JPH06100319A - Multiple oxide with perovskite structure and its production - Google Patents

Multiple oxide with perovskite structure and its production

Info

Publication number
JPH06100319A
JPH06100319A JP4275019A JP27501992A JPH06100319A JP H06100319 A JPH06100319 A JP H06100319A JP 4275019 A JP4275019 A JP 4275019A JP 27501992 A JP27501992 A JP 27501992A JP H06100319 A JPH06100319 A JP H06100319A
Authority
JP
Japan
Prior art keywords
citric acid
composite oxide
metal element
crystal lattice
platinum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4275019A
Other languages
Japanese (ja)
Inventor
Ryusuke Tsuji
龍介 辻
Koji Sakano
幸次 坂野
Masahiro Sugiura
正洽 杉浦
Hideaki Ueno
秀章 植野
Tatsuji Mizuno
達司 水野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Toyota Central R&D Labs Inc
Original Assignee
Toyota Motor Corp
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, Toyota Central R&D Labs Inc filed Critical Toyota Motor Corp
Priority to JP4275019A priority Critical patent/JPH06100319A/en
Publication of JPH06100319A publication Critical patent/JPH06100319A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G55/00Compounds of ruthenium, rhodium, palladium, osmium, iridium, or platinum
    • C01G55/002Compounds containing, besides ruthenium, rhodium, palladium, osmium, iridium, or platinum, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/14Methods for preparing oxides or hydroxides in general
    • C01B13/18Methods for preparing oxides or hydroxides in general by thermal decomposition of compounds, e.g. of salts or hydroxides
    • C01B13/185Preparing mixtures of oxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/30Three-dimensional structures
    • C01P2002/34Three-dimensional structures perovskite-type (ABO3)
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE:To provide the subject multiple oxide high in catalytic activity and adsorptive activity etc. CONSTITUTION:The objective multiple oxide with perovskite structure of formula M<1>M<2>1-XM<3>O3 (M<1> is La, Sr, Ce, Ba or Ca; M<2> is Co or Fe; M<3> is Pt or Pd; 0.005<=X<=0.2) can be obtained by the following method: an aqueous solution of (A) nitrates or acetates of the constituent metallic elements of the above multiple oxide and (B) citric acid is evaporated to dryness to form a citric acid complex which is then heated in a vacuum or an inert gas atmosphere at >=350 deg.C into a preliminarily baked form, which is then baked in an oxidative atmosphere, thus affording the objective multiple oxide where >=90wt.% of the M<3> metal (Pt or Pd) exist in the crystal lattice.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、排ガス浄化用触媒、天
然ガス等の燃焼用触媒、あるいは窒素酸化物等の有害物
質の吸着剤等に利用することができるペロブスカイト型
構造複合酸化物およびその製造方法に関するものであ
る。
FIELD OF THE INVENTION The present invention relates to a perovskite structure composite oxide which can be used as an exhaust gas purifying catalyst, a combustion catalyst for natural gas or the like, or an adsorbent for harmful substances such as nitrogen oxides, and the like. The present invention relates to a manufacturing method.

【0002】[0002]

【従来の技術】内燃機関あるいは工場等より排出される
排ガス中に含まれる窒素酸化物、炭化水素、一酸化炭素
等の有害物質を酸化・還元等により除去する触媒、天然
ガス、合成ガス等の燃焼用触媒あるいは窒素酸化物等の
有機物質の吸着剤等には、白金、パラジウム等の貴金属
元素が有効であるとされている。
2. Description of the Related Art A catalyst for removing harmful substances such as nitrogen oxides, hydrocarbons and carbon monoxide contained in exhaust gas discharged from an internal combustion engine or a factory by oxidation / reduction, natural gas, synthetic gas, etc. Noble metal elements such as platinum and palladium are said to be effective as combustion catalysts or adsorbents for organic substances such as nitrogen oxides.

【0003】最近では、上記貴金属元素をペロブスカイ
ト型構造の結晶中に含ませたものが注目されている。こ
のペロブスカイト型構造とは、複合酸化物に見られる結
晶形態の一形態である。
Recently, attention has been paid to a crystal in which the above noble metal element is contained in a crystal having a perovskite structure. The perovskite type structure is one form of crystal form found in the composite oxide.

【0004】貴金属元素をこの構造の結晶格子中に含ま
せると貴金属粒子が微細化して分散度が向上し、さら
に、触媒活性、吸着活性に寄与する格子欠陥が適度に生
成するため、貴金属元素の触媒活性、吸着活性等の特性
が向上する。
When the noble metal element is included in the crystal lattice of this structure, the noble metal particles are made finer to improve the dispersibility, and further, lattice defects contributing to the catalytic activity and the adsorption activity are appropriately generated, so that the noble metal element Properties such as catalytic activity and adsorption activity are improved.

【0005】従来、このような特性を有するペロブスカ
イト型構造複合酸化物としては、化学式M1 2 1-X
3 X 3 (式中、M1 はランタン、セリウム等の希土類
元素、M2 はコバルト、鉄、アルミニウム、M3 は貴金
属元素である)で示される構造のものが提案されている
(特開昭50−83295号公報、特開平2−1690
33号公報、特開平3−131342号公報、特開平3
−200058号公報)。
Conventionally, a perovskite-type composite oxide having such characteristics has a chemical formula of M 1 M 2 1-X M
A structure having a structure represented by 3 X O 3 (wherein, M 1 is a rare earth element such as lanthanum and cerium, M 2 is cobalt, iron, aluminum, and M 3 is a noble metal element) has been proposed (Japanese Patent Application Laid-Open No. 2000-242242). Japanese Laid-Open Patent Publication No. 50-83295, JP-A No. 2-1690.
33, JP-A-3-131342, JP-A-3
-200058).

【0006】例えば、このペロブスカイト型構造複合酸
化物よりなる触媒は、ある程度の排ガス中の有害物質を
除去することができる。しかし、近年環境汚染の問題が
深刻化していることよりさらに排ガスの浄化基準が厳し
くなり、従来のこの種触媒では浄化活性が不十分であ
る。
For example, the catalyst composed of this perovskite type composite oxide can remove a certain amount of harmful substances in the exhaust gas. However, as the problem of environmental pollution has become more serious in recent years, the purification standards for exhaust gas have become more stringent, and the purification activity of this type of conventional catalyst is insufficient.

【0007】[0007]

【発明が解決しようとする課題】そこで、本発明者ら
は、その原因を解明するために、従来のペロブスカイト
型構造複合酸化物について、特に貴金属元素の結晶格子
中での存在形態を検討した。
Therefore, in order to elucidate the cause, the present inventors have examined the conventional perovskite type structure composite oxides, particularly the existence form of the noble metal element in the crystal lattice.

【0008】それによると、従来のものでは、ペロブス
カイト型構造の結晶格子中に含まれる貴金属元素の量が
85%以下と少ないことが判明した。貴金属元素が結晶
格子中に存在する割合が低いと、結晶格子中に入らなか
った貴金属元素の粒子が微細化せず、約40Åサイズの
凝集体となる。そのため、複合酸化物中における貴金属
元素の分散度が増加せず、触媒活性等の特性が向上しな
い。
According to this, it was found that in the conventional one, the amount of the noble metal element contained in the crystal lattice of the perovskite type structure was as small as 85% or less. If the proportion of the noble metal element present in the crystal lattice is low, the particles of the noble metal element that do not enter the crystal lattice will not be finely divided and will be aggregates of about 40Å size. Therefore, the degree of dispersion of the noble metal element in the composite oxide does not increase, and the properties such as catalytic activity are not improved.

【0009】本発明者らは、さらに検討を重ね、上記結
晶格子中の貴金属元素の存在形態が複合酸化物の調製と
関係すると考え、複合酸化物の製造方法についても着目
した。
The inventors of the present invention have made further studies and considered that the existence form of the noble metal element in the crystal lattice is related to the preparation of the composite oxide, and paid attention to the method for producing the composite oxide.

【0010】従来の複合酸化物の製造は、(a)上記ペ
ロブスカイト型構造の化学式を構成する金属元素の金属
単体、または酸化物、水酸化物、金属塩を出発原料とし
て、これらの粉末を混合し、その後焼成する方法、ある
いは(b)上記金属元素の硝酸塩の混合水溶液を触媒担
体に含浸させ、その後熱処理する方法、(c)上記金属
元素の塩(硝酸塩または酢酸塩)にクエン酸を加えた混
合溶液を用いてクエン酸錯体を形成し、その後焼成する
方法等により行われている。
In the conventional production of complex oxides, (a) a metal element of a metal element constituting the chemical formula of the perovskite structure, or an oxide, a hydroxide, or a metal salt is used as a starting material and these powders are mixed. And then firing, or (b) a method in which the catalyst carrier is impregnated with a mixed aqueous solution of the nitrate of the above metal element and then heat treated, and (c) addition of citric acid to the salt of the above metal element (nitrate or acetate). It is performed by a method of forming a citric acid complex using the mixed solution, and then baking the complex.

【0011】(a)の粉末混合の場合、混合が不十分と
なるため、構成元素が均一に分散することが困難とな
る。従って、貴金属元素が結晶格子中に存在する割合が
増加せず、最高でも85%程度となる。
In the case of powder mixing of (a), since the mixing is insufficient, it becomes difficult to uniformly disperse the constituent elements. Therefore, the ratio of the noble metal element present in the crystal lattice does not increase, and the ratio becomes about 85% at the maximum.

【0012】また、(b)の金属元素の硝酸塩の混合水
溶液を用いる場合、該水溶液中で金属イオンが不安定と
なり、重い元素と軽い元素との濃度ムラや沈降が生じ
る。そのため、触媒担体に含浸した後の乾燥工程で貴金
属元素の不均一化が生じ、焼成時の結晶化率が低下す
る。また、貴金属元素が結晶格子中に存在する割合も低
下してしまう。
Further, in the case of using the mixed aqueous solution of nitrate of metal element (b), the metal ions become unstable in the aqueous solution, resulting in uneven concentration and sedimentation of heavy elements and light elements. Therefore, the noble metal element becomes non-uniform in the drying step after impregnation into the catalyst carrier, and the crystallization rate during firing is reduced. Further, the proportion of the noble metal element present in the crystal lattice is also reduced.

【0013】また、(c)の金属元素のクエン酸錯体を
形成する場合、クエン酸錯体を形成して焼成するまでに
クエン酸錯体を加熱分解するために真空中200〜30
0℃で加熱している。しかし、この加熱が不十分である
ため、出発原料である金属元素の塩(硝酸塩または酢酸
塩)が残存してしまう。そのため、結晶化前の金属イオ
ンの拡散がスムーズに行われず、貴金属元素が結晶格子
中に存在する割合が低下してしまう。
In the case of forming the citric acid complex of the metal element (c), the citric acid complex is heated to 200 to 30 in a vacuum in order to decompose the citric acid complex by heating before forming and firing.
Heating at 0 ° C. However, since this heating is insufficient, the salt of the metal element (nitrate or acetate), which is the starting material, remains. Therefore, the diffusion of metal ions before crystallization is not smoothly performed, and the ratio of the noble metal element present in the crystal lattice is reduced.

【0014】このように、従来のペロブスカイト型構造
の複合酸化物は、貴金属元素の結晶格子中での存在形態
に問題があり、触媒に使用した場合の触媒活性、吸着活
性等の特性が向上しない。
As described above, the conventional complex oxide having the perovskite structure has a problem in the existence form of the noble metal element in the crystal lattice, and the properties such as catalytic activity and adsorption activity are not improved when it is used as a catalyst. .

【0015】本発明は、上記従来技術の問題点に鑑みな
されたものであり、触媒活性や吸着活性等の特性に優れ
たペロブスカイト型構造複合酸化物およびその製造方法
を提供することを目的とする。
The present invention has been made in view of the above-mentioned problems of the prior art, and an object of the present invention is to provide a perovskite structure composite oxide excellent in characteristics such as catalytic activity and adsorption activity, and a method for producing the same. .

【0016】[0016]

【課題を解決するための手段】[Means for Solving the Problems]

(第1発明の構成)本発明のペロブスカイト型構造複合
酸化物(第1発明とする)は、M1 2 1-X 3 X 3
(式中、M1 はランタン、ストロンチウム、セリウム、
バリウム、カルシウムのうちの少なくとも1種、M2
コバルト、鉄のうちの少なくとも一方、M3 は白金、パ
ラジウムのうちの少なくとも一方であり、Xは0.00
5≦X≦0.2である)で示されるペロブスカイト型構
造複合酸化物において、上記式中のM3 の元素は、その
90%以上が結晶格子中に存在することを特徴とするも
のである。
(Structure of First Invention) The perovskite structure composite oxide (referred to as the first invention) of the present invention is M 1 M 2 1-X M 3 X O 3
(In the formula, M 1 is lanthanum, strontium, cerium,
At least one of barium and calcium, M 2 is at least one of cobalt and iron, M 3 is at least one of platinum and palladium, and X is 0.00
5 ≦ X ≦ 0.2), the M 3 element in the above formula is characterized in that 90% or more thereof is present in the crystal lattice. .

【0017】(第2発明の構成)本発明のペロブスカイ
ト型構造複合酸化物の製造方法(第2発明とする)は、
1 2 1-X 3 X 3 (式中、M1 はランタン、スト
ロンチウム、セリウム、バリウム、カルシウムのうちの
少なくとも1種、M2 はコバルト、鉄のうちの少なくと
も一方、M3 は白金、パラジウムのうちの少なくとも一
方であり、Xは0.005≦X≦0.2である)で示さ
れるペロブスカイト型構造複合酸化物を構成する金属元
素の塩とクエン酸とを溶解した水溶液を調製する第1工
程と、上記水溶液を乾燥することにより上記金属元素と
クエン酸との錯体を形成する第2工程と、上記錯体を真
空中または不活性ガス中350℃以上で加熱することに
より仮焼成する第3工程と、上記仮焼成体を酸化雰囲気
で焼成することによりペロブスカイト型構造複合酸化物
を形成する第4工程とよりなることを特徴とするもので
ある。
(Structure of the Second Invention) The method of manufacturing the perovskite structure composite oxide of the present invention (referred to as the second invention) is as follows.
M 1 M 2 1-X M 3 X O 3 (wherein M 1 is at least one of lanthanum, strontium, cerium, barium, and calcium, M 2 is at least one of cobalt and iron, and M 3 is At least one of platinum and palladium, and X is 0.005 ≦ X ≦ 0.2), and an aqueous solution in which a salt of a metal element constituting the perovskite-type structural composite oxide and citric acid are dissolved is prepared. A first step of preparing, a second step of forming a complex of the metal element and citric acid by drying the aqueous solution, and a tentative process by heating the complex in vacuum or in an inert gas at 350 ° C. or higher. It is characterized by comprising a third step of baking and a fourth step of forming the perovskite type structure composite oxide by baking the pre-baked body in an oxidizing atmosphere.

【0018】[0018]

【作用】[Action]

(第1発明の作用)本第1発明では、M1 2 1-X 3
X 3 においてM3 の元素(白金またはパラジウム)の
90%以上が結晶格子中に存在するため、該白金または
パラジウムの大部分は粒子が微細化(約2Å)し、触媒
等の活性種としての分散度が向上する。また、結晶格子
中に存在しない白金またはパラジウムは粒子が約40Å
サイズの凝集体となるため、触媒等の活性種とはならな
い。しかし、本第1発明ではこのような白金またはパラ
ジウムが少量であるためこの影響は極めて少ない。さら
に、M3 の元素が結晶格子中に存在しないと、M3 と対
をなすM1 の元素も結晶格子中に存在しない。この結晶
格子中に存在しないM1 の元素は単独に酸化物となって
不純物として混入する。この不純物は触媒等の活性種と
しての機能を呈さず、しかも触媒等の活性点上に堆積し
て活性を低下させる。しかし、本第1発明ではこのよう
な不純物も少ない。
(First effect of the invention) The present first invention, M 1 M 2 1-X M 3
In X O 3 , 90% or more of the M 3 element (platinum or palladium) is present in the crystal lattice, so most of the platinum or palladium particles become finer (about 2Å) and become active species such as catalysts. The degree of dispersion is improved. In addition, platinum or palladium, which does not exist in the crystal lattice, has a particle size of about 40Å
Since it becomes aggregates of size, it does not become an active species such as a catalyst. However, in the first invention, since the amount of platinum or palladium is small, this effect is extremely small. Furthermore, the element of M 3 is not present in the crystal lattice, even not present in the crystal lattice elements M 1 paired with the M 3. The element of M 1 which does not exist in this crystal lattice becomes an oxide and is mixed as an impurity. This impurity does not function as an active species of the catalyst or the like, and is deposited on the active site of the catalyst or the like to reduce the activity. However, such impurities are small in the first invention.

【0019】(第2発明の作用)本第2発明では、ペロ
ブスカイト型構造複合酸化物を構成する金属元素のクエ
ン酸錯体を形成する。このクエン酸錯体は、クエン酸の
カルボキシル基に金属イオンが連結するため、クエン酸
を中心に金属イオン同志が均一に接近した状態を形成す
る。同時に金属イオンの濃度ムラや沈降を防止する。そ
のため、ペロブスカイト型構造複合酸化物を形成する焼
成時に金属元素が結晶格子中に入りやすくなる。
(Operation of the Second Invention) In the second invention, a citric acid complex of a metal element forming a perovskite structure complex oxide is formed. In this citric acid complex, the metal ion is linked to the carboxyl group of citric acid, so that the metal ions form a state in which the metal ions are uniformly close to each other with citric acid at the center. At the same time, it prevents metal ion concentration unevenness and sedimentation. Therefore, the metal element easily enters the crystal lattice at the time of firing to form the perovskite type composite oxide.

【0020】焼成の前にクエン酸錯体を真空中または不
活性ガス中350℃以上で加熱することにより、金属元
素が結晶格子中に入ることを阻害するクエン酸および出
発原料である金属元素の塩からの残存物(有機物、ある
いは例えば硝酸塩を使用した場合の硝酸根等)を加熱分
解によりほとんど除去するため、金属元素がスムーズに
結晶格子中に入いることができる。従って、結晶格子中
の金属元素の存在割合が増加する。
Before heating, the citric acid complex is heated in vacuum or in an inert gas at 350 ° C. or higher to prevent citric acid from entering the crystal lattice and a salt of the starting metal element. Most of the residue (organic matter, or nitrate radical when nitrate is used, for example) is removed by thermal decomposition, so that the metal element can smoothly enter the crystal lattice. Therefore, the existence ratio of the metal element in the crystal lattice increases.

【0021】[0021]

【発明の効果】【The invention's effect】

(第1発明の効果)本第1発明のペロブスカイト型構造
複合酸化物は、白金またはパラジウムの90%以上が金
属イオンとして結晶格子中に存在するため、白金または
パラジウムの粒子が微細化し分散度が向上するとともに
結晶格子欠陥が適度に生成するため、触媒活性、吸着性
等の特性が向上する。
(Effect of the first invention) In the perovskite structure composite oxide of the first invention, since 90% or more of platinum or palladium is present in the crystal lattice as metal ions, the particles of platinum or palladium are finely divided and the dispersity is high. As the crystal lattice defects are appropriately generated, the properties such as catalytic activity and adsorptivity are improved.

【0022】(第2発明の効果)本第2発明では、上記
本第1発明の特性に優れたペロブスカイト型構造複合酸
化物を製造することができる。
(Effect of the Second Invention) In the second invention, the perovskite type structure composite oxide excellent in the characteristics of the first invention can be produced.

【0023】[0023]

【実施例】以下、本発明をより具体的にした具体例を説
明する。
EXAMPLES Specific examples of the present invention will be described below.

【0024】(第1発明の具体例)本第1発明のペロブ
スカイト型構造複合酸化物は、M1 2 1-X 3 X 3
(式中、M1 はランタン、ストロンチウム、セリウム、
バリウム、カルシウムのうちの少なくとも1種、M2
コバルト、鉄のうちの少なくとも一方、M3 は白金、パ
ラジウムのうちの少なくとも一方であり、Xは0.00
5≦X≦0.2である)で示され、M3 の白金またはパ
ラジウムの90%以上が結晶格子中に存在する。
(Specific Example of First Invention) The perovskite structure composite oxide of the first invention is M 1 M 2 1-X M 3 X O 3
(In the formula, M 1 is lanthanum, strontium, cerium,
At least one of barium and calcium, M 2 is at least one of cobalt and iron, M 3 is at least one of platinum and palladium, and X is 0.00
5 ≦ X ≦ 0.2), and 90% or more of platinum or palladium of M 3 is present in the crystal lattice.

【0025】本第1発明において、白金またはパラジウ
ムはその90%以上が結晶格子中に存在する。該存在量
が90%未満では、結晶格子欠陥が生成せず、触媒活
性、吸着性等の特性が向上しない。
In the first aspect of the present invention, 90% or more of platinum or palladium is present in the crystal lattice. If the existing amount is less than 90%, crystal lattice defects are not generated, and properties such as catalytic activity and adsorptivity are not improved.

【0026】なお、白金またはパラジウムの結晶格子中
の存在量を測定するには、X線回折分析法を用いる。白
金またはパラジウムを含まないペロブスカイト型構造複
合酸化物に白金またはパラジウムの金属粒子を混合した
混合粉末を作り、適当な分析線を選んでその強度比を測
定し、強度比と混合比との関係を示す検量線と照合して
成分の混合比を求める。
The X-ray diffraction analysis method is used to measure the amount of platinum or palladium present in the crystal lattice. Make a mixed powder by mixing platinum or palladium metal particles into a perovskite structure composite oxide that does not contain platinum or palladium, select an appropriate analysis line and measure its intensity ratio to determine the relationship between the intensity ratio and the mixture ratio. The mixture ratio of the components is obtained by collating with the calibration curve shown.

【0027】また、上記式中、Xは0.005≦X≦
0.2とする。M1 2 1-X 3 X 3 で示されるペロ
ブスカイト型構造複合酸化物は理想格子として単純立方
格子の構造のものである。M2 、M3 は6個のOに囲ま
れ6配位をとる。M1 は12個のOに囲まれ12配位を
とる。従って、理想格子とするには、M2 、M3 は6配
位が保てるような原子価を持つと同時にM2 とM3 のイ
オン半径ができるだけ近似していることが必要である。
2 とM3 のイオン半径が異なる程度に応じて結晶格子
が歪んだ形になる。M2 に対してイオン半径の異なるM
3 の量が増加するにつれて結晶形の歪みが大きくなる。
2 とM3 のイオン半径の関係によって一義的に決まら
ないが、Xが0.2より大きくなると、歪みが大きくな
り、M3 が結晶格子中に入らなくなる。そのため、結晶
格子中の存在量が90%以上にはならない。一方、M3
はXが0.005未満でも十分に結晶格子中に入るが、
量が少ないため実用上の触媒等の活性種としての効果が
発揮できない。
In the above formula, X is 0.005≤X≤.
Set to 0.2. The perovskite structure complex oxide represented by M 1 M 2 1-X M 3 X O 3 has a simple cubic lattice structure as an ideal lattice. M 2 and M 3 are surrounded by 6 O atoms and have 6 coordination. M 1 is surrounded by 12 O atoms and has 12 coordinations. Therefore, in an ideal lattice, M 2, M 3 is necessary that the ionic radius of the having a valence that can keep in hexa-coordinated and M 2 at the same time M 3 are as close as possible.
The crystal lattice becomes distorted according to the degree to which the ionic radii of M 2 and M 3 differ. M with different ionic radius with respect to M 2
As the amount of 3 increases, the strain of the crystal form increases.
Although it is not uniquely determined by the relationship between the ionic radii of M 2 and M 3 , when X is larger than 0.2, the strain becomes large and M 3 does not enter the crystal lattice. Therefore, the existing amount in the crystal lattice does not exceed 90%. On the other hand, M 3
Is well within the crystal lattice when X is less than 0.005,
Since the amount is small, the effect as a practical active species such as a catalyst cannot be exhibited.

【0028】本第1発明のペロブスカイト型構造複合酸
化物は、触媒活性や吸着性等の特性が向上していること
より、排ガス浄化用触媒(炭化水素の浄化、窒素酸化物
の浄化等)、窒素酸化物の吸着剤(窒素酸化物吸着除
去)、あるいは燃焼用触媒(天然ガス、石油ガス等の気
化燃料等の燃焼)等に利用することができる。
Since the perovskite structure composite oxide of the first aspect of the present invention has improved characteristics such as catalytic activity and adsorptivity, an exhaust gas purifying catalyst (purifying hydrocarbons, purifying nitrogen oxides, etc.), It can be used as a nitrogen oxide adsorbent (nitrogen oxide adsorption removal), a combustion catalyst (combustion of vaporized fuel such as natural gas or petroleum gas), and the like.

【0029】なお、触媒として使用する場合、本第1発
明のペロブスカイト型構造複合酸化物をコージエライト
等の耐火性無機担体上に分散担持して触媒とするのが好
ましい。この分散担持する際、複合酸化物をできるだけ
高分散化して担持するため、分散媒体としてPVA(ポ
リビニルアルコール)やカーボンブラック等を使用する
のがよい。また、分散剤や結合剤として、アルミナゾ
ル、シリカゾル、ジルコニアゾル等が使用できる。その
使用量は目的、使用状態に応じて変わるが、固形分比で
3〜15重量%程度がよく、触媒活性を低下させないた
め必要最小限を選択する。
When used as a catalyst, it is preferable that the perovskite structure composite oxide of the first invention is dispersed and supported on a refractory inorganic carrier such as cordierite to form a catalyst. When carrying this dispersion, it is preferable to use PVA (polyvinyl alcohol), carbon black, or the like as a dispersion medium in order to carry the composite oxide as highly dispersed as possible. Further, as the dispersant or binder, alumina sol, silica sol, zirconia sol or the like can be used. The amount used varies depending on the purpose and the state of use, but a solid content ratio of about 3 to 15% by weight is preferable, and the necessary minimum amount is selected in order not to reduce the catalyst activity.

【0030】(第2発明の具体例)本第2発明のペロブ
スカイト型構造複合酸化物の製造方法では、M1 2
1-X3 X 3 (式中、M1 はランタン、ストロンチウ
ム、セリウム、バリウム、カルシウムのうちの少なくと
も1種、M2 はコバルト、鉄のうちの少なくとも一方、
3 は白金、パラジウムのうちの少なくとも一方であ
り、Xは0.005≦X≦0.2である)で示されるペ
ロブスカイト構造複合酸化物を構成する金属元素の塩と
クエン酸とを溶解した水溶液を調製し(第1工程)、該
水溶液を乾燥して上記金属元素のクエン酸錯体を形成し
(第2工程)、該クエン酸錯体を真空中または不活性ガ
ス中350℃以上で加熱・仮焼成し(第3工程)、その
後酸化雰囲気で焼成する(第4工程)。
(Specific Example of Second Invention) In the method for producing a perovskite type composite oxide of the second invention, M 1 M 2 is used.
1-X M 3 X O 3 (wherein M 1 is at least one of lanthanum, strontium, cerium, barium and calcium, M 2 is at least one of cobalt and iron,
M 3 is at least one of platinum and palladium, and X is 0.005 ≦ X ≦ 0.2), and a salt of a metal element constituting the perovskite structure composite oxide and citric acid are dissolved. An aqueous solution is prepared (first step), the aqueous solution is dried to form a citric acid complex of the metal element (second step), and the citric acid complex is heated at 350 ° C. or higher in a vacuum or an inert gas. Preliminary firing (third step) and then firing in an oxidizing atmosphere (fourth step).

【0031】第1工程において、金属元素の塩とクエン
酸とを溶解した水溶液を調製する。
In the first step, an aqueous solution in which a salt of a metal element and citric acid are dissolved is prepared.

【0032】金属元素の塩としては、硝酸塩または酢酸
塩の形がよい。これは、第3工程の仮焼成で金属元素以
外の残存物を分解できるためである。例えば、塩酸塩の
場合、塩素が残存して触媒活性や吸着活性等の特性に影
響を与える。
The salt of the metal element is preferably in the form of nitrate or acetate. This is because the remaining substances other than the metal element can be decomposed by the calcination in the third step. For example, in the case of a hydrochloride, chlorine remains and affects characteristics such as catalytic activity and adsorption activity.

【0033】例えば、上記式におけるM1 の元素の硝酸
塩としては、La(NO3 3 ・6H2 O、Sr(NO
3 2 、Ce(NO3 3 ・6H2 O、Ba(NO3
2 、Ca(NO3 3 ・4H2 O等が挙げられ、また、
1 の元素の酢酸塩としては、La(CH3 COO)3
・3/2H2 O、Sr(CH3 COO)2 ・1/2H2
O、Ce(CH3 COO)3 ・H2 O、Ba(CH3
OO)2 、Ca(CH3 COO)2 ・H2 O等が挙げら
れる。M2 の元素の硝酸塩としては、Co(NO3 2
・6H2 O、Fe(NO3 3 ・9H2 O等が挙げら
れ、また、M2 の元素の酢酸塩としては、Co(CH3
COO)2 ・4H2 O等が挙げられる。M3 の元素の硝
酸塩としては、ジニトロジアンミン白金硝酸塩、ジニト
ロジアンミンパラジウム硝酸塩等が挙げられる。また、
Pt(NH3 4 (OH)2 も上記ジニトロジアンミン
白金硝酸塩の代用として使用することができる。
For example, as the nitrate of the element M 1 in the above formula, La (NO 3 ) 3 .6H 2 O, Sr (NO
3) 2, Ce (NO 3 ) 3 · 6H 2 O, Ba (NO 3)
2, Ca (NO 3) 3 · 4H 2 O , and the like, also,
As the acetate salt of the element of M 1 , La (CH 3 COO) 3
・ 3 / 2H 2 O, Sr (CH 3 COO) 2・ 1 / 2H 2
O, Ce (CH 3 COO) 3 · H 2 O, Ba (CH 3 C
OO) 2 , Ca (CH 3 COO) 2 · H 2 O and the like. The nitrate of the element of M 2 is Co (NO 3 ) 2
· 6H 2 O, Fe (NO 3) 3 · 9H 2 O and the like, and as the acetic acid salt of the element of M 2 is, Co (CH 3
COO) 2 · 4H 2 O, and the like. Examples of the nitrate of the element of M 3 include dinitrodiammine platinum nitrate, dinitrodiammine palladium nitrate and the like. Also,
Pt (NH 3 ) 4 (OH) 2 can also be used as a substitute for the dinitrodiammine platinum nitrate.

【0034】これら金属元素の塩は上記式M1 2 1-X
3 X 3 を形成するような配合割合とする。
The salts of these metal elements are represented by the above formula M 1 M 2 1-X
The compounding ratio is such that M 3 X O 3 is formed.

【0035】クエン酸の配合量としては、形成するM1
2 1-X 3 X 3 1モルに対して2〜2.4モルの範
囲とするのがよい。該配合量が2モル未満では錯体形成
が困難となる場合があり、2.4モルを越えると錯体形
成は十分であるが、金属元素の均一混合が困難となる場
合がある。
The content of citric acid is such that M 1 to be formed is
M 2 1-X M 3 X O 3 preferably set to 2 to 2.4 mols relative to 1 mol. If the amount is less than 2 mol, complex formation may be difficult, and if it exceeds 2.4 mol, complex formation may be sufficient, but uniform mixing of metal elements may be difficult.

【0036】金属元素の塩とクエン酸とを溶解した水溶
液を調製する方法としては、例えば、金属元素の塩をイ
オン交換水に溶解し、また、別のイオン交換水にクエン
酸を溶解し、この両者を混合する方法がある。
As a method for preparing an aqueous solution in which a salt of a metal element and citric acid are dissolved, for example, a salt of a metal element is dissolved in ion-exchanged water, and citric acid is dissolved in another ion-exchanged water. There is a method of mixing both.

【0037】第2工程では、上記水溶液を乾燥すること
により金属元素のクエン酸錯体を形成する。
In the second step, the citric acid complex of the metal element is formed by drying the aqueous solution.

【0038】該乾燥条件としては、クエン酸錯体が分解
しない温度範囲ですみやかに水分を除去する条件が適す
る。例えば、温度は室温〜150℃、時間は2〜12時
間の範囲内がよい。
[0038] As the drying condition, a condition for quickly removing water in a temperature range where the citric acid complex is not decomposed is suitable. For example, the temperature may be room temperature to 150 ° C., and the time may be 2 to 12 hours.

【0039】第3工程では、上記金属元素のクエン酸錯
体を真空中または不活性ガス中350℃以上で加熱して
仮焼成する。
In the third step, the citric acid complex of the metal element is heated at 350 ° C. or higher in vacuum or in an inert gas to be calcined.

【0040】この仮焼成の雰囲気が酸化雰囲気では、ク
エン酸錯体からのクエン酸および金属元素の塩からの残
存物(有機物、硝酸根等)の分解が促進されない。その
ため、真空中または不活性ガス中とする。なお、真空中
の方が不活性ガス中よりも上記分解が促進されるので好
ましい。
When the calcination atmosphere is an oxidizing atmosphere, decomposition of citric acid from the citric acid complex and residues (organic substances, nitrates, etc.) from salts of metal elements is not promoted. Therefore, it is in vacuum or in an inert gas. It should be noted that a vacuum is more preferable than an inert gas because the decomposition is promoted.

【0041】加熱温度が350℃未満では、クエン酸お
よび出発原料である金属元素の塩からの残存物(有機
物、硝酸根等)を加熱分解できず残存してしまう。ま
た、加熱温度の上限は500℃とするのがよい。500
℃を越えても差し支えないが、仮焼成としては500℃
までで十分であり、それ以上はエネルギーのムダや仮焼
成用装置の損傷が生じるので好ましくない。
If the heating temperature is lower than 350 ° C., the residual substances (organic substances, nitrate radicals, etc.) from the citric acid and the salt of the metal element as the starting material cannot be decomposed by heating and remain. The upper limit of the heating temperature is preferably 500 ° C. 500
There is no problem even if the temperature exceeds ℃, but 500 ℃ for calcination
Is sufficient, and waste of energy and damage to the pre-baking device are not preferable.

【0042】なお、加熱する際、80℃からゆっくり昇
温するのがよい。これは、130℃付近からクエン酸お
よび金属元素の塩からの残存物が分解しはじめ、この範
囲の温度を時間をかけることにより該分解が促進するた
めである。350℃以上では約2〜3時間ほど保持する
のがよい。
When heating, it is preferable to slowly raise the temperature from 80.degree. This is because the residue from the citric acid and the salt of the metal element starts to decompose from around 130 ° C., and the decomposition is accelerated by taking a temperature in this range for a long time. At 350 ° C. or higher, it is preferable to keep the temperature for about 2 to 3 hours.

【0043】この工程により仮焼成体を形成する。A calcined body is formed by this step.

【0044】第4工程では、上記仮焼成体を焼成する。In the fourth step, the calcination body is fired.

【0045】焼成方法としては、どのような方法でもよ
いが、酸化物を形成するため大気中のような酸素が存在
する酸化雰囲気とする。
The firing method may be any method, but an oxidizing atmosphere in which oxygen is present, such as in the air, is used to form an oxide.

【0046】また、焼成温度としては、700〜950
℃の範囲が好ましい。700℃未満の温度においてはペ
ロブスカイ型構造の結晶が成長しにくい。また、950
℃を越える温度では、結晶成長が進み過ぎるため、適度
な格子欠陥を有して格子内に存在していた貴金属が結晶
格子外へ出てしまったり、比表面積が低下して活性が低
下するおそれがある。
The firing temperature is 700 to 950.
The range of ° C is preferred. At a temperature lower than 700 ° C., crystals having a perovskite structure are difficult to grow. Also, 950
If the temperature exceeds ℃, the crystal growth will proceed too much, so the precious metal that has a proper lattice defect and exists in the lattice may come out of the crystal lattice, or the specific surface area may decrease and the activity may decrease. There is.

【0047】また、焼成時間は1時間程度でも焼成体が
得られるが、長時間ほど結晶化率の高い複合酸化物が得
られる。そのため、2〜5時間が好ましい。
A calcination product can be obtained even if the calcination time is about 1 hour, but the longer the time, the higher the crystallization rate of the composite oxide. Therefore, 2 to 5 hours are preferable.

【0048】以下、本発明の実施例を説明する。Examples of the present invention will be described below.

【0049】(実施例) 実施例1 硝酸ランタン21.67g(0.05モル)をイオン交
換水50mlに溶解した。また、酢酸コバルト11.5
6g(0.045モル)をイオン交換水50mlに溶解
した。また、ジニトロジアミノ白金硝酸を21.35g
(0.005モル)を30mlに溶解した。また、クエ
ン酸25.22g(0.12モル)をイオン交換水12
0mlに溶解した。これら4種類の水溶液を混合し、約
250mlの混合水溶液を作製した(第1工程)。
Example 1 21.67 g (0.05 mol) of lanthanum nitrate was dissolved in 50 ml of deionized water. Also, cobalt acetate 11.5
6 g (0.045 mol) was dissolved in 50 ml of deionized water. Also, dinitrodiamino platinum nitric acid 21.35 g
(0.005 mol) was dissolved in 30 ml. In addition, 25.22 g (0.12 mol) of citric acid was added to ion-exchanged water 12
It was dissolved in 0 ml. These four kinds of aqueous solutions were mixed to prepare a mixed aqueous solution of about 250 ml (first step).

【0050】この混合水溶液をエバポレータで減圧しな
がら80℃の湯浴中で約4時間かけて蒸発乾固させ、ク
エン酸錯体を作製した(第2工程)。
This mixed aqueous solution was evaporated to dryness in a hot water bath at 80 ° C. for about 4 hours while reducing the pressure with an evaporator to prepare a citric acid complex (second step).

【0051】このクエン酸錯体を真空ポンプで減圧(1
-2torr以下)しながらマントルヒータにより80
℃から400℃まで温度が急激に上昇しないようにゆっ
くり昇温した。なお、130℃付近から酢酸とクエン酸
とが分解しはじめた。250〜400℃で硝酸根が分解
し黄色のガスが発生するので、この発生ガスがなくなる
ことを確認してこの熱処理を完了した(約3時間)。こ
れにより有機物および硝酸根を除去した仮焼成体を作製
した(第3工程)。
The citric acid complex was depressurized (1
0 -2 torr or less) 80 by a mantle heater while
The temperature was slowly raised from 0 ° C to 400 ° C so that the temperature did not rise sharply. Note that acetic acid and citric acid began to decompose at around 130 ° C. At 250 to 400 ° C., nitrate radicals were decomposed and a yellow gas was generated. Therefore, it was confirmed that the generated gas disappeared, and this heat treatment was completed (about 3 hours). In this way, a calcinated body from which organic substances and nitrates were removed was prepared (third step).

【0052】この仮焼成体を粉末にした後、るつぼに入
れて空気雰囲気で700〜950℃の温度範囲で3時間
焼成した(第4工程)。
This calcinated body was made into a powder, placed in a crucible and fired in an air atmosphere at a temperature range of 700 to 950 ° C. for 3 hours (fourth step).

【0053】これにより、LaCo0.9 Pt0.1 3
示される組成のペロブスカイト型構造複合酸化物を製造
した。
As a result, a perovskite structure composite oxide having a composition represented by LaCo 0.9 Pt 0.1 O 3 was produced.

【0054】実施例2〜5 実施例1と同様にして、LaCo0.8 Pt0.2 3 (実
施例2)、La0.9 Ce0.1 Co0.98Pt0.023 (実
施例3)、La0.8 Sr0.2 Fe0.95Pd0.053 (実
施例4)、Sr0.9 Ba0.1 Co0.85Pd0.153 (実
施例5)で示される組成のペロブスカイト型構造複合酸
化物を製造した。
Examples 2 to 5 In the same manner as in Example 1, LaCo 0.8 Pt 0.2 O 3 (Example 2), La 0.9 Ce 0.1 Co 0.98 Pt 0.02 O 3 (Example 3), La 0.8 Sr 0.2 Fe 0.95 A perovskite structure composite oxide having a composition represented by Pd 0.05 O 3 (Example 4) and Sr 0.9 Ba 0.1 Co 0.85 Pd 0.15 O 3 (Example 5) was produced.

【0055】比較例1 LaCo0.9 Pt0.1 3 で示される組成となるよう
に、酸化ランタン(La2 3 、分子量326)65.
20g、炭酸コバルト(CoCO3 、分子量119)2
1.42g、および酸化白金(PtO2 ・xH2 O、P
t83.25%)4.68gを乳鉢で粉砕混合した。こ
の混合粉末を白金るつぼに入れ、空気中950〜100
0℃で約3日間焼成した。
[0055] Comparative Example 1 LaCo 0.9 Pt 0.1 O 3 so as to have the composition represented by, lanthanum oxide (La 2 O 3, molecular weight 326) 65.
20 g, cobalt carbonate (CoCO 3 , molecular weight 119) 2
1.42 g, and platinum oxide (PtO 2 · xH 2 O, P
4.68 g (t83.25%) was crushed and mixed in a mortar. This mixed powder is put in a platinum crucible and heated in air at 950-100.
Baking at 0 ° C. for about 3 days.

【0056】比較例2 LaCo0.9 Pt0.1 3 で示される組成となるよう
に、実施例1の第1工程と同様にして硝酸ランタン、酢
酸コバルト、ジニトロジアミン白金、およびクエン酸の
均一混合水溶液約250mlを作製した。次に、実施例
1と同様にして水を蒸発乾固させ、クエン酸錯体を作製
した。このクエン酸錯体を真空中で300℃まで加熱し
て仮焼成体を作製した。このとき、黄色のガスがわずか
に認められたのみであり、硝酸根はほとんど分解せず固
体物中に残存していた。冷却後、仮焼成体を真空炉から
取り出し、るつぼに入れて空気雰囲気で750℃、3時
間焼成した。
Comparative Example 2 A homogeneous mixed aqueous solution of lanthanum nitrate, cobalt acetate, dinitrodiamine platinum and citric acid was prepared in the same manner as in the first step of Example 1 so that the composition was represented by LaCo 0.9 Pt 0.1 O 3. 250 ml was made. Next, water was evaporated to dryness in the same manner as in Example 1 to prepare a citric acid complex. This citric acid complex was heated in vacuum to 300 ° C. to prepare a pre-baked body. At this time, only a slight amount of yellow gas was observed, and nitrate radicals were hardly decomposed and remained in the solid matter. After cooling, the pre-baked body was taken out of the vacuum furnace, placed in a crucible, and baked in an air atmosphere at 750 ° C. for 3 hours.

【0057】比較例3 LaCo0.9 Pt0.1 3 で示される組成となるように
以下の混合水溶液を作製した。まず、硝酸ランタン2
1.67g(0.05モル)をイオン交換水50mlに
溶解した。また、酢酸コバルト11.56g(0.04
5モル)をイオン交換水50mlに溶解した。この硝酸
ランタン水溶液と酢酸コバルト水溶液とを混合して10
0mlとし、マグネチックスターラーでかきまぜた。ま
た、ジニトロジアンミン白金硝酸21.35g(0.0
05モル)をイオン交換水30mlに溶解した水溶液を
上記混合水溶液に添加混合して引き続きかきまぜた。
Comparative Example 3 The following mixed aqueous solution was prepared so as to have a composition represented by LaCo 0.9 Pt 0.1 O 3 . First, lanthanum nitrate 2
1.67 g (0.05 mol) was dissolved in 50 ml of deionized water. Also, 11.56 g of cobalt acetate (0.04
5 mol) was dissolved in 50 ml of deionized water. The lanthanum nitrate aqueous solution and the cobalt acetate aqueous solution are mixed to obtain 10
It was made 0 ml and stirred with a magnetic stirrer. In addition, dinitrodiammine platinum nitric acid 21.35 g (0.0
An aqueous solution prepared by dissolving (05 mol) in 30 ml of ion-exchanged water was added to and mixed with the above mixed aqueous solution, followed by stirring.

【0058】次に、得られた混合水溶液をヒータ付きマ
グネチックスターラで加熱しながら混合して水を蒸発さ
せた。なお、蒸発途中では沈殿物が生成し、不均一混合
液となったが、そのまま加熱を続け蒸発乾固させた。
Next, the resulting mixed aqueous solution was mixed while being heated by a magnetic stirrer with a heater to evaporate water. A precipitate was formed during the evaporation to give a heterogeneous mixed solution, which was continued to be heated and evaporated to dryness.

【0059】その後、乾固物を400℃で3時間大気中
で仮焼成した。このとき、黄色ガスが発生し、硝酸根が
分解消失するのが認められた。
Then, the dried solid was pre-baked at 400 ° C. for 3 hours in the atmosphere. At this time, it was confirmed that yellow gas was generated and nitrate radicals were decomposed and disappeared.

【0060】この仮焼成体をさらに大気中で750℃、
3時間焼成した。
The calcined body was further heated in the atmosphere at 750 ° C.
Baked for 3 hours.

【0061】上記実施例1〜4および比較例1〜3の焼
成体についてX線回折分析法により白金、パラジウムの
結晶格子中の存在量を測定した。その結果を表1に示
す。また、そのうち、実施例1、2、比較例1、2、お
よびLaCoO3 (ペロブスカイト型構造の組成式でX
=0となるもの)のX線回折チャートを図1に、また、
実施例1、2、およびLaCo0.7 Pt0.3 3 (ペロ
ブスカイ型構造の組成式でX=0.3となるもの)、L
aCoO3 のX線回折チャートを図1に示す。
The abundances of platinum and palladium in the crystal lattice of the fired bodies of Examples 1 to 4 and Comparative Examples 1 to 3 were measured by X-ray diffraction analysis. The results are shown in Table 1. Among them, Examples 1, 2 and Comparative Examples 1, 2 and LaCoO 3 (X in the composition formula of the perovskite type structure)
X-ray diffraction chart (of which = 0) is shown in FIG.
Examples 1 and 2 and LaCo 0.7 Pt 0.3 O 3 (where X = 0.3 in the compositional formula of the perovskite structure), L
The X-ray diffraction chart of aCoO 3 is shown in FIG.

【0062】[0062]

【表1】 [Table 1]

【0063】表1および図1、2より明らかなように、
本実施例は白金、パラジウムの90%以上が結晶格子に
存在することが分かる。
As is clear from Table 1 and FIGS.
In this example, it can be seen that 90% or more of platinum and palladium are present in the crystal lattice.

【0064】さらに、各焼成体について、以下のように
触媒性能を評価した。
Further, the catalyst performance of each fired body was evaluated as follows.

【0065】焼成体を粉砕した粉末を錠剤成形機で加圧
して厚さ約1mmの板状にした後、破砕して1〜2mm
のペレット状にした。このペレットについて(a)NO
X 浄化性能、(b)NOX 吸着性能、および(c)ヘキ
サン転化性能の評価試験を行った。
Powder obtained by crushing the fired body was pressed by a tablet molding machine to form a plate having a thickness of about 1 mm, and then crushed to 1 to 2 mm.
Pellets. About this pellet (a) NO
Evaluation tests of X purification performance, (b) NO X adsorption performance, and (c) hexane conversion performance were conducted.

【0066】(a)NOX 浄化性能:渦流室式ディーゼ
ルエンジン(2.45l)を国内10モード試験条件で
可動させ、実排ガスを発生させた。300℃に保った流
通式固定床に1〜2mmの上記ペレットを2g充填し、
空間速度192000/時間で上記実排ガスを接触さ
せ、出口でNOX 濃度を自動車排ガス分析計((株)堀
場製作所製)で測定した。ペレット充填前後のNOX
度からNOX 浄化率を算出した。
(A) NO x purification performance: A swirl chamber type diesel engine (2.45 l) was operated under domestic 10-mode test conditions to generate actual exhaust gas. 2 g of the above-mentioned pellet of 1 to 2 mm was packed in a flow type fixed bed kept at 300 ° C.,
The actual exhaust gas was contacted at a space velocity of 192000 / hour, and the NO x concentration was measured at the outlet with an automobile exhaust gas analyzer (manufactured by Horiba, Ltd.). The NO X purification rate was calculated from the NO X concentration before and after the pellet filling.

【0067】(b)NOX 吸着性能:常圧固定床流通式
の反応器に1〜2mmの上記ペレットを4cc充填し、
200℃に保持した。この反応器にモデルガス(NO2
200ppm、O2 10%、N2 バランス)を1l/m
in(空間速度15000/時間)流し、出口でNO2
濃度を排ガス分析計((株)ベスト測器製)で測定し
た。
(B) NO X adsorption performance: An atmospheric pressure fixed bed flow type reactor was filled with 4 cc of the above pellets of 1 to 2 mm,
Hold at 200 ° C. The model gas (NO 2
200 ppm, O 2 10%, N 2 balance) 1 l / m
in (space velocity 15,000 / hour), NO 2 at outlet
The concentration was measured with an exhaust gas analyzer (manufactured by Best Instruments Co., Ltd.).

【0068】(c)ヘキサン転化性能:常圧固定床流通
式の反応器に上記ペレット7ccを充填した。この反応
器にモデルガス(ヘキサン(C6 14)500ppm、
酸素(O2 )5%、窒素(N2)バランス)を3.3l
/min(空間速度28600/時間)流し、ペレット
と接触させた。反応の温度を150℃から350℃に昇
温する過程で適宜出ガスをサンプリングしてFID検出
器を有するガスクロマトグラフでヘキサンの定量分析を
行い、入ガスと出ガスのヘキサン量比からヘキサン浄化
率を測定した。このヘキサン浄化率が50%に達したと
きのペレット温度を求めた。
(C) Hexane conversion performance: The pellets (7 cc) were packed in an atmospheric fixed bed flow reactor. Model gas (hexane (C 6 H 14 ) 500 ppm,
Oxygen (O 2 ) 5%, nitrogen (N 2 ) balance) 3.3 l
/ Min (space velocity 28600 / hour), and the pellets were contacted. During the process of raising the reaction temperature from 150 ° C to 350 ° C, the output gas is sampled appropriately and the hexane is quantitatively analyzed with a gas chromatograph having an FID detector. The hexane purification rate is calculated from the ratio of the input gas and the output gas. Was measured. The pellet temperature when the hexane purification rate reached 50% was determined.

【0069】上記(a)NOX 浄化性能、(b)NOX
吸着性能、および(c)ヘキサン転化性能の評価試験結
果を表2に示す。
The above (a) NO x purification performance, (b) NO x
Table 2 shows the evaluation test results of the adsorption performance and (c) hexane conversion performance.

【0070】[0070]

【表2】 [Table 2]

【0071】表2より明らかなように、本実施例の方が
いずれの性能も比較例より優れていることが分かる。
As is clear from Table 2, all performances of this example are superior to those of the comparative example.

【図面の簡単な説明】[Brief description of drawings]

【図1】本実施例および比較例におけるペロブスカイト
型構造複合酸化物のX線回折結果を示す線図
FIG. 1 is a diagram showing the X-ray diffraction results of perovskite type composite oxides in the present example and comparative example.

【図2】本実施例におけるペロブスカイト型構造複合酸
化物のX線回折結果を示す線図
FIG. 2 is a diagram showing an X-ray diffraction result of a perovskite structure composite oxide in this example.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 杉浦 正洽 愛知県愛知郡長久手町大字長湫字横道41番 地の1株式会社豊田中央研究所内 (72)発明者 植野 秀章 愛知県豊田市トヨタ町1番地 トヨタ自動 車株式会社内 (72)発明者 水野 達司 愛知県豊田市トヨタ町1番地 トヨタ自動 車株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Masaaki Sugiura 1 41, Yokoshiro, Nagakute-cho, Aichi-gun, Aichi-gun, Nagatoko-Chi, Toyota Central Research Institute Co., Ltd. (72) Hideaki Ueno 1 Toyota-cho, Toyota-shi, Aichi Address Toyota Motor Co., Ltd. (72) Inventor Tatsushi Mizuno 1 Toyota Town, Toyota City, Aichi Prefecture Toyota Motor Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 M1 2 1-X 3 X 3 (式中、M1
ランタン、ストロンチウム、セリウム、バリウム、カル
シウムのうちの少なくとも1種、M2 はコバルト、鉄の
うちの少なくとも一方、M3 は白金、パラジウムのうち
の少なくとも一方であり、Xは0.005≦X≦0.2
である)で示されるペロブスカイト型構造複合酸化物に
おいて、 上記式中のM3 の元素は、その90%以上が結晶格子中
に存在することを特徴とするペロブスカイト型構造複合
酸化物。
1. M 1 M 2 1-X M 3 X O 3 (wherein M 1 is at least one of lanthanum, strontium, cerium, barium and calcium, and M 2 is at least cobalt and iron. On the other hand, M 3 is at least one of platinum and palladium, and X is 0.005 ≦ X ≦ 0.2.
In the perovskite structure composite oxide represented by the formula (1), 90% or more of the element of M 3 in the above formula is present in the crystal lattice, the perovskite structure composite oxide.
【請求項2】 M1 2 1-X 3 X 3 (式中、M1
ランタン、ストロンチウム、セリウム、バリウム、カル
シウムのうちの少なくとも1種、M2 はコバルト、鉄の
うちの少なくとも一方、M3 は白金、パラジウムのうち
の少なくとも一方であり、Xは0.005≦X≦0.2
である)で示されるペロブスカイト型構造複合酸化物を
構成する金属元素の塩とクエン酸とを溶解した水溶液を
調製する第1工程と、 上記水溶液を乾燥することにより上記金属元素とクエン
酸との錯体を形成する第2工程と、 上記錯体を真空中または不活性ガス中350℃以上で加
熱することにより仮焼成する第3工程と、 上記仮焼成体を酸化雰囲気で焼成することによりペロブ
スカイト型構造複合酸化物を形成する第4工程とよりな
ることを特徴とするペロブスカイト型構造複合酸化物の
製造方法。
2. M 1 M 2 1-X M 3 X O 3 (wherein M 1 is at least one of lanthanum, strontium, cerium, barium and calcium, and M 2 is at least cobalt and iron. On the other hand, M 3 is at least one of platinum and palladium, and X is 0.005 ≦ X ≦ 0.2.
The first step of preparing an aqueous solution in which a salt of a metal element constituting the perovskite-type structure composite oxide represented by (4) and citric acid are dissolved; and a step of combining the metal element and citric acid by drying the aqueous solution. A second step of forming a complex, a third step of calcining the complex by heating the complex in vacuum or an inert gas at 350 ° C. or higher, and a perovskite structure by calcining the calcined body in an oxidizing atmosphere. A method for producing a perovskite-type structure composite oxide, which comprises a fourth step of forming a composite oxide.
JP4275019A 1992-09-18 1992-09-18 Multiple oxide with perovskite structure and its production Pending JPH06100319A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4275019A JPH06100319A (en) 1992-09-18 1992-09-18 Multiple oxide with perovskite structure and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4275019A JPH06100319A (en) 1992-09-18 1992-09-18 Multiple oxide with perovskite structure and its production

Publications (1)

Publication Number Publication Date
JPH06100319A true JPH06100319A (en) 1994-04-12

Family

ID=17549748

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4275019A Pending JPH06100319A (en) 1992-09-18 1992-09-18 Multiple oxide with perovskite structure and its production

Country Status (1)

Country Link
JP (1) JPH06100319A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0788828A2 (en) 1996-02-09 1997-08-13 Isuzu Ceramics Research Institute Co., Ltd. NOx decomposition catalyst and exhaust gas purifier using said catalyst
JP2003034583A (en) * 2001-07-18 2003-02-07 Toyota Central Res & Dev Lab Inc Method for producing plate-shaped powder and method for producing crystal-oriented ceramic
WO2004005194A1 (en) * 2002-07-09 2004-01-15 Daihatsu Motor Co., Ltd. Process for producing perovskite-type composite oxide
JP2004243306A (en) * 2002-10-11 2004-09-02 Daihatsu Motor Co Ltd Method for producing exhaust gas purifying catalyst
WO2005058490A1 (en) * 2003-12-17 2005-06-30 Daihatsu Motor Co.,Ltd. Catalyst composition
JP2005179168A (en) * 2003-03-28 2005-07-07 Dowa Mining Co Ltd Perovskite type compound oxide and method for manufacturing the same
WO2005090238A1 (en) * 2004-03-22 2005-09-29 Daihatsu Motor Co., Ltd. Perovskite-type composite oxide, catalyst composition and method for producing perovskite-type composite oxide
US7199079B2 (en) 2004-01-21 2007-04-03 Honda Motor Co., Ltd. Purification catalyst for exhaust gas, production method therefor, and purification catalyst device for automobile exhaust gas
US7205257B2 (en) 2002-07-09 2007-04-17 Daihatsu Motor Co., Ltd. Catalyst for clarifying exhaust gas
US7259127B2 (en) 2003-08-25 2007-08-21 Honda Motor Co., Ltd. Purification catalyst for exhaust gas, production method therefor, and purification catalyst device for exhaust gas
EP2037519A1 (en) * 2006-06-13 2009-03-18 Toyota Jidosha Kabushiki Kaisha Fine particle of perovskite oxide, particle having deposited perovskite oxide, catalyst material, catalyst material for oxygen reduction, catalyst material for fuel cell, and electrode for fuel cell
US7589045B2 (en) 2004-10-21 2009-09-15 Honda Motor Co. Ltd. Exhaust gas purifying catalyst and exhaust gas purifying device therewith for vehicle
US7811960B2 (en) 2004-09-24 2010-10-12 Honda Motor Co., Ltd. Catalyst for exhaust gas purification and exhaust gas purification apparatus
DE102005063419B4 (en) * 2004-01-13 2012-05-31 Honda Motor Co., Ltd. Purification catalyst for exhaust gas and manufacturing process therefor
US9795947B2 (en) 2015-07-06 2017-10-24 Hyundai Motor Company Method of preparation of perovskite catalyst
KR20200074206A (en) 2017-12-14 2020-06-24 미쓰비시 덴키 빌딩 테크노 서비스 가부시키 가이샤 Elevator remote monitoring system

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5728643A (en) * 1996-02-09 1998-03-17 Isuzu Ceramics Research Institute Co., Ltd. NOx decomposition catalyst and exhaust gas purifier using said catalyst
EP0788828A2 (en) 1996-02-09 1997-08-13 Isuzu Ceramics Research Institute Co., Ltd. NOx decomposition catalyst and exhaust gas purifier using said catalyst
JP2003034583A (en) * 2001-07-18 2003-02-07 Toyota Central Res & Dev Lab Inc Method for producing plate-shaped powder and method for producing crystal-oriented ceramic
US7205257B2 (en) 2002-07-09 2007-04-17 Daihatsu Motor Co., Ltd. Catalyst for clarifying exhaust gas
WO2004005194A1 (en) * 2002-07-09 2004-01-15 Daihatsu Motor Co., Ltd. Process for producing perovskite-type composite oxide
US7622418B2 (en) 2002-07-09 2009-11-24 Daihatsu Motor Company, Ltd. Method for producing exhaust gas purifying catalyst
CN100393629C (en) * 2002-07-09 2008-06-11 大发工业株式会社 Process for producing perovskite-type composite oxide
US7381394B2 (en) 2002-07-09 2008-06-03 Daihatsu Motor Co., Ltd. Method for producing perovskite-type composite oxide
JP2004243306A (en) * 2002-10-11 2004-09-02 Daihatsu Motor Co Ltd Method for producing exhaust gas purifying catalyst
JP2005179168A (en) * 2003-03-28 2005-07-07 Dowa Mining Co Ltd Perovskite type compound oxide and method for manufacturing the same
JP4729681B2 (en) * 2003-03-28 2011-07-20 Dowaエレクトロニクス株式会社 Method for producing perovskite complex oxide
US7259127B2 (en) 2003-08-25 2007-08-21 Honda Motor Co., Ltd. Purification catalyst for exhaust gas, production method therefor, and purification catalyst device for exhaust gas
US7576032B2 (en) 2003-12-17 2009-08-18 Daihatsu Motor Co., Ltd. Catalyst composition
JP4916173B2 (en) * 2003-12-17 2012-04-11 ダイハツ工業株式会社 Exhaust gas purification catalyst composition
WO2005058490A1 (en) * 2003-12-17 2005-06-30 Daihatsu Motor Co.,Ltd. Catalyst composition
DE102005063419B4 (en) * 2004-01-13 2012-05-31 Honda Motor Co., Ltd. Purification catalyst for exhaust gas and manufacturing process therefor
US7476640B2 (en) 2004-01-21 2009-01-13 Honda Motor Co., Ltd. Purification catalyst for exhaust gas, production method therefor, and purification catalyst device for automobile exhaust gas
US7199079B2 (en) 2004-01-21 2007-04-03 Honda Motor Co., Ltd. Purification catalyst for exhaust gas, production method therefor, and purification catalyst device for automobile exhaust gas
US7601325B2 (en) 2004-03-22 2009-10-13 Daihatsu Motor Co., Ltd. Perovskite-type composite oxide, catalyst composition and method for producing perovskite-type composite oxide
WO2005090238A1 (en) * 2004-03-22 2005-09-29 Daihatsu Motor Co., Ltd. Perovskite-type composite oxide, catalyst composition and method for producing perovskite-type composite oxide
JPWO2005090238A1 (en) * 2004-03-22 2008-01-31 ダイハツ工業株式会社 Perovskite complex oxide, catalyst composition, and method for producing perovskite complex oxide
US7811960B2 (en) 2004-09-24 2010-10-12 Honda Motor Co., Ltd. Catalyst for exhaust gas purification and exhaust gas purification apparatus
US7589045B2 (en) 2004-10-21 2009-09-15 Honda Motor Co. Ltd. Exhaust gas purifying catalyst and exhaust gas purifying device therewith for vehicle
EP2037519A1 (en) * 2006-06-13 2009-03-18 Toyota Jidosha Kabushiki Kaisha Fine particle of perovskite oxide, particle having deposited perovskite oxide, catalyst material, catalyst material for oxygen reduction, catalyst material for fuel cell, and electrode for fuel cell
EP2037519A4 (en) * 2006-06-13 2012-12-26 Toyota Motor Co Ltd Fine particle of perovskite oxide, particle having deposited perovskite oxide, catalyst material, catalyst material for oxygen reduction, catalyst material for fuel cell, and electrode for fuel cell
US9795947B2 (en) 2015-07-06 2017-10-24 Hyundai Motor Company Method of preparation of perovskite catalyst
KR20200074206A (en) 2017-12-14 2020-06-24 미쓰비시 덴키 빌딩 테크노 서비스 가부시키 가이샤 Elevator remote monitoring system

Similar Documents

Publication Publication Date Title
EP0272136B1 (en) Catalyst for purifying exhaust gas and method for its production
KR101286799B1 (en) Composition including a lanthanum perovskite on an alumina or aluminium oxyhydroxide substrate, preparation method and use in catalysis
JP5047114B2 (en) Method for producing powder containing cerium oxide
KR101018576B1 (en) COMPOSITION BASED ON ALUMINA, CERIUM AND BARIUM AND/OR STRONTIUM, USED ESPECIALLY FOR TRAPPING NITROGEN OXIDES NOx
JPH06100319A (en) Multiple oxide with perovskite structure and its production
US6051529A (en) Ceric oxide washcoat
US20090286680A1 (en) Exhaust Gas Purification Catalyst and Exhaust Gas Purification Catalyst Member
WO2011065416A1 (en) Complex oxide, method for producing same and exhaust gas purifying catalyst
CN101218026A (en) Alumina-based perovskite catalysts and catalyst supports
KR20070028346A (en) Zirconium and yttrium oxide-based composition, method for preparing same and use thereof in a catalyst system
JP2007307446A (en) Oxidation catalyst for cleaning exhaust gas
WO2013162029A1 (en) Iron oxide-zirconia composite oxide and method for producing same, and exhaust gas purification catalyst
US11383224B2 (en) Ceria-containing mixed oxides for oxygen storage
JP2007216099A (en) Exhaust gas purification oxidation catalyst
JPWO2003022740A1 (en) Cerium oxide, its production method and exhaust gas purifying catalyst
JPH07163871A (en) Nitrogen oxide adsorbent and exhaust gas purifying catalyst
EP2353713A1 (en) Composite oxide for exhaust-gas purification catalyst, process for producing same, coating material for exhaust-gas purification catalyst, and filter for diesel exhaust-gas purification
JP2003277059A (en) Ceria-zirconia compound oxide
KR20130084305A (en) Composition based on zirconium oxide and on at least one oxide of a rare earth other than cerium, having a specific porosity, processes for preparing same and use thereof in catalysis
JP4938013B2 (en) Oxygen storage material
DE102010049604B4 (en) Low-temperature NOx adsorption material, method for its production and method for purifying exhaust gas using it
JP4972868B2 (en) Surface-modified ceria / zirconia hydrated oxide, oxide thereof, production method thereof, and use thereof
JPH06304449A (en) Apparatus for removing nitrogen oxide
KR102059404B1 (en) Cerium-Praseodymium mixed oxide catalyst with fibrous morphology for combustion of carbon particulate matter, and method for carbon particulate matter combustion using the same
JP4700648B2 (en) Catalyst for treating exhaust gas containing organic acid and method for treating exhaust gas