JPH09223675A - Carbon member for ion implantation apparatus - Google Patents

Carbon member for ion implantation apparatus

Info

Publication number
JPH09223675A
JPH09223675A JP8050989A JP5098996A JPH09223675A JP H09223675 A JPH09223675 A JP H09223675A JP 8050989 A JP8050989 A JP 8050989A JP 5098996 A JP5098996 A JP 5098996A JP H09223675 A JPH09223675 A JP H09223675A
Authority
JP
Japan
Prior art keywords
carbon
ion implantation
composite material
ion
carbon fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8050989A
Other languages
Japanese (ja)
Inventor
Tadayoshi Yonemoto
忠悦 米本
Keiichi Hirata
恵一 平田
Eiji Tsujihata
英司 辻畑
Yoshiaki Himaki
慶朗 日巻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Carbon Co Ltd
Original Assignee
Nippon Carbon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Carbon Co Ltd filed Critical Nippon Carbon Co Ltd
Priority to JP8050989A priority Critical patent/JPH09223675A/en
Publication of JPH09223675A publication Critical patent/JPH09223675A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)
  • Ceramic Products (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce sublimation wear upon exposed to an ion beam, and reduce damage of a member due to ion beams and scattered particles by using a carbon member for ion implantation apparatus, the member comprising a carbon fiber reinforced composite material yielded by laminating carbon fibers or graphitizing the fibers. SOLUTION: A laminated carbon fiber reinforced composite material is yielded by filling it with synthetic resin and a coal binder carbonized with heating and joining it with the synthetic resin and the binder, and then heating them to carbonize and graphitize the resin and pitch and rendering them to a heating and highly purifying processing with halogen containing gas. The carbon fiber reinforced carbon composite material 2 has a lower heat conductivity in the direction of the lamination compared with those in the direction of a perpendicular surface in the lamination direction. For this, once the material is exposed to an ion beam, thermal energy produced in the carbon is selectively dissipated in the direction of the perpendicular surface to the lamination direction to prevent the member from being raised in temperature. Further, a sublimation rate of the carbon is lowered.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、LSI等の半導体
ディバイスを製造する工程で使用するイオン注入装置用
のカーボン部材、さらに詳しくは、半導体集積回路の製
造プロセスにおいて、純度の高い半導体ウェハーにP
型、n型の不純物をウェハー中に添加してドーピング処
理する際に、運動エネルギーを持ったイオンを照射して
P、N特性を付与するイオン注入法に使用するイオン注
入装置用カーボン部材、具体的には、イオン注入工程に
使用するイオン注入装置の引出電極系、質量分析系、加
速器系、ファラデー系(注入室)等のベーン(シャッタ
ー)、フロントプレート、インサート、アパーチャーな
どに使用するカーボン部材に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a carbon member for an ion implantation apparatus used in a process of manufacturing a semiconductor device such as an LSI, and more specifically, a P member for a highly pure semiconductor wafer in a manufacturing process of a semiconductor integrated circuit.
Type and n-type impurities are added to a wafer and a doping process is performed, a carbon member for an ion implantation apparatus used for an ion implantation method that irradiates ions having kinetic energy to impart P and N characteristics, Specifically, carbon members used for vanes (shutters) such as extraction electrode systems, mass spectrometry systems, accelerator systems, Faraday systems (injection chambers), front plates, inserts, and apertures of ion implantation equipment used in the ion implantation process. Regarding

【0002】[0002]

【従来の技術】半導体ディバイスの製造工程として、イ
オン注入工程がある。この工程は、イオン注入法によ
り、シリコン基板中に目的とする元素を高エネルギーで
イオン化し、加速して半導体基板内に打ち込む方法で、
特に所定濃度、打込み深さ、不純物の混入防止が重要と
なる。
2. Description of the Related Art There is an ion implantation process as a process for manufacturing a semiconductor device. This process is a method of ionizing a target element in a silicon substrate with high energy by an ion implantation method, accelerating and implanting it into a semiconductor substrate.
Particularly, it is important to prevent the mixture of a predetermined concentration, a driving depth, and impurities.

【0003】また、イオン注入法は、シリコン基板に対
しB、P、Asなどのイオンを導入不純物として用い、
制御性、再現性に優れた方法として広く用いられてい
る。一般的には、磁界中のフィラメントから放出される
熱電子を利用してイオンを生成し、イオンビームとして
通常、数十eV〜数百eVの加速電圧で数mA〜数十m
A、数十W〜数kWの注入条件で行われている。
In the ion implantation method, ions such as B, P and As are used as introduced impurities in a silicon substrate.
It is widely used as a method with excellent controllability and reproducibility. Generally, thermoelectrons emitted from a filament in a magnetic field are used to generate ions, and an ion beam is usually several mA to several tens m at an accelerating voltage of several tens eV to several hundreds eV.
A, several tens of W to several kW of implantation conditions are used.

【0004】イオン注入装置は、イオン源、エネルギー
を供給する引出部、イオンを選別する質量分析部、イオ
ンを加速する加速部、イオンビームに収束する収束部、
イオンビームをシリコンウエハー上に均一に走査する走
査部、及びウエハーにイオンを注入する注入室から構成
されており、これらは操作過程でAlを除く不純物が混
入しないように高純度を保持する材質で構成されてい
る。
The ion implantation apparatus includes an ion source, an extraction unit for supplying energy, a mass analysis unit for selecting ions, an acceleration unit for accelerating ions, and a focusing unit for converging an ion beam.
It consists of a scanning unit that uniformly scans the silicon wafer with an ion beam, and an implantation chamber that injects ions into the wafer.These are materials that maintain high purity so that impurities other than Al do not mix during the operation process. It is configured.

【0005】中でも、イオン注入装置内部のベーン、フ
ロントプレート、インサートなどの部材は、高エネルギ
ーのイオンビームに曝されるため耐熱性に優れウェハー
を汚染することの少ない高純度の黒鉛材料が使用されて
いる。このイオン注入装置用カーボン部材は、炭素粉又
は黒鉛粉をバインダーと共に成型或いは、球晶材料を成
型後焼成・黒鉛化し、得られた黒鉛ブロックを純化(脱
灰)処理して部品として使用していた。
Among them, members such as vanes, front plates, and inserts inside the ion implantation apparatus are made of high-purity graphite material which is excellent in heat resistance and does not pollute the wafer because it is exposed to a high-energy ion beam. ing. This carbon member for ion implantation equipment is used as a part by molding carbon powder or graphite powder with a binder, or baking and graphitizing a spherulite material, and purifying (deashing) the obtained graphite block. It was

【0006】[0006]

【発明が解決しようとする課題】しかし、この材料は組
織的に微細な粒子の集合体であるため、スパッタリング
された際に微細なパーティクルが飛散し易く、黒鉛中に
微量に含有する鉄、カルシウム、バナジウム等がシリコ
ンウエハー中に不純物として混入し、より高純度な製品
が要求される半導体製造工程においては、製品の性能低
下を招く問題がある。
However, since this material is an aggregate of finely structured particles, fine particles are easily scattered when sputtered, and iron and calcium contained in a trace amount in graphite. , Vanadium and the like are mixed as impurities in the silicon wafer, and there is a problem that the performance of the product is deteriorated in the semiconductor manufacturing process in which a higher-purity product is required.

【0007】このため、イオンビームによりパーティク
ルの飛散が少ないガラス状カーボンでイオン注入部材を
構成し、半導体ディバイスの高集積化に対応する試みも
なされている(特開平5−246703号公報)。しか
し、ガラス状カーボンは、熱伝導率が低く、熱衝撃や熱
応力によりクラックも発生しやすく、さらに難加工性で
あるという欠点がある。
Therefore, an attempt has been made to cope with high integration of semiconductor devices by forming an ion implanting member with glassy carbon in which particles are less scattered by an ion beam (Japanese Patent Laid-Open No. 5-246703). However, glassy carbon has a drawback that it has a low thermal conductivity, cracks easily occur due to thermal shock and thermal stress, and that it is difficult to process.

【0008】またこれら従来のイオン注入装置用カーボ
ン部材は、等方的な性質が高いため、イオンビーム(通
常数+eV〜数百eVの加速電圧で数mA〜数十mA:
数十W〜数kW)の照射により、イオンの運動エネルギ
ーがカーボン上で熱エネルギーに変換し、表面温度が1
000〜2300℃程度に上昇して、カーボンが蒸発消
耗してしまう。このため熱伝導率が80〜120kca
l/mhr℃の黒鉛材を使用すると周辺部(含厚さ方
向)から表面温度に応じて蒸発消耗してしまう欠点があ
る。
Further, since these conventional carbon members for ion implanters have high isotropic properties, the ion beam (usually several mA to several tens mA at an accelerating voltage of several + eV to several hundred eV:
By irradiation of several tens of W to several kW), the kinetic energy of ions is converted into thermal energy on carbon, and the surface temperature is 1
The temperature rises to about 000 to 2300 ° C, and carbon evaporates and is consumed. Therefore, the thermal conductivity is 80 to 120 kca.
When a graphite material of 1 / mhr ° C. is used, there is a drawback that the peripheral part (in the direction of the thickness) evaporates and is consumed depending on the surface temperature.

【0009】このように、従来の黒鉛材料で構成された
部材は、上記イオンビームに曝せれた際、表面温度の上
昇による昇華消耗が多く、この昇華消耗を減少させたイ
オン注入装置用カーボン部材の開発が望まれていた。
As described above, the conventional member made of the graphite material has a large amount of sublimation consumption due to the rise of the surface temperature when exposed to the above-mentioned ion beam, and the carbon member for the ion implantation apparatus has reduced the sublimation consumption. Was desired to be developed.

【0010】また、特に近年においては、生産処理量を
増加する目的でイオンエネルギーの高い注入装置の使用
機運が高まっており、ビームによる部材の損傷による劣
化、並びに系内へのパーティクルの飛散の改善、サーマ
ルショックに強くかつ、より長寿命のイオン注入装置用
カーボン部材の提供が望まれている。
Particularly in recent years, the use of implanters with high ion energy is increasing for the purpose of increasing the production throughput, and deterioration due to damage of members by the beam and scattering of particles into the system are improved. It is desired to provide a carbon member for an ion implantation device which is resistant to thermal shock and has a longer life.

【0011】本発明は、上記知見に基づき開発されたも
ので、イオンビームに曝された際、昇華消耗が少なく、
イオンビームによる部材の損傷、並びに飛散パーティク
ルが減少して不純物の混入がなく、熱衝撃や熱応力に耐
久でき、加工性に優れ、かつ、より長寿命のイオン注入
装置用カーボン部材を提供することを目的とする。
The present invention was developed on the basis of the above-mentioned findings, and when it is exposed to an ion beam, sublimation consumption is small,
To provide a carbon member for an ion implantation device, which has a long life and is durable against thermal shock and thermal stress without the inclusion of impurities due to damage of the member due to the ion beam and scattering particles being reduced. With the goal.

【0012】[0012]

【課題を解決するための手段】そこで、本発明者らは、
前記課題を解決するため鋭意研究を重ねた結果、イオン
注入装置の内部でイオンに曝される部分の全部またはそ
の主要部を、積層された炭素繊維強化炭素複合材料で構
成すれば、高エネルギー密度のイオンビーム照射に適用
でき、さらに寿命も倍増できるイオン注入装置用カーボ
ン部材が提供できるとの知見を得て本発明を完成した。
Means for Solving the Problems Accordingly, the present inventors have:
As a result of earnest studies to solve the above-mentioned problems, if all or a main part of the ion-exposed device exposed to ions is composed of a laminated carbon fiber-reinforced carbon composite material, a high energy density is obtained. The present invention has been completed based on the finding that a carbon member for an ion implantation apparatus can be provided that can be applied to the ion beam irradiation described in (1) above and that the life can be doubled.

【0013】つまり、炭素繊維の織物を積層し、又は炭
素繊維束を一方向或いは多方向に積層し、次いで、ピッ
チ、樹脂等を含浸して炭素化・黒鉛化し、炭素繊維強化
炭素複合材料を得て、これをイオン注入装置のイオンに
曝される部分の全部または主要部に用いるものである。
ここに織物とは、フェルト、平織、朱子織、綾織等のい
ずれの形態であっても良い。
That is, carbon fiber woven fabrics are laminated, or carbon fiber bundles are laminated in one direction or in multiple directions, and then pitch, resin, etc. are impregnated to carbonize and graphitize to obtain a carbon fiber reinforced carbon composite material. Then, this is used for all or main parts of the ion-exposed device exposed to the ions.
Here, the woven fabric may be in any form such as felt, plain weave, satin weave, and twill weave.

【0014】[0014]

【発明の実施の形態】積層された炭素繊維強化炭素複合
材料とは、炭素繊維クロス、織物などを積層し、その繊
維間、層間をフェノール樹脂、フルフラール樹脂、フラ
ン樹脂、ジビニルベンゼン樹脂など加熱により炭素化す
る合成樹脂や石炭系の軟ピッチ、中ピッチ、硬ピッチ、
石油ピッチ等のバインダーなどで充填接合したのち、少
なくとも2500〜3000℃以上に加熱して、該樹脂
やピッチを炭素化・黒鉛化し、さらにハロゲン含有ガス
により加熱高純度化処理をして得る。このとき、得られ
た部材としては、積層方向と垂直な面方向の熱伝導率1
50kcal/mhr℃以上のものが作用効果の面で好
ましい。
BEST MODE FOR CARRYING OUT THE INVENTION A laminated carbon fiber reinforced carbon composite material is formed by laminating carbon fiber cloth, woven fabric, etc., and heating the fibers, interlayers, etc. by heating phenol resin, furfural resin, furan resin, divinylbenzene resin, etc. Carbonized synthetic resin or coal-based soft pitch, medium pitch, hard pitch,
It is obtained by filling and bonding with a binder such as petroleum pitch, heating at least 2500 to 3000 ° C. or higher to carbonize and graphitize the resin and pitch, and further heat and purify the resin and pitch with a halogen-containing gas. At this time, the obtained member had a thermal conductivity of 1 in the plane direction perpendicular to the stacking direction.
Those having a temperature of 50 kcal / mhr ° C. or higher are preferable in terms of action and effect.

【0015】炭素繊維は2000℃以上で黒鉛化されや
すい易黒鉛化性のピッチ系又はPAN系(ポリアクリロ
ニトリル系)のものが好適であり、バインダーとしては
難黒鉛化性の樹脂系又は硬ピッチとすることが好まし
い。樹脂、ピッチの含有量は、35〜65重量%の範囲
で適宜採用される。
The carbon fiber is preferably a graphitizable pitch-based or PAN-based (polyacrylonitrile-based) that is easily graphitized at 2000 ° C. or higher, and the binder is a non-graphitizable resin-based or hard pitch. Preferably. The resin and pitch contents are appropriately adopted within the range of 35 to 65% by weight.

【0016】本発明のカーボン部材は、その全部または
少なくともその主要部分を炭素繊維強化炭素複合材料で
構成するが、その主要部分以外を他種材料で構成する場
合は、高密度等方性黒鉛および/またはガラス状カーボ
ンが系内へのパーティクルの飛散防止の面で望ましい。
また、部材表層をガラス状カーボンで被覆したものも有
効である。
In the carbon member of the present invention, the whole or at least the main part thereof is composed of the carbon fiber reinforced carbon composite material. However, when the part other than the main part is composed of another kind of material, high density isotropic graphite and / Or glassy carbon is desirable in terms of preventing particles from scattering into the system.
Further, it is also effective to coat the surface layer of the member with glassy carbon.

【0017】高密度等方性黒鉛は、常法によるカサ比重
1.8以上熱伝導率80〜120kcal/mhr℃程
度のもので良く、これと前記炭素繊維強化炭素複合材料
とを組合せたものは主要部分の効果を発揮しながら、全
体の特質を低下することなく製造コストを低下でき製品
を安価に供給出来る。
The high density isotropic graphite may have a bulk specific gravity of 1.8 or more and a thermal conductivity of about 80 to 120 kcal / mhr ° C. according to a conventional method, and a combination of this and the carbon fiber reinforced carbon composite material While exerting the effect of the main part, the manufacturing cost can be reduced and the product can be supplied at low cost without deteriorating the characteristics of the whole.

【0018】ガラス状カーボンは、フェノール、フラン
等の合成樹脂を成形後、焼成炭化したアモルファスカー
ボンで、ガラス状カーボンとの組合せは、特にパーティ
クル飛散防止効果が加味出来る。
The glassy carbon is amorphous carbon which is obtained by molding a synthetic resin such as phenol or furan and then firing and carbonizing it. In combination with the glassy carbon, a particle scattering preventing effect can be particularly added.

【0019】また、ガラス状カーボンの被覆は上記合成
樹脂をフィルム化して貼付、塗布したり、または含浸し
てコートしたのち加熱炭化して強固な被覆層とするのが
好ましく、これらガラス状カーボンや等方性黒鉛はいず
れも高純度化処理をして供するのが好ましい。
Further, the glassy carbon coating is preferably formed by applying the above synthetic resin into a film and then applying, coating, or impregnating and coating it, followed by heating and carbonization to form a strong coating layer. It is preferable that all the isotropic graphite is subjected to a purification treatment before use.

【0020】本発明の部材の作用は以下の通りである。
炭素繊維強化炭素複合材は、積層方向と垂直な面方向の
熱伝導率に比し、積層方向の熱伝導率が低いため、イオ
ンビームに曝されると、カーボンに発生する熱エネルギ
ーが積層方向と垂直な面方向に選択的に放熱され部材の
温度上昇を防ぎ、カーボンの昇華速度を低下させる。
The operation of the member of the present invention is as follows.
The carbon fiber reinforced carbon composite material has a lower thermal conductivity in the laminating direction than the thermal conductivity in the plane direction perpendicular to the laminating direction. Therefore, when exposed to an ion beam, the thermal energy generated in carbon is generated in the laminating direction. Heat is selectively dissipated in a plane direction perpendicular to the above to prevent the temperature of the member from rising and to reduce the sublimation rate of carbon.

【0021】また、イオンビームに曝されるとやがて昇
華消耗が進行するが、従来の黒鉛材料に比し、熱伝導率
が相対的に高いため、放熱により部材の温度上昇が低く
なり、昇華速度も従来の黒鉛材料に比し低くなる。
Further, when it is exposed to an ion beam, sublimation and wear will progress, but since the thermal conductivity is relatively higher than that of the conventional graphite material, the temperature rise of the member is reduced due to heat dissipation, and the sublimation speed is increased. Is also lower than conventional graphite materials.

【0022】上記の場合でも炭素繊維の炭素繊維強化炭
素複合材料は従来の黒鉛材料に比し、高強度のためクラ
ック等の発生が少なく、また、繊維(フィラー)とマト
リックスとの結合力が強いためパーティクルは従来の黒
鉛材料に比し少なくなる。
Even in the above case, the carbon fiber-reinforced carbon composite material of carbon fiber has a higher strength than conventional graphite materials, so that cracks and the like are less likely to occur, and the binding force between the fiber (filler) and the matrix is strong. Therefore, the number of particles is smaller than that of the conventional graphite material.

【0023】このように、本発明のカーボン部材を用い
れば、従来の黒鉛材料を用いた部材より約2倍の寿命と
なり、また発生パーティクルの量を25%位減少出来
る。
As described above, when the carbon member of the present invention is used, the life is about twice as long as that of the member using the conventional graphite material, and the amount of generated particles can be reduced by about 25%.

【0024】[0024]

【実施例】【Example】

実施例1〜5、比較例1 1.2kWのイオン注入装置のイオンソースヘッドより
引出されたビームを絞るためのベーン部材として、図1
に示す60×160×8tmmの形状のベーン部材を表
1に示す材料で得た。また、比較として、等方性黒鉛で
同一形状のベーン部材を構成した。両部材を各々アプラ
イドマテリアルジャパン社製、商品名:P1−9200
装置に取付けて、それぞれの機能寿命を比較した。
Examples 1 to 5 and Comparative Example 1 As a vane member for narrowing the beam extracted from the ion source head of the 1.2 kW ion implantation apparatus, FIG.
The vane member having the shape of 60 × 160 × 8 tmm shown in Table 1 was obtained from the materials shown in Table 1. For comparison, vane members having the same shape were made of isotropic graphite. Both members are manufactured by Applied Materials Japan, Inc., product name: P1-9200
They were attached to the device and their functional lives were compared.

【0025】この結果、本発明の部材は、従来の等方性
黒鉛で構成された部材に対して、約2倍の寿命延長が見
られた。
As a result, the member of the present invention was found to have a life extension about twice as long as that of the conventional member made of isotropic graphite.

【0026】[0026]

【表1】 [Table 1]

【0027】[0027]

【発明の効果】本発明の積層タイプの炭素繊維強化炭素
複合材料は、表面層がイオンビームに曝されて熱せられ
ても、表面層を伝わって放熱され厚さ方向に断熱的に働
くため、表面層に比較して大巾に温度の低下が生じ、カ
ーボンの蒸発量を減少させることができる。この結果カ
ーボンの昇華消耗量を減らし、イオンビームによる部材
の損傷が減少し、より長寿命のイオン注入装置用カーボ
ン部材を提供でき、交換サイクルが延長され、イオン注
入装置のメンテナンス間隔も伸び生産効率も上昇し、発
生する使用済の産業廃棄物も減少する。また、飛散パー
ティクルが減少して系内のクリーン度が飛躍的に向上し
不純物の混入がなく、加工性に優れたイオン注入装置用
カーボン部材を提供できる。
EFFECTS OF THE INVENTION In the laminated-type carbon fiber reinforced carbon composite material of the present invention, even if the surface layer is heated by being exposed to an ion beam, heat is dissipated through the surface layer and acts adiabatically in the thickness direction. As compared with the surface layer, the temperature greatly drops, and the amount of carbon vaporized can be reduced. As a result, the sublimation consumption of carbon is reduced, the damage of the members due to the ion beam is reduced, and it is possible to provide a carbon member for the ion implanter with a longer life, the replacement cycle is extended, the maintenance interval of the ion implanter is extended, and the production efficiency is improved. Will also rise and the amount of used industrial waste generated will decrease. In addition, it is possible to provide a carbon member for an ion implantation apparatus, in which scattered particles are reduced, the cleanliness of the system is dramatically improved, impurities are not mixed, and workability is excellent.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の炭素繊維強化炭素複合材料を主要部に
用いたベーンの斜視図
FIG. 1 is a perspective view of a vane in which a carbon fiber-reinforced carbon composite material of the present invention is used as a main part.

【図2】本発明の炭素繊維強化炭素複合材料で構成した
アパチャーの斜視図
FIG. 2 is a perspective view of an aperture made of the carbon fiber reinforced carbon composite material of the present invention.

【符号の説明】[Explanation of symbols]

1 ベーン 2 炭素繊維強化炭素複合材料 3 等方性黒鉛又はガラス状炭素 4 アパーチャー 5 窓 1 vane 2 carbon fiber reinforced carbon composite material 3 isotropic graphite or glassy carbon 4 aperture 5 window

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 炭素繊維を積層し炭素化又は黒鉛化して
得られた炭素繊維強化炭素複合材料からなるイオン注入
装置用カーボン部材。
1. A carbon member for an ion implantation device, comprising a carbon fiber-reinforced carbon composite material obtained by laminating carbon fibers and carbonizing or graphitizing them.
【請求項2】 イオン注入装置の内部でイオンビームに
曝される部分の主要部が、炭素繊維を積層し炭素化して
得られた炭素繊維強化炭素複合材料で構成され、主要部
以外を高密度等方性黒鉛および/またはガラス状カーボ
ンで構成してなるイオン注入装置用カーボン部材。
2. A main portion of a portion exposed to an ion beam inside the ion implantation apparatus is composed of a carbon fiber reinforced carbon composite material obtained by laminating carbon fibers and carbonizing them, and the other portion is high density. A carbon member for an ion implantation device, which is composed of isotropic graphite and / or glassy carbon.
【請求項3】 表層をガラス状カーボンで被覆してなる
請求項1または2記載のイオン注入装置用カーボン部
材。
3. The carbon member for an ion implantation device according to claim 1, wherein the surface layer is coated with glassy carbon.
JP8050989A 1996-02-14 1996-02-14 Carbon member for ion implantation apparatus Pending JPH09223675A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8050989A JPH09223675A (en) 1996-02-14 1996-02-14 Carbon member for ion implantation apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8050989A JPH09223675A (en) 1996-02-14 1996-02-14 Carbon member for ion implantation apparatus

Publications (1)

Publication Number Publication Date
JPH09223675A true JPH09223675A (en) 1997-08-26

Family

ID=12874211

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8050989A Pending JPH09223675A (en) 1996-02-14 1996-02-14 Carbon member for ion implantation apparatus

Country Status (1)

Country Link
JP (1) JPH09223675A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017119371A (en) * 2015-12-28 2017-07-06 株式会社大木工藝 Health promotion writing instrument
CN110961128A (en) * 2019-10-24 2020-04-07 武汉大学苏州研究院 Metal-carbon nitrogen composite electrocatalytic material and preparation method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017119371A (en) * 2015-12-28 2017-07-06 株式会社大木工藝 Health promotion writing instrument
CN110961128A (en) * 2019-10-24 2020-04-07 武汉大学苏州研究院 Metal-carbon nitrogen composite electrocatalytic material and preparation method thereof

Similar Documents

Publication Publication Date Title
US6372192B1 (en) Carbon fiber manufacturing via plasma technology
Newcomb et al. High resolution transmission electron microscopy study on polyacrylonitrile/carbon nanotube based carbon fibers and the effect of structure development on the thermal and electrical conductivities
KR101216524B1 (en) Fuel cell separator and method of manufacturing the same
JP3461805B2 (en) Carbon fiber, method for producing the same, and battery electrode
JP3943123B2 (en) Method for producing carbon fiber reinforced carbon composite material suitable for heat sink for semiconductor
US7150911B2 (en) Electrical insulating vapor grown carbon fiber and method for producing the same, and use thereof
CN113999657A (en) Processing technology of alkene-carbon composite material
WO2006101084A1 (en) Carbon fiber and processes for (continuous) production thereof, and catalyst structures, electrodes for solid polymer fuel cells, and solid polymer fuel cells, made by using the carbon fiber
JPH09223675A (en) Carbon member for ion implantation apparatus
JPH07331536A (en) Pitch-based carbon fiber
JP2003020527A (en) Carbon fiber, method for producing the same and use thereof
JP2004002096A (en) Carbon fiber-reinforced carbon composite material and its producing process as well as heat sink
JPH04370223A (en) Carbon fiber and its production
WO2023145879A1 (en) C/c composite and ion engine grid
JPH05325984A (en) Premolded carbon material and manufacture thereof and manufacture of electrode substrate for fuel cell
JPH1025178A (en) Carbon material for ion implantation apparatus
JP4587632B2 (en) Fuel cell separator and method for producing the same
Raunija et al. Influence of hot-pressing pressure on the densification of short-carbon-fiber-reinforced, randomly oriented carbon/carbon composite
JPH06263558A (en) Production of porous carbon plate and porous carbon electrode material
EP4354544A1 (en) Anode active substance and preparation method therefor, and lithium secondary battery prepared on basis of same
JPH06135770A (en) Carbonaceous preformed body, its production and production of electrode substrate
JP2001261317A (en) Carbon material for producing metal-including fullerene in high yield
JPH04295055A (en) Carbon fiber reinforced composite material
JPH06329469A (en) Preformed carbonaceous material and production of electrode substrate
JP2004158226A (en) Graphite material for ion implanting apparatus and graphite member for ion implanting apparatus using the same

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20010626