JPH09223337A - Production of stamper - Google Patents

Production of stamper

Info

Publication number
JPH09223337A
JPH09223337A JP3025796A JP3025796A JPH09223337A JP H09223337 A JPH09223337 A JP H09223337A JP 3025796 A JP3025796 A JP 3025796A JP 3025796 A JP3025796 A JP 3025796A JP H09223337 A JPH09223337 A JP H09223337A
Authority
JP
Japan
Prior art keywords
electroforming
stamper
polishing
metal
nickel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3025796A
Other languages
Japanese (ja)
Inventor
Hiroki Yoshikawa
博樹 吉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP3025796A priority Critical patent/JPH09223337A/en
Publication of JPH09223337A publication Critical patent/JPH09223337A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacturing Optical Record Carriers (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce the polishing cost by simplifying a polishing stage for the rear surface of a stamper. SOLUTION: The stamper is produced by subjecting a master disk, on which information is formed by ruggedness, to electroforming to form a metallic sheet transferred with the patterns of this master disk, then polishing the surface of this metallic sheet on the side opposite to its information-transferred surface. In such a case, the current of the direction reverse to the energization direction at the time of the electroforming is supplied to the electroforming product (metallic sheet) within an electroforming bath after the end of the electroforming.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は光ディスク用のスタ
ンパーの製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a stamper for an optical disc.

【0002】[0002]

【従来の技術】光ディスクに影響を与える光ディスクの
原盤(以下、スタンパーと称す)の特性の一つに、スタ
ンパーの平坦性が挙げられる。具体的には裏面(情報転
写面の反対側の面)の粗さと反りの二つが挙げられる。
前者の裏面粗さは、グルーブ面を経て光ディスク用基板
へ転写され、情報部の素地に影響する。後者の反りは、
光ディスク用基板の機械特性や二重転写の起因となる。
2. Description of the Related Art One of the characteristics of an optical disk master (hereinafter referred to as a stamper) that affects an optical disk is flatness of the stamper. Specifically, there are two types of roughness and warpage on the back surface (the surface opposite to the information transfer surface).
The former back surface roughness is transferred to the optical disk substrate via the groove surface and affects the base material of the information area. The warp of the latter is
This causes mechanical characteristics of the optical disk substrate and double transfer.

【0003】スタンパーは、通常、以下のような工程で
作製されている。すなわちガラス基板へのレジスト塗
布、カッティング装置による微細パターンの焼き付け、
現像処理、導電化処理、電鋳、裏面(電鋳面)研磨、ス
タンパー剥離、内外径加工の各工程である。これらの工
程の内、裏面研磨工程は、通常、電鋳工程を経た電鋳品
の裏面を機械的に研磨して、該裏面の粗さを平滑化する
ことで達成される。機械的研磨の方法としては、テープ
研磨機等を用いることが多い。
Stampers are usually manufactured by the following steps. That is, resist coating on a glass substrate, baking of a fine pattern by a cutting device,
The steps are development processing, electroconductivity processing, electroforming, back surface (electroformed surface) polishing, stamper peeling, and inner and outer diameter processing. Of these steps, the back surface polishing step is usually achieved by mechanically polishing the back surface of the electroformed product that has undergone the electroforming step to smooth the roughness of the back surface. A tape polishing machine or the like is often used as the mechanical polishing method.

【0004】[0004]

【発明が解決しようとする課題】このような機械的な研
磨は、スタンパーに反りを発生させやすいため、粗研
磨、中仕上げ研磨、仕上げ研磨といった多段階の研磨を
行うことで、反りの発生を低減する必要がある。そのた
め、機械的な研磨には、研磨装置の複雑化や研磨タクト
の延長といった問題が発生し、スタンパー製造コストに
負担を掛けていた。また、上記のような多段階研磨を行
った場合においても、スタンパーの反りを完全に制御す
ることは困難であり、スタンパーの射出成形性能を悪化
させる原因となっていた。このような機械研磨を省略す
る方法として、電鋳浴にレベリング剤を添加して電鋳す
ることで、裏面が鏡面に近い電鋳品を製造することも考
えられている。しかしこの方法は、電鋳品に硫黄などの
不純物が混入しやすく、スタンパーの耐食性が低下する
といった問題があった。
Since such mechanical polishing tends to cause warping of the stamper, the occurrence of warping can be prevented by performing multi-step polishing such as rough polishing, intermediate finish polishing and finish polishing. Need to reduce. Therefore, mechanical polishing causes problems such as complication of the polishing apparatus and extension of the polishing tact, which imposes a burden on the stamper manufacturing cost. Further, even in the case of performing the multi-step polishing as described above, it is difficult to completely control the warp of the stamper, which is a cause of deteriorating the injection molding performance of the stamper. As a method of omitting such mechanical polishing, it has been considered to produce an electroformed product by adding a leveling agent to an electroforming bath and performing electroforming to thereby obtain an electroformed product whose back surface is close to a mirror surface. However, this method has a problem that impurities such as sulfur are easily mixed in the electroformed product, and the corrosion resistance of the stamper is lowered.

【0005】[0005]

【課題を解決するための手段】本発明者は上記問題点に
鑑み、鋭意検討を重ねた結果、スタンパーの裏面研磨を
行う手段として電解研磨を採用し、さらに、この電解研
磨を電鋳槽にて行うことに着目し、本発明を完成させ
た。すなわち本発明は、情報を凹凸で形成した原盤上に
電鋳を施し、該原盤のパターンを転写した金属板を形成
し、その後、該金属板の情報転写面の反対側の面を研磨
してなるスタンパーの製造方法において、電鋳終了後
に、電鋳浴内にて、電鋳時の通電方向とは逆方向の電流
を電鋳物(金属板)に通電することを特徴とするスタン
パーの製造方法を要旨とするものである。
In view of the above problems, the present inventor has made earnest studies, and as a result, adopted electrolytic polishing as a means for polishing the back surface of a stamper, and further used this electrolytic polishing in an electroforming tank. The present invention has been completed, paying attention to what is done. That is, the present invention, electroforming is performed on a master plate on which information is formed in a concavo-convex pattern to form a metal plate on which the pattern of the master plate is transferred, and then the surface opposite to the information transfer surface of the metal plate is polished. In the method for producing a stamper, after the electroforming, a current in a direction opposite to the energizing direction during electroforming is applied to the electroformed product (metal plate) in the electroforming bath. Is the gist.

【0006】[0006]

【発明の実施の形態】以下にこれを詳述する。電解研磨
の原理を簡単に説明する。金属(被処理物)を電解液中
で陽極として通電すると、金属面から金属イオンが溶出
する。そのため、電解液の金属イオン濃度は、金属表面
で高くなる。ここで、金属表面が凹凸である場合、凸部
よりも凹部の方が金属イオン濃度が高くなる。平衡論的
に見ると、金属イオンが高濃度の部分では、金属の溶出
が起こり難く、逆に、金属イオン濃度が低い部分では、
金属の溶出が起こりやすくなる。したがって、金属イオ
ン濃度の低い凸部の方が選択的に溶出が進行し、その結
果、金属表面が平滑化される。
BEST MODE FOR CARRYING OUT THE INVENTION This will be described in detail below. The principle of electrolytic polishing will be briefly described. When a metal (object to be treated) is energized as an anode in an electrolytic solution, metal ions are eluted from the metal surface. Therefore, the metal ion concentration of the electrolytic solution becomes high on the metal surface. Here, when the metal surface is uneven, the concave portion has a higher metal ion concentration than the convex portion. From an equilibrium perspective, metal elution is less likely to occur in areas where the metal ion concentration is high, and conversely, in areas where the metal ion concentration is low,
Elution of metal is likely to occur. Therefore, the elution progresses more selectively in the convex portion having a lower metal ion concentration, and as a result, the metal surface is smoothed.

【0007】通常、スタンパーに使用される金属はニッ
ケルであるが、スタンパーを電鋳によって製造するに
は、応力の小さな電鋳品の得られやすいスルファミン酸
ニッケル浴を使用する。スルファミン酸ニッケル浴は、
例えばスルファミン酸ニッケルを300〜600g/リ
ットル、硼酸を20〜50g/リットルをベースとし
て、界面活性剤等の添加物を必要に応じて添加したもの
である。
Usually, the metal used for the stamper is nickel, but to manufacture the stamper by electroforming, a nickel sulfamate bath is used, which is easy to obtain an electroformed product with low stress. The nickel sulfamate bath is
For example, nickel sulfamate is added in an amount of 300 to 600 g / liter and boric acid in an amount of 20 to 50 g / liter, and additives such as a surfactant are added as necessary.

【0008】このような電解液中で、電解研磨を行うた
めにニッケルを陽極とした電解を行うと、ニッケル表面
が不動態化することから、正常な電解研磨が行えない場
合がある。本発明においては、このような不動態化を防
ぐために電解液にアノード溶解剤として金属塩化物もし
くは金属臭化物のうち少なくとも1種類を添加する。こ
れらの金属塩化物もしくは金属臭化物としては、例え
ば、ニッケル塩等が例示され、なかでもNiCl2・6H2Oや N
iBr2を使用することが好ましい。
When electrolysis is performed in such an electrolytic solution using nickel as an anode for electropolishing, the nickel surface is passivated, and normal electropolishing may not be performed. In the present invention, in order to prevent such passivation, at least one kind of metal chloride or metal bromide is added to the electrolytic solution as an anode dissolving agent. Examples of these metal chlorides or bromides include, for example, nickel salts, among which NiCl 2 .6H 2 O and N
It is preferred to use iBr 2 .

【0009】これらの金属塩化物もしくは金属臭化物の
電解液への添加量は、不動態化を阻害する程度の量でよ
く、NiCl2・6H2Oの場合、0.05〜2g/リットル、 N
iBr2の場合0.05〜5g/リットルの範囲が好まし
い。0.05g/リットル未満では、ニッケルの不動態
化により、電解研磨が進行し難く、また2g/リットル
または5g/リットルを超えると、ニッケル表面が局部
的に侵食されて凹凸が激しくなるという問題がある。な
お、これら2種のアノード溶解剤は、混合使用してもさ
しつかえない。
The amount of these metal chlorides or bromides added to the electrolytic solution may be such an amount that inhibits passivation. In the case of NiCl 2 .6H 2 O, 0.05 to 2 g / liter, N 2
In the case of iBr2, the range of 0.05 to 5 g / liter is preferable. If the amount is less than 0.05 g / liter, the electropolishing is difficult to proceed due to the passivation of nickel, and if the amount exceeds 2 g / liter or 5 g / liter, the nickel surface is locally eroded to cause unevenness. is there. It should be noted that these two kinds of anode dissolving agents may be used in combination.

【0010】本発明の製造方法に使用する電解研磨装置
は公知の電鋳装置でよい。また電解研磨時の通電条件
は、電鋳浴の組成、温度、電鋳品の表面粗さに依存する
が、2〜20A/dm2 で5〜20分程度が好ましい。電
鋳終了後に、通電方向を逆方向として通電し、上記条件
にて電解研磨を行う。
The electropolishing apparatus used in the manufacturing method of the present invention may be a known electroforming apparatus. The energization conditions during electropolishing depend on the composition of the electroforming bath, the temperature, and the surface roughness of the electroformed product, but are preferably 2 to 20 A / dm 2 and about 5 to 20 minutes. After the electroforming is completed, the current is applied in the opposite direction and the current is applied to carry out electrolytic polishing under the above conditions.

【0011】[0011]

【実施例】次に、本発明の実施例について説明する。 実施例1 ガラスに微細パターンを転写して得られた外径140mm
のガラス原盤上に、スパッタ成膜法によってニッケル薄
膜を1500〜2000Åの厚さに堆積し、導電化処理を施し
た。この導電化処理原盤を電鋳装置の陰極にセットし、
電鋳を行った。作製した電鋳膜厚は約300μm、電鋳
時の通電条件は、電流密度15A/dm2 、通電量6600A
・min、電鋳温度は55℃とした。また、電鋳用の電解液
は、スルファミン酸ニッケル450g/リットル、硼酸
30g/リットル、ラウリル硫酸ナトリウム0.5g/
リットルの溶液に塩化ニッケルを0〜5g/リットル添
加したものを用いた。電鋳終了後、電極に原盤をセット
したまま通電方向を逆にして、4A/dm2 で15分間電
解研磨を行った。電解研磨後のスタンパー裏面の表面粗
さRaを測定した。なお、Raは、スタンパー裏面の直
線状の任意の場所の凹凸形状を求め、その中心線からの
偏差を平均化した数値である。図1に、塩化ニッケルの
添加量と、スタンパー裏面の電解研磨後の表面粗さRa
との関係を示す。
Next, an embodiment of the present invention will be described. Example 1 Outer diameter 140 mm obtained by transferring a fine pattern to glass
A thin nickel film was deposited to a thickness of 1500 to 2000 Å on the glass master disk of No. 1 by the sputtering film forming method, and was subjected to a conductive treatment. Set this electroconductive master to the cathode of the electroforming machine,
It was electroformed. The thickness of the electroformed film produced was about 300 μm. The energization conditions during electroforming were a current density of 15 A / dm 2 and an energization amount of 6600 A
・ Min and electroforming temperature were 55 ° C. The electrolytic solution for electroforming is nickel sulfamate 450 g / l, boric acid 30 g / l, sodium lauryl sulfate 0.5 g / l.
A solution obtained by adding 0 to 5 g / liter of nickel chloride to a liter solution was used. After the electroforming was completed, the energization direction was reversed with the master set on the electrode, and electrolytic polishing was performed at 4 A / dm 2 for 15 minutes. The surface roughness Ra of the back surface of the stamper after electrolytic polishing was measured. Ra is a numerical value obtained by obtaining the uneven shape of a linear arbitrary position on the back surface of the stamper and averaging the deviation from the center line. FIG. 1 shows the amount of nickel chloride added and the surface roughness Ra after electrolytic polishing of the back surface of the stamper.
Shows the relationship with.

【0012】実施例2 電解液に、塩化ニッケルに代えて臭化ニッケルを0〜6
g/リットル添加した以外は、実施例1と同様に電鋳、
電解研磨を行った。測定結果を図1に併記する。
Example 2 Nickel bromide was added to the electrolytic solution in an amount of 0 to 6 instead of nickel chloride.
electroforming in the same manner as in Example 1 except that g / liter was added,
Electrolytic polishing was performed. The measurement results are also shown in FIG.

【0013】図1より、電解研磨によって、スタンパー
裏面の表面粗さRaは0.02μm程度まで平滑化され
ており、機械研磨に代わる研磨方法として有効であるこ
とが確認できた。また、塩化ニッケル、臭化ニッケル共
に電解研磨の効果を上げることがわかった。
From FIG. 1, it was confirmed that the surface roughness Ra of the back surface of the stamper was smoothed to about 0.02 μm by electrolytic polishing, which was effective as a polishing method replacing mechanical polishing. It was also found that both nickel chloride and nickel bromide enhance the effect of electrolytic polishing.

【0014】[0014]

【発明の効果】本発明によれば、スタンパー裏面の研磨
装置として別に設備を設ける必要がなくなり、設備費の
軽減が可能となる。また、機械的研磨によるスタンパー
の反りが生じず、さらに耐食性を損なわずにスタンパー
を製造することができる。
According to the present invention, there is no need to separately provide equipment as a polishing device for the back surface of the stamper, and the equipment cost can be reduced. Further, warping of the stamper due to mechanical polishing does not occur, and the stamper can be manufactured without impairing corrosion resistance.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例における塩化ニッケル(□)、
臭化ニッケル(■)の添加量と、スタンパー裏面の電解
研磨後の表面粗さRaとの関係を示すグラフである。
FIG. 1 shows nickel chloride (□) in an example of the present invention.
5 is a graph showing the relationship between the amount of nickel bromide (■) added and the surface roughness Ra of the stamper back surface after electrolytic polishing.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 情報を凹凸で形成した原盤上に電鋳を施
し、該原盤のパターンを転写した金属板を形成し、その
後、該金属板の情報転写面の反対側の面を研磨してなる
スタンパーの製造方法において、電鋳終了後に、電鋳浴
内にて、電鋳時の通電方向とは逆方向の電流を電鋳物
(金属板)に通電することを特徴とするスタンパーの製
造方法。
1. A master plate on which information is formed in a concavo-convex pattern is electroformed to form a metal plate on which the pattern of the master plate is transferred, and then the surface of the metal plate opposite to the information transfer surface is polished. In the method for producing a stamper, after the electroforming, a current in a direction opposite to the energizing direction during electroforming is applied to the electroformed product (metal plate) in the electroforming bath. .
【請求項2】 電鋳工程で使用する電鋳用電解液が、主
成分はスルファミン酸ニッケルであり、さらにアノード
溶解剤として、金属塩化物もしくは金属臭化物のうち少
なくとも1種類を含む請求項1に記載のスタンパーの製
造方法。
2. The electrolytic solution for electroforming used in the electroforming step is mainly composed of nickel sulfamate and further contains at least one kind of metal chloride or metal bromide as an anode dissolving agent. A method for manufacturing the described stamper.
JP3025796A 1996-02-19 1996-02-19 Production of stamper Pending JPH09223337A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3025796A JPH09223337A (en) 1996-02-19 1996-02-19 Production of stamper

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3025796A JPH09223337A (en) 1996-02-19 1996-02-19 Production of stamper

Publications (1)

Publication Number Publication Date
JPH09223337A true JPH09223337A (en) 1997-08-26

Family

ID=12298664

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3025796A Pending JPH09223337A (en) 1996-02-19 1996-02-19 Production of stamper

Country Status (1)

Country Link
JP (1) JPH09223337A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005004839A (en) * 2003-06-10 2005-01-06 Hitachi Maxell Ltd Stamper for forming substrate, glass stamper for forming substrate, resin substrate for optical recording medium, optical recording medium, and method for manufacturing stamper for forming substrate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005004839A (en) * 2003-06-10 2005-01-06 Hitachi Maxell Ltd Stamper for forming substrate, glass stamper for forming substrate, resin substrate for optical recording medium, optical recording medium, and method for manufacturing stamper for forming substrate

Similar Documents

Publication Publication Date Title
US2451341A (en) Electroplating
US3556957A (en) Metal treatment
JPH0570718B2 (en)
JP2006249450A (en) Plating method and plating device
JP4009750B2 (en) How to provide a diffuser riser on a Fresnel lens die
KR101889165B1 (en) Deposition mask, method for preparing the same and method for preparing organic electroluminescent device using the deposition mask
JPH09223337A (en) Production of stamper
CN110670014A (en) Mother plate core mold, mask plate and manufacturing method thereof
JPH0723553B2 (en) Method for plating three-dimensional network structure
US3519543A (en) Process for electrolytically cleaning and polishing electrical contacts
US3792986A (en) Method of fabricating, using and reconditioning apparatus for forming optical quality articles from molten glass and forming elements for use therein
US8012329B2 (en) Dimensional control in electroforms
EP1044776A1 (en) Nickel plating of a mould using pulsating current
US3284324A (en) Substrate preparation method
JPH0516322A (en) Manufacture of intaglio printing plate
JPH04312889A (en) Intaglio printing and its manufacture
KR20070005332A (en) Electroless plating method and plating film obtained by the electroless plating method
US1871770A (en) Method of depositing on chromium
JPH07241856A (en) Manufacture of electroformed duplicate stamper
US3647642A (en) Method of making mirror-like finishes on metal masters
US2384113A (en) Method of preparing electrotypes
JPH03126885A (en) Electroforming method and device for controlling electroforming
KR900002094B1 (en) Method for preparing nickel printing plate
JPS6220152A (en) Stamper for molding optical disk and its manufacture
JP2000119900A (en) Plating device for copper and plating method