を電極が安定するのに必要な10%とする。即ち(0.85×4+0.1×6)/1×10=0.4とする。このように本発明ではどのパスでも電極が安定するのに必要な所定の最低通電電流が確保されるようにし、従来は通電が停止されていたパスにも電極保護のための電流を流し、全パスの電気メッキ電極の電位を高く保つ。この結果、電極の安定性が保たれてスラッジの発生等が防止され、電気メッキ電極の使用寿命を大幅に延長することが可能となる。
【0019】
このために必要な保護電流の大きさは電極の種類やメッキ浴の組成によって異なるが、アノード分極曲線を引くことによって求めることができる。例えば特定組成のクロムメッキ浴中で用いられるPbO2電極の場合には、1.0A/dm2である。このように本発明によれば従来は通電が停止されていたパスにも電極保護のための電流を流すため、メッキライン全体のメッキ効率は従来法よりもやや低下する場合がある。しかし、電気メッキ電極の使用寿命が延長されることによる効果はそれを上回るものである。
【0020】
具体的には、本発明によれば電気メッキ電極の使用寿命を従来の10倍以上とすることができ、またメッキラインからのスラッジ発生量を従来の3%にまで大幅に減少させることができた。これにより環境への負荷も減少することとなり、その意義は大である。
【0021】
【発明の効果】
以上に説明したように、本発明の電気メッキ電極の長寿命化方法によれば、通電と通電停止とが繰り返される電気メッキ電極を保護電流により保護し、電気メッキ電極の使用寿命を大幅に延長することができるとともに、スラッジの発生を防止することができる等の効果がある。
【図面の簡単な説明】
【図1】使用パス数と電流密度との関係を示すグラフである。
【図2】PbO2電極のプルベ曲線(pH−電位線図)である。
【図3】IrO2電極のプルベ曲線(pH−電位線図)である。
【図4】メッキラインの説明図である。
【符号の説明】
1 コンダクターロール
2 ターンロール
3 電気メッキ電極
4 制御器
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for extending the life of an electroplating electrode suitable for a continuous plating line such as a steel plate.
[0002]
[Prior art]
[Patent Document 1]
Japanese Patent Laid-Open No. 2001-200377
In order to perform continuous plating on a metal strip such as a steel plate, a plating line in which a large number of paths are provided in series inside a plating tank is used. Each pass is provided with an electroplating electrode, and the metal strip is electroplated in each pass while running in a zigzag manner in a vertical or horizontal direction between a conductor roll and a turn roll.
[0004]
A total current is used to control the basis weight in such a plating line. The total current is an integrated value of currents supplied from the electroplating electrodes of each path while the metal strip travels through all paths in the plating line. This total current is calculated based on the required basis weight, plate width, plating efficiency, and line speed, and is distributed to each path. The total current is proportional to the basis weight, the plate width, and the line speed. For example, when the line speed decreases, the total current decreases.
[0005]
By the way, the electroplating electrode has an optimum current density, and if it is out of this range, the plating efficiency is lowered. For this reason, conventionally, when the total current of the plating line is reduced due to a decrease in the weight per unit area or the line speed, instead of reducing the energization amount of all the paths uniformly, by reducing the number of passes to be used, The optimum current density of the electroplated electrode of the energized path is maintained.
[0006]
FIG. 1 is an explanatory diagram showing this relationship. The straight line OA indicates the current density of the electroplating electrode of each pass when using 3 passes, and falls within the optimum current density range when the line speed (or the total current proportional thereto) is in the AB section. ing. However, if the line speed is further decreased from B, the plating efficiency is lowered below the optimum current density range. Therefore, energization to one path is stopped and the two-path use indicated by the straight line OC is switched. When the line speed further falls below D, the operation is switched to one-pass use indicated by the straight line OE in order to secure the optimum current density range.
[0007]
The above-described prior art has a great effect in maintaining high plating efficiency of the energized electrode. However, with a specific electrode, energization and de-energization are repeated according to changes in the total current, and it has been found that there are the following problems.
[0008]
For example, a plating solution containing fluoride and having a pH of about 1 is used for chromium plating of a steel sheet, and a PbO 2 electrode is used for the electroplating electrode as shown in Patent Document 1 described above. As shown in the Plube curve (pH-potential diagram) in FIG. 2 , the PbO 2 state is stable in the plating solution at pH 1 when the potential is 1.5 V or higher, but Pb 2 when the potential is −0.35 to 1.5 V. The + state becomes stable, and when the potential is −0.35 V or less, the Pb state is stable. That is, the PbO 2 electrode becomes unstable when the potential is near zero.
[0009]
Therefore, since the potential during energization is 1.8 to 2.0 V, the electroplating electrode is stable in the state of PbO 2. However, when the energization is stopped and the potential becomes 0 V or less, the state of Pb 2+ becomes stable and the plating is performed. It reacts with the chromium ions in the liquid to produce insoluble matter of PbCrO 4 while the energization is stopped. When energized again, a stable layer of PbO 2 is formed again under the PbCrO 4 layer, and the PbCrO 4 is peeled off to generate sludge. When the energization and the energization stop are repeated in this way, the PbO 2 electrode is gradually consumed and must be replaced in a short period of time.
[0010]
The above-mentioned problems are common not only to PbO 2 electrodes but also to electroplated electrodes made of materials that exhibit unstable characteristics when the potential is 0 or less on the Plube curve (pH-potential diagram). Examples include an IrO 2 electrode in a tin plating solution or a zinc plating solution. As shown by the Plube curve in FIG. 3, the IrO 2 electrode also has a different stable state during energization and deenergization in the plating solution having a low pH, and becomes unstable during deenergization.
[0011]
[Problems to be solved by the invention]
The present invention solves the above-mentioned conventional problems, prevents the generation of sludge in the electroplating electrode installed in the plating line where the total current changes, and can greatly extend the service life of the electroplating electrode. The present invention has been made to provide a method for extending the life of an electroplated electrode.
[0012]
[Means for Solving the Problems]
The method for extending the life of an electroplated electrode according to the invention of claim 1 made to solve the above-mentioned problem is that a plating line comprising a plurality of passes in which PbO 2 electrodes are arranged in a chromium plating solution, Even when the total current of the plating line decreases due to a decrease in the line speed, the current is distributed to each path so that the minimum energization current necessary to stabilize the electrode in any path is secured. To do. According to a second aspect of the present invention, there is provided a method for extending the life of an electroplating electrode in a plating line comprising a large number of passes in which an IrO 2 electrode is disposed in a tin plating solution or a zinc plating solution. Even when the total current of the line decreases, the current distribution to each path is performed so that the minimum energization current necessary for stabilizing the electrode in any path is secured.
[0013]
According to the present invention, when the total current of the plating line is reduced due to a decrease in the basis weight or the line speed, it is not necessary to reduce the number of used paths and stop energization of a specific path as in the past. The current distribution to each path is performed so that the minimum energization current necessary for stabilizing the electrode is secured. As described above, in the present invention, even when the total current is decreased, the potential of the electroplating electrode in all passes is kept high by supplying the current for electrode protection. As a result, the electrode is not chemically unstable, the generation of sludge can be prevented, and the service life of the electroplated electrode can be greatly extended.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Preferred embodiments of the present invention are shown below.
FIG. 4 is a diagram showing a plating line composed of 10 passes. A metal strip such as a steel plate is zigzag-shaped between the conductor roll 1 and the turn roll 2 and continuously electroplated through each pass. Is to be given. Although FIG. 4 shows the case of the saddle path, the same applies to the case of the horizontal path. The electroplating electrode 3 is disposed in each pass, and the material thereof is unstable as described above, such as Pb, PbO 2 used for chrome plating, tin plating, or the like. IrO 2 used for galvanizing. In addition, examples of the electrode material include Pt, Ta, IrO 2 —Ta 2 O 5 , and examples of the electrode base material include Ti, Zr, Nb, Ta, and the like.
[0015]
The controller 4 distributes the energization amount to the electroplating electrode 3 in each pass. The controller 4 calculates the total current based on the required weight per unit area, the plate width, the plating efficiency, and the line speed, and energizes all the paths during high-speed plate passing with a large total current. At this time, the electroplating electrode 3 of any path is within the range of the optimum current density. Thus, the present invention is not different from the conventional method at the time of high-speed feeding with a large total current.
[0016]
However, when the total current of the plating line is reduced due to a decrease in the basis weight or the line speed, the number of passes used in the conventional method is reduced and a path that completely stops energization is generated. Current distribution to each path is performed so that the minimum energization current necessary for the electrodes to be stable is secured even in the path.
[0017]
For example, when the total current of the 10-pass plating line should be reduced to 40% of the rating, the conventional method maintains the energization amount to the 1st to 4th passes at 100%, and the 5th to 10th. By setting the energization amount to the path to 0, the total current is reduced to the target value of 40%. That is, (1 × 4 + 0 × 6) /1×10=0.4. As a result, the optimum current density is ensured in the first to fourth passes and high plating efficiency is maintained. However, in the fifth to tenth passes where the energization is stopped, the electrode wears out as described above.
[0018]
On the other hand, in the present invention, for example, when the total current of the plating line of 10 passes should be reduced to 40% of the rating, the energization amount to the first to fourth passes is reduced to 85%, for example. The energization amount to the 5th to 10th paths is set to 10% necessary for stabilizing the electrodes. That is, (0.85 × 4 + 0.1 × 6) /1×10=0.4. As described above, in the present invention, a predetermined minimum energization current necessary for the electrode to be stabilized in any path is ensured, and a current for electrode protection is also supplied to the path that has been stopped in the past so that all the current is supplied. Keep the potential of the electroplating electrode in the pass high. As a result, the stability of the electrode is maintained, the generation of sludge and the like are prevented, and the service life of the electroplated electrode can be greatly extended.
[0019]
The magnitude of the protective current required for this varies depending on the type of electrode and the composition of the plating bath, but can be obtained by drawing an anodic polarization curve. For example, in the case of a PbO 2 electrode used in a chromium plating bath having a specific composition, it is 1.0 A / dm 2 . As described above, according to the present invention, since the current for electrode protection is also supplied to the path where the energization is conventionally stopped, the plating efficiency of the entire plating line may be slightly lower than the conventional method. However, the effect of extending the service life of the electroplated electrode is more than that.
[0020]
Specifically, according to the present invention, the service life of the electroplating electrode can be increased to more than 10 times that of the conventional one, and the amount of sludge generated from the plating line can be greatly reduced to 3% of the conventional one. It was. This also reduces the burden on the environment, and its significance is significant.
[0021]
【The invention's effect】
As described above, according to the method for extending the life of an electroplated electrode of the present invention, the electroplated electrode that is repeatedly energized and de-energized is protected by a protective current, and the service life of the electroplated electrode is greatly extended. In addition, there are effects such as prevention of sludge generation.
[Brief description of the drawings]
FIG. 1 is a graph showing the relationship between the number of used paths and current density.
FIG. 2 is a Plube curve (pH-potential diagram) of a PbO 2 electrode.
FIG. 3 is a Prube curve (pH-potential diagram) of an IrO 2 electrode.
FIG. 4 is an explanatory diagram of a plating line.
[Explanation of symbols]
1 Conductor roll 2 Turn roll 3 Electroplating electrode 4 Controller

Claims (2)

クロムメッキ液中にPbO 電極が配置された多数のパスからなるメッキラインにおいて、目付量またはライン速度の低下によりメッキラインのトータル電流が減少した際にも、どのパスにおいても電極が安定するのに必要な最低通電電流が確保されるように各パスへの電流配分を行なうことを特徴とする電気メッキ電極の長寿命化方法。 In a plating line consisting of a large number of passes in which PbO 2 electrodes are arranged in a chromium plating solution, the electrode stabilizes in any pass even when the total current of the plating line is reduced due to a decrease in the basis weight or line speed . A method for extending the life of an electroplated electrode, characterized in that current distribution to each path is performed so that a minimum energization current necessary for the operation is ensured. スズメッキ液または亜鉛めっき液中にIrO 電極が配置された多数のパスからなるメッキラインにおいて、目付量またはライン速度の低下によりメッキラインのトータル電流が減少した際にも、どのパスにおいても電極が安定するのに必要な最低通電電流が確保されるように各パスへの電流配分を行なうことを特徴とする電気メッキ電極の長寿命化方法。 In a plating line consisting of a large number of passes in which IrO 2 electrodes are arranged in a tin plating solution or a zinc plating solution, when the total current of the plating line is reduced due to a decrease in the basis weight or the line speed, the electrode is in any pass. A method for extending the life of an electroplated electrode, wherein current distribution to each path is performed so that a minimum energization current necessary for stabilization is secured.
JP2002297167A 2002-10-10 2002-10-10 How to extend the life of electroplated electrodes Expired - Fee Related JP3911227B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002297167A JP3911227B2 (en) 2002-10-10 2002-10-10 How to extend the life of electroplated electrodes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002297167A JP3911227B2 (en) 2002-10-10 2002-10-10 How to extend the life of electroplated electrodes

Publications (2)

Publication Number Publication Date
JP2004131786A JP2004131786A (en) 2004-04-30
JP3911227B2 true JP3911227B2 (en) 2007-05-09

Family

ID=32286936

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002297167A Expired - Fee Related JP3911227B2 (en) 2002-10-10 2002-10-10 How to extend the life of electroplated electrodes

Country Status (1)

Country Link
JP (1) JP3911227B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103695991A (en) * 2013-11-25 2014-04-02 中冶南方工程技术有限公司 Electroplating current optimization method applicable to continuous electrotinning unit
JP7260337B2 (en) * 2019-03-01 2023-04-18 日鉄エンジニアリング株式会社 ELECTROPLATING CURRENT CONTROL METHOD AND ELECTROPLATING CURRENT CONTROL DEVICE
CN114076721B (en) * 2020-08-12 2023-09-12 宝山钢铁股份有限公司 Method for detecting service life of steel plate chromium plating solution

Also Published As

Publication number Publication date
JP2004131786A (en) 2004-04-30

Similar Documents

Publication Publication Date Title
JP4346551B2 (en) Anode for electroplating
JP3911227B2 (en) How to extend the life of electroplated electrodes
EP0134580B1 (en) Method and apparatus for electrolytic treatment
JP3207973B2 (en) Electroplating method and split type insoluble electrode for electroplating
JPS6338436B2 (en)
JP5592770B2 (en) Electric tin plating method
EP0349983B1 (en) Electrolytic treatment apparatus
JP2006070358A (en) Method of electric tinning
JPS6141799A (en) Method for supplying tin ion to electrolytic tinning bath
JP3409003B2 (en) Electrode and Sn plating apparatus using the same
JP3207977B2 (en) Electroplating method and split type insoluble electrode for electroplating
JP2003247100A (en) Continuous electric plating method of metal strip
JP3164927B2 (en) Electrolysis equipment for metal materials
JPH01100291A (en) Chromium plating method
JPS58144495A (en) Electroplating method
JP3370896B2 (en) Method and apparatus for supplying Zn ions to a Zn-Ni alloy electroplating bath
JP4244363B2 (en) Insoluble electrode with excellent wear resistance
JPS63111196A (en) Horizontal continuous electroplating method for steel sheet
JP3855336B2 (en) Continuous electrolytic etching equipment
JP2938358B2 (en) Electrolytic pickling equipment
JPH01208499A (en) Electrode for electroplating
Brooks et al. ICI Electrodes Coatings—From Mercury Cells to Automobile Bodies
JP2767699B2 (en) Electrolytic treatment equipment
JPS5818439B2 (en) Long-life electrolysis method for insoluble anodes
JPH08325785A (en) Production of zinc-chromium alloy plating steel sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040901

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050620

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050624

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050817

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070123

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070126

R151 Written notification of patent or utility model registration

Ref document number: 3911227

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100202

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110202

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110202

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120202

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120202

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130202

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130202

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130202

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130202

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130202

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140202

Year of fee payment: 7

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees