JP2004158226A - Graphite material for ion implanting apparatus and graphite member for ion implanting apparatus using the same - Google Patents

Graphite material for ion implanting apparatus and graphite member for ion implanting apparatus using the same Download PDF

Info

Publication number
JP2004158226A
JP2004158226A JP2002320699A JP2002320699A JP2004158226A JP 2004158226 A JP2004158226 A JP 2004158226A JP 2002320699 A JP2002320699 A JP 2002320699A JP 2002320699 A JP2002320699 A JP 2002320699A JP 2004158226 A JP2004158226 A JP 2004158226A
Authority
JP
Japan
Prior art keywords
graphite
ion implantation
ion
implantation apparatus
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002320699A
Other languages
Japanese (ja)
Inventor
Kiyoshi Saito
清 斉藤
Hitoshi Suzuki
均 鈴木
Jun Tojo
純 東條
Atsuko Ando
温子 安藤
Tetsuro Tojo
哲朗 東城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Tanso Co Ltd
Original Assignee
Toyo Tanso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Tanso Co Ltd filed Critical Toyo Tanso Co Ltd
Priority to JP2002320699A priority Critical patent/JP2004158226A/en
Publication of JP2004158226A publication Critical patent/JP2004158226A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a graphite material for an ion implanting apparatus in which an erosion and a particle drop in the case of irradiating with an ion beam are few. <P>SOLUTION: In the graphite material for the ion implanting apparatus, a measured value by an ACT-JP method is 0.2 g/mm<SP>3</SP>or more. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明はイオン注入装置用黒鉛材料及びこれを用いたイオン注入装置用黒鉛部材に関し、さらに詳しくいえばイオンビームの照射による消耗(エロージョン)が少なく、黒鉛粒子が脱落した場合でも黒鉛粒子のサイズが小さなイオン注入装置用黒鉛材料とその黒鉛材料を用いたイオン注入装置用黒鉛部材に関する。
【0002】
【従来の技術】
半導体デバイスを製造するため工程には、基板となるシリコン、炭化珪素(SiC)、ガリウム砒素(GaAs)、窒化ガリウム(GaN)等の半導体ウエハー基板に不純物元素をイオン注入する工程がある。イオン注入装置の概略図を図1に示す。
【0003】
イオン注入装置は目的の不純物元素をイオン化して数十〜数百eVのエネルギーに加速し、これをウエハー基板に打ち込むための装置である。イオン注入装置は、目的の不純物元素を含んだ気体をプラズマ状態にしてイオンを発生させるイオン発生部、発生したイオンを引き出すためのイオン引き出し部、引き出したイオンを目的のイオンに選別するイオン分析部、イオンを加速するイオン加速部、加速したイオンを収束するイオン収束部、イオンビームをウエハー基板に打ち込むイオン打ち込み部から構成されている。
【0004】
イオン注入装置の各部分を構成する材料としては、耐熱性、熱伝導性に優れ、イオンビームによる消耗(エロージョン)が少なく、不純物含有量が少ない高純度の材料が要求される。通常は高純度黒鉛材料、高純度黒鉛材料の表面に熱分解炭素やガラス状炭素の被膜を形成した黒鉛材料が用いられることが特許文献1、特許文献2、特許文献3、特許文献4に開示されている。
【0005】
【特許文献1】
特開平7−302568号公報
【特許文献2】
特開平8−171883号公報
【特許文献3】
特開2000−128640号公報
【特許文献4】
特開2000−323052号公報
【0006】
イオン注入装置内部部品としては、例えば、フライトチューブ、各種スリット、電極、電極カバー、ガイドチューブ、ビームストップ等に黒鉛材料が使用されている。
【0007】
ところが、上述した黒鉛材料は骨材となるコークスと結合剤とを焼結したものであるため、イオン注入装置用部材として使用すると、イオンビームにより黒鉛粒子が脱落してイオン注入装置内部を汚染したり、ウエハー基板中に混入して半導体デバイスの歩留まりが低下するという問題がある。また、イオンビームの照射により黒鉛部材が消耗してしまうという問題もある。
【0008】
特に、近年では集積回路(IC)の集積度が向上しパターニングの際の線幅も細くなってきている。しかも砒素(As)のような重金属イオンビームをウエハー基板に照射するケースが増加している。このときに生じる黒鉛粒子がウエハー基板上に付着しイオン注入を阻害したり、シリコンと黒鉛粒子が複合化した高硬度の微粒子によるウエハー基板の損傷等が従来にも増して大きな問題となってきた。
【0009】
【発明が解決しようとする課題】
そこで、本発明はイオンビームによる消耗や黒鉛粒子の脱落が少なく、黒鉛粒子が脱落した場合でも黒鉛粒子サイズが小さいイオン注入装置用黒鉛材料を提供することを目的とする。
【0010】
【課題を解決するための手段】
そこで、本発明者らはイオン注入装置用黒鉛部材の消耗原因及び脱落粒子の大きさを調査した。その結果、粉砕粉の中に粒子径の大きな粗粒が混入するとこの粒子間結合力が大幅に低下し消耗原因となりやすいことを突き止めた。また、黒鉛粒子の脱落は、混練後粉砕された粉砕粉(以下、粉砕粉という。)の単位で起こることを突き止めた。そこで、各工程の粒子サイズの均一化を行うことにより、消耗が少なく脱落する黒鉛粒子の粒子径が小さい黒鉛材料を得られることを見い出した。この際、黒鉛粒子間の結合力は、ACT−JP法による測定値として表すことができ、この測定値を考慮することによって上記課題を解決できる黒鉛材料を製造できることを見い出し本発明を完成するに至ったものである。すなわち
、請求項1に係る発明は、ACT−JP法による測定値が0.2g/mm 以上であるイオン注入装置用黒鉛材料を要旨とする。
【0011】
ACT−JP法は、荒田式被膜評価法(Arata Coating Test with Jet Particles method)といい、噴射式試験方法の一種である。例えば溶射被膜に照射速度や照射角度を変えてセラミック粒子を吹き付け、各々の条件下における摩耗の度合い(重量減少)を測定することによって被膜の摩耗速度を利用して溶射被膜の粒子間結合力を評価する方法である。図2にACT−JP法の模式図を示す。一般的な黒鉛材料と溶射被膜とでは作製方法は異なるが、粒子が結合したものとみると、これらは同様とみなすことができる。ACT−JP法における摩耗機構から試験片の摩耗速度は粒子間結合力として検出される。そして、粒子間結合力が大きいほど摩耗速度は減少する。ACT−JP法においては、以下のようにACT−JP値を定義し、この値により評価を行った。試験片の摩耗量は噴射速度により変化し、ここでいうACT−JP値も一定の角度においてのみ対応する。すなわち、アルミナ粒子の試験片への入射角が90°よりも小さくなるとアルミナ粒子と試験片との間で摩耗を生じる。本来試験片となる黒鉛材料を構成している黒鉛粒子の粒子間結合力を評価するためにはアルミナ粒子の運動エネルギーがすべて試験片である黒鉛試験片を構成する黒鉛粒子の開裂に費やされなければならない。したがって、アルミナ粒子の試験片への入射角(θ)は90°とすることが好ましい。
ACT−JP値=1/M・・・(1)
=(1000・W)/(ρ・W)・・・(2)
:定常摩耗状態での試験片の摩耗速度(mm /g)
ρ:試験片黒鉛基材のかさ密度(g/cm
:ACT−JP試験に用いた噴射剤(60メッシュのアルミナ粉末)の量(g)
:定常摩耗状態での試験片(黒鉛基材)の摩耗量(g)
ACT−JP値が0.2g/mmよりも小さいと、黒鉛粒子間の結合力が十分でないためイオン注入装置用黒鉛部材として使用したときに黒鉛粒子が脱落してウエハー基板に混入したり、イオン注入装置内部部品を汚染するので好ましくない。したがって、ACT−JP法による測定値は0.23g/mm 以上とすることがさらに好ましく、0.25g/mm 以上とすることが特に好ましい。
【0012】
本発明の請求項2に係る発明は、耐熱衝撃係数が50kW/m以上である請求項1に記載のイオン注入装置用黒鉛材料を要旨とする。本発明者らは、消耗あるいは脱落した黒鉛粒子がイオンビームによって熱分解炭素として黒鉛部品上に堆積し、この熱分解炭素堆積物と黒鉛部品の熱膨張係数とのミスマッチにより黒鉛部品から再び熱分解炭素が剥離し発塵することが判明した。この熱分解炭素堆積物は黒鉛部品の消耗が少ないほど発生量が少なく、また黒鉛部品の熱膨張係数と熱分解炭素の熱膨張係数が近似するほど付着した熱分解炭素が剥離しにくいことを見い出した。さらに、イオンビームに照射される黒鉛部品は瞬時に高温に加熱されるので熱衝撃及び熱放散性が高いことが求められる。このような各物理特性を総括的にあらわすものとして耐熱衝撃係数がある。耐熱衝撃係数は(引っ張り強さ×熱伝導率)/(弾性係数×熱膨張係数)で表される。耐熱衝撃係数を50kW/m以上にすることにより黒鉛部品の表面に堆積した熱分解炭素微粒子の脱落防止、熱衝撃抵抗を向上させることができる。耐熱衝撃係数は60kW/m以上がさらに好ましく、70kW/m以上とすることが特に好ましい。
【0013】
本発明に係るACT−JP値が0.2g/mm 以上のイオン注入装置用黒鉛材料の製造方法の一例としては、数μm〜数十μmに粉砕した石油系もしくは石炭系の生またはか焼コークス等をフィラーとし、これにピッチ、コールタール、コールタールピッチ、フェノール樹脂、フラン樹脂等の熱硬化性樹脂を結合剤として添加し、混練する。この場合、黒鉛材料の強度を向上させる上で石油系あるいは石炭系の生コークスあるいは自己焼結性を有するメソカーボンマイクロビーズをフィラーとして使用することが好ましい。これらフィラーの少なくとも一種以上を結合剤と混練する。
【0014】
上述した方法で得られた混練物を数μm〜数十μmに粉砕して粉砕物を得る。粒子径が100μmを超えるような大きな粒子(粗粒)は除去し、粒子の粒子径はできるだけ揃えることが好ましい。粉砕粉の最大粒子径を数μm〜数十μmに制御することによって、イオン注入装置用部材として使用した場合に脱落する黒鉛粒子のサイズを小さくできる。
【0015】
上述した粉砕粉を成形、焼成、黒鉛化し黒鉛材料とする。黒鉛化は通常2500℃以上で行われるが、特に2800℃以上で黒鉛化を実施して熱伝導率を向上させることによってイオン注入装置部品として使用した場合にイオンビームによる黒鉛材料の消耗低減と耐熱衝撃性を向上させることができる。
【0016】
この黒鉛材料をイオン注入装置用部材の形状に加工後、ハロゲンガスあるいはハロゲン含有ガスを使用して高純度化処理を行い、黒鉛部材中の灰分含有量を20ppm以下にすることによってウエハー基板中に不要な不純物元素が混入せず、しかも黒鉛材料の消耗を低減できる。
【0017】
さらに付言すると、高純度化処理後の黒鉛部材の表面あるいは気孔中に中に含まれる加工粉(切削時の粉)を純水で超音波洗浄することによりイオン注入装置用黒鉛材料として一層適したものにできる。本発明に係る黒鉛材料の表面あるいは内部に熱分解炭素やガラス状炭素あるいはセラミック被膜を形成することによって黒鉛粒子の脱落や黒鉛部品の消耗を低減させられることはいうまでもない。
【0018】
【発明の作用】
本発明では各粉砕工程の粒子径制御を行なったので黒鉛粒子間の結合力が高くなり、そのため黒鉛粒子が脱落を起こしにくくなる。しかも上述した方法では熱膨張係数が低い黒鉛材料を製造することができるようになるので、消耗した黒鉛粒子がイオンビームによって熱分解炭素に変化し黒鉛部品上に堆積しても剥離するのを防止できるので発塵を低減させることができる。
【0019】
【実施例】
本発明を以下の実施例に基づき具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
【0020】
(実施例1)
石炭ピッチコークスを平均粒子径3μmに粉砕した。この粉砕粉100重量部に結合剤としてコールタールピッチ100重量部を添加し、常法により混練した。この混練物を粉砕機で最大粒子径が30μm以下になるように粉砕した。この粉砕物を冷間静水圧成形法で150×450×1000(mm)に成形した。この成形体を1000℃で焼成後、2500℃で黒鉛化処理を行った。この黒鉛化品のACT−JP値と耐熱衝撃係数を測定した。その結果を表1に示す。この黒鉛化品を機械加工してイオン注入装置用黒鉛部材とし、減圧下、2000℃、ハロゲン含有ガス中で高純度化処理を行って、灰分含有量が10ppm以下にまで低減させた。このイオン注入装置用高純度黒鉛部材をさらに純水で超音波洗浄した。このイオン注入装置用高純度黒鉛部材をシリコンウエハーへAsイオンの注入に使用した。
【0021】
(実施例2)
石炭ピッチコークスを3μmに粉砕した。この粉砕粉100重量部に結合剤としてコールタールピッチを90重量部添加し、常法により混練した。この混練物を粉砕機で最大粒子径が50μmとなるように粉砕した。この粉砕物を冷間静水圧成形法で180×450×1000(mm)に成形した。この成形体を1000℃で焼成後、ピッチ含浸と焼成を1回ずつ繰り返した後、2500℃で黒鉛化処理を行った。この黒鉛化品のACT−JP値と耐熱衝撃係数を測定した。その結果を表1に示す。この黒鉛化品を機械加工して、イオン注入装置用黒鉛部材とし、減圧下、2000℃、ハロゲンガス雰囲気中で高純度化処理を行い灰分含有量を10ppm以下にまで低減させた。このイオン注入装置用高純度黒鉛部材をさらに純水で超音波洗浄した。このイオン注入装置用黒鉛部材をシリコンウエハーへAsイオンの注入に使用した。
【0022】
(実施例3)
石炭ピッチコークスを5μmに粉砕した。この粉砕粉100重量部にコールタールピッチ90重量部を添加し常法により混練した。この混練物を粉砕機で最大粒子径が70μm以下となるように粉砕した。この粉砕物を冷間静水圧成形法で実施例1と同じ寸法に成形した。この成形体を1000℃で焼成後、2500℃で黒鉛化を行った。この黒鉛化品を100×150×50(mm)に機械加工後、フェノール樹脂を含浸し、1500℃で焼成した。このフェノール樹脂含浸焼成品のACT−JP値と耐熱衝撃係数を測定した。その結果を表1に示す。このフェノール樹脂含浸焼成品を機械加工後、減圧下、2000℃、ハロゲンガス雰囲気中で高純度化処理して灰分含有量が10ppm以下にまで低減したイオン注入装置用高純度黒鉛部材を得た。このイオン注入装置用高純度黒鉛部材をさらに純水で超音波洗浄後、イオン注入装置に組み込んでシリコンウエハーへAsイオンの注入に使用した。
【0023】
(比較例1)
石炭ピッチコークスを平均粒子径が8μmに粉砕した。この粉砕粉100重量部に結合剤としてコールタールピッチ80重量部を添加し常法により混練した。この混練物を粉砕機で最大粒子径が50μm以下となるように粉砕した。この粉砕物を冷間静水圧成形法で120×400×800(mm)に成形した。この成形体を1000℃で焼成後、2500℃で黒鉛化処理を行った。この黒鉛化品のACT−JP値と耐熱衝撃係数を測定した。その結果を表1に示す。この黒鉛化品を機械加工してイオン注入用黒鉛部材とし、減圧下、2000℃、ハロゲンガス雰囲気中で高純度化処理を行って灰分含有量を10ppm以下にまで低減したイオン注入装置用高純度黒鉛部材を得た。このイオン注入装置用高純度黒鉛部材をさらに純水で超音波洗浄した。このイオン注入装置用高純度黒鉛部材をシリコンウエハーへAsイオンの注入に使用した。
【0024】
(比較例2)
石炭ピッチコークスを平均粒子径10μmに粉砕した。この粉砕粉100重量部に結合剤としてコールタールピッチ70重量部を添加し、常法により混練した。この混練物を粉砕機で最大粒子径が150μm以下となるように二次粉砕した。この粉砕物を冷間静水圧成形法で230×540×1000(mm)に成形した。この成形体を1000℃で焼成後、ピッチ含浸と焼成を1回ずつ繰り返した後、3000℃で黒鉛化処理を行った。この黒鉛化品のACT−JP値と耐熱衝撃係数を測定した。その結果を表1に示す。この黒鉛化品を機械加工して、イオン注入装置用黒鉛部材とし、減圧下、2000℃、ハロゲンガス雰囲気中で高純度化処理を行って灰分含有量を10ppm以下に低減させた。このイオン注入装置用高純度黒鉛部材をさらに純水で超音波洗浄した。このイオン注入装置用高純度黒鉛部材をシリコンウエハーへAsイオンの注入に使用した。
【0025】
上記実施例1乃至3及び比較例1、2に係る高純度黒鉛部材を使用したときの脱落した黒鉛粒子の大きさとイオン注入装置内の発塵性を測定した。その結果も併せて表1に示す。
【0026】
【表1】

Figure 2004158226
【0027】
表1中、耐熱衝撃係数(kW/m)は引張り強さ(MPa)、熱伝導率(W/m・K)、室温〜400℃までの熱膨張係数(×10−6/℃)、弾性係数(GPa)から算出した。
熱伝導率はレーザーフラッシュ法(熱拡散率熱定数測定装置(真空理工(株)製))で熱拡散定数を測定し、この測定値と室温における比熱0.695J/g・Kとから算出した。
熱膨張係数(×10−6/℃)は理学電機株式会社製熱機械分析装置(TMA8310)で室温〜400℃までの熱膨張係数を求めた。
弾性係数(GPa)は日本工業規格(JIS)R−7222−1997に準じて求めた。
弾性係数(GPa)はJIS R7202−1979に準じて求めた。
脱落した黒鉛粒子の大きさは走査型電子顕微鏡で観察し求めた。
イオン注入装置中の発塵性はパーティクルカウンターで測定し、黒鉛粒子の数の多いものから順に×、△、○、◎とした。
【0028】
表1から本発明に係る黒鉛材料は比較例の黒鉛材料に比べて消耗する黒鉛粒子が少なく、脱落する黒鉛粒子径もが小さい。しかも黒鉛部材から脱落した黒鉛粒子によるイオン注入装置内の発塵も少ないことが判る。
【0029】
【発明の効果】
本発明では各粉砕工程の粒子径を制御したので、黒鉛粒子間の結合力が強い黒鉛材料が得られる。その結果、黒鉛部材の消耗が少なく、しかも脱落する黒鉛粒子径を小さくできる。したがって、ウエハー基板あるいはイオン注入装置内部の発塵を低減できる。
【図面の簡単な説明】
【図1】イオン注入装置の概略図である。
【図2】ACT−JP法を示す概略図である。
【符号の説明】
1 制御用マイクロコンピューター
2 ウエハー装着
3 カセット
4 分離用電源
5 分離用電磁石
6 加速電極
7 シャッタ
8 シリコンウエハー基板
9 ビームストップ
10 偏向用電極
11 引き出し電極
12 電流計
13 イオン源
14 高圧電源
15 真空ポンプ
21 黒鉛材料試験片
22 噴射ノズル[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a graphite material for an ion implanter and a graphite member for an ion implanter using the same. More specifically, the graphite material is less consumed by ion beam irradiation (erosion), and the size of the graphite particles is reduced even when the graphite particles fall off. The present invention relates to a graphite material for a small ion implanter and a graphite member for the ion implanter using the graphite material.
[0002]
[Prior art]
As a process for manufacturing a semiconductor device, there is a step of ion-implanting an impurity element into a semiconductor wafer substrate such as silicon, silicon carbide (SiC), gallium arsenide (GaAs), or gallium nitride (GaN) serving as a substrate. FIG. 1 shows a schematic view of the ion implantation apparatus.
[0003]
The ion implantation apparatus is an apparatus for ionizing a target impurity element, accelerating the ion to an energy of several tens to several hundreds eV, and implanting the energy into a wafer substrate. The ion implanter includes an ion generator for generating ions by converting a gas containing a target impurity element into a plasma state, an ion extractor for extracting the generated ions, and an ion analyzer for selecting the extracted ions to target ions. An ion accelerating unit for accelerating the ions, an ion converging unit for converging the accelerated ions, and an ion implanting unit for implanting an ion beam into the wafer substrate.
[0004]
As a material constituting each part of the ion implantation apparatus, a high-purity material having excellent heat resistance and thermal conductivity, less consumption (erosion) by an ion beam, and a low impurity content is required. It is disclosed in Patent Document 1, Patent Document 2, Patent Document 3, and Patent Document 4 that a high-purity graphite material and a graphite material in which a coating of pyrolytic carbon or glassy carbon is formed on the surface of the high-purity graphite material are usually used. Have been.
[0005]
[Patent Document 1]
Japanese Patent Application Laid-Open No. 7-302568 [Patent Document 2]
JP-A-8-171883 [Patent Document 3]
Japanese Patent Application Laid-Open No. 2000-128640 [Patent Document 4]
Japanese Patent Application Laid-Open No. 2000-323052
As the internal components of the ion implantation apparatus, for example, graphite materials are used for flight tubes, various slits, electrodes, electrode covers, guide tubes, beam stops, and the like.
[0007]
However, since the above-described graphite material is obtained by sintering coke and a binder as an aggregate, when used as a member for an ion implantation apparatus, graphite particles are dropped by an ion beam and contaminate the inside of the ion implantation apparatus. In addition, there is a problem that the yield of semiconductor devices is reduced by mixing in the wafer substrate. There is also a problem that the graphite member is consumed by the irradiation of the ion beam.
[0008]
In particular, in recent years, the degree of integration of an integrated circuit (IC) has been improved, and the line width at the time of patterning has been reduced. In addition, the number of cases of irradiating a wafer substrate with a heavy metal ion beam such as arsenic (As) is increasing. Graphite particles generated at this time adhere to the wafer substrate and inhibit ion implantation, and damage to the wafer substrate due to high-hardness fine particles in which silicon and graphite particles are combined has become a more serious problem than ever before. .
[0009]
[Problems to be solved by the invention]
Accordingly, it is an object of the present invention to provide a graphite material for an ion implantation apparatus that is less consumed by an ion beam and the graphite particles fall off, and has a small graphite particle size even when the graphite particles fall off.
[0010]
[Means for Solving the Problems]
Then, the present inventors investigated the cause of wear of the graphite member for the ion implantation apparatus and the size of the falling particles. As a result, it has been found that when coarse particles having a large particle diameter are mixed in the pulverized powder, the bonding force between the particles is greatly reduced, which is likely to cause abrasion. In addition, it was found that the graphite particles fell off in units of pulverized powder (hereinafter referred to as pulverized powder) pulverized after kneading. Thus, it has been found that a graphite material having a small particle diameter of the graphite particles which is less consumed and falls off can be obtained by making the particle size uniform in each step. At this time, the bonding force between the graphite particles can be expressed as a measured value by the ACT-JP method, and it has been found that a graphite material that can solve the above problem can be manufactured by considering the measured value. It has been reached. That is, the gist of the invention according to claim 1 is a graphite material for an ion implantation apparatus whose measured value by the ACT-JP method is 0.2 g / mm 3 or more.
[0011]
The ACT-JP method is called an Arata Coating Test with Jet Particles method, and is a type of injection test method. For example, ceramic particles are sprayed onto the sprayed coating at different irradiation speeds and irradiation angles, and the degree of wear (weight loss) under each condition is measured. It is a method to evaluate. FIG. 2 shows a schematic diagram of the ACT-JP method. Although the production method differs between a general graphite material and a thermal spray coating, these can be regarded as being the same when particles are bonded. From the wear mechanism in the ACT-JP method, the wear rate of the test piece is detected as a bonding force between particles. And, the wear rate decreases as the interparticle bonding force increases. In the ACT-JP method, an ACT-JP value was defined as follows, and evaluation was performed using this value. The abrasion amount of the test piece changes depending on the injection speed, and the ACT-JP value here corresponds only at a fixed angle. That is, when the angle of incidence of the alumina particles on the test piece is smaller than 90 °, wear occurs between the alumina particles and the test piece. In order to evaluate the inter-particle bonding force of the graphite particles that originally make up the graphite material that is the test piece, all of the kinetic energy of the alumina particles is used to cleave the graphite particles that make up the graphite test piece that is the test piece. There must be. Therefore, the angle of incidence (θ) of the alumina particles on the test piece is preferably set to 90 °.
ACT-JP value = 1 / M V ··· (1 )
M V = (1000 · W 1 ) / (ρ · W 0 ) (2)
M V : Wear rate of test piece in steady wear state (mm 3 / g)
ρ: bulk density of test piece graphite base material (g / cm 3 )
W 0 : Amount (g) of propellant (60 mesh alumina powder) used in the ACT-JP test
W 1 : wear amount (g) of test piece (graphite substrate) in steady wear state
If the ACT-JP value is smaller than 0.2 g / mm 3 , the graphite particles fall off and mix into the wafer substrate when used as a graphite member for an ion implantation apparatus because the bonding force between the graphite particles is insufficient. It is not preferable because it contaminates the internal parts of the ion implantation apparatus. Therefore, the value measured by ACT-JP method further preferably set to 0.23 g / mm 3 or more, and particularly preferably 0.25 g / mm 3 or more.
[0012]
According to a second aspect of the present invention, there is provided a graphite material for an ion implantation apparatus according to the first aspect, which has a thermal shock coefficient of 50 kW / m or more. The present inventors have found that depleted or dropped graphite particles are deposited on a graphite part as pyrolytic carbon by an ion beam, and then pyrolyzed from the graphite part again due to a mismatch between the pyrolytic carbon deposit and the coefficient of thermal expansion of the graphite part. It was found that carbon peeled off and generated dust. It was found that the less the graphite parts were consumed, the less the pyrolytic carbon deposits were generated, and the closer the thermal expansion coefficient of the graphite parts and the thermal expansion coefficient of the pyrolytic carbon were, the more the deposited pyrolytic carbon was less likely to peel off. Was. Further, the graphite component irradiated with the ion beam is heated to a high temperature instantaneously, so that it is required to have high thermal shock and heat dissipation. The thermal shock coefficient is a general expression of such physical properties. The thermal shock coefficient is represented by (tensile strength x thermal conductivity) / (elastic coefficient x thermal expansion coefficient). By setting the thermal shock coefficient to 50 kW / m or more, it is possible to prevent the pyrolytic carbon fine particles deposited on the surface of the graphite component from falling off and to improve the thermal shock resistance. The thermal shock coefficient is more preferably at least 60 kW / m, particularly preferably at least 70 kW / m.
[0013]
As an example of a method for producing a graphite material for an ion implantation apparatus having an ACT-JP value of 0.2 g / mm 3 or more according to the present invention, there is a petroleum or coal raw or calcined pulverized to several μm to several tens μm. A coke or the like is used as a filler, and a thermosetting resin such as pitch, coal tar, coal tar pitch, phenolic resin, and furan resin is added as a binder and kneaded. In this case, in order to improve the strength of the graphite material, it is preferable to use petroleum-based or coal-based raw coke or mesocarbon microbeads having self-sintering properties as the filler. At least one of these fillers is kneaded with a binder.
[0014]
The kneaded material obtained by the above-mentioned method is pulverized to several μm to several tens μm to obtain a pulverized material. It is preferable that large particles (coarse particles) having a particle size exceeding 100 μm are removed and the particle sizes of the particles are made as uniform as possible. By controlling the maximum particle size of the pulverized powder to several μm to several tens μm, the size of the graphite particles falling off when used as a member for an ion implantation apparatus can be reduced.
[0015]
The above-mentioned pulverized powder is formed, fired and graphitized to obtain a graphite material. Graphitization is usually carried out at 2500 ° C. or higher. In particular, graphitization is carried out at 2800 ° C. or higher to improve the thermal conductivity, thereby reducing the consumption of graphite material by ion beams and improving heat resistance when used as an ion implanter component. The impact property can be improved.
[0016]
After processing this graphite material into the shape of a member for an ion implantation apparatus, a high-purity treatment is performed using a halogen gas or a halogen-containing gas, and the ash content in the graphite member is reduced to 20 ppm or less. Unnecessary impurity elements are not mixed, and the consumption of graphite material can be reduced.
[0017]
In addition, it is more suitable as a graphite material for an ion implantation apparatus by ultrasonically cleaning working powder (powder at the time of cutting) contained in the surface or pores of the graphite member after the purification treatment with pure water. Can be something. It goes without saying that the formation of pyrolytic carbon, glassy carbon or a ceramic coating on the surface or inside of the graphite material according to the present invention can reduce the loss of graphite particles and the consumption of graphite parts.
[0018]
Effect of the Invention
In the present invention, since the particle size is controlled in each of the pulverizing steps, the bonding force between the graphite particles is increased, so that the graphite particles are less likely to fall off. In addition, the above-mentioned method makes it possible to produce a graphite material having a low coefficient of thermal expansion, so that even if exhausted graphite particles are converted into pyrolytic carbon by an ion beam and deposited on a graphite component, they are not separated. As a result, dust generation can be reduced.
[0019]
【Example】
The present invention will be specifically described based on the following examples, but the present invention is not limited to these examples.
[0020]
(Example 1)
Coal pitch coke was pulverized to an average particle size of 3 μm. To 100 parts by weight of the pulverized powder, 100 parts by weight of coal tar pitch was added as a binder and kneaded by a conventional method. The kneaded material was pulverized by a pulverizer so that the maximum particle diameter became 30 μm or less. This pulverized product was formed into a size of 150 × 450 × 1000 (mm) by a cold isostatic pressing method. After firing this molded body at 1000 ° C., it was graphitized at 2500 ° C. The ACT-JP value and the thermal shock coefficient of this graphitized product were measured. Table 1 shows the results. This graphitized product was machined into a graphite member for an ion implantation apparatus, and subjected to high-purification treatment in a halogen-containing gas at 2000 ° C. under reduced pressure to reduce the ash content to 10 ppm or less. The high-purity graphite member for the ion implantation apparatus was further ultrasonically cleaned with pure water. This high-purity graphite member for an ion implantation apparatus was used for implantation of As ions into a silicon wafer.
[0021]
(Example 2)
The coal pitch coke was pulverized to 3 μm. To 100 parts by weight of the pulverized powder, 90 parts by weight of coal tar pitch was added as a binder and kneaded by a conventional method. This kneaded material was pulverized by a pulverizer so that the maximum particle diameter became 50 μm. This pulverized material was formed into a size of 180 × 450 × 1000 (mm) by a cold isostatic pressing method. After firing this molded body at 1000 ° C., pitch impregnation and firing were repeated once each, and then a graphitization treatment was performed at 2500 ° C. The ACT-JP value and the thermal shock coefficient of this graphitized product were measured. Table 1 shows the results. This graphitized product was machined into a graphite member for an ion implantation apparatus, and was subjected to high-purification treatment under reduced pressure at 2000 ° C. in a halogen gas atmosphere to reduce the ash content to 10 ppm or less. The high-purity graphite member for the ion implantation apparatus was further ultrasonically cleaned with pure water. This graphite member for an ion implantation apparatus was used for implantation of As ions into a silicon wafer.
[0022]
(Example 3)
Coal pitch coke was ground to 5 μm. 90 parts by weight of coal tar pitch was added to 100 parts by weight of the pulverized powder and kneaded by a conventional method. This kneaded material was pulverized by a pulverizer so that the maximum particle diameter became 70 μm or less. This pulverized product was formed into the same dimensions as in Example 1 by cold isostatic pressing. After firing this molded body at 1000 ° C., it was graphitized at 2500 ° C. This graphitized product was machined to 100 × 150 × 50 (mm), impregnated with a phenol resin, and fired at 1500 ° C. The ACT-JP value and the thermal shock coefficient of this phenol resin impregnated and fired product were measured. Table 1 shows the results. After the phenol resin impregnated and fired product was machined, it was subjected to high-purification treatment under reduced pressure at 2000 ° C. in a halogen gas atmosphere to obtain a high-purity graphite member for an ion implantation apparatus in which the ash content was reduced to 10 ppm or less. This high-purity graphite member for an ion implanter was further subjected to ultrasonic cleaning with pure water, and then incorporated into an ion implanter to be used for implanting As ions into a silicon wafer.
[0023]
(Comparative Example 1)
Coal pitch coke was pulverized to an average particle size of 8 μm. To 100 parts by weight of this pulverized powder, 80 parts by weight of coal tar pitch was added as a binder and kneaded by a conventional method. This kneaded material was pulverized by a pulverizer so that the maximum particle diameter became 50 μm or less. This pulverized product was formed into a size of 120 × 400 × 800 (mm) by a cold isostatic pressing method. After firing this molded body at 1000 ° C., it was graphitized at 2500 ° C. The ACT-JP value and the thermal shock coefficient of this graphitized product were measured. Table 1 shows the results. This graphitized product is machined into a graphite member for ion implantation, and subjected to high-purification treatment under reduced pressure at 2000 ° C. in a halogen gas atmosphere to reduce the ash content to 10 ppm or less. A graphite member was obtained. The high-purity graphite member for the ion implantation apparatus was further ultrasonically cleaned with pure water. This high-purity graphite member for an ion implantation apparatus was used for implantation of As ions into a silicon wafer.
[0024]
(Comparative Example 2)
Coal pitch coke was pulverized to an average particle diameter of 10 μm. To 100 parts by weight of this pulverized powder, 70 parts by weight of coal tar pitch was added as a binder and kneaded by a conventional method. This kneaded material was secondarily pulverized by a pulverizer so that the maximum particle diameter became 150 μm or less. This pulverized product was formed into a size of 230 × 540 × 1000 (mm) by cold isostatic pressing. After firing this molded body at 1000 ° C., pitch impregnation and firing were repeated once each, and then a graphitization treatment was performed at 3000 ° C. The ACT-JP value and the thermal shock coefficient of this graphitized product were measured. Table 1 shows the results. This graphitized product was machined to obtain a graphite member for an ion implantation apparatus, and subjected to high-purification treatment under reduced pressure at 2000 ° C. in a halogen gas atmosphere to reduce the ash content to 10 ppm or less. The high-purity graphite member for the ion implantation apparatus was further ultrasonically cleaned with pure water. This high-purity graphite member for an ion implantation apparatus was used for implantation of As ions into a silicon wafer.
[0025]
When the high-purity graphite members according to Examples 1 to 3 and Comparative Examples 1 and 2 were used, the size of the dropped graphite particles and the dust generation in the ion implantation apparatus were measured. Table 1 also shows the results.
[0026]
[Table 1]
Figure 2004158226
[0027]
In Table 1, the thermal shock coefficient (kW / m) is the tensile strength (MPa), the thermal conductivity (W / m · K), the coefficient of thermal expansion from room temperature to 400 ° C. (× 10 −6 / ° C.), and the elasticity. It was calculated from the coefficient (GPa).
The thermal conductivity was measured by a laser flash method (thermal diffusivity thermal constant measuring device (manufactured by Vacuum Riko Co., Ltd.)), and calculated from the measured value and the specific heat at room temperature of 0.695 J / g · K. .
The coefficient of thermal expansion (× 10 −6 / ° C.) was obtained from a room temperature to 400 ° C. using a thermomechanical analyzer (TMA8310) manufactured by Rigaku Corporation.
The modulus of elasticity (GPa) was determined according to Japanese Industrial Standards (JIS) R-7222-1997.
The elastic modulus (GPa) was determined according to JIS R7202-1979.
The size of the dropped graphite particles was determined by observation with a scanning electron microscope.
The dusting property in the ion implantation apparatus was measured by a particle counter, and was evaluated as x, △, 、, or 順 に in descending order of the number of graphite particles.
[0028]
Table 1 shows that the graphite material according to the present invention consumes less graphite particles and has a smaller graphite particle diameter as compared with the graphite material of the comparative example. Moreover, it can be seen that the generation of dust in the ion implantation apparatus due to the graphite particles dropped from the graphite member is small.
[0029]
【The invention's effect】
In the present invention, since the particle diameter in each pulverization step is controlled, a graphite material having a strong bonding force between graphite particles can be obtained. As a result, the consumption of the graphite member is small, and the diameter of the graphite particles falling off can be reduced. Therefore, dust generation inside the wafer substrate or the ion implantation apparatus can be reduced.
[Brief description of the drawings]
FIG. 1 is a schematic diagram of an ion implantation apparatus.
FIG. 2 is a schematic diagram showing an ACT-JP method.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Control microcomputer 2 Wafer mounting 3 Cassette 4 Separation power supply 5 Separation electromagnet 6 Acceleration electrode 7 Shutter 8 Silicon wafer substrate 9 Beam stop 10 Deflection electrode 11 Leader electrode 12 Ammeter 13 Ion source 14 High voltage power supply 15 Vacuum pump 21 Graphite material test piece 22 Injection nozzle

Claims (3)

ACT−JP法による測定値が0.2g/mm 以上であるイオン注入装置用黒鉛材料。A graphite material for an ion implantation apparatus whose measured value by the ACT-JP method is 0.2 g / mm 3 or more. 耐熱衝撃係数が50kW/m以上である請求項1に記載のイオン注入装置用黒鉛材料。The graphite material for an ion implantation apparatus according to claim 1, wherein the graphite material has a thermal shock coefficient of 50 kW / m or more. 請求項1または2のいずれかに記載の黒鉛材料を用いたイオン注入装置用黒鉛部材。A graphite member for an ion implantation apparatus using the graphite material according to claim 1.
JP2002320699A 2002-11-05 2002-11-05 Graphite material for ion implanting apparatus and graphite member for ion implanting apparatus using the same Pending JP2004158226A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002320699A JP2004158226A (en) 2002-11-05 2002-11-05 Graphite material for ion implanting apparatus and graphite member for ion implanting apparatus using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002320699A JP2004158226A (en) 2002-11-05 2002-11-05 Graphite material for ion implanting apparatus and graphite member for ion implanting apparatus using the same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2009092332A Division JP2009200048A (en) 2009-04-06 2009-04-06 Graphite member for ion implanting device

Publications (1)

Publication Number Publication Date
JP2004158226A true JP2004158226A (en) 2004-06-03

Family

ID=32801467

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002320699A Pending JP2004158226A (en) 2002-11-05 2002-11-05 Graphite material for ion implanting apparatus and graphite member for ion implanting apparatus using the same

Country Status (1)

Country Link
JP (1) JP2004158226A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007049492A1 (en) * 2005-10-28 2007-05-03 Toyo Tanso Co., Ltd. Graphite member for beam-line internal member of ion implantation apparatus
JP2011524634A (en) * 2008-06-09 2011-09-01 ポコ グラファイト、インコーポレイテッド Method to increase production and reduce downtime in semiconductor manufacturing units by pre-processing components using sub-aperture reactive atomic etching
US20130108863A1 (en) * 2010-04-21 2013-05-02 Entegris, Inc. Coated Graphite Article And Reactive Ion Etch Manufacturing And Refurbishment Of Graphite Article

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007049492A1 (en) * 2005-10-28 2007-05-03 Toyo Tanso Co., Ltd. Graphite member for beam-line internal member of ion implantation apparatus
US8673450B2 (en) 2005-10-28 2014-03-18 Toyo Tanso Co., Ltd. Graphite member for beam-line internal member of ion implantation apparatus
JP2011524634A (en) * 2008-06-09 2011-09-01 ポコ グラファイト、インコーポレイテッド Method to increase production and reduce downtime in semiconductor manufacturing units by pre-processing components using sub-aperture reactive atomic etching
US8721906B2 (en) 2008-06-09 2014-05-13 Poco Graphite, Inc. Method to increase yield and reduce down time in semiconductor fabrication units by preconditioning components using sub-aperture reactive atom etch
US20130108863A1 (en) * 2010-04-21 2013-05-02 Entegris, Inc. Coated Graphite Article And Reactive Ion Etch Manufacturing And Refurbishment Of Graphite Article

Similar Documents

Publication Publication Date Title
KR100724070B1 (en) Composite structured material and method for preparation thereof and apparatus for preparation thereof
US20230406719A1 (en) Film-forming material
KR20180031803A (en) Silicon carbide / graphite composites and articles and assemblies comprising them
JP2002235181A (en) Composite structure, its manufacturing method and fabricating device
CN115261762B (en) Material for thermal spraying
JP4201502B2 (en) Electrostatic chuck and manufacturing method thereof
JP2009200048A (en) Graphite member for ion implanting device
JP2004158226A (en) Graphite material for ion implanting apparatus and graphite member for ion implanting apparatus using the same
JPWO2015080134A1 (en) Plasma device component and method of manufacturing the same
US8673450B2 (en) Graphite member for beam-line internal member of ion implantation apparatus
KR101195009B1 (en) Manufacturing method of aluminum nitride ceramics
KR101466946B1 (en) Manufacturing method of zirconium diboride-silicon carbide composite with high thermal conductivity
JP2008277862A (en) Electrostatic chuck and manufacturing method therefor
JP2008288428A (en) Electrostatic chuck
JP2004256920A (en) Composite structure, and method and device for producing the same
CN115244209B (en) Novel tungsten-based spray coating and spray coating material for obtaining same
JP2001261317A (en) Carbon material for producing metal-including fullerene in high yield
JP5381650B2 (en) Vapor deposition material manufacturing method and vapor deposition material manufactured by the method
JPH07302568A (en) Carbon for ion implantation device and its manufacture
JP5418242B2 (en) Vapor deposition material and method for forming vapor deposition film using the vapor deposition material
JP2012156300A (en) Method of manufacturing carbon member for ion implantation device
KR20190052767A (en) Nitride thick film and method for manufacturing the same
JPH09223675A (en) Carbon member for ion implantation apparatus
JPH093651A (en) Carbon electrode and its manufacture
JPH0737861A (en) Carbon electrode for plasma etching

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050304

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050304

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050304

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070724

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070925

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070926

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090203