JPH09221304A - Oxide solid solution particle and its production - Google Patents
Oxide solid solution particle and its productionInfo
- Publication number
- JPH09221304A JPH09221304A JP8314840A JP31484096A JPH09221304A JP H09221304 A JPH09221304 A JP H09221304A JP 8314840 A JP8314840 A JP 8314840A JP 31484096 A JP31484096 A JP 31484096A JP H09221304 A JPH09221304 A JP H09221304A
- Authority
- JP
- Japan
- Prior art keywords
- oxide
- solid solution
- particles
- oxide solid
- cerium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000006104 solid solution Substances 0.000 title claims abstract description 278
- 239000002245 particle Substances 0.000 title claims abstract description 258
- 238000004519 manufacturing process Methods 0.000 title claims description 31
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 claims abstract description 61
- 229910052684 Cerium Inorganic materials 0.000 claims abstract description 50
- 239000002244 precipitate Substances 0.000 claims abstract description 48
- 238000010438 heat treatment Methods 0.000 claims abstract description 45
- 239000004094 surface-active agent Substances 0.000 claims abstract description 39
- 239000012298 atmosphere Substances 0.000 claims abstract description 32
- 238000000034 method Methods 0.000 claims abstract description 30
- 229910052726 zirconium Inorganic materials 0.000 claims abstract description 24
- 239000000843 powder Substances 0.000 claims abstract description 19
- 238000003756 stirring Methods 0.000 claims abstract description 16
- 239000007787 solid Substances 0.000 claims description 102
- 239000007864 aqueous solution Substances 0.000 claims description 87
- GWXLDORMOJMVQZ-UHFFFAOYSA-N cerium Chemical compound [Ce] GWXLDORMOJMVQZ-UHFFFAOYSA-N 0.000 claims description 44
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 claims description 22
- 239000000126 substance Substances 0.000 claims description 19
- 239000013078 crystal Substances 0.000 claims description 18
- 239000000693 micelle Substances 0.000 claims description 12
- 229910000420 cerium oxide Inorganic materials 0.000 claims description 6
- BMMGVYCKOGBVEV-UHFFFAOYSA-N oxo(oxoceriooxy)cerium Chemical compound [Ce]=O.O=[Ce]=O BMMGVYCKOGBVEV-UHFFFAOYSA-N 0.000 claims description 6
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 claims description 5
- 229910001928 zirconium oxide Inorganic materials 0.000 claims description 5
- 238000001556 precipitation Methods 0.000 claims description 2
- 150000004996 alkyl benzenes Chemical class 0.000 abstract description 33
- 229910052760 oxygen Inorganic materials 0.000 abstract description 32
- 239000001301 oxygen Substances 0.000 abstract description 32
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 abstract description 31
- 238000003860 storage Methods 0.000 abstract description 20
- 239000002002 slurry Substances 0.000 abstract description 14
- HSJPMRKMPBAUAU-UHFFFAOYSA-N cerium(3+);trinitrate Chemical compound [Ce+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O HSJPMRKMPBAUAU-UHFFFAOYSA-N 0.000 abstract description 12
- 235000011114 ammonium hydroxide Nutrition 0.000 abstract description 10
- PAWQVTBBRAZDMG-UHFFFAOYSA-N 2-(3-bromo-2-fluorophenyl)acetic acid Chemical compound OC(=O)CC1=CC=CC(Br)=C1F PAWQVTBBRAZDMG-UHFFFAOYSA-N 0.000 abstract description 8
- 238000002156 mixing Methods 0.000 abstract description 8
- 239000000243 solution Substances 0.000 abstract description 6
- 238000001694 spray drying Methods 0.000 abstract description 4
- 239000000463 material Substances 0.000 abstract description 3
- 150000002500 ions Chemical class 0.000 abstract description 2
- OERNJTNJEZOPIA-UHFFFAOYSA-N zirconium nitrate Chemical compound [Zr+4].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O OERNJTNJEZOPIA-UHFFFAOYSA-N 0.000 abstract 2
- 229940092714 benzenesulfonic acid Drugs 0.000 abstract 1
- 239000011259 mixed solution Substances 0.000 abstract 1
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 111
- CETPSERCERDGAM-UHFFFAOYSA-N ceric oxide Chemical compound O=[Ce]=O CETPSERCERDGAM-UHFFFAOYSA-N 0.000 description 49
- 229910000422 cerium(IV) oxide Inorganic materials 0.000 description 49
- -1 oxygen ions Chemical class 0.000 description 43
- LSNNMFCWUKXFEE-UHFFFAOYSA-M Bisulfite Chemical compound OS([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-M 0.000 description 36
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 22
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 14
- 230000000052 comparative effect Effects 0.000 description 13
- UJVRJBAUJYZFIX-UHFFFAOYSA-N nitric acid;oxozirconium Chemical compound [Zr]=O.O[N+]([O-])=O.O[N+]([O-])=O UJVRJBAUJYZFIX-UHFFFAOYSA-N 0.000 description 13
- 229910052761 rare earth metal Inorganic materials 0.000 description 13
- 238000011156 evaluation Methods 0.000 description 12
- 239000000203 mixture Substances 0.000 description 10
- 150000003839 salts Chemical class 0.000 description 10
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 9
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 9
- 238000002441 X-ray diffraction Methods 0.000 description 9
- 235000014113 dietary fatty acids Nutrition 0.000 description 9
- 230000000694 effects Effects 0.000 description 9
- 239000000194 fatty acid Substances 0.000 description 9
- 229930195729 fatty acid Natural products 0.000 description 9
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 7
- 150000005215 alkyl ethers Chemical class 0.000 description 7
- 238000001035 drying Methods 0.000 description 7
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 description 7
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 6
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 6
- 229910052791 calcium Inorganic materials 0.000 description 6
- 239000011575 calcium Substances 0.000 description 6
- 230000007423 decrease Effects 0.000 description 6
- 150000004665 fatty acids Chemical class 0.000 description 6
- 239000007789 gas Substances 0.000 description 6
- 229910052727 yttrium Inorganic materials 0.000 description 6
- 239000002253 acid Substances 0.000 description 5
- 230000001590 oxidative effect Effects 0.000 description 5
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical compound [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 4
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 4
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 4
- 230000009471 action Effects 0.000 description 4
- 239000003513 alkali Substances 0.000 description 4
- 229910002091 carbon monoxide Inorganic materials 0.000 description 4
- 239000003054 catalyst Substances 0.000 description 4
- 238000006386 neutralization reaction Methods 0.000 description 4
- 238000011160 research Methods 0.000 description 4
- 238000005204 segregation Methods 0.000 description 4
- 150000005846 sugar alcohols Polymers 0.000 description 4
- 150000003754 zirconium Chemical class 0.000 description 4
- NGDQQLAVJWUYSF-UHFFFAOYSA-N 4-methyl-2-phenyl-1,3-thiazole-5-sulfonyl chloride Chemical compound S1C(S(Cl)(=O)=O)=C(C)N=C1C1=CC=CC=C1 NGDQQLAVJWUYSF-UHFFFAOYSA-N 0.000 description 3
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 3
- 150000000703 Cerium Chemical class 0.000 description 3
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 3
- 150000003973 alkyl amines Chemical class 0.000 description 3
- WUKWITHWXAAZEY-UHFFFAOYSA-L calcium difluoride Chemical group [F-].[F-].[Ca+2] WUKWITHWXAAZEY-UHFFFAOYSA-L 0.000 description 3
- 239000000919 ceramic Substances 0.000 description 3
- LQCIDLXXSFUYSA-UHFFFAOYSA-N cerium(4+);tetranitrate Chemical compound [Ce+4].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O LQCIDLXXSFUYSA-UHFFFAOYSA-N 0.000 description 3
- 150000002148 esters Chemical class 0.000 description 3
- 239000010419 fine particle Substances 0.000 description 3
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- 239000001257 hydrogen Substances 0.000 description 3
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 3
- 238000005470 impregnation Methods 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 239000007858 starting material Substances 0.000 description 3
- 125000005270 trialkylamine group Chemical group 0.000 description 3
- 239000004711 α-olefin Substances 0.000 description 3
- 239000004215 Carbon black (E152) Substances 0.000 description 2
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 2
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 2
- 229930195725 Mannitol Natural products 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 235000019270 ammonium chloride Nutrition 0.000 description 2
- 239000003945 anionic surfactant Substances 0.000 description 2
- IWOUKMZUPDVPGQ-UHFFFAOYSA-N barium nitrate Chemical compound [Ba+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O IWOUKMZUPDVPGQ-UHFFFAOYSA-N 0.000 description 2
- ZCCIPPOKBCJFDN-UHFFFAOYSA-N calcium nitrate Chemical group [Ca+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O ZCCIPPOKBCJFDN-UHFFFAOYSA-N 0.000 description 2
- 239000003093 cationic surfactant Substances 0.000 description 2
- VYLVYHXQOHJDJL-UHFFFAOYSA-K cerium trichloride Chemical compound Cl[Ce](Cl)Cl VYLVYHXQOHJDJL-UHFFFAOYSA-K 0.000 description 2
- WOWHHFRSBJGXCM-UHFFFAOYSA-M cetyltrimethylammonium chloride Chemical compound [Cl-].CCCCCCCCCCCCCCCC[N+](C)(C)C WOWHHFRSBJGXCM-UHFFFAOYSA-M 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 238000000975 co-precipitation Methods 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 238000003795 desorption Methods 0.000 description 2
- 150000004985 diamines Chemical class 0.000 description 2
- 235000011187 glycerol Nutrition 0.000 description 2
- KWIUHFFTVRNATP-UHFFFAOYSA-N glycine betaine Chemical class C[N+](C)(C)CC([O-])=O KWIUHFFTVRNATP-UHFFFAOYSA-N 0.000 description 2
- 229930195733 hydrocarbon Natural products 0.000 description 2
- 150000002430 hydrocarbons Chemical class 0.000 description 2
- 150000002431 hydrogen Chemical class 0.000 description 2
- YIXJRHPUWRPCBB-UHFFFAOYSA-N magnesium nitrate Chemical compound [Mg+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O YIXJRHPUWRPCBB-UHFFFAOYSA-N 0.000 description 2
- 239000000594 mannitol Substances 0.000 description 2
- 235000010355 mannitol Nutrition 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 239000011812 mixed powder Substances 0.000 description 2
- 239000002736 nonionic surfactant Substances 0.000 description 2
- 239000007800 oxidant agent Substances 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- VLTRZXGMWDSKGL-UHFFFAOYSA-N perchloric acid Chemical compound OCl(=O)(=O)=O VLTRZXGMWDSKGL-UHFFFAOYSA-N 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000010298 pulverizing process Methods 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 239000000600 sorbitol Substances 0.000 description 2
- DHEQXMRUPNDRPG-UHFFFAOYSA-N strontium nitrate Chemical compound [Sr+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O DHEQXMRUPNDRPG-UHFFFAOYSA-N 0.000 description 2
- 239000006228 supernatant Substances 0.000 description 2
- 239000003760 tallow Substances 0.000 description 2
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 description 1
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 description 1
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 description 1
- 238000004438 BET method Methods 0.000 description 1
- 229910004664 Cerium(III) chloride Inorganic materials 0.000 description 1
- RZXLPPRPEOUENN-UHFFFAOYSA-N Chlorfenson Chemical compound C1=CC(Cl)=CC=C1OS(=O)(=O)C1=CC=C(Cl)C=C1 RZXLPPRPEOUENN-UHFFFAOYSA-N 0.000 description 1
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- ZSBXGIUJOOQZMP-JLNYLFASSA-N Matrine Chemical compound C1CC[C@H]2CN3C(=O)CCC[C@@H]3[C@@H]3[C@H]2N1CCC3 ZSBXGIUJOOQZMP-JLNYLFASSA-N 0.000 description 1
- 241001077660 Molo Species 0.000 description 1
- 239000005642 Oleic acid Substances 0.000 description 1
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 description 1
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 235000012012 Paullinia yoco Nutrition 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- ULUAUXLGCMPNKK-UHFFFAOYSA-N Sulfobutanedioic acid Chemical compound OC(=O)CC(C(O)=O)S(O)(=O)=O ULUAUXLGCMPNKK-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000012190 activator Substances 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 150000008044 alkali metal hydroxides Chemical class 0.000 description 1
- 125000005037 alkyl phenyl group Chemical group 0.000 description 1
- 150000008051 alkyl sulfates Chemical class 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 125000000129 anionic group Chemical group 0.000 description 1
- 229910002056 binary alloy Inorganic materials 0.000 description 1
- 238000001354 calcination Methods 0.000 description 1
- 150000001735 carboxylic acids Chemical class 0.000 description 1
- 239000004359 castor oil Substances 0.000 description 1
- 235000019438 castor oil Nutrition 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- XMPZTFVPEKAKFH-UHFFFAOYSA-P ceric ammonium nitrate Chemical compound [NH4+].[NH4+].[Ce+4].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O XMPZTFVPEKAKFH-UHFFFAOYSA-P 0.000 description 1
- 229940044927 ceric oxide Drugs 0.000 description 1
- XQTIWNLDFPPCIU-UHFFFAOYSA-N cerium(3+) Chemical group [Ce+3] XQTIWNLDFPPCIU-UHFFFAOYSA-N 0.000 description 1
- OZECDDHOAMNMQI-UHFFFAOYSA-H cerium(3+);trisulfate Chemical compound [Ce+3].[Ce+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O OZECDDHOAMNMQI-UHFFFAOYSA-H 0.000 description 1
- ITZXULOAYIAYNU-UHFFFAOYSA-N cerium(4+) Chemical compound [Ce+4] ITZXULOAYIAYNU-UHFFFAOYSA-N 0.000 description 1
- VZDYWEUILIUIDF-UHFFFAOYSA-J cerium(4+);disulfate Chemical compound [Ce+4].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O VZDYWEUILIUIDF-UHFFFAOYSA-J 0.000 description 1
- 229910000333 cerium(III) sulfate Inorganic materials 0.000 description 1
- 229910000355 cerium(IV) sulfate Inorganic materials 0.000 description 1
- 239000003426 co-catalyst Substances 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- RKTYLMNFRDHKIL-UHFFFAOYSA-N copper;5,10,15,20-tetraphenylporphyrin-22,24-diide Chemical compound [Cu+2].C1=CC(C(=C2C=CC([N-]2)=C(C=2C=CC=CC=2)C=2C=CC(N=2)=C(C=2C=CC=CC=2)C2=CC=C3[N-]2)C=2C=CC=CC=2)=NC1=C3C1=CC=CC=C1 RKTYLMNFRDHKIL-UHFFFAOYSA-N 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 229910001882 dioxygen Inorganic materials 0.000 description 1
- USIUVYZYUHIAEV-UHFFFAOYSA-N diphenyl ether Chemical compound C=1C=CC=CC=1OC1=CC=CC=C1 USIUVYZYUHIAEV-UHFFFAOYSA-N 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 239000012065 filter cake Substances 0.000 description 1
- ZEMPKEQAKRGZGQ-XOQCFJPHSA-N glycerol triricinoleate Natural products CCCCCC[C@@H](O)CC=CCCCCCCCC(=O)OC[C@@H](COC(=O)CCCCCCCC=CC[C@@H](O)CCCCCC)OC(=O)CCCCCCCC=CC[C@H](O)CCCCCC ZEMPKEQAKRGZGQ-XOQCFJPHSA-N 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 238000009775 high-speed stirring Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 description 1
- FYDKNKUEBJQCCN-UHFFFAOYSA-N lanthanum(3+);trinitrate Chemical compound [La+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O FYDKNKUEBJQCCN-UHFFFAOYSA-N 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 239000004570 mortar (masonry) Substances 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 230000003472 neutralizing effect Effects 0.000 description 1
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 1
- 230000033116 oxidation-reduction process Effects 0.000 description 1
- CMOAHYOGLLEOGO-UHFFFAOYSA-N oxozirconium;dihydrochloride Chemical compound Cl.Cl.[Zr]=O CMOAHYOGLLEOGO-UHFFFAOYSA-N 0.000 description 1
- 150000002978 peroxides Chemical class 0.000 description 1
- 150000002989 phenols Chemical class 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 229920000768 polyamine Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920002503 polyoxyethylene-polyoxypropylene Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 150000003242 quaternary ammonium salts Chemical class 0.000 description 1
- 150000004671 saturated fatty acids Chemical class 0.000 description 1
- 235000003441 saturated fatty acids Nutrition 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 239000007784 solid electrolyte Substances 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
- 229940104261 taurate Drugs 0.000 description 1
- XOAAWQZATWQOTB-UHFFFAOYSA-N taurine Chemical compound NCCS(O)(=O)=O XOAAWQZATWQOTB-UHFFFAOYSA-N 0.000 description 1
- 150000005621 tetraalkylammonium salts Chemical class 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N titanium dioxide Inorganic materials O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
- 150000004670 unsaturated fatty acids Chemical class 0.000 description 1
- 235000021122 unsaturated fatty acids Nutrition 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 239000002888 zwitterionic surfactant Substances 0.000 description 1
Landscapes
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
- Oxygen, Ozone, And Oxides In General (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
- Catalysts (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は酸化物固溶体粒子及
びその製造方法に関する。本発明の酸化物固溶体として
は、例えばセリウム酸化物(以下セリアという)とジル
コニウム酸化物(以下ジルコニアという)の固溶体が例
示され、この場合はセリアによる酸素の吸蔵・排出能
(酸素ストアレージ能)が一層向上するので、排ガス浄
化用触媒の助触媒として有用である。また本発明の酸化
物固溶体は、これ以外にもディーゼルパティキュレート
酸化触媒、固体電解質、電極材料、セラミックス分散強
化粒子、紫外線遮蔽用材料などに用いることができる。TECHNICAL FIELD The present invention relates to oxide solid solution particles and a method for producing the same. Examples of the oxide solid solution of the present invention include solid solutions of cerium oxide (hereinafter referred to as ceria) and zirconium oxide (hereinafter referred to as zirconia). In this case, oxygen storage / exhaust capacity (oxygen storage capacity) by ceria is exemplified. Therefore, it is useful as a co-catalyst for an exhaust gas purifying catalyst. In addition to the above, the oxide solid solution of the present invention can be used for a diesel particulate oxidation catalyst, a solid electrolyte, an electrode material, ceramics dispersion strengthening particles, an ultraviolet shielding material and the like.
【0002】[0002]
【従来の技術】セリアは酸素ストアレージ能(酸素吸蔵
放出能)を有するため、内燃機関からの排ガスを浄化す
る排ガス浄化用触媒の助触媒として広く用いられてい
る。また、酸素ストアレージ能を高めるためには比表面
積を大きくすることが望ましいため、セリアは粉末状態
として用いられている。2. Description of the Related Art Ceria, which has an oxygen storage capacity (oxygen storage / release capacity), is widely used as a cocatalyst for an exhaust gas purification catalyst for purifying exhaust gas from an internal combustion engine. Further, since it is desirable to increase the specific surface area in order to enhance the oxygen storage capacity, ceria is used in the powder state.
【0003】しかしながら、排ガス浄化用触媒は高温で
使用され、かつ高温における浄化活性が高いことが必要
である。そのためセリアには、粉末として高比表面積を
もつようにして用いた場合においても、高温での使用時
に比表面積の低下が生じないこと、つまり耐熱性に優れ
ていることが要求されている。そこで従来より、セリア
にジルコニアやセリウムを除く希土類元素の酸化物を固
溶させることが提案されている。However, the exhaust gas purifying catalyst is required to be used at a high temperature and have a high purifying activity at a high temperature. Therefore, it is required for ceria that even if it is used as a powder with a high specific surface area, the specific surface area does not decrease when it is used at high temperatures, that is, it has excellent heat resistance. Therefore, it has been conventionally proposed to dissolve ceria with an oxide of a rare earth element other than zirconia and cerium.
【0004】例えば特開平4−55315号公報には、
セリウムの水溶性塩とジルコニウムの水溶性塩の混合水
溶液からセリアとジルコニアとを共沈させ、それを熱処
理する酸化セリウム微粉体の製造方法が開示されてい
る。この製造方法によれば、共沈物を熱処理することに
よりセリウムとジルコニウムは酸化物となり、互いに固
溶した酸化物固溶体が生成する。For example, Japanese Patent Application Laid-Open No. 4-55315 discloses
A method for producing fine cerium oxide powder is disclosed in which ceria and zirconia are co-precipitated from a mixed aqueous solution of a water-soluble salt of cerium and a water-soluble salt of zirconium, and heat treatment is performed. According to this manufacturing method, by heat-treating the coprecipitate, cerium and zirconium become oxides, and an oxide solid solution is formed as a solid solution with each other.
【0005】また特開平4−284847号公報には、
含浸法又は共沈法により、ジルコニア又は希土類元素の
酸化物とセリアとが固溶した粉末を製造することが示さ
れている。Japanese Patent Application Laid-Open No. 4-284847 discloses that
It has been shown to produce a powder in which an oxide of zirconia or a rare earth element and ceria are solid-dissolved by an impregnation method or a coprecipitation method.
【0006】[0006]
【発明が解決しようとする課題】ところが本発明者らの
研究によれば、上記公報に開示された方法で製造された
酸化物固溶体では、耐熱性には優れているものの酸素ス
トアレージ能が十分でないことが明らかとなった。つま
りセリウムとジルコニウムとでは析出する水溶液のpH
が異なるため、混合水溶液から共沈させる方法では共沈
物の組成が不均一となり、共沈物の段階ではほとんど固
溶は生じていない。また含浸法では、セリア粉末にジル
コニウム塩を含む水溶液を含浸させる方法と、ジルコニ
ア粉末にセリウム塩水溶液を含浸させる方法とがある
が、いずれの場合にも酸化物粉末の一次粒子が大きいた
め、粒子全体における組成が不均一となり、固溶が促進
されにくい。However, according to the studies by the present inventors, the oxide solid solution produced by the method disclosed in the above publication has excellent heat resistance but sufficient oxygen storage capacity. It became clear that it is not. That is, the pH of the aqueous solution that precipitates with cerium and zirconium
, The composition of the coprecipitate becomes non-uniform by the method of coprecipitating from the mixed aqueous solution, and almost no solid solution occurs at the coprecipitate stage. Further, in the impregnation method, there are a method of impregnating the ceria powder with an aqueous solution containing a zirconium salt and a method of impregnating the zirconia powder with an aqueous solution of a cerium salt. The composition in the whole becomes non-uniform, and solid solution is difficult to promote.
【0007】そのため両法とも熱処理により固溶を起こ
させており、共沈法では500〜900℃、含浸法では
700〜1200℃の温度で熱処理しているが、固溶は
十分ではない。また両法とも粉末を熱処理することによ
り粒子間にネックが形成され、このネックにより固溶が
促進されるが、それに伴い粒成長や焼結が促進されるた
め粉末の比表面積が低下し、結晶子の粒子径も増大す
る。また、いったん大きく粒成長した固溶体粒子は、容
易に粉砕することは困難である。Therefore, in both methods, a solid solution is caused by heat treatment. The coprecipitation method and the impregnation method perform heat treatment at temperatures of 500 to 900 ° C. and 700 to 1200 ° C., respectively, but the solid solution is not sufficient. In both methods, a neck is formed between the particles by heat treating the powder, and the solid solution is promoted by the neck, but the specific surface area of the powder is reduced because grain growth and sintering are promoted, and the crystal The particle size of the offspring also increases. Further, it is difficult to easily crush solid solution particles that have once grown into large particles.
【0008】例えば特開平4−55315号公報に開示
された製造方法で得られる固溶体の固溶度は、高々40
%程度である。また特開平4−284847号公報の方
法では、20%以下の固溶度しか得られない。このよう
に固溶度が低い従来のセリア−ジルコニア系の酸化物固
溶体においては、セリアによる酸素ストアレージ容量
(以下OSCという)は高々100〜150μmolO
2 /g程度と小さく、また500℃以上の高温でないと
酸素の吸蔵・放出能が十分発現せず、酸素ストアレージ
能が低いという問題がある。For example, the solid solution obtained by the production method disclosed in Japanese Patent Application Laid-Open No. 4-55315 has a solid solubility of at most 40.
%. Further, according to the method disclosed in JP-A-4-284847, only a solid solubility of 20% or less can be obtained. In such a conventional ceria-zirconia-based oxide solid solution having a low solid solubility, the oxygen storage capacity (hereinafter referred to as OSC) of ceria is 100 to 150 μmolO at most.
It is as small as about 2 / g, and unless it is at a high temperature of 500 ° C. or higher, the oxygen storage / release capacity is not sufficiently expressed, and the oxygen storage capacity is low.
【0009】なお、1600℃程度で十分熱処理すれ
ば、セリアとジルコニアの固溶体の固溶度はほぼ100
%となることが知られている。しかしこの場合は、OS
Cは高いものの結晶子の平均粒径が1000nm以上に
もなり、比表面積が小さくなるため過渡的な酸素吸蔵・
放出速度が小さな比表面積に律速されてしまい、助触媒
としての実用性がない。If the heat treatment is sufficiently performed at about 1600 ° C., the solid solution of ceria and zirconia has a solid solubility of about 100.
It is known to be%. However, in this case, the OS
Although C is high, the average particle size of the crystallite is 1000 nm or more, and the specific surface area becomes small, so transient oxygen storage
The release rate is limited by the small specific surface area, and is not practical as a promoter.
【0010】本発明はこのような事情に鑑みてなされた
ものであり、固溶度を高くすることで酸素ストアレージ
能など固溶体としての性能を高めるとともに、結晶子の
平均径が小さく大きな比表面積を有する酸化物固溶体粒
子と、その固溶体粒子を容易にかつ確実に製造できる製
造方法を提供することを目的とする。The present invention has been made in view of the above circumstances. By increasing the solid solubility, the performance as a solid solution such as oxygen storage capacity is enhanced, and the crystallite has a small average diameter and a large specific surface area. It is an object of the present invention to provide an oxide solid solution particle having: and a manufacturing method capable of easily and reliably manufacturing the solid solution particle.
【0011】[0011]
【課題を解決するための手段】上記課題を解決する請求
項1記載の本発明の酸化物固溶体粒子の特徴は、一の酸
化物に他の酸化物が固溶した酸化物固溶体を含む粒子で
あって粒子中の一の酸化物に対する他の酸化物の固溶度
が50%以上であり、かつ粒子中の結晶子の平均径が1
00nm以下であることにある。The features of the oxide solid solution particles of the present invention as set forth in claim 1 for solving the above problems are particles containing an oxide solid solution in which one oxide is in solid solution with another oxide. The solid solubility of one oxide in the particle is 50% or more, and the average diameter of the crystallite in the particle is 1
It is to be less than 00 nm.
【0012】この酸化物固溶体粒子は、請求項2にいう
ように粒子が集合して粉末を形成したもの(粉末)とし
て利用することが望ましい。この酸化物固溶体粒子は、
請求項3にいうように粒子の比表面積が1m2 /g以上
であることが望ましい。そして請求項4記載の本発明の
酸化物固溶体粒子の特徴は、セリアにジルコニアが固溶
した酸化物固溶体を含む粒子であって、粒子中のセリア
に対するジルコニアの固溶度が50%以上であり、かつ
粒子中の結晶子の平均径が100nm以下であることに
ある。It is desirable that the oxide solid solution particles are used as particles (powder) formed by assembling particles as described in claim 2. The oxide solid solution particles are
As described in claim 3, it is desirable that the specific surface area of the particles is 1 m 2 / g or more. The oxide solid solution particles of the present invention according to claim 4 are particles containing an oxide solid solution in which ceria contains zirconia as a solid solution, and the solid solubility of zirconia to ceria in the particles is 50% or more. The average diameter of the crystallites in the particles is 100 nm or less.
【0013】なお請求項5にいうように、この粒子中の
セリウムとジルコニウムの比率はモル比で、0.25≦
Zr/(Ce+Zr)≦0.75の範囲とすることが望
ましい。また本発明の酸化物固溶体粒子は、アルカリ土
類元素の酸化物又はセリウム以外の希土類元素の酸化物
の一つ以上が請求項5に記載のセリアとジルコニアとが
互いに固溶した酸化物固溶体にさらに固溶した酸化物固
溶体を含む粒子であって、粒子中のセリアとジルコニア
に対してアルカリ土類元素の酸化物又はセリウム以外の
希土類元素の酸化物の少なくとも一つ(M)がモル比で
0<M/(Ce+Zr+M)≦0.15の範囲にあるこ
と、及び結晶子の平均径が10nm以下であることが望
ましい。As described in claim 5, the ratio of cerium to zirconium in the particles is 0.25≤mole.
It is desirable that Zr / (Ce + Zr) ≦ 0.75. Further, in the oxide solid solution particles of the present invention, one or more of an oxide of an alkaline earth element or an oxide of a rare earth element other than cerium is an oxide solid solution in which ceria and zirconia are solid-solved with each other. Further, the particles contain a solid solution of an oxide solid solution, wherein at least one (M) of an oxide of an alkaline earth element or an oxide of a rare earth element other than cerium is present in a molar ratio with respect to ceria and zirconia in the particles. It is preferable that 0 <M / (Ce + Zr + M) ≦ 0.15, and that the average crystallite diameter is 10 nm or less.
【0014】なお、請求項1〜5における酸化物固溶体
粒子の結晶子の平均径は10nm以下であることがより
望ましく、比表面積は20m2 /g以上、さらには50
m2/g以上であることがより望ましい。また上記酸化
物固溶体粒子を製造する請求項6記載の本発明の製造方
法の特徴は、酸化物となる元素が複数種類溶解した水溶
液に界面活性剤とアルカリ性物質を添加することにより
沈殿物を得る第1工程と、沈殿物を加熱して、一の酸化
物に他の酸化物が固溶した酸化物固溶体を含む粒子であ
って粒子中の一の酸化物に対する他の酸化物の固溶度が
50%以上であり、かつ粒子中の結晶子の平均径が10
0nm以下である酸化物固溶体粒子を得る第2工程と、
よりなることにある。The average diameter of the crystallites of the oxide solid solution particles is preferably 10 nm or less, and the specific surface area is 20 m 2 / g or more, further 50.
More preferably, it is m 2 / g or more. Further, the feature of the production method of the present invention according to claim 6 for producing the oxide solid solution particles is that a precipitate is obtained by adding a surfactant and an alkaline substance to an aqueous solution in which a plurality of types of oxide elements are dissolved. In the first step, the precipitate is heated to obtain a particle containing an oxide solid solution in which one oxide is in solid solution with another oxide, and the solid solubility of the other oxide with respect to the one oxide in the particle. Is 50% or more, and the average diameter of crystallites in the particles is 10
A second step of obtaining oxide solid solution particles of 0 nm or less;
Is to become.
【0015】上記した本発明の製造方法において、請求
項7に記載のように、酸化物となる元素は4価のセリウ
ムとジルコニウムであることが望ましい。なお、3価の
セリウムを出発原料とする場合には、請求項8に記載さ
れたように、第1工程において3価のセリウム塩とジル
コニウム塩とが溶解した水溶液に過酸化水素と、界面活
性剤及びアルカリ性物質を添加することにより沈殿物を
得るようにし、第2工程は上記の製造方法と同様に行
う。In the above-mentioned manufacturing method of the present invention, as described in claim 7, it is desirable that the elements to be oxides are tetravalent cerium and zirconium. When trivalent cerium is used as a starting material, as described in claim 8, hydrogen peroxide is added to the aqueous solution in which the trivalent cerium salt and the zirconium salt are dissolved in the first step, and the surface active agent. A precipitate is obtained by adding the agent and the alkaline substance, and the second step is performed in the same manner as in the above-mentioned manufacturing method.
【0016】また上記した本発明の製造方法において、
請求項9に記載されたように、界面活性剤は臨界ミセル
濃度が0.1mol/リットル以下のものとすることが
望ましい。また、界面活性剤が形成するミセルの形状
は、球状など内部に狭い空間ができるものが望ましい。
さらに請求項10記載の本発明の製造方法の特徴は、酸
化物となる元素が複数種類溶解した水溶液を103 se
c-1以上の高せん断速度で高速攪拌しながらアルカリ性
物質を添加することにより沈殿物を得る第1工程と、沈
殿物を加熱して、一の酸化物に他の酸化物が固溶した酸
化物固溶体を含む粒子であって粒子中の一の酸化物に対
する他の酸化物の固溶度が50%以上であり、かつ粒子
中の結晶子の平均径が100nm以下である酸化物固溶
体粒子を得る第2工程と、よりなることにある。その際
も、第1工程において水溶液に界面活性剤を添加すれ
ば、さらに効果的である。In the above-mentioned manufacturing method of the present invention,
As described in claim 9, the surfactant preferably has a critical micelle concentration of 0.1 mol / liter or less. The shape of the micelle formed by the surfactant is preferably spherical and has a narrow space inside.
Furthermore, the feature of the manufacturing method of the present invention according to claim 10 is that 10 3 se of an aqueous solution in which a plurality of kinds of elements to be oxides are dissolved.
The first step of obtaining a precipitate by adding an alkaline substance while stirring at a high shear rate of c -1 or higher and an oxidation in which one oxide is solid-dissolved with another oxide An oxide solid solution particle having a solid solution, wherein the solid solubility of one oxide in the particle is 50% or more, and the average diameter of crystallites in the particle is 100 nm or less. And the second step of obtaining. Also in that case, it is more effective if a surfactant is added to the aqueous solution in the first step.
【0017】さらに請求項11記載の本発明の製造方法
の特徴は、酸化物となる元素が複数種類溶解した水溶液
にアルカリ性物質を添加することにより沈殿物を得る第
1工程と、沈殿物を還元雰囲気で加熱して、一の酸化物
に他の酸化物が固溶した酸化物固溶体を含む粒子であっ
て粒子中の一の酸化物に対する他の酸化物の固溶度が5
0%以上であり、かつ粒子中の結晶子の平均径が100
nm以下である酸化物固溶体粒子を得る第2工程と、よ
りなることにある。Further, the feature of the manufacturing method of the present invention according to claim 11 is that the first step of obtaining a precipitate by adding an alkaline substance to an aqueous solution in which a plurality of kinds of oxide elements are dissolved, and the reduction of the precipitate Particles containing an oxide solid solution in which one oxide is solid-solved with another oxide when heated in an atmosphere, and the solid solubility of the other oxide with respect to one oxide in the particle is 5
0% or more and the average diameter of the crystallites in the particles is 100
The second step is to obtain oxide solid solution particles having a size of nm or less.
【0018】なお、請求項6〜11において製造される
酸化物固溶体粒子の結晶子の平均径は、10nm以下で
あることがより望ましく、比表面積は20m2 /g以
上、さらには50m2 /g以上であることがより望まし
い。The average particle diameter of the crystallites of the oxide solid solution particles produced in claims 6 to 11 is more preferably 10 nm or less, and the specific surface area is 20 m 2 / g or more, further 50 m 2 / g. The above is more desirable.
【0019】[0019]
【発明の実施の形態】固溶度とは次式によって定義され
る値をいう。 固溶度(%)=100×(酸化物Aの総量に固溶した酸
化物Bの量)/酸化物Bの総量 ここで酸化物Aの総量に固溶した酸化物Bは、酸化物A
の総量に対して均一に固溶していると仮定する。BEST MODE FOR CARRYING OUT THE INVENTION The solid solubility refers to a value defined by the following equation. Solid solubility (%) = 100 × (amount of oxide B dissolved in the total amount of oxide A) / total amount of oxide B Here, oxide B dissolved in the total amount of oxide A is oxide A
Is assumed to be uniformly dissolved with respect to the total amount of
【0020】例えばセリアとジルコニアの固溶体の場合
は、セリアが酸化物Aに相当し、ジルコニアが酸化物B
に相当し、固溶度(%)は 100 ×(セリアの総量に固溶したジルコニアの量)/ジルコニアの総量 …(1) で表される。ここで、セリア・ジルコニア固溶体(固溶
度100%)のジルコニア濃度x(mol%)と格子定
数a(オングストローム)の間には式(2)の関係があ
る。For example, in the case of a solid solution of ceria and zirconia, ceria corresponds to oxide A and zirconia corresponds to oxide B.
The solid solubility (%) is represented by 100 × (amount of zirconia dissolved in the total amount of ceria) / total amount of zirconia (1). Here, there is a relationship of equation (2) between the zirconia concentration x (mol%) of the ceria-zirconia solid solution (solid solubility 100%) and the lattice constant a (angstrom).
【0021】 x=(5.423−a)/0.003 …(2) これは次のように導出された。各セリア、ジルコニアの
配合比において界面活性剤の量を増加させながら後述の
実施例1と同様の調製を行い格子定数を測定すると、そ
の格子定数の値はある一定の値に漸近する。セリア/ジ
ルコニア=5/5の組成の例を図3に示す。これを各組
成で行い、界面活性剤の多い領域で得られる格子定数
を、ジルコニア濃度に対してプロットすると図9とな
る。この値を最小二乗法によって整理したものが式
(2)である。X = (5.423-a) /0.003 (2) This was derived as follows. When the lattice constant is measured by performing the same preparation as in Example 1 described later while increasing the amount of the surfactant in the mixing ratio of each ceria and zirconia, the value of the lattice constant is asymptotic to a certain value. An example of the composition of ceria / zirconia = 5/5 is shown in FIG. This is performed for each composition, and the lattice constant obtained in the region where the amount of surfactant is large is plotted against the zirconia concentration, resulting in FIG. Equation (2) is obtained by rearranging the values by the least square method.
【0022】図9中でジルコニア濃度0%及び100%
の時のプロットは、JCPDSカードに示されている値
である。図9の各プロットはベガード(Vegard) の法則
に従っており、式(2)は固溶度100%の際のジルコ
ニア濃度と格子定数の関係を示していることが判断でき
る。式(1)と式(2)を基に、セリア・ジルコニア固
溶体の固溶度S(%)は式(3)によって示される。In FIG. 9, zirconia concentrations of 0% and 100%
The plot at that time is the value shown on the JCPDS card. It can be judged that each plot in FIG. 9 follows Vegard's law, and that the equation (2) shows the relationship between the zirconia concentration and the lattice constant when the solid solubility is 100%. Based on the equations (1) and (2), the solid solubility S (%) of the ceria-zirconia solid solution is represented by the equation (3).
【0023】 S=100×(x/C)×〔(100−C)/(100−x)〕 …(3) ここでxは式(2)によって求められる。試料中のジル
コニア含有率Cは、セリウムとジルコニウムの配合比か
ら求められる。請求項1及び請求項4に記載の本発明の
酸化物固溶体粒子では、固溶体粒子中の酸化物の固溶度
が50%以上である。固溶度が50%未満であると所望
の特性が得られない。例えばセリアとジルコニアの固溶
体の場合は、固溶度が50%未満であると固溶体粒子の
OSCが150μmolO2 /g以下と低い。しかし固
溶度が50%以上であれば、OSCは250〜800μ
molO2 /g以上となり、酸素ストアレージ能にきわ
めて優れている。S = 100 × (x / C) × [(100-C) / (100-x)] (3) Here, x is obtained by the equation (2). The zirconia content C in the sample is obtained from the compounding ratio of cerium and zirconium. In the oxide solid solution particles of the present invention according to claim 1 and claim 4, the solid solubility of the oxide in the solid solution particles is 50% or more. If the solid solubility is less than 50%, desired characteristics cannot be obtained. For example, in the case of a solid solution of ceria and zirconia, if the solid solubility is less than 50%, the OSC of the solid solution particles is as low as 150 μmolO 2 / g or less. However, if the solid solubility is 50% or more, the OSC is 250 to 800 μ.
Since it is more than molO 2 / g, it has an extremely excellent oxygen storage capacity.
【0024】酸化物Aに対して2種以上の酸化物B,
C,・・・が固溶した場合には、酸化物Aに対する2種
以上の酸化物B,C,・・・のいずれもの固溶度が50
%以上となる。したがって、各酸化物の固溶度は、 酸化物Bの固溶度(%)=100×(酸化物Aの総量に
固溶した酸化物Bの量)/酸化物Bの総量 酸化物Cの固溶度(%)=100×(酸化物Aの総量に
固溶した酸化物Cの量)/酸化物Cの総量 ・・・・・・ で定義され、どの酸化物(B,C,・・・)の固溶度も
50%以上とする必要がある。Two or more kinds of oxides B with respect to the oxide A,
When C, ... Are solid-dissolved, the solid solubility of any of two or more kinds of oxides B, C, ...
% Or more. Therefore, the solid solubility of each oxide is as follows: Solid solubility of oxide B (%) = 100 × (amount of oxide B dissolved in the total amount of oxide A) / total amount of oxide B Solid solubility (%) = 100 × (amount of oxide C dissolved in the total amount of oxide A) / total amount of oxide C. Which oxide (B, C ,. The solid solubility of ・ ・) must be 50% or more.
【0025】また本発明の酸化物固溶体粒子では、固溶
体粒子中の結晶子の平均径が100nm以下である。こ
の結晶子の大きさは、X線回折ピークの半値幅より、次
式のシェラーの式を用いて算出される。 D=kλ/(βcosθ) ここでk:定数0.9、λ:X線波長(Å)、β:試料
の回折線幅−標準試料の回折線幅(ラジアン)、θ:回
折角(度) 結晶子の平均径が100nm以下であれば、結晶子が緻
密な充填になっておらず、結晶子間に細孔をもった固溶
体粒子となる。平均粒子径が100nmを超えると、細
孔容積及び比表面積が低下し耐熱性も低下するようにな
る。この比表面積は、1m2 /g以上、さらには20m
2 /g以上、より好ましくは50m2 /g以上であるこ
とが望ましい。Further, in the oxide solid solution particles of the present invention, the average diameter of crystallites in the solid solution particles is 100 nm or less. The size of the crystallite is calculated from the half-width of the X-ray diffraction peak using the following Scherrer equation. D = kλ / (β cos θ) where k: constant 0.9, λ: X-ray wavelength (Å), β: diffraction line width of sample-diffraction line width of standard sample (radian), θ: diffraction angle (degree) When the average diameter of the crystallites is 100 nm or less, the crystallites are not densely packed and the solid solution particles have pores between the crystallites. When the average particle diameter exceeds 100 nm, the pore volume and the specific surface area decrease, and the heat resistance also decreases. This specific surface area is 1 m 2 / g or more, further 20 m
It is desirable that it is 2 / g or more, more preferably 50 m 2 / g or more.
【0026】本発明の酸化物固溶体粒子では、例えばセ
リアとジルコニアの固溶体の場合は、酸化第2セリウム
の蛍石構造を保ったままセリウムの位置の一部をジルコ
ニウムが置換して固溶体となり、ジルコニアが十分固溶
している。その固溶体中では、ジルコニアの骨格が形成
される。したがって立方晶の結晶構造が安定となり、そ
の固溶体が多くの酸素を排出しても立方晶が維持され
る。その機構は明らかではないが、立方晶の場合には酸
素の移動が容易となると考えられ、他の正方晶や単斜晶
などに比べて高いOSCを示す。In the oxide solid solution particles of the present invention, for example, in the case of a solid solution of ceria and zirconia, zirconium partially substitutes zirconium at a position of cerium while maintaining the fluorite structure of ceric oxide to form a solid solution. Is a solid solution. A zirconia skeleton is formed in the solid solution. Therefore, the crystal structure of the cubic crystal becomes stable, and the cubic crystal is maintained even if the solid solution discharges a large amount of oxygen. Although the mechanism is not clear, the transfer of oxygen is considered to be easy in the case of the cubic system, and the OSC is higher than that of other tetragonal systems or monoclinic systems.
【0027】また結晶子の平均径が100nm以下と小
さいので、結晶子間の粒界が大きくなり、粒界を移動す
る酸素イオンが移動しやすくなるため、酸素の吸蔵・放
出速度が十分大きくなり、酸素ストアレージ能が一層向
上する。そして比表面積が1m2 /g以上と大きけれ
ば、酸素の吸蔵・放出は表面で行われるから、酸素の吸
蔵・放出速度が十分大きくなり、高いOSCと相まって
優れた酸素ストアレージ能を示す。Further, since the average diameter of the crystallites is as small as 100 nm or less, the grain boundaries between the crystallites become large, and the oxygen ions moving through the grain boundaries easily move, so that the oxygen storage / release rates are sufficiently high. , The oxygen storage capacity is further improved. When the specific surface area is as large as 1 m 2 / g or more, the oxygen is stored and released on the surface, so that the oxygen storage and release rates are sufficiently high, and the oxygen storage capacity is excellent in combination with the high OSC.
【0028】なお、セリアとジルコニアの固溶体の場合
は、セリウムとジルコニウムのモル比で、0.25≦Z
r/(Ce+Zr)≦0.75の範囲が好ましく、0.
4≦Zr/(Ce+Zr)≦0.6の範囲が特に好まし
い。ジルコニウムの含有率が25モル%以下になると、
固溶体の結晶中でジルコニウムの骨格を形成する作用が
弱まり、酸素の脱離により蛍石構造の立方晶を維持する
ことが困難となるため、酸素が脱離できなくなりOSC
が低下する。また酸素の吸蔵・放出能はセリウムの3価
と4価の価数変化によるため、ジルコニウムの含有率が
75モル%以上になると、セリウムの絶対量が不足する
ことによりOSCが低下する。In the case of a solid solution of ceria and zirconia, the molar ratio of cerium and zirconium is 0.25≤Z.
The range of r / (Ce + Zr) ≦ 0.75 is preferable, and 0.
The range of 4 ≦ Zr / (Ce + Zr) ≦ 0.6 is particularly preferable. When the content of zirconium is 25 mol% or less,
The action of forming the skeleton of zirconium in the crystal of the solid solution is weakened, and it becomes difficult to maintain the cubic crystal of the fluorite structure due to the desorption of oxygen.
Is reduced. In addition, since the oxygen storage / release capability is due to a change in the valence of trivalent and tetravalent cerium, when the zirconium content is 75 mol% or more, the OSC is reduced due to a shortage of the absolute amount of cerium.
【0029】また請求項5に記載の酸化物固溶体粒子
は、熱力学的な安定相ではないため、酸化雰囲気での使
用において固溶度が低下する場合がある。その場合、酸
化物固溶体粒子中のセリアとジルコニアに対してアルカ
リ土類元素の酸化物又はセリウム以外の希土類元素の酸
化物の少なくとも一つを添加し、酸化物固溶体粒子中の
固溶体相を安定化することができる。Further, since the oxide solid solution particles according to the fifth aspect are not in a thermodynamically stable phase, the solid solubility may decrease in use in an oxidizing atmosphere. In that case, at least one of an oxide of an alkaline earth element or an oxide of a rare earth element other than cerium is added to ceria and zirconia in the oxide solid solution particles to stabilize the solid solution phase in the oxide solid solution particles. can do.
【0030】添加するアルカリ土類元素の酸化物又はセ
リウム以外の希土類元素の酸化物は、セリア及びジルコ
ニアからなる酸化物固溶体粒子と共存し、その一部が酸
化物固溶体粒子の固溶体相に固溶すればよく、すべてが
酸化物固溶体粒子の固溶体相に固溶する必要はない。そ
の組成範囲は、セリアとジルコニアに対してアルカリ土
類元素の酸化物又はセリウム以外の希土類元素の酸化物
の少なくとも一つ(M)がモル比で0<M/(Ce+Z
r+M)≦0.15の範囲が望ましい。そして、その酸
化物固溶体粒子の結晶子の平均径は10nm以下が望ま
しく、比表面積が20m2 /g以上であることが望まし
い。50m2 /gであればさらに望ましい。The oxide of the alkaline earth element or the oxide of the rare earth element other than cerium to be added coexists with the oxide solid solution particles of ceria and zirconia, and a part of them is solid-dissolved in the solid solution phase of the oxide solid solution particles. All need not be solid-dissolved in the solid solution phase of the oxide solid solution particles. The composition range is such that at least one (M) of oxides of alkaline earth elements or oxides of rare earth elements other than cerium with respect to ceria and zirconia has a molar ratio of 0 <M / (Ce + Z.
The range of r + M) ≦ 0.15 is desirable. The average crystallite size of the oxide solid solution particles is preferably 10 nm or less, and the specific surface area is preferably 20 m 2 / g or more. More preferably, it is 50 m 2 / g.
【0031】セリアとジルコニアに対するアルカリ土類
元素の酸化物又はセリウム以外の希土類元素の酸化物の
少なくとも一つの添加は、900℃以上の酸化雰囲気に
おいてセリアとジルコニアからなる固溶体相の安定度を
高める効果をもつ。製造されたままの状態の酸化物固溶
体粒子のOSCを高めるという意味では、アルカリ土類
元素の酸化物又はセリウム以外の希土類元素の酸化物の
添加はほとんど効果がない。むしろセリアとジルコニア
のみからなる固溶体粒子の方がOSCが優れている。た
だ高温の酸化雰囲気において長時間使用する場合におい
ては、セリアとジルコニアのみからなる固溶体粒子で
は、固溶体相が徐々に2相に分離し、OSCが低下する
傾向がある。そのような条件下で使用する場合、アルカ
リ土類元素又はセリウム以外の希土類元素の酸化物を添
加した固溶体粒子は、固溶体相が相対的に安定なため、
使用後のOSCがセリアとジルコニアの2元系より相対
的に優れる。The effect of adding at least one oxide of an alkaline earth element or an oxide of a rare earth element other than cerium to ceria and zirconia enhances the stability of a solid solution phase composed of ceria and zirconia in an oxidizing atmosphere at 900 ° C. or higher. With. Addition of an oxide of an alkaline earth element or an oxide of a rare earth element other than cerium has almost no effect in terms of increasing the OSC of the as-produced oxide solid solution particles. Rather, solid solution particles consisting of ceria and zirconia have a better OSC. However, when used for a long time in a high temperature oxidizing atmosphere, solid solution particles consisting of ceria and zirconia tend to gradually separate the solid solution phase into two phases and lower the OSC. When used under such conditions, the solid solution particles to which an oxide of an alkaline earth element or a rare earth element other than cerium is added, because the solid solution phase is relatively stable,
The OSC after use is relatively superior to the binary system of ceria and zirconia.
【0032】したがって、セリアとジルコニアに対して
アルカリ土類元素の酸化物又はセリウム以外の希土類元
素の酸化物の少なくとも一つ(M)がモル比で0<M/
(Ce+Zr+M)≦0.15の範囲より多くなると、
OSCがかえって小さくなる。また、成分が増えコスト
的に降りとなる。また結晶子の平均径が10nmより大
きい、又は比表面積が20m2 /g未満であると、酸素
の吸放出速度が小さくなるため、急激に酸素分圧が変化
する雰囲気で用いた場合、実質的なOSCが小さくな
る。Therefore, at least one (M) of oxides of alkaline earth elements or oxides of rare earth elements other than cerium with respect to ceria and zirconia has a molar ratio of 0 <M /
When it becomes larger than the range of (Ce + Zr + M) ≦ 0.15,
On the contrary, OSC becomes smaller. In addition, the amount of ingredients increases, resulting in cost reduction. Further, if the average diameter of the crystallite is larger than 10 nm or the specific surface area is less than 20 m 2 / g, the rate of oxygen absorption and desorption decreases, so that when used in an atmosphere where the oxygen partial pressure changes rapidly, OSC becomes small.
【0033】なお、アルカリ土類元素の酸化物又はセリ
ウム以外の希土類元素の酸化物がセリアとジルコニアよ
りなる酸化物固溶体に固溶すると、結晶の格子定数が変
化するため、格子定数からセリアに対するジルコニアの
固溶度を判定することは困難である。ただ、生成した単
一の固溶体相がセリウム主成分の相とジルコニウム主成
分の相とに分離するか否かをX線回折ピークの形態から
判定することはできる。When an oxide of an alkaline earth element or an oxide of a rare earth element other than cerium is solid-dissolved in an oxide solid solution containing ceria and zirconia, the lattice constant of the crystal changes, so that the lattice constant of zirconia to ceria changes. It is difficult to determine the solid solubility of. However, it is possible to judge from the form of the X-ray diffraction peak whether or not the generated single solid solution phase is separated into the phase containing cerium and the phase containing zirconium.
【0034】上記酸化物固溶体粒子を製造する請求項6
記載の本発明の製造方法では、酸化物となる元素が複数
種類溶解した水溶液に界面活性剤とアルカリ性物質を添
加することにより沈殿物を得る。ここで界面活性剤の作
用は明らかではないが、以下のように推察される。つま
り、アルカリ性物質で中和したばかりの状態では、酸化
物となる元素は数nm以下の粒径の非常に微細な水酸化
物又は酸化物の状態で沈殿する。従来はこのまま乾燥さ
せているが、本発明では界面活性剤の添加により界面活
性剤のミセルの中に複数種の沈殿粒子が均一に取り込ま
れる。そしてミセル中で中和、凝集及び熟成が進行する
ことによって、複数成分が均一に含まれ濃縮された小さ
な空間の中で固溶体粒子の生成が進行する。さらに、界
面活性剤の分散効果により沈殿微粒子の分散性が向上
し、偏析が小さくなって接触度合いが高まる。これらに
より固溶度が高くなるとともに、結晶子の平均径を小さ
くすることができる。6. A method according to claim 6, wherein the oxide solid solution particles are produced.
In the described production method of the present invention, a precipitate is obtained by adding a surfactant and an alkaline substance to an aqueous solution in which a plurality of types of oxide elements are dissolved. Here, the action of the surfactant is not clear, but it is presumed as follows. That is, in the state just neutralized with the alkaline substance, the element to be an oxide precipitates in the state of a very fine hydroxide or oxide having a particle diameter of several nm or less. Conventionally, it is dried as it is, but in the present invention, a plurality of kinds of precipitated particles are uniformly incorporated into the micelle of the surfactant by adding the surfactant. Then, as neutralization, aggregation and aging progress in the micelles, generation of solid solution particles proceeds in a small space in which a plurality of components are uniformly contained and concentrated. Furthermore, the dispersing effect of the surfactant improves the dispersibility of the precipitated fine particles, reduces segregation, and increases the degree of contact. As a result, the solid solubility is increased, and the average diameter of crystallites can be reduced.
【0035】界面活性剤の添加時期は、アルカリ性物質
の先に添加してもよいし、アルカリ性物質と同時でもよ
く、またアルカリ性物質より後に添加することもでき
る。しかし界面活性剤の添加時期があまり遅くなると偏
析が生じてしまうので、アルカリ物質の添加と同時もし
くはそれより前に添加することが望ましい。水溶液とさ
れている酸化物となる元素の化合物としては、硝酸セリ
ウム(III)、硝酸セリウム(IV)アンモニウム、塩化
セリウム(III )、硫酸セリウム(III )、硫酸セリウ
ム(IV)、オキシ硝酸ジルコニウム、オキシ塩化ジルコ
ニウムなどが例示される。またアルカリ性物質として
は、水溶液としてアルカリ性を示すものであれば用いる
ことができる。加熱時に容易に分離できるアンモニアが
特に望ましい。しかしアルカリ金属の水酸化物などの他
のアルカリ性物質であっても、水洗によって容易に除去
することができるので用いることができる。The surfactant may be added before the alkaline substance, at the same time as the alkaline substance, or after the alkaline substance. However, if the surfactant is added too late, segregation will occur. Therefore, it is desirable to add the surfactant at the same time as or before the addition of the alkali substance. Examples of the compound of the element that becomes an oxide in the aqueous solution include cerium (III) nitrate, cerium (IV) ammonium nitrate, cerium (III) chloride, cerium (III) sulfate, cerium (IV) sulfate, zirconium oxynitrate, Examples include zirconium oxychloride and the like. Further, as the alkaline substance, any substance that exhibits alkalinity as an aqueous solution can be used. Ammonia, which can be easily separated on heating, is particularly desirable. However, other alkaline substances such as alkali metal hydroxides can be used because they can be easily removed by washing with water.
【0036】界面活性剤としては、陰イオン系、陽イオ
ン系及び非イオン系のいずれも用いることができるが、
その中でも形成するミセルが内部に狭い空間を形成しう
る形状、例えば球状ミセルを形成し易い界面活性剤が望
ましい。また臨界ミセル濃度(cmc)が0.1mol
/リットル以下のものが望ましい。より望ましくは、
0.01mol/リットル以下の界面活性剤が望まし
い。As the surfactant, any of anionic, cationic and nonionic surfactants can be used.
Among them, a surfactant that can easily form a narrow space inside the formed micelle, for example, a spherical micelle is preferable. The critical micelle concentration (cmc) is 0.1 mol
/ Liter or less is desirable. More preferably,
A surfactant of 0.01 mol / liter or less is desirable.
【0037】これらの界面活性剤を例示すると、アルキ
ルベンゼンスルホン酸、及びその塩、αオレフィンスル
ホン酸、及びその塩、アルキル硫酸エステル塩、アルキ
ルエーテル硫酸エステル塩、フェニルエーテル硫酸エス
テル塩、メチルタウリン酸塩、スルホコハク酸塩、エー
テル硫酸塩、アルキル硫酸塩、エーテルスルホン酸塩、
飽和脂肪酸、及びその塩、オレイン酸等の不飽和脂肪
酸、及びその塩、その他のカルボン酸、スルホン酸、硫
酸、リン酸、フェノールの誘導体等の陰イオン性界面活
性剤、ポリオキシエチレンポリプロレンアルキルエーテ
ル、ポリオキシエチレンアルキルエーテル、ポリキシエ
チレンアルキルフェニルエーテル、ポリオキシエチレン
ポリスチリルフェニルエーテル、ポリオキシエチレンポ
リオキシポリプロピレンアルキルエーテル、ポリオキシ
エチレンポリオキシプロピレングリコール、多価アルコ
ール;グリコール;グリセリン;ソルビトール;マンニ
トール;ペンタエスリトール;ショ糖;など多価アルコ
ールの脂肪酸部分エステル、多価アルコール;グリコー
ル;グリセリン;ソルビトール;マンニトール;ペンタ
エスリトール;ショ糖;など多価アルコールのポリオキ
シエチレン脂肪酸部分エステル、ポリオキシエチレン脂
肪酸エステル、ポリオキシエチレン化ヒマシ油、ポリグ
リセン脂肪酸エステル、脂肪酸ジエタノールアミド、ポ
リオキシエチレンアルキルアミン、トリエタノールアミ
ン脂肪酸部分エステル、トリアルキルアミンオキサイド
等の非イオン性界面活性剤、第一脂肪アミン塩、第二脂
肪アミン塩、第三脂肪アミン塩、テトラアルキルアンモ
ニウム塩;トリアルキルベンジルアンモニウム塩;アル
キルピロジニウム塩;2−アルキル−1−アルキル−1
−ヒドロキシエチルイミダゾリニウム塩;N,N−ジア
ルキルモルホリニウム塩;ポリエチレンポリアミン脂肪
酸アミド塩;等の第四吸アンモニウム塩、等の陽イオン
性界面活性剤、ベタイン化合物等の両イオン性界面活性
剤から選ばれる少なくとも一種である。Examples of these surfactants include alkylbenzene sulfonic acid and its salt, α-olefin sulfonic acid and its salt, alkyl sulfate ester salt, alkyl ether sulfate ester salt, phenyl ether sulfate ester salt, and methyl taurate phosphate. , Sulfosuccinate, ether sulfate, alkyl sulfate, ether sulfonate,
Saturated fatty acids and their salts, unsaturated fatty acids such as oleic acid and its salts, other anionic surfactants such as carboxylic acid, sulfonic acid, sulfuric acid, phosphoric acid and phenol derivatives, polyoxyethylene polyprolene alkyl Ether, polyoxyethylene alkyl ether, polyoxyethylene alkyl phenyl ether, polyoxyethylene polystyryl phenyl ether, polyoxyethylene polyoxy polypropylene alkyl ether, polyoxyethylene polyoxypropylene glycol, polyhydric alcohol; glycol; glycerin; sorbitol; Mannitol; pentaethritol; sucrose; fatty acid partial esters of polyhydric alcohols, such as polyhydric alcohol; glycol; glycerin; sorbitol; mannitol; Polyoxyethylene fatty acid partial ester of polyhydric alcohol, polyoxyethylene fatty acid ester, polyoxyethylated castor oil, polyglycene fatty acid ester, fatty acid diethanolamide, polyoxyethylene alkylamine, triethanolamine fatty acid partial ester, trialkylamine Nonionic surfactants such as oxides, primary fatty amine salts, secondary fatty amine salts, tertiary fatty amine salts, tetraalkylammonium salts; trialkylbenzylammonium salts; alkylpyrodinium salts; 2-alkyl-1 -Alkyl-1
-Hydroxyethyl imidazolinium salts; N, N-dialkylmorpholinium salts; quaternary ammonium salts such as polyethylene polyamine fatty acid amide salts; cationic surfactants such as betaine compounds; zwitterionic surfactants such as betaine compounds It is at least one selected from agents.
【0038】なお、上記臨界ミセル濃度(cmc)と
は、ある界面活性剤がミセルを形成する最低の濃度のこ
とである。界面活性剤の添加量としては、製造する酸化
物固溶体粒子100重量部に対して1〜50重量部とな
る範囲が望ましい。1重量部以上とすることにより、よ
り固溶度が向上する。50重量部を超えると、界面活性
剤が効果的にミセルを形成しにくくなるおそれがある。The critical micelle concentration (cmc) is the lowest concentration at which a surfactant forms micelles. The amount of the surfactant added is preferably in the range of 1 to 50 parts by weight with respect to 100 parts by weight of the oxide solid solution particles to be produced. When the content is 1 part by weight or more, the solid solubility is further improved. If it exceeds 50 parts by weight, the surfactant may not be able to effectively form micelles.
【0039】セリアとジルコニアの固溶体を製造する場
合には、セリウムの価数に注意する必要がある。4価の
セリウムの場合には、セリアはジルコニアと比較的容易
に固溶するため、上記製造方法で本発明の酸化物固溶体
粒子を製造することができる。しかし3価のセリウムの
場合には、セリアはジルコニアと固溶しにくいので、別
の手段を採用することが望ましい。When producing a solid solution of ceria and zirconia, it is necessary to pay attention to the valence of cerium. In the case of tetravalent cerium, ceria relatively easily forms a solid solution with zirconia, and thus the oxide solid solution particles of the present invention can be manufactured by the above manufacturing method. However, in the case of trivalent cerium, ceria does not easily form a solid solution with zirconia, so it is desirable to adopt another means.
【0040】そこで請求項7に記載の発明では、セリウ
ム(III )が過酸化水素と錯体を作り酸化されてセリウ
ム(IV)となるので、セリアをジルコニアと容易に固溶
させやすくすることができる。過酸化水素の添加量は、
セリウムイオンの1/4以上であることが望ましい。過
酸化水素の添加量がセリウムイオンの1/4未満である
とセリアとジルコニアの固溶が不十分となる。過酸化水
素の過剰の添加は特に悪影響を及ぼさないが、経済的な
面で不利となるのみでメリットはなく、セリウムイオン
の1/2〜2倍の範囲にあることがより望ましい。Therefore, in the invention described in claim 7, since cerium (III) forms a complex with hydrogen peroxide to be oxidized to cerium (IV), ceria can be easily made to form a solid solution with zirconia. . The amount of hydrogen peroxide added is
It is desirable that it is 1/4 or more of cerium ions. If the amount of hydrogen peroxide added is less than ¼ of the cerium ion, the solid solution of ceria and zirconia will be insufficient. Excessive addition of hydrogen peroxide has no particular adverse effect, but is only disadvantageous in terms of economy and has no merit, and is more preferably in the range of 1/2 to 2 times the cerium ion.
【0041】なお、過酸化水素の添加時期は特に制限さ
れず、アルカリ性物質及び界面活性剤の添加前でもよい
し、これらと同時あるいはそれより後に添加することも
できる。また過酸化水素は後処理が不要となるので特に
望ましい酸化剤であるが、場合によっては酸素ガスやオ
ゾン、過塩素酸、過マンガン酸などの過酸化物など他の
酸化剤を用いることもできる。The time of addition of hydrogen peroxide is not particularly limited, and it may be added before the addition of the alkaline substance and the surfactant, or at the same time as or after the addition thereof. Further, hydrogen peroxide is a particularly desirable oxidant because it does not require post-treatment, but in some cases, other oxidants such as oxygen gas, ozone, peroxides such as perchloric acid and permanganate can be used. .
【0042】さらに請求項10に記載の本発明の製造方
法では、酸化物となる元素が複数種類溶解した水溶液を
103 sec-1以上、望ましくは104 sec-1以上の
高せん断速度で高速攪拌しながらアルカリ性物質を添加
することにより沈殿物を得ている。中和生成物である沈
殿微粒子中の成分は、ある程度の偏析が避けられない。
本発明では、強力な攪拌によりこの偏析を均一にすると
ともに分散性を向上させているので、例えばセリウム源
とジルコニウム源の接触度合いが一層向上する。Further, in the production method of the present invention as set forth in claim 10, an aqueous solution in which a plurality of kinds of oxide elements are dissolved is high at a high shear rate of 10 3 sec -1 or more, preferably 10 4 sec -1 or more. A precipitate is obtained by adding an alkaline substance with stirring. The components in the precipitated fine particles, which are neutralization products, are inevitably segregated to some extent.
In the present invention, since the segregation is made uniform and the dispersibility is improved by vigorous stirring, the degree of contact between the cerium source and the zirconium source is further improved.
【0043】また例えばセリウム塩とジルコニウム塩の
水溶液から共沈させる場合、両者の沈殿するpHが異な
るため同種の沈殿粒子が集団になりやすい。そこで高せ
ん断速度で高速攪拌することにより、同種の沈殿微粒子
の集団が破壊され、沈殿粒子がよく混合される。したが
って請求項10に記載の発明によれば、固溶度が向上す
るとともに結晶子の平均粒径を一層小さくすることがで
きる。せん断速度が103 sec-1未満では、固溶促進
効果が十分でない。なお、せん断速度Vは、V=v/D
で表される。ここでvは攪拌機のロータとステータの速
度差(m/sec)であり、Dはロータとステータの間
隙(m)である。When coprecipitating from an aqueous solution of cerium salt and zirconium salt, for example, precipitated particles of the same kind tend to be aggregated because the pH of precipitation of both is different. Then, high-speed stirring at a high shear rate destroys a group of precipitated fine particles of the same type, and the precipitated particles are well mixed. Therefore, according to the invention described in claim 10, the solid solubility is improved and the average particle size of the crystallite can be further reduced. If the shear rate is less than 10 3 sec -1 , the solid solution promoting effect is not sufficient. The shear rate V is V = v / D
It is represented by Here, v is the speed difference (m / sec) between the rotor and the stator of the stirrer, and D is the gap (m) between the rotor and the stator.
【0044】この請求項10に記載の製造方法は、請求
項6〜9の発明の製造方法に適用されることにより一層
固溶が促進される。また、3価のセリウムを用いた場合
でも固溶が促進されるため、本発明を用いれば請求項8
の発明のように過酸化水素で4価に酸化しなくとも高い
固溶度をもつ固溶体粒子を製造できる。請求項6〜10
の製造方法の第2工程では、沈殿物を加熱することによ
り、沈殿物中の元素を酸化物とする。この加熱雰囲気
は、酸化雰囲気、還元雰囲気、中性雰囲気のいずれの雰
囲気でもよい。沈殿物中の元素が酸化物となるのは、原
料として使用した水溶液の水等に含まれる酸素が関与
し、加熱時に沈殿物中の元素を酸化させるからである。
したがって、還元雰囲気で加熱しても酸化物が得られる
のである。By applying the manufacturing method according to the tenth aspect to the manufacturing method according to the sixth aspect to the ninth aspect, the solid solution is further promoted. Further, since solid solution is promoted even when trivalent cerium is used, according to the present invention,
It is possible to produce solid solution particles having a high solid solubility without being oxidized to be tetravalent with hydrogen peroxide as in the invention of. Claims 6 to 10
In the second step of the manufacturing method of 1., the element in the precipitate is converted to an oxide by heating the precipitate. The heating atmosphere may be any of an oxidizing atmosphere, a reducing atmosphere and a neutral atmosphere. The reason why the element in the precipitate becomes an oxide is that oxygen contained in water or the like of the aqueous solution used as a raw material participates and oxidizes the element in the precipitate during heating.
Therefore, the oxide can be obtained even when heated in a reducing atmosphere.
【0045】また、請求項11の製造方法では、原料の
水溶液に界面活性剤を添加しなくても、第2工程におい
て還元雰囲気で沈殿物を加熱することにより、粒子中の
該酸化物の固溶度が高く、かつ粒子中の結晶子の平均径
が小さい酸化物固溶体粒子が得られる。これは、以下の
理由によるものと考えられる。According to the eleventh aspect of the present invention, even if the surfactant is not added to the aqueous solution of the raw material, the precipitate is heated in the reducing atmosphere in the second step to solidify the oxide in the particles. Oxide solid solution particles having a high solubility and a small average crystallite size in the particles can be obtained. This is considered to be due to the following reasons.
【0046】例えば、セリアとシルコニアとの固溶体粒
子の場合、加熱する雰囲気が還元状態であるため、酸化
物中でセリウム原子が3価となって酸素欠陥ができ、セ
リウムとジルコニウムの相合拡散が容易となってセリア
とジルコニアの固溶が促進されやすい状態になる。さら
に、ジルコニウムが規則的に配列し、セリア中にジルコ
ニアの骨格を確実に形成させることができる。また、大
気中の熱処理では、十分な固溶状態を得るのに1600
℃以上の温度が必要であるが、請求項10の製造方法で
は1300℃以下の熱処理温度で十分固溶が進行する。
したがって、形成される結晶子の大きさが小さくなる。For example, in the case of solid solution particles of ceria and zirconia, since the heating atmosphere is in a reducing state, the cerium atom becomes trivalent in the oxide to generate oxygen defects, and the phase diffusion of cerium and zirconium is easy. Then, the solid solution of ceria and zirconia is easily promoted. Furthermore, zirconium is regularly arranged, and the skeleton of zirconia can be surely formed in ceria. Also, in the heat treatment in the atmosphere, it is 1600 to obtain a sufficient solid solution state.
A temperature of not less than 0 ° C is required, but in the manufacturing method of the tenth aspect, a solid solution proceeds sufficiently at a heat treatment temperature of not more than 1300 ° C.
Therefore, the size of the formed crystallite becomes small.
【0047】還元雰囲気としては、一酸化炭素、水素、
炭化水素等の気体が含まれる状態とするのがよい。ま
た、上記で述べたように、還元雰囲気でも、原料として
使用した水溶液中の水等に含まれる酸素が加熱時に沈殿
物中の元素を酸化させるため、酸化物が得られる。As the reducing atmosphere, carbon monoxide, hydrogen,
It is preferable that gas such as hydrocarbon is contained. Further, as described above, even in the reducing atmosphere, the oxygen contained in the water or the like in the aqueous solution used as the raw material oxidizes the element in the precipitate during heating, so that an oxide is obtained.
【0048】還元雰囲気としては、例えば、COにより
還元雰囲気とする場合、0.1〜30%のCO濃度が望
ましい。この範囲であれば、より固溶度が向上する。沈
殿物の回収方法としては、フィルタープレスなどで沈殿
から大部分の水分を搾り取った後にフィルターケーキを
乾燥する方法、スプレードライヤーなどで沈殿と水を噴
霧して乾燥する方法などが例示される。また沈殿の乾燥
は100℃以上で速やかに行うことができるが、200
℃以上、さらには300℃以上で乾燥すれば、中和によ
って生成した硝酸アンモニウムなどが分解して除去され
易くなるため好ましい。As the reducing atmosphere, for example, when the reducing atmosphere is CO, the CO concentration is preferably 0.1 to 30%. Within this range, the solid solubility is further improved. Examples of the method for recovering the precipitate include a method of squeezing out most of the water content from the precipitate with a filter press or the like, and a method of drying the filter cake, a method of spraying the precipitate and water with a spray dryer or the like, and drying. The precipitate can be dried quickly at 100 ° C or higher,
Drying at a temperature of not less than 0 ° C., more preferably not less than 300 ° C., is preferable because ammonium nitrate and the like generated by neutralization are decomposed and easily removed.
【0049】請求項6〜11の製造方法において、沈殿
物を加熱する方法としては、どのような方法でもよい。
また、加熱温度としては、150〜600℃の範囲が望
ましい。加熱温度が150℃未満では、酸化物が得られ
にくく、600℃を超えると、得られた酸化物が焼結を
起こして、粒子が凝集するおそれがある。また、上記沈
殿の回収時に乾燥する際に、乾燥温度が上記加熱温度
(150〜600℃)に達する場合には、乾燥工程と沈
殿物の加熱工程とを兼用することもできる。In the manufacturing method of claims 6 to 11, any method may be used as a method for heating the precipitate.
Further, the heating temperature is preferably in the range of 150 to 600 ° C. If the heating temperature is lower than 150 ° C., it is difficult to obtain an oxide, and if the heating temperature is higher than 600 ° C., the obtained oxide may sinter and particles may aggregate. Further, when the drying temperature reaches the above heating temperature (150 to 600 ° C.) during the drying at the time of recovering the precipitate, the drying step and the heating step of the precipitate may be combined.
【0050】また、請求項6〜11の製造方法におい
て、得られた酸化物固溶体粒子に以下に示す後処理を施
すことが望ましい。すなわち、還元雰囲気(例えば、一
酸化炭素、水素、炭化水素等の気体が含まれる状態)に
おいて、800〜1300℃で酸化物固溶体粒子に熱処
理を行うことも、固溶を促進させるので好ましい。例え
ば、セリア中にジルコニアの骨格を確実に形成させOS
Cを高めることができるので、好ましい。このように、
還元雰囲気における熱処理の際には、得られた固溶体中
の酸素の一部が欠落し、陽イオン(セリウム)の一部が
低い価数(3価)に還元された状態となっている。しか
し、その後空気中で約300℃以上に加熱されれば容易
に元の状態に復帰する。よって、熱処理後の冷却過程
で、約600℃以下で空気と接触させ、元の価数に復帰
させる処理をあわせて行ってもよい。Further, in the manufacturing method of claims 6 to 11, it is desirable that the obtained oxide solid solution particles are subjected to the following post-treatment. That is, it is also preferable to perform heat treatment on the oxide solid solution particles at 800 to 1300 ° C. in a reducing atmosphere (for example, a state in which a gas such as carbon monoxide, hydrogen, or hydrocarbon is contained), because the solid solution is promoted. For example, by reliably forming the zirconia skeleton in ceria, the OS
It is preferable because C can be increased. in this way,
During the heat treatment in a reducing atmosphere, some of the oxygen in the obtained solid solution is lost, and some of the cations (cerium) are reduced to a low valence (trivalent). However, if it is heated to about 300 ° C. or more in the air thereafter, it easily returns to the original state. Therefore, in the cooling process after the heat treatment, a process of bringing the material into contact with air at a temperature of about 600 ° C. or lower to restore the original valence may be performed.
【0051】沈殿物の加熱の際に、噴霧乾燥により加熱
した場合には、粉末状のもの(乾燥物)として酸化物固
溶体粒子が得られる。また、その他の加熱方法による場
合には、得られる酸化物固溶体粒子は塊状であるため、
ハンマーミル、ボールミル、振動ミルなどで乾式粉砕す
ることにより、酸化物固溶体粒子よりなる粉末が得られ
る。When the precipitate is heated by spray drying, the oxide solid solution particles are obtained as powder (dry matter). Further, in the case of using other heating methods, the obtained oxide solid solution particles are lumpy,
By dry pulverizing with a hammer mill, a ball mill, a vibration mill or the like, a powder composed of oxide solid solution particles can be obtained.
【0052】[0052]
【実施例】以下、実施例及び比較例により本発明を具体
的に説明する。なお、本発明は以下の実施例に限定され
るものではない。 (実施例1)硝酸セリウム(III )と硝酸ジルコニル
を、モル比でCe/Zr=5/5となるように混合した
水溶液を調製し、攪拌しながらアンモニア水を滴下して
中和し沈殿を生成させた。続いてこの混合水溶液に含ま
れるセリウムイオンの1/2のモル数の過酸化水素を含
む過酸化水素水と、得られる酸化物の重量の10%のア
ルキルベンゼンスルホン酸を含む水溶液を添加し、混合
攪拌した。EXAMPLES The present invention will be specifically described below with reference to Examples and Comparative Examples. Note that the present invention is not limited to the following embodiments. (Example 1) An aqueous solution was prepared by mixing cerium (III) nitrate and zirconyl nitrate in a molar ratio of Ce / Zr = 5/5. Aqueous ammonia was added dropwise with stirring to neutralize the precipitate. Was generated. Subsequently, an aqueous solution containing hydrogen peroxide containing hydrogen peroxide of half the number of moles of cerium ions contained in the mixed aqueous solution and an aqueous solution containing alkylbenzenesulfonic acid at 10% by weight of the obtained oxide were added and mixed. Stirred.
【0053】得られたスラリーを導入空気温度400
℃、排出空気温度250℃の雰囲気中に噴霧し、スプレ
ードライ法で乾燥させるとともに共存する硝酸アンモニ
ウムを蒸発または分解し、酸化物固溶体粒子を含む粉末
を調製した。この酸化物固溶体粒子の固溶度をX線回折
による格子定数と出発原料の配合比から式(3)により
算出したところ、固溶度は100%であった。また結晶
子の平均径をX線回折パターンの311ピークからシュ
ラーの式を用いて算出したところ、平均径は10nmで
あった。さらにBET法により測定された酸化物固溶体
粒子の比表面積は45m2 /gであった。The slurry thus obtained was introduced at an air temperature of 400.
C., an exhaust air temperature of 250.degree. C. was sprayed and dried by a spray drying method, and coexisting ammonium nitrate was evaporated or decomposed to prepare a powder containing oxide solid solution particles. The solid solubility of the oxide solid solution particles was calculated by the formula (3) from the lattice constant by X-ray diffraction and the mixing ratio of the starting materials, and the solid solubility was 100%. Further, the average diameter of the crystallite was calculated from the 311 peak of the X-ray diffraction pattern using the Schuler's formula, and the average diameter was 10 nm. Further, the specific surface area of the oxide solid solution particles measured by the BET method was 45 m 2 / g.
【0054】(比較例1)セリア粉末とジルコニア粉末
をモル比でCe/Zr=5/5となるように混合して水
に分散させ、ボールミルを用いて48時間混合した。得
られたスラリーを120℃で乾燥させ、混合粉末を得
た。次に、この混合粉末をアルミナ製坩堝に入れて16
00℃で5時間加熱し、固溶体とした。冷却後乳鉢で粉
砕し、さらに水とともにボールミルで48時間粉砕し
て、比較例1の酸化物固溶体粒子を調製した。実施例1
と同様にして測定されたこの酸化物固溶体粒子の固溶度
は100%、結晶子の平均径は1000nm、比表面積
は0.3m2 /gであった。Comparative Example 1 Ceria powder and zirconia powder were mixed in a molar ratio of Ce / Zr = 5/5, dispersed in water, and mixed for 48 hours using a ball mill. The obtained slurry was dried at 120 ° C. to obtain a mixed powder. Next, this mixed powder is put into an alumina crucible and
It heated at 00 degreeC for 5 hours, and was set as the solid solution. After cooling, the mixture was ground in a mortar and further ground with water for 48 hours in a ball mill to prepare oxide solid solution particles of Comparative Example 1. Example 1
The solid solubility of the oxide solid solution particles measured in the same manner as in 100% was 100%, the average diameter of crystallites was 1000 nm, and the specific surface area was 0.3 m 2 / g.
【0055】(比較例2)過酸化水素と界面活性剤を用
いない他は実施例1と同様に酸化物粒子を調製した。こ
の酸化物粒子の固溶度は18%、結晶子の平均径は6n
m、比表面積は80m2 /gであった。 (比較例3)界面活性剤を用いない他は実施例と同様に
酸化物粒子を調製した。この酸化物粒子の固溶度は38
%、結晶子の平均径は7nm、比表面積は70m2 /g
であった。Comparative Example 2 Oxide particles were prepared in the same manner as in Example 1 except that hydrogen peroxide and a surfactant were not used. The solid solubility of these oxide particles is 18%, and the average diameter of crystallites is 6n.
m, the specific surface area was 80 m 2 / g. (Comparative Example 3) Oxide particles were prepared in the same manner as in Example except that the surfactant was not used. The solid solubility of these oxide particles is 38.
%, Crystallite average diameter 7 nm, specific surface area 70 m 2 / g
Met.
【0056】<耐熱性評価>実施例1の酸化物固溶体粒
子を熱処理した。熱処理後の比表面積と結晶子の平均径
を測定した結果を図1及び図2に示す。熱処理温度は3
50〜1200℃の範囲で4水準選び、熱処理時間はそ
れぞれ5時間である。図1及び図2より、実施例1の酸
化物固溶体は熱処理によって比表面積が低下するものの
1200℃の熱処理によっても1m2 /g以上の高い比
表面積を有し、結晶子径も100nm以下に維持されて
いることがわかる。<Heat Resistance Evaluation> The oxide solid solution particles of Example 1 were heat treated. The results of measuring the specific surface area after heat treatment and the average diameter of the crystallites are shown in FIGS. 1 and 2. Heat treatment temperature is 3
Four levels are selected in the range of 50 to 1200 ° C., and the heat treatment time is 5 hours each. 1 and 2, although the oxide solid solution of Example 1 has a reduced specific surface area by heat treatment, it has a high specific surface area of 1 m 2 / g or more even after heat treatment at 1200 ° C. and the crystallite diameter is maintained at 100 nm or less. You can see that it is done.
【0057】<OSC測定>また実施例1と比較例1〜
3の酸化物固溶体粒子について、それぞれOSCを測定
した。OSCの測定は、熱重量分析器を用いて水素と酸
素を交互に流通させて試料の酸化還元を繰り返し、その
際の重量変化を測定することにより求めた。その結果、
実施例1の酸化物固溶体のOSCは450μmolO2
/gであったのに対し、比較例1〜3の酸化物固溶体の
OSCはそれぞれ100、95、150μmolO2 /
gとかなり低い値を示した。この結果は、比較例1につ
いては、比表面積の差、比較例2、3については固溶度
の差に起因するものであることが明らかである。<OSC measurement> Further, Example 1 and Comparative Examples 1 to 1
The OSCs of the oxide solid solution particles of No. 3 were measured. The measurement of OSC was obtained by repeating the oxidation-reduction of the sample by flowing hydrogen and oxygen alternately using a thermogravimetric analyzer and measuring the weight change at that time. as a result,
The OSC of the oxide solid solution of Example 1 was 450 μmolO 2.
However, the OSCs of the oxide solid solutions of Comparative Examples 1 to 3 were 100, 95 and 150 μmolO 2 / g, respectively.
The value was quite low as g. It is clear that this result is due to the difference in specific surface area for Comparative Example 1 and the difference in solid solubility for Comparative Examples 2 and 3.
【0058】(実施例2)アンモニア水を滴下する前の
硝酸セリウム(III )と硝酸ジルコニルの水溶液に、予
め過酸化水素水を添加しておいたこと以外は実施例1と
同様にして、実施例2の酸化物固溶体粒子を調製した。
実施例1と同様にして測定されたこの酸化物固溶体粒子
の固溶度は100%、結晶子の平均径は10nm、比表
面積は45m2 /gであった。Example 2 Example 2 was carried out in the same manner as in Example 1 except that hydrogen peroxide solution was added in advance to the aqueous solution of cerium (III) nitrate and zirconyl nitrate before dropwise addition of aqueous ammonia. The oxide solid solution particles of Example 2 were prepared.
The solid solubility of the oxide solid solution particles measured in the same manner as in Example 1 was 100%, the average diameter of crystallites was 10 nm, and the specific surface area was 45 m 2 / g.
【0059】(実施例3)アンモニア水を滴下する前の
硝酸セリウム(III )と硝酸ジルコニルの水溶液に、予
めアルキルベンゼンスルホン酸水溶液を添加しておいた
こと以外は実施例1と同様にして、実施例3の酸化物固
溶体粒子を調製した。実施例1と同様にして測定された
この酸化物固溶体粒子の固溶度は100%、結晶子の平
均径は12nm、比表面積は35m2 /gであった。Example 3 Example 3 was carried out in the same manner as in Example 1 except that the aqueous solution of alkylbenzene sulfonic acid was added in advance to the aqueous solution of cerium (III) nitrate and zirconyl nitrate before dropwise addition of aqueous ammonia. The oxide solid solution particles of Example 3 were prepared. The solid solubility of the oxide solid solution particles measured in the same manner as in Example 1 was 100%, the average crystallite diameter was 12 nm, and the specific surface area was 35 m 2 / g.
【0060】(実施例4)アルキルベンゼンスルホン酸
水溶液の代わりにαオレフィンスルホン酸水溶液を用い
たこと以外は実施例1と同様にして、実施例4の酸化物
固溶体粒子を調製した。実施例1と同様にして測定され
たこの酸化物固溶体粒子の固溶度は95%、結晶子の平
均径は8nm、比表面積は35m2 /gであった。Example 4 Oxide solid solution particles of Example 4 were prepared in the same manner as in Example 1 except that an α-olefin sulfonic acid aqueous solution was used instead of the alkylbenzene sulfonic acid aqueous solution. The solid solubility of the oxide solid solution particles measured in the same manner as in Example 1 was 95%, the average diameter of crystallites was 8 nm, and the specific surface area was 35 m 2 / g.
【0061】(実施例5)アルキルベンゼンスルホン酸
水溶液の代わりにポリオキシエチレンポリプロピルアル
キルエーテル水溶液を用いたこと以外は実施例1と同様
にして、実施例5の酸化物固溶体粒子を調製した。実施
例1と同様にして測定されたこの酸化物固溶体粒子の固
溶度は100%、結晶子の平均径は8nm、比表面積は
40m2 /gであった。Example 5 Oxide solid solution particles of Example 5 were prepared in the same manner as in Example 1 except that a polyoxyethylene polypropyl alkyl ether aqueous solution was used instead of the alkylbenzene sulfonic acid aqueous solution. The solid solubility of the oxide solid solution particles measured in the same manner as in Example 1 was 100%, the average crystallite diameter was 8 nm, and the specific surface area was 40 m 2 / g.
【0062】(実施例6)アルキルベンゼンスルホン酸
水溶液の代わりにセチルトリメチルアンモニウムクロラ
イド水溶液を用いたこと以外は実施例1と同様にして、
実施例6の酸化物固溶体粒子を調製した。実施例1と同
様にして測定されたこの酸化物固溶体粒子の固溶度は9
5%、結晶子の平均径は7nm、比表面積は58m2 /
gであった。Example 6 In the same manner as in Example 1 except that an aqueous solution of cetyltrimethylammonium chloride was used instead of the aqueous solution of alkylbenzene sulfonic acid,
The oxide solid solution particles of Example 6 were prepared. The solid solubility of the oxide solid solution particles measured in the same manner as in Example 1 is 9
5%, average diameter of crystallite is 7 nm, specific surface area is 58 m 2 /
g.
【0063】(実施例7)アルキルベンゼンスルホン酸
水溶液の代わりにモノアルキルアンモニウムアセテート
水溶液を用いたこと以外は実施例1と同様にして、実施
例7の酸化物固溶体粒子を調製した。実施例1と同様に
して測定されたこの酸化物固溶体粒子の固溶度は90
%、結晶子の平均径は8nm、比表面積は60m2 /g
であった。Example 7 Oxide solid solution particles of Example 7 were prepared in the same manner as in Example 1 except that a monoalkylammonium acetate aqueous solution was used instead of the alkylbenzene sulfonic acid aqueous solution. The solid solubility of the oxide solid solution particles measured in the same manner as in Example 1 is 90.
%, The average crystallite diameter is 8 nm, and the specific surface area is 60 m 2 / g.
Met.
【0064】(実施例8)アルキルベンゼンスルホン酸
水溶液の代わりにポリオキシエチレンアルキルフェニル
エーテル水溶液を用いたこと以外は実施例1と同様にし
て、実施例8の酸化物固溶体粒子を調製した。実施例1
と同様にして測定されたこの酸化物固溶体粒子の固溶度
は95%、結晶子の平均径は8nm、比表面積は50m
2 /gであった。Example 8 Oxide solid solution particles of Example 8 were prepared in the same manner as in Example 1 except that a polyoxyethylene alkylphenyl ether aqueous solution was used instead of the alkylbenzene sulfonic acid aqueous solution. Example 1
The solid solubility of the oxide solid solution particles measured in the same manner as in 95%, the average diameter of crystallites is 8 nm, and the specific surface area is 50 m.
2 / g.
【0065】(実施例9)アルキルベンゼンスルホン酸
水溶液の代わりにポリオキシエチレンアルキルエーテル
水溶液を用いたこと以外は実施例1と同様にして、実施
例9の酸化物固溶体粒子を調製した。実施例1と同様に
して測定されたこの酸化物固溶体粒子の固溶度は95
%、結晶子の平均径は8nm、比表面積は54m2 /g
であった。Example 9 Oxide solid solution particles of Example 9 were prepared in the same manner as in Example 1 except that a polyoxyethylene alkyl ether aqueous solution was used instead of the alkylbenzene sulfonic acid aqueous solution. The solid solubility of the oxide solid solution particles measured in the same manner as in Example 1 was 95.
%, The average crystallite diameter is 8 nm, and the specific surface area is 54 m 2 / g.
Met.
【0066】(実施例10)アルキルベンゼンスルホン
酸水溶液の代わりにポリオキシエチレンアルキルアミン
水溶液を用いたこと以外は実施例1と同様にして、実施
例10の酸化物固溶体粒子を調製した。実施例1と同様
にして測定されたこの酸化物固溶体粒子の固溶度は90
%、結晶子の平均径は6nm、比表面積は48m2 /g
であった。Example 10 Oxide solid solution particles of Example 10 were prepared in the same manner as in Example 1 except that a polyoxyethylene alkylamine aqueous solution was used instead of the alkylbenzene sulfonic acid aqueous solution. The solid solubility of the oxide solid solution particles measured in the same manner as in Example 1 is 90.
%, Crystallite average diameter 6 nm, specific surface area 48 m 2 / g
Met.
【0067】(実施例11)アルキルベンゼンスルホン
酸水溶液の代わりにポリオキシエチレン脂肪酸アミド水
溶液を用いたこと以外は実施例1と同様にして、実施例
11の酸化物固溶体粒子を調製した。実施例1と同様に
して測定されたこの酸化物固溶体粒子の固溶度は90
%、結晶子の平均径は7nm、比表面積は62m2 /g
であった。Example 11 Oxide solid solution particles of Example 11 were prepared in the same manner as in Example 1 except that an aqueous solution of polyoxyethylene fatty acid amide was used instead of the aqueous solution of alkylbenzene sulfonic acid. The solid solubility of the oxide solid solution particles measured in the same manner as in Example 1 is 90.
%, The average crystallite diameter is 7 nm, and the specific surface area is 62 m 2 / g.
Met.
【0068】(実施例12)アルキルベンゼンスルホン
酸水溶液の代わりにトリアルキルアミンオキサイド水溶
液を用いたこと以外は実施例1と同様にして、実施例1
2の酸化物固溶体粒子を調製した。実施例1と同様にし
て測定されたこの酸化物固溶体粒子の固溶度は95%、
結晶子の平均径は9nm、比表面積は67m2 /gであ
った。Example 12 Example 1 was repeated in the same manner as Example 1 except that an aqueous solution of trialkylamine oxide was used instead of the aqueous solution of alkylbenzene sulfonic acid.
No. 2 oxide solid solution particles were prepared. The solid solubility of the oxide solid solution particles measured in the same manner as in Example 1 was 95%,
The crystallites had an average diameter of 9 nm and a specific surface area of 67 m 2 / g.
【0069】(実施例13)アルキルベンゼンスルホン
酸水溶液の代わりにポリオキシエチレンアルキルメチル
アンモニウムクロライド水溶液を用いたこと以外は実施
例1と同様にして、実施例13の酸化物固溶体粒子を調
製した。実施例1と同様にして測定されたこの酸化物固
溶体粒子の固溶度は100%、結晶子の平均径は9n
m、比表面積は37m2 /gであった。Example 13 Oxide solid solution particles of Example 13 were prepared in the same manner as in Example 1 except that an aqueous solution of polyoxyethylene alkylmethyl ammonium chloride was used instead of the aqueous solution of alkylbenzene sulfonic acid. The solid solubility of the oxide solid solution particles measured in the same manner as in Example 1 was 100%, and the average diameter of crystallites was 9 n.
m, the specific surface area was 37 m 2 / g.
【0070】(実施例14)アルキルベンゼンスルホン
酸水溶液の代わりに牛脂ジアミンジオレイン酸水溶液を
用いたこと以外は実施例1と同様にして、実施例14の
酸化物固溶体粒子を調製した。実施例1と同様にして測
定されたこの酸化物固溶体粒子の固溶度は100%、結
晶子の平均径は8nm、比表面積は35m2 /gであっ
た。Example 14 The oxide solid solution particles of Example 14 were prepared in the same manner as in Example 1 except that the tallow diamine dioleic acid aqueous solution was used instead of the alkylbenzene sulfonic acid aqueous solution. The solid solubility of the oxide solid solution particles measured in the same manner as in Example 1 was 100%, the average diameter of the crystallite was 8 nm, and the specific surface area was 35 m 2 / g.
【0071】<評価>実施例2〜14の結果より、これ
らに用いた界面活性剤は全てアルキルベンゼンスルホン
酸と同等の効果をもつことがわかる。 (実施例15)アルキルベンゼンスルホン酸の添加量
を、得られる酸化物の重量の0〜30%の範囲で種々選
んだことおよび出発原料中のCe/Zrの比を変化させ
たこと以外は実施例1と同様にして、それぞれの酸化物
固溶体粒子を調製した。X線回折法によりそれぞれの酸
化物固溶体粒子の結晶の格子定数を測定し、実施例1の
酸化物固溶体粒子の格子定数とともに図3に示す。また
格子定数と組成(モル比でCe/Zr=5/5)より式
(3)を用いて算出した固溶度との関係を図5に示す。
また、各組成におけるセリアとジルコニアの固溶体にお
ける、ジルコニア含有量と格子定数との関係を各固溶度
ごとに図4に示す。請求項3に対応する範囲を斜線で表
す。<Evaluation> From the results of Examples 2 to 14, it can be seen that all the surfactants used in these have the same effect as that of the alkylbenzene sulfonic acid. (Example 15) Example 15 except that the addition amount of alkylbenzene sulfonic acid was variously selected within the range of 0 to 30% by weight of the obtained oxide and the Ce / Zr ratio in the starting material was changed. In the same manner as in 1, each oxide solid solution particle was prepared. The lattice constant of the crystal of each oxide solid solution particle was measured by the X-ray diffraction method, and the lattice constant of the oxide solid solution particle of Example 1 is shown in FIG. Further, FIG. 5 shows the relationship between the lattice constant and the solid solubility calculated from the composition (Ce / Zr = 5/5 in terms of molar ratio) using the formula (3).
Further, the relationship between the zirconia content and the lattice constant in the solid solution of ceria and zirconia in each composition is shown in FIG. 4 for each solid solubility. The range corresponding to claim 3 is represented by diagonal lines.
【0072】さらに、Ce/Zr=5/5のそれぞれの
活性剤添加率について酸化物固溶体粒子の比表面積を測
定し、図5に合わせて示した。 <評価>図3より、アルキルベンゼンスルホン酸の添加
率が増すにつれて格子定数が低下し、添加率が約10%
以上では格子定数は5.275でほぼ一定となってい
る。また図4には、Ce/Zr=5/5の場合には固溶
度が100%で格子定数が5.275となることが示さ
れているから、アルキルベンゼンスルホン酸の添加量が
10%以上であれば完全に固溶していることがわかる。
これは実際に固溶度を測定した図5の結果からも裏付け
られる。つまり界面活性剤の添加により固溶が促進され
ることが明らかであり、アルキルベンゼンスルホン酸の
添加率は約1%以上で十分であることがわかる。Further, the specific surface area of the oxide solid solution particles was measured for each activator addition rate of Ce / Zr = 5/5, and the results are also shown in FIG. <Evaluation> From FIG. 3, the lattice constant decreases as the addition rate of alkylbenzene sulfonic acid increases, and the addition rate is about 10%.
In the above, the lattice constant is 5.275, which is almost constant. Further, FIG. 4 shows that when Ce / Zr = 5/5, the solid solubility is 100% and the lattice constant is 5.275. Therefore, the addition amount of alkylbenzenesulfonic acid is 10% or more. If so, it can be seen that the solid solution is complete.
This is supported by the result of FIG. 5 in which the solid solubility was actually measured. That is, it is clear that the solid solution is promoted by the addition of the surfactant, and it is understood that the addition rate of the alkylbenzene sulfonic acid is about 1% or more.
【0073】(実施例16)フィルタープレスを用いて
沈殿物を含むスラリーから水分を搾り取った後に、30
0℃に加熱して固形分を乾燥し、機械的に粉砕したこと
以外は実施例1と同様にして、実施例16の酸化物固溶
体粒子を調製した。実施例1と同様にして測定されたこ
の酸化物固溶体粒子の固溶度は95%、結晶子の平均径
は8nm、比表面積は60m2 /gであった。(Example 16) After squeezing water from a slurry containing a precipitate by using a filter press, 30
The oxide solid solution particles of Example 16 were prepared in the same manner as in Example 1 except that the solid content was dried by heating at 0 ° C. and mechanically pulverized. The solid solubility of the oxide solid solution particles measured in the same manner as in Example 1 was 95%, the average diameter of crystallites was 8 nm, and the specific surface area was 60 m 2 / g.
【0074】(実施例17)沈殿物を含むスラリーを2
50℃に加熱したセラミック製ボールと接触させて乾燥
させると同時に、そのボールによって機械的に粉砕した
こと以外は実施例1と同様にして、実施例17の酸化物
固溶体粒子を調製した。実施例1と同様にして測定され
たこの酸化物固溶体粒子の固溶度は100%、結晶子の
平均径は8nm、比表面積は40m2 /gであった。(Example 17) Two slurry containing precipitates were added.
Oxide solid solution particles of Example 17 were prepared in the same manner as in Example 1 except that they were dried by being brought into contact with a ceramic ball heated to 50 ° C. at the same time. The solid solubility of the oxide solid solution particles measured in the same manner as in Example 1 was 100%, the average crystallite diameter was 8 nm, and the specific surface area was 40 m 2 / g.
【0075】(実施例18)沈殿物を含むスラリーを3
00℃に加熱した加熱容器に入れ、水分及び硝酸アンモ
ニウムが蒸発又は分解脱離するまで加熱し、次いで機械
的に粉砕したこと以外は実施例1と同様にして、実施例
18の酸化物固溶体粒子を調製した。実施例1と同様に
して測定されたこの酸化物固溶体粒子の固溶度は100
%、結晶子の平均径は9nm、比表面積は35m2 /g
であった。(Example 18) Three slurries containing precipitates were used.
The oxide solid solution particles of Example 18 were placed in the same manner as in Example 1 except that the mixture was heated in a heating container heated to 00 ° C. and heated until water and ammonium nitrate were evaporated or decomposed and desorbed, and then mechanically ground. Prepared. The solid solubility of the oxide solid solution particles measured in the same manner as in Example 1 is 100.
%, Crystallite average diameter 9 nm, specific surface area 35 m 2 / g
Met.
【0076】<評価>実施例1及び実施例16〜18の
結果より、用いた乾燥及び粉砕手段によって所定の特性
の粒子が得られることが明らかである。 (実施例19)硝酸セリウム(III )と硝酸ジルコニル
を、モル比でCe/Zr=5/5となるように混合した
水溶液を調製し、さらに、得られる酸化物の重量の5%
のポリオキシエチレンポリプロピルアルキルエーテル
と、Ceイオンと当モルの過酸化水素を含む過酸化水素
水を添加し、混合攪拌する。続いて攪拌しながらアンモ
ニア水を滴下して中和し、沈殿を生成させた。<Evaluation> From the results of Example 1 and Examples 16 to 18, it is clear that particles having predetermined characteristics can be obtained by the drying and pulverizing means used. (Example 19) An aqueous solution was prepared by mixing cerium (III) nitrate and zirconyl nitrate in a molar ratio of Ce / Zr = 5/5, and further 5% of the weight of the obtained oxide was prepared.
The polyoxyethylene polypropyl alkyl ether of 1) and hydrogen peroxide solution containing Ce ions and equimolar hydrogen peroxide are added, and mixed and stirred. Subsequently, ammonia water was added dropwise with stirring to neutralize, and a precipitate was generated.
【0077】沈殿を含むスラリーを静置し、上澄みを除
去した。再度、除去した水と同量の水を足し、攪拌後上
澄みを除去した。この操作をもう一度行った後、残りの
スラリーを250℃に加熱した容器に入れ、水分及び硝
酸アンモニウムが蒸発又は分解脱離するまで加熱し、酸
化物固溶体を含む粉末を得た。この酸化物固溶体粒子の
固溶度は95%、結晶子の平均径は6nm、比表面積は
80m2 /gであった。The slurry containing the precipitate was allowed to stand and the supernatant was removed. Again, the same amount of water as the removed water was added, and after stirring, the supernatant was removed. After performing this operation once again, the remaining slurry was placed in a container heated to 250 ° C. and heated until water and ammonium nitrate were evaporated or decomposed and desorbed to obtain a powder containing an oxide solid solution. The solid solubility of the oxide solid solution particles was 95%, the average diameter of the crystallites was 6 nm, and the specific surface area was 80 m 2 / g.
【0078】実施例19の酸化物固溶体粒子を熱処理
し、熱処理後の比表面積と結晶子の平均径を測定した結
果を図6及び図7に示す。熱処理温度は300、60
0、800、1000、1200℃の5水準、熱処理時
間はそれぞれ5時間である。 (実施例20)実施例1で得られた酸化物固溶体粒子
を、一酸化炭素が1体積%含まれる還元雰囲気中で12
00℃にて2時間熱処理し、実施例20の酸化物固溶体
粒子を調製した。実施例1と同様にして測定されたこの
酸化物固溶体粒子の固溶度は100%、結晶子の平均径
は55nm、比表面積は4m2 /gであった。また、こ
の粉末のOSCは800μmolO2 /gであった。The oxide solid solution particles of Example 19 were heat-treated, and the results of measuring the specific surface area and the average crystallite size after the heat treatment are shown in FIGS. 6 and 7. Heat treatment temperature is 300, 60
Five levels of 0, 800, 1000, and 1200 ° C., and heat treatment time is 5 hours. (Example 20) The oxide solid solution particles obtained in Example 1 were mixed with each other in a reducing atmosphere containing 1% by volume of carbon monoxide.
Heat treatment was performed at 00 ° C. for 2 hours to prepare oxide solid solution particles of Example 20. The solid solubility of the oxide solid solution particles measured in the same manner as in Example 1 was 100%, the average crystallite diameter was 55 nm, and the specific surface area was 4 m 2 / g. The OSC of this powder was 800 μmol O 2 / g.
【0079】(実施例21)実施例1で得られた酸化物
固溶体粒子を、水素ガスが1体積%含まれる還元雰囲気
中で1100℃にて5時間熱処理し、実施例21の酸化
物固溶体粒子を調製した。実施例1と同様にして測定さ
れたこの酸化物固溶体粒子の固溶度は100%、結晶子
の平均径は48nm、比表面積は8m2 /gであった。
また、OSCは750μmolO2 /gであった。(Example 21) The oxide solid solution particles obtained in Example 1 were heat-treated at 1100 ° C for 5 hours in a reducing atmosphere containing 1% by volume of hydrogen gas to obtain the oxide solid solution particles of Example 21. Was prepared. The solid solubility of the oxide solid solution particles measured in the same manner as in Example 1 was 100%, the average diameter of crystallites was 48 nm, and the specific surface area was 8 m 2 / g.
The OSC was 750 μmolO 2 / g.
【0080】<評価>すなわち実施例1の酸化物固溶体
粒子を還元雰囲気で熱処理することにより、平均粒子径
はある程度大きくなるがOSCはより大きくなることが
わかる。 (実施例22)硝酸セリウム(III )と硝酸ジルコニル
の量を、セリウムとジルコニウムのモル比がCe/Zr
=9/1〜1/9の範囲で種々混合した水溶液を用いた
こと以外は実施例1と同様にして、それぞれの酸化物固
溶体粒子を調製した。それぞれの酸化物固溶体粒子につ
いて実施例1と同様にOSCを測定し、結果を図8に示
す。またそれぞれの酸化物固溶体粒子について結晶の格
子定数を測定し、結果を図4に示す。<Evaluation> That is, it can be seen that by heat-treating the oxide solid solution particles of Example 1 in a reducing atmosphere, the average particle diameter increases to some extent, but the OSC increases. (Example 22) The amounts of cerium (III) nitrate and zirconyl nitrate were determined so that the molar ratio of cerium and zirconium was Ce / Zr.
Each oxide solid solution particle was prepared in the same manner as in Example 1 except that various aqueous solutions were mixed in the range of 9/1 to 1/9. The OSC of each oxide solid solution particle was measured in the same manner as in Example 1, and the results are shown in FIG. The lattice constant of the crystal was measured for each oxide solid solution particle, and the results are shown in FIG.
【0081】<評価>図8より、Ce/Zrの比が75
/25〜25/75の範囲にあればOSCが250μm
olO2 /g以上となることが明らかである。また図4
より、これらの粉末に含まれるジルコニアは、ほぼ10
0%セリア中に固溶していることがわかる。<Evaluation> From FIG. 8, the Ce / Zr ratio is 75.
/ 25 to 25/75, OSC is 250 μm
It is clear that it becomes olO 2 / g or more. FIG. 4
Therefore, the zirconia contained in these powders is almost 10
It can be seen that it is dissolved in 0% ceria.
【0082】(実施例23)過酸化水素水を用いず、中
和時及び界面活性剤添加時の攪拌を、104 sec -1以
上の高せん断速度で行ったこと以外は実施例1と同様に
して、実施例23の酸化物固溶体粒子を調製した。実施
例1と同様にして測定されたこの酸化物固溶体粒子の固
溶度は90%、結晶子の平均径は7nm、比表面積は6
0m2 /gであった。Example 23 Medium without hydrogen peroxide solution
Stir 10 when mixing and adding a surfactant.Foursec -1Less than
Same as Example 1 except that the above high shear rate was used.
Thus, oxide solid solution particles of Example 23 were prepared. Implementation
The solid content of the oxide solid solution particles measured in the same manner as in Example 1
Solubility 90%, average crystallite diameter 7 nm, specific surface area 6
0mTwo/ G.
【0083】(比較例4)過酸化水素水を用いなかった
こと以外は実施例1と同様にして、比較例4の酸化物固
溶体粒子を調製した。実施例1と同様にして測定された
この酸化物固溶体粒子の固溶度は40%、結晶子の平均
径は6nm、比表面積は85m2 /gであった。Comparative Example 4 Oxide solid solution particles of Comparative Example 4 were prepared in the same manner as in Example 1 except that hydrogen peroxide solution was not used. The solid solubility of the oxide solid solution particles measured in the same manner as in Example 1 was 40%, the average diameter of crystallites was 6 nm, and the specific surface area was 85 m 2 / g.
【0084】<評価>比較例4は実施例23より固溶度
が低く固溶の進行が劣っているが、実施例23は実施例
1とほぼ同様に高い固溶度を示している。すなわち10
4 sec-1以上の高せん断速度で攪拌することにより、
過酸化水素を用いた場合と同様に固溶が促進されること
が明らかである。<Evaluation> Comparative Example 4 has a lower solid solubility than Example 23 and is inferior in the progress of solid solution, but Example 23 shows a high solid solubility almost similarly to Example 1. That is, 10
By stirring at a high shear rate of 4 sec -1 or more,
It is clear that the solid solution is promoted as in the case of using hydrogen peroxide.
【0085】(実施例24)硝酸セリウム(IV)と硝酸
ジルコニルを、モル比でCe/Zr=5/5となるよう
に混合した水溶液を調製し、攪拌しながらアンモニア水
を滴下して中和し沈殿を生成させた。続いて、得られる
酸化物の重量の10%のアルキルベンゼンスルホン酸を
含む水溶液を添加し、混合攪拌した。Example 24 Cerium (IV) nitrate and zirconyl nitrate were mixed in a molar ratio of Ce / Zr = 5/5 to prepare an aqueous solution, and ammonia water was added dropwise with stirring to neutralize the solution. And a precipitate was formed. Subsequently, an aqueous solution containing 10% of the weight of the obtained oxide by alkylbenzene sulfonic acid was added and mixed and stirred.
【0086】得られたスラリーを導入空気温度400
℃、排出空気温度250℃の雰囲気中に噴霧し、スプレ
ードライ法で乾燥させるとともに共存する硝酸アンモニ
ウムを分解し、酸化物固溶体粒子を調製した。実施例1
と同様にして測定されたこの酸化物固溶体粒子の固溶度
は100%、結晶子の平均径は10nm、比表面積は5
0m2 /gであった。The slurry thus obtained was introduced at an air temperature of 400.
C., the temperature of the exhaust air was 250.degree. C., sprayed in an atmosphere and dried by a spray drying method, and coexisting ammonium nitrate was decomposed to prepare oxide solid solution particles. Example 1
The solid solubility of the oxide solid solution particles measured in the same manner as in 100%, the average diameter of crystallites is 10 nm, and the specific surface area is 5
It was 0 m 2 / g.
【0087】<評価>比較例2と実施例24の比較よ
り、4価のセリウムの場合には、3価のセリウムとは異
なり過酸化水素を用いずとも高い固溶度で固溶すること
がわかる。 (実施例25)アンモニア水を滴下する前の硝酸セリウ
ム(IV)と硝酸ジルコニルの水溶液に、予めアルキルベ
ンゼンスルホン酸水溶液を添加しておいたこと以外は実
施例24と同様にして、実施例25の酸化物固溶体粒子
を調製した。実施例1と同様にして測定されたこの酸化
物固溶体粒子の固溶度は100%、結晶子の平均径は1
0nm、比表面積は40m2 /gであった。<Evaluation> From the comparison between Comparative Example 2 and Example 24, in the case of tetravalent cerium, unlike trivalent cerium, it is possible to form a solid solution with a high solid solubility without using hydrogen peroxide. Recognize. (Example 25) The procedure of Example 25 was repeated except that the aqueous solution of alkylbenzene sulfonic acid was added in advance to the aqueous solution of cerium (IV) nitrate and zirconyl nitrate before the dropwise addition of aqueous ammonia. Oxide solid solution particles were prepared. The solid solubility of the oxide solid solution particles measured in the same manner as in Example 1 was 100%, and the average diameter of the crystallite was 1.
The surface area was 0 nm and the specific surface area was 40 m 2 / g.
【0088】<評価>すなわち実施例25では実施例2
4と同等の固溶体が製造されていることから、界面活性
剤の添加時期はアルカリで中和する前後に関わらず同じ
作用を示し、つまり界面活性剤の作用は、アルカリで中
和する時のみならずアルカリで中和された後の酸化物の
状態に対しても有効であることがわかる。<Evaluation> That is, in Example 25, Example 2 was used.
Since a solid solution equivalent to 4 is produced, the surfactant has the same action before and after neutralization with alkali, that is, the action of the surfactant is only when neutralizing with alkali. It can be seen that it is also effective for the oxide state after being neutralized with alkali.
【0089】(実施例26)アルキルベンゼンスルホン
酸水溶液の代わりにαオレフィンスルホン酸水溶液を用
いたこと以外は実施例24と同様にして、実施例26の
酸化物固溶体粒子を調製した。実施例1と同様にして測
定されたこの酸化物固溶体粒子の固溶度は95%、結晶
子の平均径は8nm、比表面積は60m2 /gであっ
た。(Example 26) Oxide solid solution particles of Example 26 were prepared in the same manner as in Example 24 except that an aqueous solution of α-olefin sulfonic acid was used instead of the aqueous solution of alkylbenzene sulfonic acid. The solid solubility of the oxide solid solution particles measured in the same manner as in Example 1 was 95%, the average diameter of crystallites was 8 nm, and the specific surface area was 60 m 2 / g.
【0090】(実施例27)アルキルベンゼンスルホン
酸水溶液の代わりにポリオキシエチレンポリプロピルア
ルキルエーテル水溶液を用いたこと以外は実施例24と
同様にして、実施例25の酸化物固溶体粒子を調製し
た。実施例1と同様にして測定されたこの酸化物固溶体
粒子の固溶度は100%、結晶子の平均径は8nm、比
表面積は45m 2 /gであった。Example 27 Alkylbenzenesulfone
Instead of acid aqueous solution, polyoxyethylene polypropyl acetate
Example 24 except that an aqueous solution of rutile ether was used.
Similarly, the oxide solid solution particles of Example 25 were prepared.
Was. This oxide solid solution measured in the same manner as in Example 1.
The solid solubility of the particles is 100%, the average diameter of the crystallites is 8 nm, and the ratio is
Surface area is 45m Two/ G.
【0091】(実施例28)アルキルベンゼンスルホン
酸水溶液の代わりにセチルトリメチルアンモニウムクロ
ライド水溶液を用いたこと以外は実施例24と同様にし
て、実施例28の酸化物固溶体粒子を調製した。実施例
1と同様にして測定されたこの酸化物固溶体粒子の固溶
度は95%、結晶子の平均径は7nm、比表面積は62
m2 /gであった。(Example 28) Oxide solid solution particles of Example 28 were prepared in the same manner as in Example 24, except that an aqueous solution of cetyltrimethylammonium chloride was used instead of the aqueous solution of alkylbenzene sulfonic acid. The solid solubility of the oxide solid solution particles measured in the same manner as in Example 1 was 95%, the average diameter of crystallites was 7 nm, and the specific surface area was 62.
m 2 / g.
【0092】(実施例29)アルキルベンゼンスルホン
酸水溶液の代わりにモノアルキルアンモニウムアセテー
ト水溶液を用いたこと以外は実施例24と同様にして、
実施例29の酸化物固溶体粒子を調製した。実施例1と
同様にして測定されたこの酸化物固溶体粒子の固溶度は
90%、結晶子の平均径は8nm、比表面積は60m2
/gであった。Example 29 The same procedure as in Example 24 was carried out except that an aqueous solution of monoalkylammonium acetate was used instead of the aqueous solution of alkylbenzene sulfonic acid.
The oxide solid solution particles of Example 29 were prepared. The solid solubility of the oxide solid solution particles measured in the same manner as in Example 1 was 90%, the average crystallite diameter was 8 nm, and the specific surface area was 60 m 2.
/ G.
【0093】(実施例30)アルキルベンゼンスルホン
酸水溶液の代わりにポリオキシエチレンアルキルフェニ
ルエーテル水溶液を用いたこと以外は実施例24と同様
にして、実施例30の酸化物固溶体粒子を調製した。実
施例1と同様にして測定されたこの酸化物固溶体粒子の
固溶度は95%、結晶子の平均径は8nm、比表面積は
55m2 /gであった。Example 30 Oxide solid solution particles of Example 30 were prepared in the same manner as in Example 24, except that an aqueous solution of polyoxyethylene alkylphenyl ether was used instead of the aqueous solution of alkylbenzene sulfonic acid. The solid solubility of the oxide solid solution particles measured in the same manner as in Example 1 was 95%, the average diameter of the crystallites was 8 nm, and the specific surface area was 55 m 2 / g.
【0094】(実施例31)アルキルベンゼンスルホン
酸水溶液の代わりにポリオキシエチレンアルキルエーテ
ル水溶液を用いたこと以外は実施例24と同様にして、
実施例31の酸化物固溶体粒子を調製した。実施例1と
同様にして測定されたこの酸化物固溶体粒子の固溶度は
95%、結晶子の平均径は8nm、比表面積は57m2
/gであった。(Example 31) In the same manner as in Example 24 except that a polyoxyethylene alkyl ether aqueous solution was used instead of the alkylbenzene sulfonic acid aqueous solution,
The oxide solid solution particles of Example 31 were prepared. The solid solubility of the oxide solid solution particles measured in the same manner as in Example 1 was 95%, the average crystallite diameter was 8 nm, and the specific surface area was 57 m 2.
/ G.
【0095】(実施例32)アルキルベンゼンスルホン
酸水溶液の代わりにポリオキシエチレンアルキルアミン
水溶液を用いたこと以外は実施例24と同様にして、実
施例32の酸化物固溶体粒子を調製した。実施例1と同
様にして測定されたこの酸化物固溶体粒子の固溶度は9
0%、結晶子の平均径は6nm、比表面積は45m2 /
gであった。(Example 32) Oxide solid solution particles of Example 32 were prepared in the same manner as in Example 24, except that an aqueous solution of polyoxyethylene alkylamine was used instead of the aqueous solution of alkylbenzene sulfonic acid. The solid solubility of the oxide solid solution particles measured in the same manner as in Example 1 is 9
0%, crystallite average diameter 6 nm, specific surface area 45 m 2 /
g.
【0096】(実施例33)アルキルベンゼンスルホン
酸水溶液の代わりにポリオキシエチレン脂肪酸アミド水
溶液を用いたこと以外は実施例24と同様にして、実施
例33の酸化物固溶体粒子を調製した。実施例1と同様
にして測定されたこの酸化物固溶体粒子の固溶度は90
%、結晶子の平均径は7nm、比表面積は59m2 /g
であった。Example 33 Oxide solid solution particles of Example 33 were prepared in the same manner as in Example 24, except that an aqueous solution of polyoxyethylene fatty acid amide was used instead of the aqueous solution of alkylbenzene sulfonic acid. The solid solubility of the oxide solid solution particles measured in the same manner as in Example 1 is 90.
%, The average crystallite diameter is 7 nm, and the specific surface area is 59 m 2 / g
Met.
【0097】(実施例34)アルキルベンゼンスルホン
酸水溶液の代わりにトリアルキルアミンオキサイド水溶
液を用いたこと以外は実施例24と同様にして、実施例
34の酸化物固溶体粒子を調製した。実施例1と同様に
して測定されたこの酸化物固溶体粒子の固溶度は95
%、結晶子の平均径は9nm、比表面積は62m2 /g
であった。Example 34 Oxide solid solution particles of Example 34 were prepared in the same manner as in Example 24, except that an aqueous solution of trialkylamine oxide was used instead of the aqueous solution of alkylbenzene sulfonic acid. The solid solubility of the oxide solid solution particles measured in the same manner as in Example 1 was 95.
%, Crystallite average diameter 9 nm, specific surface area 62 m 2 / g
Met.
【0098】(実施例35)アルキルベンゼンスルホン
酸水溶液の代わりにポリオキシエチレンアルキルメチル
アンモニウムクロライド水溶液を用いたこと以外は実施
例24と同様にして、実施例35の酸化物固溶体粒子を
調製した。実施例1と同様にして測定されたこの酸化物
固溶体粒子の固溶度は100%、結晶子の平均径は9n
m、比表面積は30m2 /gであった。Example 35 Oxide solid solution particles of Example 35 were prepared in the same manner as in Example 24 except that an aqueous solution of polyoxyethylene alkylmethyl ammonium chloride was used instead of the aqueous solution of alkylbenzene sulfonic acid. The solid solubility of the oxide solid solution particles measured in the same manner as in Example 1 was 100%, and the average diameter of crystallites was 9 n.
m, the specific surface area was 30 m 2 / g.
【0099】(実施例36)アルキルベンゼンスルホン
酸水溶液の代わりに牛脂ジアミンジオレイン酸水溶液を
用いたこと以外は実施例24と同様にして、実施例36
の酸化物固溶体粒子を調製した。実施例1と同様にして
測定されたこの酸化物固溶体粒子の固溶度は100%、
結晶子の平均径は8nm、比表面積は40m2 /gであ
った。Example 36 Example 36 was carried out in the same manner as in Example 24 except that a tallow diamine dioleic acid aqueous solution was used instead of the alkylbenzene sulfonic acid aqueous solution.
The oxide solid solution particles of were prepared. The solid solubility of the oxide solid solution particles measured in the same manner as in Example 1 is 100%,
The crystallites had an average diameter of 8 nm and a specific surface area of 40 m 2 / g.
【0100】<評価>実施例24と実施例26〜36の
結果より、過酸化水素を用いない場合であっても、用い
た界面活性剤は全てアルキルベンゼンスルホン酸と同等
の効果をもつことがわかる。 (実施例37)フィルタープレスを用いて沈殿物を含む
スラリーから水分を搾り取った後に、300℃に加熱し
て固形分を乾燥し、機械的に粉砕したこと以外は実施例
24と同様にして、実施例37の酸化物固溶体粒子を調
製した。実施例1と同様にして測定されたこの酸化物固
溶体粒子の固溶度は95%、結晶子の平均径は8nm、
比表面積は70m2 /gであった。<Evaluation> From the results of Example 24 and Examples 26 to 36, it is understood that all the surfactants used have the same effect as that of alkylbenzene sulfonic acid even when hydrogen peroxide is not used. . (Example 37) Similar to Example 24 except that after squeezing water from the slurry containing the precipitate using a filter press, the solid content was dried by heating to 300 ° C and mechanically pulverized. The oxide solid solution particles of Example 37 were prepared. The solid solubility of the oxide solid solution particles measured in the same manner as in Example 1 was 95%, the average diameter of crystallites was 8 nm,
The specific surface area was 70 m 2 / g.
【0101】(実施例38)沈殿物を含むスラリーを2
50℃に加熱したセラミック製ボールと接触させて乾燥
させると同時に、そのボールによって機械的に粉砕した
こと以外は実施例24と同様にして、実施例38の酸化
物固溶体粒子を調製した。実施例1と同様にして測定さ
れたこの酸化物固溶体粒子の固溶度は100%、結晶子
の平均径は8nm、比表面積は40m2 /gであった。(Example 38) Two slurry containing precipitates were used.
The oxide solid solution particles of Example 38 were prepared in the same manner as in Example 24, except that the particles were mechanically crushed by the balls while being brought into contact with the ceramic balls heated to 50 ° C. to be dried. The solid solubility of the oxide solid solution particles measured in the same manner as in Example 1 was 100%, the average crystallite diameter was 8 nm, and the specific surface area was 40 m 2 / g.
【0102】(実施例39)沈殿物を含むスラリーを3
00℃に加熱した加熱容器に入れ、水分及び硝酸アンモ
ニウムが蒸発又は分解脱離するまで加熱し、次いで機械
的に粉砕したこと以外は実施例24と同様にして、実施
例39の酸化物固溶体粒子を調製した。実施例1と同様
にして測定されたこの酸化物固溶体粒子の固溶度は10
0%、結晶子の平均径は9nm、比表面積は35m2 /
gであった。(Example 39) A slurry containing precipitates was added to 3
The oxide solid solution particles of Example 39 were placed in the same manner as in Example 24 except that the mixture was heated in a heating container heated to 00 ° C. and heated until moisture and ammonium nitrate were evaporated or decomposed and desorbed, and then mechanically pulverized. Prepared. The solid solubility of the oxide solid solution particles measured in the same manner as in Example 1 was 10.
0%, crystallite average diameter 9 nm, specific surface area 35 m 2 /
g.
【0103】<評価>実施例24及び実施例37〜39
の結果より、過酸化水素を用いない場合であっても、用
いた粉砕手段による差異はないことが明らかである。 (実施例40)実施例24で得られた酸化物固溶体粒子
を、一酸化炭素が1体積%含まれる還元雰囲気中で12
00℃にて2時間熱処理し、実施例40の酸化物固溶体
粒子を調製した。実施例1と同様にして測定されたこの
酸化物固溶体粒子の固溶度は100%、結晶子の平均径
は52nm、比表面積は5m2 /gであった。<Evaluation> Example 24 and Examples 37 to 39
From the results, it is clear that even if hydrogen peroxide is not used, there is no difference depending on the grinding means used. (Example 40) The oxide solid solution particles obtained in Example 24 were mixed with each other in a reducing atmosphere containing 1% by volume of carbon monoxide.
Heat treatment was performed at 00 ° C. for 2 hours to prepare oxide solid solution particles of Example 40. The solid solubility of the oxide solid solution particles measured in the same manner as in Example 1 was 100%, the average crystallite diameter was 52 nm, and the specific surface area was 5 m 2 / g.
【0104】(実施例41)実施例24で得られた酸化
物固溶体粒子を、水素ガスが1体積%含まれる還元雰囲
気中で1100℃にて5時間熱処理し、実施例41の酸
化物固溶体粒子を調製した。実施例1と同様にして測定
されたこの酸化物固溶体粒子の固溶度は100%、結晶
子の平均径は44nm、比表面積は9m2 /gであっ
た。(Example 41) The oxide solid solution particles obtained in Example 24 were heat-treated at 1100 ° C for 5 hours in a reducing atmosphere containing 1% by volume of hydrogen gas to obtain the oxide solid solution particles of Example 41. Was prepared. The solid solubility of the oxide solid solution particles measured in the same manner as in Example 1 was 100%, the average crystallite diameter was 44 nm, and the specific surface area was 9 m 2 / g.
【0105】<評価>すなわち実施例24の酸化物固溶
体粒子を還元雰囲気で熱処理することにより、過酸化水
素を用いない場合であっても平均粒子径はある程度大き
くなるが、OSCはより大きくなることがわかる。 (実施例42)アルキルベンゼンスルホン酸を含む水溶
液の添加量を種々選択したこと以外は実施例24と同様
にして、それぞれの酸化物固溶体粒子を調製した。これ
らの酸化物固溶体粒子の結晶の格子定数は図3と同様の
結果を示し、4価のセリウムの場合には過酸化水素を用
いずとも高い固溶度でジルコニアが固溶することが明ら
かである。<Evaluation> That is, by heat-treating the oxide solid solution particles of Example 24 in a reducing atmosphere, the average particle diameter is increased to some extent even when hydrogen peroxide is not used, but the OSC is increased. I understand. Example 42 Each oxide solid solution particle was prepared in the same manner as in Example 24 except that the addition amount of the aqueous solution containing alkylbenzene sulfonic acid was variously selected. The crystal lattice constants of these oxide solid solution particles show the same results as in FIG. 3, and it is clear that in the case of tetravalent cerium, zirconia can form a solid solution with a high solid solubility without using hydrogen peroxide. is there.
【0106】(実施例43)硝酸セリウム(IV)と硝酸
ジルコニルの添加量を、セリウムとジルコニウムのモル
比がCe/Zr=9/1〜1/9の範囲で種々混合した
水溶液を用いたこと以外は実施例1と同様にして、それ
ぞれの酸化物固溶体粒子を調製した。それぞれの酸化物
固溶体粒子のOSCは図8と同様であり、結晶の格子定
数は図9と同様であった。Example 43 An aqueous solution was used in which cerium (IV) nitrate and zirconyl nitrate were added in various amounts such that the molar ratio of cerium and zirconium was Ce / Zr = 9/1 to 1/9. Except for this, each oxide solid solution particle was prepared in the same manner as in Example 1. The OSC of each oxide solid solution particle was similar to that of FIG. 8, and the crystal lattice constant was similar to that of FIG.
【0107】つまり4価セリウムであれば、Ce/Zr
の比が75/25〜25/75の範囲にあれば過酸化水
素を用いずともOSCが250μmolO2 /g以上と
なることが明らかである。また過酸化水素を用いずと
も、ジルコニアの固溶によりセリアの結晶中にジルコニ
アの骨格が形成されている。 (実施例44)硝酸セリウム(III )と硝酸ジルコニル
を、モル比でCe/Zr=5/5となるように混合した
水溶液を調整し、攪拌しながらアンモニア水を滴下して
中和し沈殿を生成させた。このスラリーを実施例1と同
様に乾燥させ、さらに実施例20と同様に熱処理を行っ
た。この酸化物固溶体粒子の固溶度は80%、結晶子の
平均径は48nm、比表面積は3m2 /gであった。That is, in the case of tetravalent cerium, Ce / Zr
It is clear that when the ratio is in the range of 75/25 to 25/75, the OSC becomes 250 μmolO 2 / g or more without using hydrogen peroxide. Further, even if hydrogen peroxide is not used, the zirconia skeleton is formed in the ceria crystal by the solid solution of zirconia. (Example 44) An aqueous solution prepared by mixing cerium (III) nitrate and zirconyl nitrate in a molar ratio of Ce / Zr = 5/5 was prepared, and ammonia water was added dropwise with stirring to neutralize the precipitate. Was generated. This slurry was dried in the same manner as in Example 1, and further heat treated in the same manner as in Example 20. The solid solubility of the oxide solid solution particles was 80%, the average crystallite diameter was 48 nm, and the specific surface area was 3 m 2 / g.
【0108】(実施例45)硝酸セリウム(III )と硝
酸ジルコニルを、モル比でCe/Zr=5/5となるよ
うに混合した水溶液を調整し、攪拌しながらアンモニア
水を滴下して中和し沈殿を生成させた。このスラリーを
実施例1と同様に乾燥させ、さらに実施例21と同様に
熱処理を行った。この酸化物固溶体粒子の固溶度は70
%、結晶子の平均径は40nm、比表面積は9m2 /g
であった。Example 45 An aqueous solution prepared by mixing cerium (III) nitrate and zirconyl nitrate in a molar ratio of Ce / Zr = 5/5 was prepared, and ammonia water was added dropwise with stirring to neutralize the solution. And a precipitate was formed. This slurry was dried in the same manner as in Example 1, and further heat treated in the same manner as in Example 21. The solid solubility of the oxide solid solution particles is 70.
%, The average crystallite diameter is 40 nm, and the specific surface area is 9 m 2 / g.
Met.
【0109】(実施例46)実施例1と同様に、硝酸セ
リウム(III )と硝酸ジルコニルを、モル比でCe/Z
r=5/5となるように混合した水溶液を調製し、さら
に硝酸イットリウムの水溶液を、モル比でY/(Y+C
e+Zr)=0/100〜10/10になるように5水
準で配合した。さらに、過酸化水素をセリウムイオンの
1/2のモル数になるように加え、さらにポリオキシエ
チレンポリプロピルアルキルエーテルを得られる酸化物
の重量の5%添加した後、攪拌しながらアンモニア水を
滴下して中和し、それぞれ沈殿を生成させた。この沈殿
を300℃に加熱したオーブン内に入れて水分を蒸発さ
せ、硝酸アンモニウムと界面活性剤が分解脱離するまで
加熱した。得られた酸化物固溶体粒子の結晶子の平均径
はそれぞれ8nm、比表面積はそれぞれ70m2 /gで
あった。(Example 46) In the same manner as in Example 1, cerium (III) nitrate and zirconyl nitrate were mixed at a molar ratio of Ce / Z.
A mixed aqueous solution was prepared so that r = 5/5, and then an aqueous solution of yttrium nitrate was added in a molar ratio of Y / (Y + C
e + Zr) = 0/100 to 10/10 were compounded at 5 levels. Further, hydrogen peroxide was added so that the number of moles was 1/2 of cerium ion, and 5% by weight of the oxide capable of obtaining polyoxyethylene polypropylalkyl ether was further added, and then ammonia water was added dropwise while stirring. And neutralized to form precipitates. The precipitate was placed in an oven heated to 300 ° C. to evaporate water and heated until the ammonium nitrate and the surfactant were decomposed and desorbed. The average particle size of the crystallites of the obtained oxide solid solution particles was 8 nm, and the specific surface area was 70 m 2 / g.
【0110】これらの酸化物固溶体粒子を大気中120
0℃で4時間加熱し、X線回折により結晶相の変化をそ
れぞれ調べた結果を図10に示す。図10より、イット
リウムの添加によって固溶体相がより安定になっている
ことがわかる。 (実施例47)硝酸イットリウムを硝酸カルシウムに換
えたこと以外は実施例46と同様にして、それぞれの酸
化物固溶体粒子を調製した。得られた酸化物固溶体粒子
の結晶子の平均径はそれぞれ7nm、比表面積はそれぞ
れ80m2 /gであった。120% of these oxide solid solution particles were placed in the atmosphere.
The results of examining the changes in the crystal phase by X-ray diffraction are shown in FIG. 10. From FIG. 10, it can be seen that the solid solution phase becomes more stable by the addition of yttrium. (Example 47) Oxide solid solution particles were prepared in the same manner as in Example 46 except that yttrium nitrate was replaced with calcium nitrate. The average particle size of the crystallites of the obtained oxide solid solution particles was 7 nm, and the specific surface area was 80 m 2 / g.
【0111】これらの酸化物固溶体粒子を大気中120
0℃で4時間加熱し、X線回折により結晶相の変化をそ
れぞれ調べた結果を図11に示す。図11より、カルシ
ウムの添加によって固溶体相がより安定になっているこ
とがわかる。 (実施例48)硝酸イットリウムに換えて、硝酸ランタ
ン、硝酸マグネシウム、硝酸ストロンチウム、硝酸バリ
ウムをそれぞれモル比でM/(M+Ce+Zr)=7/
100、10/100、10/100、10/100と
なるように用いたこと以外は実施例46と同様にして、
それぞれの酸化物固溶体粒子を調製した。得られた酸化
物固溶体粒子の結晶子の平均径は6〜8nm、比表面積
は60〜90m2 /gであった。120% of these oxide solid solution particles were placed in the atmosphere.
FIG. 11 shows the results of examining changes in crystal phase by X-ray diffraction after heating at 0 ° C. for 4 hours. From FIG. 11, it can be seen that the solid solution phase becomes more stable by the addition of calcium. (Example 48) Instead of yttrium nitrate, lanthanum nitrate, magnesium nitrate, strontium nitrate and barium nitrate were used in a molar ratio of M / (M + Ce + Zr) = 7 /.
Except for using 100, 10/100, 10/100, and 10/100, in the same manner as in Example 46,
Each oxide solid solution particle was prepared. The average diameter of the crystallites of the obtained oxide solid solution particles was 6 to 8 nm, and the specific surface area was 60 to 90 m 2 / g.
【0112】次に、実施例46〜48及び実施例1の酸
化物固溶体粒子について、大気中で300℃又は120
0℃で2時間焼成し、それぞれ実施例1と同様にOSC
の測定を行った。それぞれの結果を実施例1の結果と併
せて図12に示す。図12より、実施例46〜48の酸
化物固溶体粒子は実施例1と同様に大きなOSCをも
ち、しかも実施例1に比べて高温での耐久性がさらに優
れていることがわかる。Next, the oxide solid solution particles of Examples 46 to 48 and Example 1 were heated to 300 ° C. or 120 ° C. in the atmosphere.
Calcination was performed at 0 ° C. for 2 hours, and OSC was performed in the same manner as in Example 1.
Was measured. The respective results are shown in FIG. 12 together with the results of Example 1. From FIG. 12, it can be seen that the oxide solid solution particles of Examples 46 to 48 have a large OSC as in Example 1 and more excellent durability at high temperature as compared with Example 1.
【0113】なお、実施例46と実施例47の場合に
は、図13に示すように、イットリウム及びカルシウム
の量が多くなるにつれてOSCは逆に低下することがわ
かった。すなわち、イットリウム及びカルシウムの量が
15モル%までは比較的大きなOSCを維持するが、そ
れ以上の添加量では大きく低下してしまう。 (実施例49)実施例47において、硝酸セリウムと硝
酸ジルコニルの比を変化させたこと以外は同様にしてそ
れぞれの酸化物固溶体粒子を調製した。そして実施例1
と同様にOSCを測定し、結果を図14に示す。図14
より、Ce/Zr比が25/75以下、又は75/25
以上の範囲では、酸化物固溶体のOSCが小さくなって
しまうことがわかる。Incidentally, in the case of Examples 46 and 47, it was found that the OSC decreased conversely as the amounts of yttrium and calcium increased, as shown in FIG. That is, a relatively large OSC is maintained until the amount of yttrium and calcium is up to 15 mol%, but the amount of yttrium and calcium is significantly reduced when the amount is larger than that. (Example 49) Each oxide solid solution particle was prepared in the same manner as in Example 47 except that the ratio of cerium nitrate to zirconyl nitrate was changed. And Example 1
The OSC was measured in the same manner as, and the result is shown in FIG. FIG.
The Ce / Zr ratio is 25/75 or less, or 75/25
It is understood that in the above range, the OSC of the oxide solid solution becomes small.
【0114】(実施例50)過酸化水素の添加量をセリ
ウムイオンの1.2倍としたこと以外は実施例1と同様
にして、実施例50の酸化物固溶体粒子を調製した。こ
の酸化物固溶体粒子の固溶度は100%、結晶子の平均
径は9nm、比表面積は50m2 /gであった。(Example 50) Oxide solid solution particles of Example 50 were prepared in the same manner as in Example 1 except that the amount of hydrogen peroxide added was 1.2 times that of cerium ions. The solid solubility of the oxide solid solution particles was 100%, the average crystallite diameter was 9 nm, and the specific surface area was 50 m 2 / g.
【0115】このように過酸化水素を実施例1より増量
しても、実施例1と同様の固溶度をもつ酸化物固溶体粒
子を調製することができる。Thus, even if the amount of hydrogen peroxide is increased from that in Example 1, oxide solid solution particles having the same solid solubility as in Example 1 can be prepared.
【0116】[0116]
【発明の効果】本発明の酸化物固溶体粒子によれば、固
溶体粒子の固溶度が高くかつ結晶子の平均粒径が小さ
い。そして固溶体がセリアとジルコニアの固溶体であれ
ば、セリアの蛍石構造を維持したままセリウムの位置の
一部をジルコニウムが置換した結晶構造をもつので、セ
リアのOSCが従来の約2倍に向上し、かつ酸素の吸蔵
・放出速度が大きく、高い酸素ストアレージ能を有して
いる。According to the oxide solid solution particles of the present invention, the solid solution particles have a high solid solubility and the crystallites have a small average particle size. If the solid solution is a solid solution of ceria and zirconia, it has a crystal structure in which zirconium is substituted for part of the position of cerium while maintaining the fluorite structure of ceria. In addition, it has a high oxygen storage / release rate and a high oxygen storage capacity.
【0117】また本発明の製造方法によれば、界面活性
剤を添加することにより、ミセル内の小さな空間で複数
の元素が均一に集合して粒子が形成されると考えられ
る。したがって、結晶子の平均径を維持したままほぼ完
全な固溶体とすることができ、本発明の酸化物固溶体を
容易かつ確実に製造することができる。そしてさらに過
酸化水素を添加することにより、3価のセリウムを用い
た場合でも高い固溶度が確保される。Further, according to the production method of the present invention, it is considered that by adding a surfactant, a plurality of elements are uniformly aggregated in a small space in the micelle to form particles. Therefore, a substantially complete solid solution can be obtained while maintaining the average crystallite size, and the oxide solid solution of the present invention can be easily and reliably produced. Then, by further adding hydrogen peroxide, a high solid solubility is secured even when trivalent cerium is used.
【0118】さらに請求項10に記載の本発明の製造方
法によれば、水溶液を強力に攪拌することにより複数の
元素が共沈する際に共沈物の偏析が抑制され、均一に分
散されると考えられる。したがって、結晶子の平均粒径
を維持したままほぼ完全な固溶体とすることができ、本
発明の酸化物固溶体を容易かつ確実に製造することがで
きる。また3価のセリウムを用いた場合にも、過酸化水
素を添加しなくても高い固溶度が確保できる。Further, according to the manufacturing method of the present invention as set forth in claim 10, by strongly stirring the aqueous solution, segregation of the coprecipitate is suppressed when a plurality of elements are coprecipitated, and the coprecipitate is uniformly dispersed. it is conceivable that. Therefore, a substantially complete solid solution can be obtained while maintaining the average crystallite size, and the oxide solid solution of the present invention can be easily and reliably produced. Further, even when trivalent cerium is used, high solid solubility can be secured without adding hydrogen peroxide.
【0119】さらに請求項11に記載の本発明の製造方
法によれば、水溶液から得られた沈殿物を還元雰囲気で
加熱することにより、結晶子の平均径を維持したままほ
ぼ完全な固溶体とすることができ、本発明の酸化物固溶
体を容易かつ確実に製造することができる。また3価の
セリウムを用いた場合にも、過酸化水素を添加しなくて
も高い固溶度が確保できる。Furthermore, according to the manufacturing method of the present invention as set forth in claim 11, the precipitate obtained from the aqueous solution is heated in a reducing atmosphere to form a substantially complete solid solution while maintaining the average crystallite size. Thus, the oxide solid solution of the present invention can be manufactured easily and reliably. Further, even when trivalent cerium is used, high solid solubility can be secured without adding hydrogen peroxide.
【図1】熱処理温度と比表面積の関係を示すグラフであ
る。FIG. 1 is a graph showing a relationship between a heat treatment temperature and a specific surface area.
【図2】熱処理温度と結晶子の平均径の関係を示すグラ
フである。FIG. 2 is a graph showing the relationship between the heat treatment temperature and the average diameter of crystallites.
【図3】アルキルベンゼンスルホン酸の添加率と形成さ
れた酸化物固溶体粒子の結晶の格子定数との関係を示す
グラフである。FIG. 3 is a graph showing the relationship between the addition rate of alkylbenzene sulfonic acid and the lattice constant of the crystals of the oxide solid solution particles formed.
【図4】ジルコニア含有率と形成される酸化物固溶体粒
子の結晶の格子定数との関係を示すグラフである。FIG. 4 is a graph showing a relationship between a zirconia content rate and a lattice constant of crystals of oxide solid solution particles formed.
【図5】界面活性剤添加率と形成された酸化物固溶体粒
子の固溶度及び比表面積との関係を示すグラフである。FIG. 5 is a graph showing the relationship between the surfactant addition rate and the solid solubility and specific surface area of the formed oxide solid solution particles.
【図6】熱処理温度と比表面積の関係を示すグラフであ
る。FIG. 6 is a graph showing the relationship between heat treatment temperature and specific surface area.
【図7】熱処理温度と結晶子の平均径の関係を示すグラ
フである。FIG. 7 is a graph showing the relationship between heat treatment temperature and average crystallite size.
【図8】Ce/Zrモル比と形成された酸化物固溶体粒
子のOSCとの関係を示すグラフである。FIG. 8 is a graph showing the relationship between the Ce / Zr molar ratio and the OSC of the formed oxide solid solution particles.
【図9】酸化物固溶体粒子中のジルコニア濃度と格子定
数との関係を示すグラフである。FIG. 9 is a graph showing the relationship between the zirconia concentration in oxide solid solution particles and the lattice constant.
【図10】イットリウムの添加量による効果を示すX線
回折チャート図である。FIG. 10 is an X-ray diffraction chart showing the effect of the amount of yttrium added.
【図11】カルシウムの添加量による効果を示すX線回
折チャート図である。FIG. 11 is an X-ray diffraction chart showing the effect of the added amount of calcium.
【図12】各種アルカリ土類元素又は希土類元素を添加
した場合のOSCを示すグラフである。FIG. 12 is a graph showing OSC when various alkaline earth elements or rare earth elements are added.
【図13】イットリウム又はカルシウムの添加量とOS
Cの関係を示すグラフである。FIG. 13: Yttrium or calcium addition amount and OS
It is a graph which shows the relationship of C.
【図14】ジルコニウム含有量とOSCの関係を示すグ
ラフである。FIG. 14 is a graph showing the relationship between zirconium content and OSC.
フロントページの続き (72)発明者 鈴木 正 愛知県愛知郡長久手町大字長湫字横道41番 地の1株式会社豊田中央研究所内 (72)発明者 神取 利男 愛知県愛知郡長久手町大字長湫字横道41番 地の1株式会社豊田中央研究所内 (72)発明者 右京 良雄 愛知県愛知郡長久手町大字長湫字横道41番 地の1株式会社豊田中央研究所内 (72)発明者 杉浦 正洽 愛知県愛知郡長久手町大字長湫字横道41番 地の1株式会社豊田中央研究所内 (72)発明者 木村 希夫 愛知県愛知郡長久手町大字長湫字横道41番 地の1株式会社豊田中央研究所内Front Page Continuation (72) Inventor Masa Tadashi, Nagakute-cho, Aichi-gun, Aichi-gun, Nagakage, Yoko 41-chome, Toyota Central Research Institute Co., Ltd. (72) Inventor Toshio Kamtori 41, Nagakute-cho, Aichi, Aichi-gun, Nagakage Address 1 Toyota Central Research Institute Co., Ltd. (72) Inventor Yoshio Ukyo 41, Nagakute-cho, Aichi-gun, Aichi-gun, Nagakute-machi Large Toyota Road Research Institute Ltd. (72) Inventor Masataka Sugiura Aichi-gun, Aichi Prefecture Nagakute-machi Oita Nagaminato Yokoyodo 41, 1 Toyota Central Research Laboratory (72) Inventor Norio Kimura Nagachite Aichi-gun Aichi-gun Nagakute Yokoyoji 41 Toyota Corporation
Claims (11)
物固溶体を含む粒子であって、 該粒子中の該一の酸化物に対する該他の酸化物の固溶度
が50%以上であり、かつ該粒子中の結晶子の平均径が
100nm以下であることを特徴とする酸化物固溶体粒
子。1. A particle comprising an oxide solid solution in which another oxide is solid-dissolved in one oxide, wherein the solid solubility of the other oxide with respect to the one oxide in the particle is 50%. Above, and the average diameter of the crystallite in the particles is 100 nm or less, oxide solid solution particles.
ことを特徴とする請求項1記載の酸化物固溶体粒子。2. The oxide solid solution particles according to claim 1, wherein the particles are aggregated to form a powder.
あることを特徴とする請求項1記載の酸化物固溶体粒
子。3. The oxide solid solution particles according to claim 1, wherein the specific surface area of the particles is 1 m 2 / g or more.
固溶した酸化物固溶体を含む粒子であって、 該粒子中の該セリウム酸化物に対するジルコニウム酸化
物の固溶度が50%以上であり、かつ該粒子中の結晶子
の平均径が100nm以下であることを特徴とする酸化
物固溶体粒子。4. Particles containing an oxide solid solution in which zirconium oxide is solid-dissolved in cerium oxide, wherein the zirconium oxide has a solid solubility of 50% or more with respect to the cerium oxide in the particles, and Oxide solid solution particles, wherein the crystallites in the particles have an average diameter of 100 nm or less.
比率はモル比で、0.25≦Zr/(Ce+Zr)≦
0.75の範囲にあることを特徴とする請求項4記載の
酸化物固溶体粒子。5. The molar ratio of cerium to zirconium in the particles is 0.25 ≦ Zr / (Ce + Zr) ≦.
The oxide solid solution particles according to claim 4, which are in the range of 0.75.
溶液に界面活性剤とアルカリ性物質を添加することによ
り沈殿物を得る第1工程と、 該沈殿物を加熱して、一の酸化物に他の酸化物が固溶し
た酸化物固溶体を含む粒子であって該粒子中の該一の酸
化物に対する該他の酸化物の固溶度が50%以上であ
り、かつ該粒子中の結晶子の平均径が100nm以下で
ある酸化物固溶体粒子を得る第2工程と、よりなること
を特徴とする酸化物固溶体粒子の製造方法。6. A first step of obtaining a precipitate by adding a surfactant and an alkaline substance to an aqueous solution in which a plurality of kinds of oxide elements are dissolved, and heating the precipitate to form one oxide. A particle containing an oxide solid solution in which another oxide is formed as a solid solution, the solid solubility of the other oxide with respect to the one oxide in the particle is 50% or more, and the crystallite in the particle And a second step of obtaining oxide solid solution particles having an average diameter of 100 nm or less, and a method for producing oxide solid solution particles.
とジルコニウムであることを特徴とする請求項6記載の
酸化物固溶体粒子の製造方法。7. The method for producing oxide solid solution particles according to claim 6, wherein the elements forming the oxide are tetravalent cerium and zirconium.
した水溶液に過酸化水素と、界面活性剤及びアルカリ性
物質を添加することにより沈殿物を得る第1工程と、 該沈殿物を加熱して、セリウム酸化物にジルコニウム酸
化物が固溶した酸化物固溶体を含む粒子であって、該粒
子中の該セリウム酸化物に対するジルコニウム酸化物の
固溶度が50%以上であり、かつ該粒子中の結晶子の平
均径が100nm以下である酸化物固溶体粒子を得る第
2工程と、よりなることを特徴とする酸化物固溶体粒子
の製造方法。8. A first step of obtaining a precipitate by adding hydrogen peroxide, a surfactant and an alkaline substance to an aqueous solution in which trivalent cerium and zirconium are dissolved, and heating the precipitate, A particle containing an oxide solid solution in which zirconium oxide is solid-dissolved in cerium oxide, wherein the zirconium oxide has a solid solubility of 50% or more with respect to the cerium oxide in the particle, and a crystal in the particle. A second step of obtaining oxide solid solution particles having an average particle size of 100 nm or less, and a method for producing oxide solid solution particles, comprising:
1mol/リットル以下のものであることを特徴とする
請求項6、請求項7又は請求項8記載の酸化物固溶体粒
子の製造方法。9. The surfactant has a critical micelle concentration of 0.
It is 1 mol / liter or less, The manufacturing method of the oxide solid solution particle of Claim 6, 7 or 8 characterized by the above-mentioned.
水溶液を103 sec-1以上の高せん断速度で高速攪拌
しながらアルカリ性物質を添加することにより沈殿物を
得る第1工程と、 該沈殿物を加熱して、一の酸化物に他の酸化物が固溶し
た酸化物固溶体を含む粒子であって該粒子中の該一の酸
化物に対する該他の酸化物の固溶度が50%以上であ
り、かつ該粒子中の結晶子の平均径が100nm以下で
ある酸化物固溶体粒子を得る第2工程と、よりなること
を特徴とする酸化物固溶体粒子の製造方法。10. A first step of obtaining a precipitate by adding an alkaline substance while rapidly stirring an aqueous solution in which a plurality of kinds of oxide elements are dissolved at a high shear rate of 10 3 sec −1 or more, and the precipitation. A particle containing an oxide solid solution in which another oxide is solid-dissolved in one oxide, and the solid solubility of the other oxide with respect to the one oxide in the particle is 50%. The method for producing oxide solid solution particles, which comprises the above second step of obtaining oxide solid solution particles in which the average diameter of crystallites in the particles is 100 nm or less.
水溶液にアルカリ性物質を添加することにより沈殿物を
得る第1工程と、 該沈殿物を還元雰囲気で加熱して、一の酸化物に他の酸
化物が固溶した酸化物固溶体を含む粒子であって該粒子
中の該一の酸化物に対する該他の酸化物の固溶度が50
%以上であり、かつ該粒子中の結晶子の平均径が100
nm以下である酸化物固溶体粒子を得る第2工程と、よ
りなることを特徴とする酸化物固溶体粒子の製造方法。11. A first step of obtaining a precipitate by adding an alkaline substance to an aqueous solution in which a plurality of kinds of oxide elements are dissolved, and heating the precipitate in a reducing atmosphere to obtain a single oxide. Particle containing an oxide solid solution in which the oxide of 1. is dissolved, and the solid solubility of the other oxide with respect to the one oxide in the particle is 50.
% And the average diameter of the crystallites in the particles is 100
A second step of obtaining oxide solid solution particles having a particle size of nm or less, and a method for producing oxide solid solution particles, the method comprising:
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP31484096A JP3341973B2 (en) | 1995-12-07 | 1996-11-26 | Oxide solid solution particles and method for producing the same |
US08/758,807 US5958827A (en) | 1995-12-07 | 1996-12-04 | Solid solution particle of oxides, a process for producing the same and a catalyst for purifying exhaust gases |
DE69631638T DE69631638T2 (en) | 1995-12-07 | 1996-12-06 | Solid oxide particles, its manufacture and use as an exhaust gas purification catalyst |
EP96119637A EP0778071B1 (en) | 1995-12-07 | 1996-12-06 | Particle based on a solid solution of oxides, its production process and its use in exhaust gas purification catalyst |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP31941295 | 1995-12-07 | ||
JP7-319412 | 1995-12-07 | ||
JP31484096A JP3341973B2 (en) | 1995-12-07 | 1996-11-26 | Oxide solid solution particles and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH09221304A true JPH09221304A (en) | 1997-08-26 |
JP3341973B2 JP3341973B2 (en) | 2002-11-05 |
Family
ID=26568093
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP31484096A Expired - Fee Related JP3341973B2 (en) | 1995-12-07 | 1996-11-26 | Oxide solid solution particles and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3341973B2 (en) |
Cited By (31)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000128537A (en) * | 1998-10-16 | 2000-05-09 | Toyota Central Res & Dev Lab Inc | Composite powder having oxygen occlusion and releasing ability |
US6391276B1 (en) | 1999-03-15 | 2002-05-21 | Kabushiki Kaisha Toyota Chuo Kenkyusho | Titania-zirconia powder and process for producing the same |
JP2002160922A (en) * | 2000-11-20 | 2002-06-04 | Toyota Central Res & Dev Lab Inc | Composite oxide powder, method of producing the same and catalyst therefor |
JP2002220228A (en) * | 2001-01-18 | 2002-08-09 | Toyota Central Res & Dev Lab Inc | Oxide powder, method for producing the same, and catalyst |
JP2003277059A (en) * | 2002-03-22 | 2003-10-02 | Toyota Central Res & Dev Lab Inc | Ceria-zirconia compound oxide |
JP2004002148A (en) * | 2002-03-29 | 2004-01-08 | Toyota Central Res & Dev Lab Inc | Metal oxide, its manufacturing method and catalyst |
JP2006513973A (en) * | 2003-03-18 | 2006-04-27 | ロディア エレクトロニクス アンド カタリシス | Zirconium oxide and cerium oxide based compositions with low maximum reducible temperature, process for their preparation and their use as catalysts |
JP2006520732A (en) * | 2003-03-18 | 2006-09-14 | ロディア エレクトロニクス アンド カタリシス | Cerium oxide, zirconium oxide and optionally other rare earth oxide-based compositions having a high specific surface area at 1100 ° C., process for their preparation and their use as catalysts |
US7214643B2 (en) | 2002-03-22 | 2007-05-08 | Kabushiki Kaisha Toyota Chuo Kenkyusho | Metal oxide and method for producing the same, and catalyst |
JP2007185618A (en) * | 2006-01-13 | 2007-07-26 | Toda Kogyo Corp | Exhaust gas purifying catalyst |
JP2007253144A (en) * | 2005-07-21 | 2007-10-04 | Ibiden Co Ltd | Honeycomb structured body and exhaust gas purifying device |
JP2008013423A (en) * | 2006-06-30 | 2008-01-24 | Daiichi Kigensokagaku Kogyo Co Ltd | Cerium oxide-zirconium oxide-based compound oxide and method for producing the same |
WO2008047796A1 (en) | 2006-10-18 | 2008-04-24 | Cataler Corporation | Exhaust gas purifying catalyst |
WO2008047742A1 (en) | 2006-10-20 | 2008-04-24 | Cataler Corporation | Exhaust gas purification catalyst |
JP2008128773A (en) * | 2006-11-20 | 2008-06-05 | Fuji Electric Fa Components & Systems Co Ltd | Thin film gas sensor |
JP2009091238A (en) * | 1996-11-14 | 2009-04-30 | Wr Grace & Co Connecticut | Ceric oxide washcoat |
JP2010036187A (en) * | 2003-09-04 | 2010-02-18 | Rhodia Electronics & Catalysis | Composition based on cerium oxide and zirconium oxide having high reducibility and high specific surface, method for preparation thereof and use thereof as catalyst |
JP2010221091A (en) * | 2009-03-19 | 2010-10-07 | Dowa Electronics Materials Co Ltd | Composite oxide for exhaust gas cleaning catalyst, coating material for exhaust gas cleaning catalyst and diesel exhaust gas cleaning filter |
JP2011515221A (en) * | 2008-03-27 | 2011-05-19 | ユミコア・アクチエンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフト | Continuous diesel soot control with minimum back pressure penalty using conventional flow substrate and active direct soot oxidation catalyst placed on it |
US8039418B2 (en) | 2007-07-04 | 2011-10-18 | Cataler Corporation | Exhaust gas-purifying catalyst |
US8133837B2 (en) | 2006-10-30 | 2012-03-13 | Cataler Corporation | Exhaust gas-purifying catalyst |
JP2012519060A (en) * | 2009-02-27 | 2012-08-23 | トライバッハー インダストリー アーゲー | Novel zirconia ceria composition |
US8357311B2 (en) | 2006-12-28 | 2013-01-22 | Kao Corporation | Polishing liquid composition |
WO2013073381A1 (en) * | 2011-11-16 | 2013-05-23 | 株式会社三徳 | Composite oxide |
JP2013129056A (en) * | 2011-11-21 | 2013-07-04 | Tosoh Corp | Zirconia composite powder for polishing and method for producing the same |
US8518333B2 (en) | 2005-07-21 | 2013-08-27 | Ibiden Co., Ltd. | Honeycomb structured body and exhaust gas purifying device |
JP2014030801A (en) * | 2012-08-03 | 2014-02-20 | Noritake Co Ltd | Promotor material for purifying automobile exhaust gas, and method for producing the same |
JP2014105132A (en) * | 2012-11-28 | 2014-06-09 | Japan Fine Ceramics Center | Ceria-zirconia composite oxide material and production method thereof |
JP2017529296A (en) * | 2014-06-24 | 2017-10-05 | ローディア オペレーションズ | Metal-doped cerium oxide composition |
CN114433061A (en) * | 2020-11-06 | 2022-05-06 | 湖南大学 | Preparation method of nano cerium-zirconium solid solution and nano cerium-zirconium solid solution prepared by same |
EP3804847A4 (en) * | 2019-08-09 | 2022-07-27 | Shandong Sinocera Functional Material Co., Ltd | Stable cerium-zirconium solid solution, preparation method therefor and use thereof |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20040100136A (en) | 2003-05-21 | 2004-12-02 | 한화석유화학 주식회사 | Method for doping metal oxides |
WO2009075022A1 (en) | 2007-12-10 | 2009-06-18 | Asahi Glass Company, Limited | Ceria-zirconia solid solution crystal fine grain and process for producing the same |
-
1996
- 1996-11-26 JP JP31484096A patent/JP3341973B2/en not_active Expired - Fee Related
Cited By (36)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009091238A (en) * | 1996-11-14 | 2009-04-30 | Wr Grace & Co Connecticut | Ceric oxide washcoat |
JP2000128537A (en) * | 1998-10-16 | 2000-05-09 | Toyota Central Res & Dev Lab Inc | Composite powder having oxygen occlusion and releasing ability |
US6391276B1 (en) | 1999-03-15 | 2002-05-21 | Kabushiki Kaisha Toyota Chuo Kenkyusho | Titania-zirconia powder and process for producing the same |
JP2002160922A (en) * | 2000-11-20 | 2002-06-04 | Toyota Central Res & Dev Lab Inc | Composite oxide powder, method of producing the same and catalyst therefor |
JP2002220228A (en) * | 2001-01-18 | 2002-08-09 | Toyota Central Res & Dev Lab Inc | Oxide powder, method for producing the same, and catalyst |
US7214643B2 (en) | 2002-03-22 | 2007-05-08 | Kabushiki Kaisha Toyota Chuo Kenkyusho | Metal oxide and method for producing the same, and catalyst |
JP2003277059A (en) * | 2002-03-22 | 2003-10-02 | Toyota Central Res & Dev Lab Inc | Ceria-zirconia compound oxide |
JP2004002148A (en) * | 2002-03-29 | 2004-01-08 | Toyota Central Res & Dev Lab Inc | Metal oxide, its manufacturing method and catalyst |
JP2006520732A (en) * | 2003-03-18 | 2006-09-14 | ロディア エレクトロニクス アンド カタリシス | Cerium oxide, zirconium oxide and optionally other rare earth oxide-based compositions having a high specific surface area at 1100 ° C., process for their preparation and their use as catalysts |
JP2006513973A (en) * | 2003-03-18 | 2006-04-27 | ロディア エレクトロニクス アンド カタリシス | Zirconium oxide and cerium oxide based compositions with low maximum reducible temperature, process for their preparation and their use as catalysts |
JP2010036187A (en) * | 2003-09-04 | 2010-02-18 | Rhodia Electronics & Catalysis | Composition based on cerium oxide and zirconium oxide having high reducibility and high specific surface, method for preparation thereof and use thereof as catalyst |
JP2007253144A (en) * | 2005-07-21 | 2007-10-04 | Ibiden Co Ltd | Honeycomb structured body and exhaust gas purifying device |
US8518333B2 (en) | 2005-07-21 | 2013-08-27 | Ibiden Co., Ltd. | Honeycomb structured body and exhaust gas purifying device |
JP2007185618A (en) * | 2006-01-13 | 2007-07-26 | Toda Kogyo Corp | Exhaust gas purifying catalyst |
US7696127B2 (en) | 2006-01-13 | 2010-04-13 | Toda Kogyo Corporation | Exhaust gas purifying catalyst |
JP2008013423A (en) * | 2006-06-30 | 2008-01-24 | Daiichi Kigensokagaku Kogyo Co Ltd | Cerium oxide-zirconium oxide-based compound oxide and method for producing the same |
WO2008047796A1 (en) | 2006-10-18 | 2008-04-24 | Cataler Corporation | Exhaust gas purifying catalyst |
WO2008047742A1 (en) | 2006-10-20 | 2008-04-24 | Cataler Corporation | Exhaust gas purification catalyst |
US8133837B2 (en) | 2006-10-30 | 2012-03-13 | Cataler Corporation | Exhaust gas-purifying catalyst |
JP2008128773A (en) * | 2006-11-20 | 2008-06-05 | Fuji Electric Fa Components & Systems Co Ltd | Thin film gas sensor |
US8617994B2 (en) | 2006-12-28 | 2013-12-31 | Kao Corporation | Polishing liquid composition |
US8357311B2 (en) | 2006-12-28 | 2013-01-22 | Kao Corporation | Polishing liquid composition |
US8039418B2 (en) | 2007-07-04 | 2011-10-18 | Cataler Corporation | Exhaust gas-purifying catalyst |
JP2011515221A (en) * | 2008-03-27 | 2011-05-19 | ユミコア・アクチエンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフト | Continuous diesel soot control with minimum back pressure penalty using conventional flow substrate and active direct soot oxidation catalyst placed on it |
JP2012519060A (en) * | 2009-02-27 | 2012-08-23 | トライバッハー インダストリー アーゲー | Novel zirconia ceria composition |
JP2010221091A (en) * | 2009-03-19 | 2010-10-07 | Dowa Electronics Materials Co Ltd | Composite oxide for exhaust gas cleaning catalyst, coating material for exhaust gas cleaning catalyst and diesel exhaust gas cleaning filter |
WO2013073381A1 (en) * | 2011-11-16 | 2013-05-23 | 株式会社三徳 | Composite oxide |
JPWO2013073381A1 (en) * | 2011-11-16 | 2015-04-02 | 株式会社三徳 | Complex oxide |
US10258964B2 (en) | 2011-11-16 | 2019-04-16 | Santoku Corporation | Composite oxide |
JP2013129056A (en) * | 2011-11-21 | 2013-07-04 | Tosoh Corp | Zirconia composite powder for polishing and method for producing the same |
JP2014030801A (en) * | 2012-08-03 | 2014-02-20 | Noritake Co Ltd | Promotor material for purifying automobile exhaust gas, and method for producing the same |
JP2014105132A (en) * | 2012-11-28 | 2014-06-09 | Japan Fine Ceramics Center | Ceria-zirconia composite oxide material and production method thereof |
JP2017529296A (en) * | 2014-06-24 | 2017-10-05 | ローディア オペレーションズ | Metal-doped cerium oxide composition |
EP3804847A4 (en) * | 2019-08-09 | 2022-07-27 | Shandong Sinocera Functional Material Co., Ltd | Stable cerium-zirconium solid solution, preparation method therefor and use thereof |
US11865520B2 (en) | 2019-08-09 | 2024-01-09 | Shandong Sinocera Functional Material Co., Ltd | Stable cerium-zirconium solid solution and preparation method therefor and application thereof |
CN114433061A (en) * | 2020-11-06 | 2022-05-06 | 湖南大学 | Preparation method of nano cerium-zirconium solid solution and nano cerium-zirconium solid solution prepared by same |
Also Published As
Publication number | Publication date |
---|---|
JP3341973B2 (en) | 2002-11-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3341973B2 (en) | Oxide solid solution particles and method for producing the same | |
US5958827A (en) | Solid solution particle of oxides, a process for producing the same and a catalyst for purifying exhaust gases | |
US7214643B2 (en) | Metal oxide and method for producing the same, and catalyst | |
EP3160905B1 (en) | Metal doped cerium oxide compositions | |
JP4755988B2 (en) | Metal oxide solid solution, its production and use | |
JP5564109B2 (en) | Composition comprising cerium oxide and zirconium oxide with specific porosity, its preparation method and its use in catalysis | |
US20080009410A1 (en) | Cerium oxide-zirconium oxide-based mixed oxide and method for producing the same | |
JP3402542B2 (en) | Method for producing composite oxide powder | |
JP2005537204A (en) | Metal oxides produced by flame spray pyrolysis | |
EP0841304A1 (en) | Zirconia fine powder and method for its production | |
WO2020195973A1 (en) | Zirconia-based porous body | |
JP4225071B2 (en) | Method for producing ceria-zirconia solid solution | |
JP3238316B2 (en) | Exhaust gas purification catalyst | |
JP2005125317A (en) | Oxygen storing/release material | |
JP2005139029A (en) | Oxide powder, its preparation process, and catalyst | |
JPH06100319A (en) | Multiple oxide with perovskite structure and its production | |
JP3707641B2 (en) | Complex oxide promoter | |
JP2000176282A (en) | Catalyst for purification of lean exhaust gas | |
JP2008150264A (en) | Ceria-zirconia-based compound oxide and its manufacturing method | |
JP6325010B2 (en) | Alumina-based composite oxide and method for producing the same | |
JP2005518326A (en) | Mesoporous compounds containing mineral phases of alumina and particles of cerium, titanium or zirconium oxide and optionally solid solution elements in these particles, their preparation and their use | |
JP5690372B2 (en) | Iron oxide-zirconia composite oxide and method for producing the same | |
JP3861385B2 (en) | Lean exhaust gas purification catalyst | |
JP2003275580A (en) | Oxygen storage material | |
WO2022107900A1 (en) | Zirconia-based porous body and production method for zirconia-based porous body |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080823 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080823 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090823 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090823 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100823 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100823 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110823 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120823 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120823 Year of fee payment: 10 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313532 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120823 Year of fee payment: 10 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130823 Year of fee payment: 11 |
|
LAPS | Cancellation because of no payment of annual fees |