JPH09232397A - Semiconductor wafer provided with strained layer and intensity evaluation method - Google Patents

Semiconductor wafer provided with strained layer and intensity evaluation method

Info

Publication number
JPH09232397A
JPH09232397A JP6211096A JP6211096A JPH09232397A JP H09232397 A JPH09232397 A JP H09232397A JP 6211096 A JP6211096 A JP 6211096A JP 6211096 A JP6211096 A JP 6211096A JP H09232397 A JPH09232397 A JP H09232397A
Authority
JP
Japan
Prior art keywords
semiconductor wafer
strain
strained layer
yield stress
stress value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6211096A
Other languages
Japanese (ja)
Other versions
JP3671507B2 (en
Inventor
Masaru Shinomiya
勝 篠宮
Hitoshi Habuka
等 羽深
Masayasu Katayama
正健 片山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Handotai Co Ltd
Original Assignee
Shin Etsu Handotai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Handotai Co Ltd filed Critical Shin Etsu Handotai Co Ltd
Priority to JP06211096A priority Critical patent/JP3671507B2/en
Publication of JPH09232397A publication Critical patent/JPH09232397A/en
Application granted granted Critical
Publication of JP3671507B2 publication Critical patent/JP3671507B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To evaluate damage intensity or a slip resistant dislocation intensity based on the measurement of the stress-strain characteristic of a wager itself to which a skew layer is guided by executing evaluation based on the degree of deterioration on an upper yield stress value and a lower yield stress value in the stress-strain characteristic. SOLUTION: The intensity of the semiconductor wafer having the strained layer which is intentionally guided from outside on one main face where the device of the semiconductor wafer is not formed is evaluated based on the degree of deterioration on the upper yield stress value MP1 and the lower yield stress value MP2 in the stress-strain characteristic being the mechanical intensity characteristic of the semiconductor wafer. A satisfactory correlation exists between the deterioration quantity of the upper yield stress value MP1 of the semiconductor wafer which the stained layer is guided by a lapping method and slip dislocation defect guide quantity. When the upper yield stress value of the wafer having the strained layer which is intentionally guided from outside is within the range of 90 to 100% compared to a case when the external strain does not exist, satisfactory slip resistant intensity is shown.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、ICやVLSI等
の半導体装置が形成される半導体ウエーハとその評価法
に関するものであり、より詳細には金属不純物をゲッタ
リングするために、外部から故意に導入された歪み層を
有するウエーハの、スリップ転位欠陥に対する強度の評
価方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor wafer on which a semiconductor device such as an IC or VLSI is formed and its evaluation method. More specifically, it is intended to getter metal impurities, and to deliberately from the outside. The present invention relates to a method for evaluating the strength of a wafer having an introduced strained layer against slip dislocation defects.

【0002】[0002]

【従来の技術】従来から半導体ウエーハ、特にシリコン
ウエーハには、サンドブラストなどの外部ゲッタリング
処理と呼ばれる、外部から導入された歪み層を形成する
処理が行われてきた。この外部ゲッタリング処理は、半
導体ウエーハに含有されていた金属不純物やICやVL
SI等の半導体装置製造工程で外部から導入される鉄や
銅などの重金属に代表される不純物を、半導体装置のデ
バイス活性領域およびその近傍から除去するために行わ
れている。
2. Description of the Related Art Conventionally, a semiconductor wafer, especially a silicon wafer, has been subjected to a treatment for forming a strain layer introduced from the outside, which is called an external gettering treatment such as sandblasting. This external gettering process is performed on the metal impurities contained in the semiconductor wafer, IC and VL.
This is carried out to remove impurities such as SI, which are typified by heavy metals such as iron and copper, which are introduced from the outside in the semiconductor device manufacturing process, from the device active region of the semiconductor device and its vicinity.

【0003】しかしながら、この外部ゲッタリング処理
は、例えばサンドブラスト法の場合に、SiO2 粉を半
導体ウエーハのデバイスを形成しない一主面に吹き付け
ることによって、この主面に歪み層を形成するものであ
るように、機械的に歪み層を形成するものであるので、
半導体ウエーハ自体の機械的強度を低下させるおそれが
ある。実際に、歪み層を形成したウエーハでは半導体装
置製造工程で行われる高温での熱処理によって、スリッ
プ転位と呼ばれる熱応力によるすべり転位が発生するこ
とがしばしばあり、その頻度は歪み層が形成されていな
いウエーハに比べてはるかに高い。したがって半導体装
置製造工程のスリップ転位発生を防ぐために、導入する
歪み量の制御が必要となるが、歪み量制御のための評価
手法として必ずしも満足すべきものが存在しない。
However, in the external gettering treatment, for example, in the case of the sandblast method, SiO 2 powder is sprayed onto one main surface of the semiconductor wafer on which no device is formed, thereby forming a strained layer on this main surface. As described above, since the strained layer is mechanically formed,
The mechanical strength of the semiconductor wafer itself may be reduced. In fact, in a wafer with a strained layer formed, slip dislocations due to thermal stress called slip dislocation often occur due to high-temperature heat treatment performed in the semiconductor device manufacturing process, and the frequency is that the strained layer is not formed. Much higher than wafers. Therefore, it is necessary to control the amount of strain to be introduced in order to prevent the occurrence of slip dislocation in the semiconductor device manufacturing process, but there is not necessarily a satisfactory evaluation method for controlling the amount of strain.

【0004】例えば、サンドブラスト法により形成され
た歪み層のダメージ強度は、処理後のウエーハを110
0℃から1200℃の温度で酸素を含む雰囲気中で酸化
処理を行い、歪み層を形成した面に発生するOSF(酸
化誘起積層欠陥)や、転位ループ等の結晶欠陥の密度に
よって評価されてきた。また、ウエーハを半導体装置製
造工程の熱処理をシミュレートする形で熱処理し、スリ
ップ転位発生の有無をX線トポグラフ法や選択エッチン
グ法で評価することも行われてきた。また、導入された
歪み層のダメージを、光学的手法やX線回折法により評
価する手法が開示されている(特開平1−211937
号公報および特開平5−203590号公報)。
For example, the damage strength of the strained layer formed by the sandblast method is 110 for the processed wafer.
It has been evaluated by the density of OSF (oxidation-induced stacking fault) generated on the surface on which the strained layer is formed by performing an oxidation treatment in an atmosphere containing oxygen at a temperature of 0 to 1200 ° C. and the density of crystal defects such as dislocation loops . It has also been performed that a wafer is heat-treated in a form simulating the heat treatment in a semiconductor device manufacturing process, and the presence or absence of slip dislocation is evaluated by an X-ray topography method or a selective etching method. In addition, a method of evaluating damage of the introduced strained layer by an optical method or an X-ray diffraction method is disclosed (Japanese Patent Laid-Open No. 1-211937).
JP-A-5-203590).

【0005】[0005]

【発明が解決しようとする課題】しかしながら、前記の
ような酸化処理後の結晶欠陥密度は、歪み層のダメージ
に相関を示すものの、実際の半導体装置製造工程でのウ
エーハへのスリップ転位発生の有無と良好な相関を示さ
ないという問題がある。さらに、半導体装置製造工程の
熱処理をシミュレートする方法は、結果のばらつきが大
きく、信頼性のあるデータを得るには多くの試料が必要
になるという欠点があった。
However, although the crystal defect density after the above-mentioned oxidation treatment shows a correlation with the damage of the strained layer, the presence or absence of slip dislocations on the wafer in the actual semiconductor device manufacturing process. There is a problem that it does not show a good correlation with. Further, the method of simulating the heat treatment in the semiconductor device manufacturing process has a drawback in that the results vary widely and many samples are required to obtain reliable data.

【0006】さらに、これら従来の方法は歪みが導入さ
れた半導体ウエーハの歪み層のダメージを評価する方法
であるから、その結果からは半導体ウエーハ自体の強度
特性を直接評価することはできなかった。
Furthermore, since these conventional methods are methods for evaluating damage to the strained layer of a semiconductor wafer in which strain is introduced, the strength characteristics of the semiconductor wafer itself cannot be directly evaluated from the results.

【0007】本発明は前記のような従来の評価方法の課
題や問題点を解決すべくなされたものであり、歪み層の
導入されたウエーハ自体の応力−歪み特性の測定にもと
づきダメージ強度あるいは耐スリップ転位強度を評価す
る方法を実現し、さらに該評価方法に基づいた、半導体
装置の製造工程でスリップ転位の発生しない外部ゲッタ
リング処理半導体ウエーハを提供することを目的とす
る。
The present invention has been made to solve the problems and problems of the conventional evaluation method as described above, and based on the measurement of the stress-strain characteristic of the wafer itself in which the strained layer is introduced, the damage strength or the resistance is measured. It is an object of the present invention to realize a method for evaluating slip dislocation strength, and to provide an external gettering-processed semiconductor wafer that does not generate slip dislocations in a semiconductor device manufacturing process based on the evaluation method.

【0008】[0008]

【課題を解決するための手段】一般的に、半導体ウエー
ハに導入された歪み層のダメージ強度と、半導体製造工
程におけるスリップ転位発生とにはある程度の相関が存
在するが、本発明者らは半導体ウエーハに導入される歪
み量と、半導体ウエーハ自体のダメージ強度あるいは耐
スリップ強度との相関因子として、半導体ウエーハが塑
性変形を示す温度領域における降伏応力値が重要である
ことを確認した。さらに詳細に述べると、種々の実験結
果によって、ウエーハ自体の機械的強度、とりわけ応力
−歪み特性における上降伏応力値及び下降伏応力値の低
下の度合いがスリップ転位発生に強い相関を有すること
を確認した。
Generally, there is a certain degree of correlation between the damage strength of a strained layer introduced into a semiconductor wafer and the occurrence of slip dislocations in the semiconductor manufacturing process. It was confirmed that the yield stress value in the temperature region where the semiconductor wafer exhibits plastic deformation is important as a correlation factor between the amount of strain introduced into the wafer and the damage strength or slip resistance of the semiconductor wafer itself. More specifically, various experimental results confirm that the mechanical strength of the wafer itself, especially the degree of decrease in the upper yield stress value and the lower yield stress value in the stress-strain characteristics, has a strong correlation with the occurrence of slip dislocations. did.

【0009】発明者らは、故意に外部から歪み層を導入
した半導体ウエーハと、歪み層を導入しない半導体ウエ
ーハについて、塑性変形を示す温度領域における応力と
歪みの関係ならびにスリップ転移との相関を種々検討し
た結果、歪み層を導入した半導体ウエーハの降伏応力値
を、歪み層を導入しない半導体ウエーハの降伏応力値に
対して所定の比率内に納めるよう製造すると、優れた耐
スリップ強度の得られることを確認した。
The inventors of the present invention have variously determined the relationship between the stress and strain in the temperature region exhibiting plastic deformation and the correlation with the slip transition for a semiconductor wafer in which a strained layer is intentionally introduced from the outside and a semiconductor wafer in which the strained layer is not introduced. As a result of examination, when the yield stress value of a semiconductor wafer having a strained layer is manufactured so as to be within a predetermined ratio with respect to the yield stress value of a semiconductor wafer having no strained layer, it is possible to obtain excellent slip resistance. It was confirmed.

【0010】従って、本発明の半導体ウエーハは、ウエ
ーハのデバイスを形成しない一主面に故意に外部から導
入された歪み層を有するウエーハであって、前記半導体
材料が塑性変形を示す温度領域での応力−歪み曲線につ
いて、上降伏応力値が、外部歪みが無い場合と比較して
90乃至100%の範囲にあることを特徴とする。
Therefore, the semiconductor wafer of the present invention is a wafer having a strained layer intentionally introduced from the outside on one principal surface which does not form a device of the wafer, and the semiconductor material is in a temperature range in which it exhibits plastic deformation. The stress-strain curve is characterized in that the upper yield stress value is in the range of 90 to 100% as compared with the case without external strain.

【0011】また、半導体ウエーハのデバイスを形成し
ない一主面に故意に外部から導入された歪み層を有する
ウエーハであって、前記半導体材料が塑性変形を示す温
度領域での応力−歪み曲線について、下降伏応力値が、
外部歪みが無い場合と比較して70乃至100%の範囲
にあることを特徴とする。
Further, a wafer having a strain layer intentionally introduced from the outside on one main surface which does not form a device of a semiconductor wafer, wherein the stress-strain curve in a temperature region where the semiconductor material shows plastic deformation is: The yield stress value is
It is characterized by being in the range of 70 to 100% as compared with the case where there is no external distortion.

【0012】[0012]

【発明の実施の形態】以下、この発明の実施の形態を添
付図面に基づいて説明する。図1は、本発明に係る歪み
層を備えた半導体ウエーハの強度評価方法の原理を説明
する図である。同図に示される応力−歪み曲線Cは、測
定対象の半導体ウエーハから作成した試験片に引張り、
圧縮、曲げ等の負荷をかけ、発生する歪みと応力との関
係を表している。試験片に負荷を与えるにつれ、応力が
増大して比例限界T2ならびに弾性限界T3を過ぎ、上
降伏点T3に至る。上降伏点T3における上降伏応力値
はMP1である。上降伏点T3を通過後、歪みの増大と
ともに、応力は低下し、下降伏点T4に到る。下降伏点
T4における下降伏応力値はMP2である。その後再
び、歪みの増加とともに応力は増大し、最終的に破断点
T5に達して破断する。
Embodiments of the present invention will be described below with reference to the accompanying drawings. FIG. 1 is a diagram illustrating the principle of the strength evaluation method for a semiconductor wafer having a strained layer according to the present invention. The stress-strain curve C shown in the figure is applied to a test piece prepared from a semiconductor wafer to be measured,
The relationship between the strain and the stress generated by applying a load such as compression or bending is shown. As the load is applied to the test piece, the stress increases and passes the proportional limit T2 and the elastic limit T3, and reaches the upper yield point T3. The upper yield stress value at the upper yield point T3 is MP1. After passing through the upper yield point T3, the stress decreases as the strain increases and reaches the descending yield point T4. The yield stress value at the yield point T4 is MP2. After that, the stress increases again as the strain increases, and finally reaches the break point T5 and breaks.

【0013】図2は、ラッピング法により歪み層を導入
した半導体ウエーハの応力−歪み線図の例であり、ラッ
ピング歪み量をパラメータとして表示している。図2に
示されるように、ラッピング歪み層を導入したウエーハ
の応力−歪み曲線C1〜C3では、故意に外部から歪み
層を導入しないウエーハの応力−歪み曲線C4に比べ、
上降伏応力値が低下する。[表1]に、ラッピング法に
より歪み層を導入した半導体ウエーハC1〜C3及び故
意に外部から歪み層を導入しないウエーハC4に関し
て、そのスリップ転位欠陥導入量を対比して示す。な
お、スリップ発生面積a.u.は、ウエーハを一定間隔
のます目状に分割して、スリップ発生部分をカウントし
たもので、小さい値であるほど耐スリップ強度に優れて
いることをを意味する。
FIG. 2 is an example of a stress-strain diagram of a semiconductor wafer in which a strained layer is introduced by the lapping method, and the amount of lapping strain is displayed as a parameter. As shown in FIG. 2, in the stress-strain curves C1 to C3 of the wafer in which the lapping strain layer is introduced, compared with the stress-strain curve C4 of the wafer in which the strain layer is not intentionally introduced from the outside,
The upper yield stress value decreases. [Table 1] shows the amount of slip dislocation defects introduced for the semiconductor wafers C1 to C3 having a strained layer introduced by the lapping method and the wafer C4 not intentionally introducing a strained layer from the outside. The slip occurrence area a. u. Indicates that the wafer is divided into squares at regular intervals and the slip occurrence portion is counted. The smaller the value, the better the slip resistance.

【0014】[0014]

【表1】 [Table 1]

【0015】[表1]の実験1では、熱処理炉へのウエ
ーハ出し入れを800℃で、実験2では熱処理炉へのウ
エーハ出し入れを1000℃で、それぞれ行った。[表
1]からわかるように、ラッピング法により歪み層を導
入した半導体ウエーハの上降伏応力値低下量とスリップ
転位欠陥導入量に良い相関がある。このように、外部か
ら故意に導入された歪み層を有するウエーハの上降伏応
力値が、外部歪みが無い場合と比較して90乃至100
%の範囲にあれば、良い耐スリップ強度を示すことがわ
かった。
In Experiment 1 of [Table 1], the wafer was put in and out of the heat treatment furnace at 800 ° C., and in Experiment 2, the wafer was put in and out of the heat treatment furnace at 1000 ° C. As can be seen from [Table 1], there is a good correlation between the amount of decrease in the upper yield stress of a semiconductor wafer having a strained layer introduced by the lapping method and the amount of slip dislocation defects introduced. As described above, the upper yield stress value of the wafer having the strain layer intentionally introduced from the outside is 90 to 100 as compared with the case without the external strain.
It has been found that if it is in the range of%, good slip resistance is exhibited.

【0016】図3は、サンドブラスト法により歪み層を
導入した半導体ウエーハの応力−歪み線図の例であり、
サンドブラスト歪み量をパラメータとして表示してい
る。図3に示されるように、サンドブラスト歪み層を導
入したウエーハの応力−歪み曲線D1〜D3では、故意
に外部から歪み層を導入しないウエーハの応力−歪み曲
線D4に比べ、下降伏応力値が低下する。[表2]に、
サンドブラスト歪み層を導入した半導体ウエーハD1〜
D3及び故意に外部から歪み層を導入しないウエーハD
4に関して、そのスリップ転位欠陥導入量を対比して示
す。
FIG. 3 is an example of a stress-strain diagram of a semiconductor wafer in which a strained layer is introduced by the sandblast method.
The amount of sandblast distortion is displayed as a parameter. As shown in FIG. 3, in the stress-strain curves D1 to D3 of the wafer in which the sandblast strain layer is introduced, the lowering yield stress value is lower than in the stress-strain curve D4 of the wafer in which the strain layer is not intentionally introduced from the outside. To do. In [Table 2],
Semiconductor wafer D1 having a sandblasted strained layer introduced
D3 and wafer D without intentionally introducing a strained layer from the outside
Regarding No. 4, the slip dislocation defect introduction amount is shown in comparison.

【0017】[0017]

【表2】 [Table 2]

【0018】[表2]の実験1では、熱処理炉へのウエ
ーハ出し入れを800℃で、実験2では熱処理炉へのウ
エーハ出し入れを1000℃で、それぞれ行った。[表
2]からわかるように、サンドブラスト歪み層を導入し
た半導体ウエーハの下降伏応力値低下量とスリップ転位
欠陥導入量に良い相関がある。このように、外部から故
意に導入された歪み層を有するウエーハの下降伏応力値
が、外部歪みが無い場合と比較して70乃至100%の
範囲にあれば、良い耐スリップ強度を示すことがわかっ
た。
In Experiment 1 of [Table 2], the wafer was put in and out of the heat treatment furnace at 800 ° C., and in Experiment 2, the wafer was put in and out of the heat treatment furnace at 1000 ° C. As can be seen from [Table 2], there is a good correlation between the amount of decrease in the yield stress of the semiconductor wafer having the sandblasted strain layer introduced and the amount of slip dislocation defects introduced. As described above, when the down stress value of the wafer having the strain layer intentionally introduced from the outside is in the range of 70 to 100% as compared with the case where there is no external strain, good slip resistance can be exhibited. all right.

【0019】このように、外部ゲッタリング処理により
歪み層が導入された半導体ウエーハでは、歪み層が導入
されていないウエーハと比較して、応力−歪み曲線の上
降伏応力値および下降伏応力値の一方あるいは両方が低
下する傾向があることが確認された。これに基づき、歪
み層が導入された半導体ウエーハの上降伏応力値を、歪
み層が導入されていない半導体ウエーハのそれに比べて
90〜100%の範囲、もしくは下降伏応力値が70〜
100%の範囲とすることにより、良好な耐スリップ強
度の半導体ウエーハが製造できた。
As described above, in the semiconductor wafer in which the strained layer is introduced by the external gettering treatment, as compared with the wafer in which the strained layer is not introduced, the upper yield stress value and the lower yield stress value of the stress-strain curve are It was confirmed that one or both tended to decrease. Based on this, the upper yield stress value of the semiconductor wafer in which the strained layer is introduced is in the range of 90 to 100% as compared with that of the semiconductor wafer in which the strained layer is not introduced, or the yield stress value is 70 to
By setting the content in the range of 100%, a semiconductor wafer having excellent slip resistance could be manufactured.

【0020】[0020]

【発明の効果】以上説明した様に、本発明に係る歪み層
を備えた半導体ウエーハの強度評価方法により、故意に
外部から歪み層を導入したウエーハの上降伏応力値ある
いは下降伏応力値を、歪み層が無いウエーハの上降伏応
力値あるいは下降伏応力値に対して所定の範囲内に納め
るよう製造することで、優れた特性を備える半導体ウエ
ーハを実現できる。
As described above, according to the strength evaluation method for a semiconductor wafer having a strained layer according to the present invention, the upper yield stress value or the lower yield stress value of a wafer into which a strained layer is intentionally introduced from outside is A semiconductor wafer having excellent characteristics can be realized by manufacturing the wafer without a strained layer so that the yield stress value or the yield stress value falls within a predetermined range.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る歪み層を備えた半導体ウエーハの
強度評価方法の原理を説明する図である。
FIG. 1 is a diagram illustrating the principle of a strength evaluation method for a semiconductor wafer having a strained layer according to the present invention.

【図2】ラッピング法により歪み層を導入した半導体ウ
エーハの応力−歪み線図である。
FIG. 2 is a stress-strain diagram of a semiconductor wafer having a strained layer introduced by a lapping method.

【図3】サンドブラスト法により歪み層を導入した半導
体ウエーハの応力−歪み線図である。
FIG. 3 is a stress-strain diagram of a semiconductor wafer in which a strained layer is introduced by a sandblast method.

【符号の説明】[Explanation of symbols]

C ラッピング法により歪み層を導入した半導体ウエー
ハの応力−歪み線図 D サンドブラスト法により歪み層を導入した半導体ウ
エーハの応力−歪み線図 T1 比例限界 T2 弾性限界 T3 上降伏点 T4 下降伏点 T5 破断点 MP1 上降伏応力値 MP2 下降伏応力値
C Stress-strain diagram of semiconductor wafer with strained layer introduced by lapping method D Stress-strain diagram of semiconductor wafer with strained layer introduced by sandblasting method T1 Proportional limit T2 Elastic limit T3 Upper yield point T4 Fall yield point T5 Fracture Point MP1 Upper yield stress value MP2 Lower yield stress value

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 半導体ウエーハの機械的強度特性である
応力−歪み特性の、上降伏応力値及び下降伏応力値の低
下の度合いに基づいて、半導体ウエーハのデバイスを形
成しない一主面に故意に外部から導入された歪み層を備
えた半導体ウエーハの強度を評価することを特徴とす
る、歪み層を備えた半導体ウエーハの強度評価方法。
1. Based on the degree of decrease in the upper yield stress value and the lower yield stress value of the stress-strain characteristic, which is the mechanical strength characteristic of the semiconductor wafer, the one main surface on which the device of the semiconductor wafer is not intentionally formed. A method for evaluating the strength of a semiconductor wafer having a strained layer, which comprises evaluating the strength of a semiconductor wafer having a strained layer introduced from the outside.
【請求項2】 半導体ウエーハのデバイスを形成しない
一主面に故意に外部から導入された歪み層を有するウエ
ーハであって、前記半導体材料が塑性変形を示す温度領
域での応力−歪み曲線について、上降伏応力値が、外部
歪みが無い場合と比較して90乃至100%の範囲にあ
ることを特徴とする故意に外部から導入された歪み層を
有する半導体ウエーハ。
2. A wafer having a strain layer intentionally introduced from the outside on one principal surface of a semiconductor wafer which does not form a device, wherein the stress-strain curve in a temperature region in which the semiconductor material exhibits plastic deformation, A semiconductor wafer having a deliberately introduced strained layer, characterized in that the upper yield stress value is in the range of 90 to 100% compared to the case without external strain.
【請求項3】 半導体ウエーハのデバイスを形成しない
一主面に故意に外部から導入された歪み層を有するウエ
ーハであって、前記半導体材料が塑性変形を示す温度領
域での応力−歪み曲線について、下降伏応力値が、外部
歪みが無い場合と比較して70乃至100%の範囲にあ
ることを特徴とする故意に外部から導入された歪み層を
有する半導体ウエーハ。
3. A wafer having a strain layer which is intentionally introduced from the outside on one principal surface which does not form a device of a semiconductor wafer, wherein a stress-strain curve in a temperature region in which the semiconductor material shows plastic deformation, A semiconductor wafer having a deliberately introduced strained layer, characterized in that the yield stress value is in the range of 70 to 100% compared to the case without external strain.
JP06211096A 1996-02-24 1996-02-24 Strength evaluation method for semiconductor wafer having strained layer and method for manufacturing semiconductor device forming wafer Expired - Fee Related JP3671507B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06211096A JP3671507B2 (en) 1996-02-24 1996-02-24 Strength evaluation method for semiconductor wafer having strained layer and method for manufacturing semiconductor device forming wafer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06211096A JP3671507B2 (en) 1996-02-24 1996-02-24 Strength evaluation method for semiconductor wafer having strained layer and method for manufacturing semiconductor device forming wafer

Publications (2)

Publication Number Publication Date
JPH09232397A true JPH09232397A (en) 1997-09-05
JP3671507B2 JP3671507B2 (en) 2005-07-13

Family

ID=13190600

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06211096A Expired - Fee Related JP3671507B2 (en) 1996-02-24 1996-02-24 Strength evaluation method for semiconductor wafer having strained layer and method for manufacturing semiconductor device forming wafer

Country Status (1)

Country Link
JP (1) JP3671507B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007232545A (en) * 2006-02-28 2007-09-13 Sumitomo Metal Ind Ltd Method of estimating stress-strain relation of steel material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007232545A (en) * 2006-02-28 2007-09-13 Sumitomo Metal Ind Ltd Method of estimating stress-strain relation of steel material
JP4620609B2 (en) * 2006-02-28 2011-01-26 住友金属工業株式会社 Prediction method for stress-strain relationship of steel

Also Published As

Publication number Publication date
JP3671507B2 (en) 2005-07-13

Similar Documents

Publication Publication Date Title
TW512465B (en) wafer, method for determining production conditions of silicon single crystal and method for producing silicon wafer
JP2005033217A (en) Manufacturing method of silicon semiconductor wafer
JP5160023B2 (en) Silicon wafer and method for manufacturing silicon wafer
JP2010153706A (en) Silicon wafer and method of manufacturing the same
US20050245048A1 (en) SOI wafer and method for producing it
WO2003003441A1 (en) Production method for anneal wafer and anneal wafer
JPH07335657A (en) Silicon wafer and its thermal treatment method
JPH11168106A (en) Treatment method of semiconductor substrate
WO2018037755A1 (en) Silicon single crystal wafer production method, silicon epitaxial wafer production method, silicon single crystal wafer, and silicon epitaxial wafer
JP2000040710A (en) Gold alloy fine wire for bonding
KR100847925B1 (en) Anneal wafer manufacturing method and anneal wafer
JPH09232397A (en) Semiconductor wafer provided with strained layer and intensity evaluation method
JPH06295912A (en) Manufacture of silicon wafer and silicon wafer
WO2000034553A1 (en) Silicon wafer and method of manufacture thereof
US6800132B1 (en) Silicon wafer and method for manufacture thereof, and method for evaluation of silicon wafer
CN109075076B (en) Silicon wafer
JP4449842B2 (en) Measuring method of semiconductor substrate
JP2004238734A (en) Unidirectional electromagnetic steel sheet with ultrahigh magnetic flux density and excellent in high-magnetic-field core loss and coating film characteristics
JPH06295913A (en) Manufacture of silicon wafer and silicon wafer
JP3874255B2 (en) Evaluation method of BMD size in silicon wafer
JP3479001B2 (en) Silicon wafer manufacturing method
JP2002151519A (en) Annealed wafer and manufacturing method thereof
KR100685260B1 (en) Heat treatment method for silicon wafer
JP4182691B2 (en) A method for predicting pulling conditions of pure silicon single crystals.
JP2652344B2 (en) Silicon wafer

Legal Events

Date Code Title Description
A977 Report on retrieval

Effective date: 20040908

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041012

A521 Written amendment

Effective date: 20041207

Free format text: JAPANESE INTERMEDIATE CODE: A523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050329

A61 First payment of annual fees (during grant procedure)

Effective date: 20050411

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20080428

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080428

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees