JP2013129056A - Zirconia composite powder for polishing and method for producing the same - Google Patents

Zirconia composite powder for polishing and method for producing the same Download PDF

Info

Publication number
JP2013129056A
JP2013129056A JP2012250662A JP2012250662A JP2013129056A JP 2013129056 A JP2013129056 A JP 2013129056A JP 2012250662 A JP2012250662 A JP 2012250662A JP 2012250662 A JP2012250662 A JP 2012250662A JP 2013129056 A JP2013129056 A JP 2013129056A
Authority
JP
Japan
Prior art keywords
zirconia
ceria
powder
particles
solid solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012250662A
Other languages
Japanese (ja)
Inventor
Koji Tsukuma
孝次 津久間
Masaaki Todoko
正明 戸床
Shoichi Yamauchi
正一 山内
Taichi Arakawa
太地 荒川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP2012250662A priority Critical patent/JP2013129056A/en
Publication of JP2013129056A publication Critical patent/JP2013129056A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a polishing agent having a performance comparable to a conventional ceria polishing agent while reducing a using quantity of ceria.SOLUTION: The zirconia composite powder for polishing can be used as a polishing agent having performance comparable to the conventional ceria polishing agent while reducing the using quantity of the ceria by using powder for polishing agent comprising zirconia particle as a matrix and ceria/zirconia composite powder in which ceria crystal and/or the crystal of the ceria/zirconia solid solution are bonded to the surface of the same as the polishing agent.

Description

本発明はガラス基板や半導体基板の精密研磨に適するジルコニア複合粉末及びその製造方法に関する。   The present invention relates to a zirconia composite powder suitable for precision polishing of a glass substrate or a semiconductor substrate and a method for producing the same.

従来から、セリア粉末がガラス等の研磨剤として広く用いられている。特に、ガラス基板を研削・ラッピングした後のポリッシュ工程において、研磨傷を発生させることなく効率的に平滑化する研磨能力に優れているためである。セリア研磨剤は主として、バストネサイトと呼ばれる炭酸塩鉱石を焼成・粉砕して製造されている。そのため、粒子形状の均一化や粒子構造の最適設計等の制御には限界がある。それに対して最近、研磨剤粒子を高度に設計しようとする試みがなされている。   Conventionally, ceria powder has been widely used as an abrasive such as glass. This is because, in particular, the polishing process after grinding and lapping of the glass substrate is excellent in polishing ability to efficiently smooth without causing polishing flaws. Ceria abrasives are mainly manufactured by firing and pulverizing carbonate ore called bastonite. Therefore, there is a limit to control such as uniform particle shape and optimum design of the particle structure. On the other hand, recently, attempts have been made to highly design abrasive particles.

特許文献1には研磨剤粒子をプラスティック等の球状粒子にコーティングした複合研磨剤が、特許文献2にはプラスティック等の粒子表面に研磨剤粒子を固定化した研磨剤が報告されている。また、特許文献3にはプラスティック等の球状粒子表面にセリア・ジルコニア粒子を担持させた研磨剤用複合粒子が開示されている。しかし、これらの複合研磨剤は、プラスティック等の軟らかい粒子や研磨に適さない金属、無機化合物と研磨剤物質との複合体であり、耐久劣化、硬度不足等の性能面において十分なものではなかった。   Patent Document 1 reports a composite abrasive in which abrasive particles are coated on spherical particles such as plastic, and Patent Document 2 reports an abrasive in which abrasive particles are immobilized on the surface of particles such as plastic. Patent Document 3 discloses composite particles for abrasives in which ceria and zirconia particles are supported on the surface of spherical particles such as plastic. However, these composite abrasives are composites of soft particles such as plastics, metals not suitable for polishing, inorganic compounds and abrasive substances, and are not sufficient in terms of performance such as durability deterioration and insufficient hardness. .

特開平01−205978号公報Japanese Patent Laid-Open No. 01-205978 特開平03−149176号公報Japanese Patent Laid-Open No. 03-149176 特開平11−114808号公報Japanese Patent Laid-Open No. 11-114808

本発明者等はセリアの使用量を削減しながらも、従来のセリア研磨剤と同等の性能を有する研磨剤を提供することを目的とする。   It is an object of the present invention to provide an abrasive having performance equivalent to that of a conventional ceria abrasive while reducing the amount of ceria used.

本発明者等は課題を解決するため、ジルコニア粒子を母体とし、その表面に、セリアの結晶、セリア・ジルコニア固溶体の結晶又はセリアの結晶とセリア・ジルコニア固溶体の結晶とが結合しているセリア・ジルコニア複合粒子を用いることで、セリアの使用量を削減しながらも、従来のセリア研磨剤と同等の性能を有する研磨剤を得られることを見出し、本発明を完成させるに至った。   In order to solve the problem, the inventors of the present invention have zirconia particles as a base, and ceria crystals, ceria / zirconia solid solution crystals, or ceria crystals and ceria / zirconia solid solution crystals are bonded to the surface. It has been found that by using zirconia composite particles, an abrasive having the same performance as a conventional ceria abrasive can be obtained while reducing the amount of ceria used, and the present invention has been completed.

すなわち、本発明はジルコニア粒子を母体とし、その表面に、セリアの結晶、セリア・ジルコニア固溶体の結晶又はセリアの結晶とセリア・ジルコニア固溶体の結晶とが結合しているセリア・ジルコニア複合粒子からなる研磨剤用粉末である。   That is, the present invention is a polishing composed of ceria / zirconia composite particles in which ceria crystals, ceria / zirconia solid solution crystals, or ceria crystals and ceria / zirconia solid solution crystals are bonded to the surface of zirconia particles as a base. It is powder for medicine.

まず、本発明の粉末の粒子構造を図1〜3を用いて説明する。母体となるジルコニア粒子は結晶一次粒子1が凝集して二次粒子2を形成している。研磨には通常、粉末を水溶媒に分散したスラリーが用いられ、スラリー中では二次粒子が分散単位となり、研磨に働いている。本発明におけるジルコニア粒子とは二次粒子を意味する。   First, the particle structure of the powder of the present invention will be described with reference to FIGS. In the zirconia particles serving as a base, the crystal primary particles 1 aggregate to form secondary particles 2. In general, a slurry in which powder is dispersed in an aqueous solvent is used for polishing. In the slurry, secondary particles serve as a dispersion unit and work for polishing. The zirconia particles in the present invention mean secondary particles.

図1は母体であるジルコニア粒子にセリアの結晶が結合している状態、図2は母体であるジルコニア粒子にセリア・ジルコニア固溶体の結晶が結合している状態、図3は両者が混在している状態を示す。これらの状態は複合粒子の形成過程に依っており、小さいセリア粒子がジルコニア母体粒子の表面に最初に結合し、ジルコニアに固溶し始めることによってセリア・ジルコニア固溶体相が形成され、最終的にセリア・ジルコニア固溶体相のみとなる。従って、粒子構造は図1→図3→図2の順に状態変化する。   FIG. 1 shows a state in which ceria crystals are bonded to the base zirconia particles, FIG. 2 shows a state in which ceria / zirconia solid solution crystals are bonded to the base zirconia particles, and FIG. 3 shows a mixture of both. Indicates the state. These states depend on the formation process of the composite particles. Small ceria particles first bind to the surface of the zirconia base particles and start to form a solid solution in zirconia, so that a ceria / zirconia solid solution phase is formed, and finally ceria. -It becomes only a zirconia solid solution phase. Therefore, the particle structure changes in the order of FIG. 1 → FIG. 3 → FIG.

セリア並びにセリア・ジルコニア固溶体相は必ずしもジルコニア粒子の全表面を蔽っている必要はないが、ジルコニア粒子の全表面の20%以上を蔽っていることが好ましく、全表面の50%以上を蔽っていることがより好ましい。本発明の粉末は図1〜3のいずれかの粒子構造であればよいが、図1あるいは図3の粒子構造であることが好ましい。セリアがより多く表面に存在しているため、研磨能力を高めやすいからである。   The ceria and ceria / zirconia solid solution phase does not necessarily cover the entire surface of the zirconia particles, but preferably covers 20% or more of the entire surface of the zirconia particles, and covers 50% or more of the entire surface. It is more preferable. The powder of the present invention may have any one of the particle structures shown in FIGS. 1 to 3, but preferably has the particle structure shown in FIG. This is because more ceria is present on the surface, so that it is easy to improve the polishing ability.

本発明の粉末に含まれるセリアの総含量は1モル%以上30モル%以下であることが好ましい。1モル%未満ではセリア特有の優れた研磨能力の寄与が小さくなり過ぎて十分な性能が得られない可能性があり、30モル%より多く粉末中にセリアが存在していても研磨能力に差異が生じないからである。さらには3モル%以上15モル%以下が好ましい。この濃度範囲がもっともセリアの表面存在状態の均一性が高い。   The total content of ceria contained in the powder of the present invention is preferably 1 mol% or more and 30 mol% or less. If it is less than 1 mol%, the contribution of ceria-specific excellent polishing ability may be too small to obtain sufficient performance, and if ceria is present in the powder more than 30 mol%, the polishing ability is different. This is because no occurs. Furthermore, 3 mol% or more and 15 mol% or less are preferable. This concentration range has the highest uniformity of ceria surface presence.

本発明のセリア・ジルコニア複合粒子からなる粉末は2相あるいは3相の複数の結晶相から構成されている。粉末がセリア−ジルコニア2成分系で構成されている場合、単斜晶ジルコニア型と立方晶セリア型との2相、単斜晶ジルコニア型と正方晶ジルコニア型との2相、あるいは単斜晶ジルコニア型、立方晶セリア型及び正方晶ジルコニア型の3相のいずれかとなる。ジルコニア母体粒子の結晶相は単斜晶ジルコニア型、セリアの結晶相は立方晶セリア型、セリア・ジルコニア固溶体の結晶相は正方晶ジルコニア型となる。各結晶相に含まれるセリア含量を調べた結果、単斜晶ジルコニア型には4モル%以下、正方晶ジルコニア型には10モル%以上、立方晶セリア型には80モル%以上のセリアが存在可能であることがわかった。ただし、本発明のジルコニア母体粒子にイットリア、カルシア等の種々の安定化剤を導入することも可能であり、その場合はジルコニア母体粒子並びにセリア・ジルコニア固溶体の結晶相は異なる場合もある。イットリア、カルシア等の安定化剤導入は母体表面の固体酸塩基性といった化学的性質の調整や母体粒子の形状、凝集度を調整できる。例えば、ジルコニア母体粒子に3mol%イットリアを安定化剤として導入した場合、ジルコニア母体粒子は正方晶ジルコニア型となり、また、8mol%イットリアを安定化剤として導入した場合、ジルコニア母体粒子は立方晶型ジルコニアとなる。   The powder composed of the ceria / zirconia composite particles of the present invention is composed of a plurality of two-phase or three-phase crystal phases. When the powder is composed of a ceria-zirconia binary system, the monoclinic zirconia type and the cubic ceria type have two phases, the monoclinic zirconia type and the tetragonal zirconia type, or the monoclinic zirconia type. One of three phases, a mold, a cubic ceria type, and a tetragonal zirconia type. The crystal phase of the zirconia base particles is monoclinic zirconia type, the crystal phase of ceria is cubic ceria type, and the crystal phase of ceria / zirconia solid solution is tetragonal zirconia type. As a result of investigating the content of ceria contained in each crystal phase, monoclinic zirconia type contains 4 mol% or less, tetragonal zirconia type contains 10 mol% or more, and cubic ceria type contains 80 mol% or more ceria. I found it possible. However, it is also possible to introduce various stabilizers such as yttria and calcia into the zirconia base particles of the present invention, in which case the crystal phases of the zirconia base particles and the ceria / zirconia solid solution may be different. The introduction of stabilizers such as yttria and calcia can adjust the chemical properties such as solid acid basicity of the base surface, and the shape and aggregation degree of the base particles. For example, when 3 mol% yttria is introduced into the zirconia base particles as a stabilizer, the zirconia base particles are tetragonal zirconia, and when 8 mol% yttria is introduced as a stabilizer, the zirconia base particles are cubic zirconia. It becomes.

本発明の粉末は、比表面積が3m/g以上20m/g以下であることが好ましい。比表面積が3m/gより小さいと粒子が大きくなりすぎ、研磨傷を導入しやすくなる場合があり、比表面積が20m/gより大きいと粒子が微細すぎて研磨能力を十分発現できない場合があるからである。 The powder of the present invention preferably has a specific surface area of 3 m 2 / g or more and 20 m 2 / g or less. If the specific surface area is less than 3 m 2 / g, the particles may be too large and it may be easy to introduce polishing flaws. If the specific surface area is more than 20 m 2 / g, the particles may be too fine to exhibit sufficient polishing ability. Because there is.

前述したとおり、本発明におけるジルコニア粒子とは二次粒子を指し、その大きさは、平均径200nm以上1000nm以下の範囲であることが好ましい。200nmより小さいと粒子が小さすぎて研磨能力が十分発現できない場合があり、1000nmより大きいと粒子が大きすぎて、研磨傷を導入しやすくなる場合があるからである。   As described above, the zirconia particles in the present invention refer to secondary particles, and the size thereof is preferably in the range of an average diameter of 200 nm to 1000 nm. This is because if the particle size is smaller than 200 nm, the particles may be too small to sufficiently exhibit the polishing ability, and if the particle size is larger than 1000 nm, the particles may be too large to easily introduce polishing flaws.

次に、本発明の粉末の製造方法を以下に説明するが、本発明の粉末の製造方法はこれに限定されるものではない。   Next, although the manufacturing method of the powder of this invention is demonstrated below, the manufacturing method of the powder of this invention is not limited to this.

本発明の粒子構造を得るためには、ジルコニア母体粒子とその表面のセリア粒子との固溶反応を制御する必要がある。本発明者等は反応制御が母体粒子の大きさや結晶性の違いによって可能であることを見出した。   In order to obtain the particle structure of the present invention, it is necessary to control the solid solution reaction between the zirconia base particles and the ceria particles on the surface thereof. The present inventors have found that the reaction can be controlled by the size of the base particles and the difference in crystallinity.

本発明の粉末は結晶子径が5nm以上100nm以下であって、比表面積が3m/g以上50m/g以下であるジルコニア母体粉末とセリウム塩水溶液とを含んでなるスラリーを乾燥し、ジルコニア粒子表面にセリウム塩を析出させた後、500℃以上1200℃以下で焼成することで製造することができる。セリウム塩は焼成過程で熱分解してセリアとなる。 The powder of the present invention is obtained by drying a slurry comprising a zirconia base powder having a crystallite diameter of 5 nm to 100 nm and a specific surface area of 3 m 2 / g to 50 m 2 / g and a cerium salt aqueous solution, and zirconia After the cerium salt is deposited on the particle surface, it can be produced by firing at 500 ° C. or more and 1200 ° C. or less. The cerium salt is thermally decomposed into ceria during the firing process.

ジルコニア母体粉末の結晶子径5nmより小さい、あるいは比表面積が50m/gより大きい母体粉末は極めて微細な結晶粒子からできているため、焼成過程でセリアの固溶反応が加速され、セリアが均一固溶したジルコニア粒子となり易くなる。また、結晶子径100nmより大きい、あるいは比表面積が3m/gより小さい粉末は極めて大きい結晶粒子からできているため、セリアとの固溶反応が高温焼成しても進まないばかりか、セリア同士の焼結が先行し、大きいセリア粒子が形成され、ジルコニア粒子とセリア粒子との分離が起こってしまう。なお、ジルコニア母体粉末の結晶子径は15nm以上70nm以下、比表面積が8m/g以上30m/g以下であることがより好ましい。 Since the zirconia base powder has a crystallite diameter of less than 5 nm or a specific surface area of more than 50 m 2 / g, the solid powder is made of very fine crystal particles. It becomes easy to become a solid solution zirconia particle. In addition, since the powder having a crystallite diameter of more than 100 nm or a specific surface area of less than 3 m 2 / g is made of extremely large crystal particles, the solid solution reaction with ceria does not proceed even when calcined at high temperature. As a result, the large ceria particles are formed, and the zirconia particles and the ceria particles are separated. The crystallite diameter of the zirconia base powder is more preferably 15 nm or more and 70 nm or less, and the specific surface area is preferably 8 m 2 / g or more and 30 m 2 / g or less.

本発明の粒子構造はジルコニア母体粒子の大きさ、結晶性を変えることによって制御できる。母体粒子の結晶子径を50nm以上100nm以下にすると、セリア・ジルコニア固溶体相の形成は抑制され、ジルコニア母体粒子表面にセリア結晶が結合した粒子構造ができ易い。結晶子径を5nm以上30nm以下にすると、セリア・ジルコニア固溶体相ができ易く、ジルコニア母体粒子表面にセリア結晶の他、セリア・ジルコニア固溶体が結合した粒子構造ができ易くなる。   The particle structure of the present invention can be controlled by changing the size and crystallinity of the zirconia base particles. When the crystallite diameter of the base particles is 50 nm or more and 100 nm or less, the formation of the ceria / zirconia solid solution phase is suppressed, and a particle structure in which ceria crystals are bonded to the surface of the zirconia base particles is easily formed. When the crystallite diameter is 5 nm or more and 30 nm or less, a ceria / zirconia solid solution phase is easily formed, and a particle structure in which ceria crystals and ceria / zirconia solid solutions are bonded to the surface of the zirconia base particles is easily formed.

表面にセリウム塩を析出させたジルコニア粉末の焼成温度は500℃以上1200℃以下で行うのが好ましい。セリウム塩は500℃以上で熱分解してセリアとなる。500℃より低いと、セリウム塩の熱分解が不完全となり易いばかりか、ジルコニアとの結合が十分強くならないので好ましくない。1200℃より高いと複合粒子自体が大きくなりすぎるばかりか、セリアの固溶反応が加速され、均一固溶体ができ易いので好ましくない。焼成温度は高いほど、セリアはジルコニアと反応し、固溶体相が形成され、両者の結合は強くなる傾向がある。焼成は600℃以上1100℃以下で行うことがより好ましい。   The firing temperature of the zirconia powder having a cerium salt deposited on the surface is preferably 500 ° C. or more and 1200 ° C. or less. The cerium salt is thermally decomposed at 500 ° C. or higher to become ceria. A temperature lower than 500 ° C. is not preferable because the thermal decomposition of the cerium salt tends to be incomplete and the bond with zirconia does not become sufficiently strong. If it is higher than 1200 ° C., not only the composite particles themselves become too large, but also the ceria solid solution reaction is accelerated and a uniform solid solution is easily formed, which is not preferable. As the firing temperature is higher, ceria reacts with zirconia to form a solid solution phase, and the bond between the two tends to be stronger. The firing is more preferably performed at 600 ° C. or higher and 1100 ° C. or lower.

本発明のジルコニア母体粉末の製造方法は特に限定されるものではないが、例えば加水分解法により製造することができる。ジルコニウム塩水溶液を加熱し、加水分解反応により析出した水和ジルコニアを乾燥・焼成する方法であって、ジルコニウム塩水溶液の濃度は0.2mol/l以上0.5mol/l以下(Zr換算)であることが好ましい。溶液加熱温度は95℃以上とすることが好ましく、通常、煮沸加熱でよい。加水分解時間は溶液濃度が高いほど長くなるが、48〜120時間とすることが好ましい。焼成温度は450℃以上1200℃以下とすることが良い。この温度範囲で焼成を行えば、結晶子径5nm以上100nm以下であって、比表面積が3m/g以上50m/g以下であるジルコニア母体粉末を得ることができる。 Although the manufacturing method of the zirconia base powder of this invention is not specifically limited, For example, it can manufacture by a hydrolysis method. A method of heating an aqueous zirconium salt solution and drying and firing hydrated zirconia precipitated by hydrolysis reaction, wherein the concentration of the aqueous zirconium salt solution is 0.2 mol / l or more and 0.5 mol / l or less (Zr conversion). It is preferable. The solution heating temperature is preferably 95 ° C. or higher, and usually boiling heating may be used. The hydrolysis time is longer as the solution concentration is higher, but is preferably 48 to 120 hours. The firing temperature is preferably 450 ° C. or higher and 1200 ° C. or lower. If calcination is performed within this temperature range, a zirconia base powder having a crystallite diameter of 5 nm to 100 nm and a specific surface area of 3 m 2 / g to 50 m 2 / g can be obtained.

ジルコニウム塩としては、オキシ塩化ジルコニウム等各種塩を用いることができ、セリウム塩としては、塩化セリウム、硝酸セリウム、硫酸セリウム、炭酸セリウム等各種塩を用いることができる。   Various salts such as zirconium oxychloride can be used as the zirconium salt, and various salts such as cerium chloride, cerium nitrate, cerium sulfate, and cerium carbonate can be used as the cerium salt.

ジルコニア母体粉末とセリウム塩水溶液とからなるスラリーの乾燥は、スプレードライ等を用い、瞬時に行うことが好ましい。セリウム塩は乾燥過程でジルコニア粒子表面に析出し付着するが、この付着をできるだけ均一にするためである。時間をかけて乾燥すると、毛細管現象でセリウム塩の偏析が起こり不均一となり易い。スプレードライ乾燥では、スラリー中の粉末含量は30wt%以上60wt%以下とすることが好ましい。   Drying of the slurry comprising the zirconia base powder and the aqueous cerium salt solution is preferably performed instantaneously using spray drying or the like. The cerium salt precipitates and adheres to the surface of the zirconia particles during the drying process, in order to make this adhesion as uniform as possible. When dried over time, segregation of the cerium salt is likely to occur due to capillary action and become non-uniform. In spray dry drying, the powder content in the slurry is preferably 30 wt% or more and 60 wt% or less.

本発明の研磨剤用粉末はセリアの使用量を削減しながらも、従来のセリア研磨剤と同等の性能を有する研磨剤として用いることができる。特に、ガラス基板の研磨において傷を発生させることなく、非常に高い研磨レートを示す。従って、レンズ用ガラス、光学ガラス、板ガラス、磁気ディスク用ガラス基板、フォトマスク用ガラス基板、TFT用ガラス基板等の精密研磨に広く使用することができる。また、安定的に入手することが困難であるセリアの使用量を削減できる。   The abrasive powder of the present invention can be used as an abrasive having performance equivalent to that of a conventional ceria abrasive while reducing the amount of ceria used. In particular, a very high polishing rate is exhibited without causing scratches in polishing a glass substrate. Therefore, it can be widely used for precision polishing of lens glass, optical glass, plate glass, glass substrate for magnetic disk, glass substrate for photomask, glass substrate for TFT, and the like. Moreover, the usage-amount of ceria which cannot be obtained stably can be reduced.

本発明の粉末の粒子構造(セリアが結合したジルコニア母体粒子)を示す。The particle structure of the powder of the present invention (zirconia base particles bonded with ceria) is shown. 本発明の粉末の粒子構造(セリア・ジルコニア固溶体が結合したジルコニア母体粒子)を示す。The particle structure of the powder of the present invention (zirconia base particles bonded with ceria / zirconia solid solution) is shown. 本発明の粉末の粒子構造(セリアとセリア・ジルコニア固溶体が結合したジルコニア母体粒子)を示す。The particle structure of the powder of the present invention (zirconia base particles in which ceria and ceria / zirconia solid solution are combined) is shown. 実施例14のジルコニア母体粒子の走査電顕写真を示す。The scanning electron micrograph of the zirconia base particle of Example 14 is shown. 実施例14のセリア・ジルコニア複合粉末の走査電顕写真を示す。The scanning electron micrograph of the ceria / zirconia composite powder of Example 14 is shown. 実施例9のセリア・ジルコニア複合粉末。(a)透過電顕写真、(b) セリウム元素分布像を示す。粒子内白色部がセリウム高濃度領域である。The ceria / zirconia composite powder of Example 9. (A) Transmission electron micrograph, (b) A cerium element distribution image. The white part in the particles is a cerium high concentration region. 実施例12のセリア・ジルコニア複合粉末。(a)透過電顕写真、(b) セリウム元素分布像を示す。粒子内白色部がセリウム高濃度領域である。The ceria / zirconia composite powder of Example 12. (A) Transmission electron micrograph, (b) A cerium element distribution image. The white part in the particles is a cerium high concentration region. 比較例2のセリア均一固溶ジルコニア粉末。(a)透過電顕写真、(b) セリウム元素分布像を示す。The ceria homogeneous solid solution zirconia powder of Comparative Example 2. (A) Transmission electron micrograph, (b) A cerium element distribution image. 実施例9〜13のセリア・ジルコニア複合粉末のX線回折図を示す。The X-ray-diffraction figure of the ceria zirconia composite powder of Examples 9-13 is shown.

以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらの実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated concretely, this invention is not limited to these Examples.

(比表面積の測定)
粉末の比表面積はBET法による一点式比表面積測定装置(ユアサアイオニクス社製、商品名「MONOSORB」)により測定した。
(Measurement of specific surface area)
The specific surface area of the powder was measured with a one-point specific surface area measuring apparatus (manufactured by Yuasa Ionics, trade name “MONOSORB”) by the BET method.

(結晶子径の測定)
粉末のX線回折は粉末X線回折装置(マック・サイエンス社製、商品名「MPX3」)を用い、X線源としてはCu−Kα線を使用した。結晶子径はX線回折の最強回折線を用いて次式により算出した。測定装置固有の半値幅(B)は結晶Siを標準試料として求めた。
(Measurement of crystallite diameter)
For powder X-ray diffraction, a powder X-ray diffractometer (manufactured by Mac Science, trade name “MPX3”) was used, and Cu—Kα ray was used as the X-ray source. The crystallite diameter was calculated by the following formula using the strongest diffraction line of X-ray diffraction. The full width at half maximum (B) unique to the measuring apparatus was obtained using crystalline Si as a standard sample.

L=0.9λ/(b−B)cosθ
L:結晶子径、λ:1.5418Å、b:試料の最強回折線の半値幅、B:Siの(111)面の半値幅、θ:最強回折線の回折角度/2
(結晶相比率)
単斜晶ジルコニア型(M)と正方晶ジルコニア型(T)の結晶相比率は粉末X線回折線の強度比から求めた。
M相比率(%)=100×(Im(−111)+Im(111))/
(Im(−111)+Im(111)+It(111))
T相比率(%)=100×It(111)/
(Im(−111)+Im(111)+It(111))
Im(−111):単斜晶ジルコニアの回折線(−111)の強度
Im(111) :単斜晶ジルコニアの回折線(111)の強度
It(111) :正方晶ジルコニアの回折線(111)の強度
(平均二次粒子径の測定)
平均二次粒子径はレーザー光散乱方式の粒度分布測定装置(島津製作所製、商品名「SALD−7100」)を用いて測定した。粉末を水に超音波分散させ、測定試料とした。体積基準のメジアン径を平均二次粒子径とした。
L = 0.9λ / (b−B) cos θ
L: crystallite diameter, λ: 1.5418 mm, b: half width of the strongest diffraction line of the sample, B: half width of the (111) plane of Si, θ: diffraction angle of the strongest diffraction line / 2
(Crystal phase ratio)
The crystal phase ratio between the monoclinic zirconia type (M) and the tetragonal zirconia type (T) was determined from the intensity ratio of the powder X-ray diffraction line.
M phase ratio (%) = 100 × (Im (−111) + Im (111)) /
(Im (−111) + Im (111) + It (111))
T phase ratio (%) = 100 × It (111) /
(Im (−111) + Im (111) + It (111))
Im (-111): intensity of monoclinic zirconia diffraction line (-111) Im (111): intensity of monoclinic zirconia diffraction line (111) It (111): diffraction line of tetragonal zirconia (111) Strength (measurement of average secondary particle size)
The average secondary particle diameter was measured using a laser light scattering type particle size distribution measuring apparatus (manufactured by Shimadzu Corporation, trade name “SALD-7100”). The powder was ultrasonically dispersed in water to obtain a measurement sample. The volume-based median diameter was defined as the average secondary particle diameter.

(走査型電子顕微鏡観察)
粉末粒子を走査型電子顕微鏡FE−SEM,JSM−7600F(日本電子製)を用い観察した。粉末を純水で希釈し、超音波分散した後、カーボンテープ上で乾燥させ、Au−コートしたものを試料とした。
(Scanning electron microscope observation)
The powder particles were observed using a scanning electron microscope FE-SEM, JSM-7600F (manufactured by JEOL). The powder was diluted with pure water, subjected to ultrasonic dispersion, dried on carbon tape, and Au-coated.

(透過型電子顕微鏡観察)
粉末粒子構造を透過型電子顕微鏡FE−TEM、JEM−2100F(日本電子製)を用い行った。粉末をアセトンに超音波分散してプラスティック支持膜に採取し、測定試料とした。STEMビーム径1.5nmで粒子各部のCe、Zr、Oの元素分布を解析した。
(Transmission electron microscope observation)
The powder particle structure was measured using a transmission electron microscope FE-TEM, JEM-2100F (manufactured by JEOL). The powder was ultrasonically dispersed in acetone, collected on a plastic support film, and used as a measurement sample. The element distribution of Ce, Zr, and O in each part of the particle was analyzed with a STEM beam diameter of 1.5 nm.

実施例1〜15
オキシ塩化ジルコニウム(ZrOCl・8HO)1292gに純水を加え、10リットルの溶液(Zr換算 0.4mol/l)とし、100℃で72時間加熱して加水分解反応により水和ジルコニアを析出させた後、加熱したまま脱水し、2リットルの濃縮スラリーを得た。このスラリーを耐酸性スプレードライヤー(熱風入口温度170℃)で乾燥した後、管状炉に入れ、大気流通下で焼成した。焼成温度は500〜1100℃の各所定温度、保持は2時間とし、焼成温度の異なるジルコニア母体粉末を得た。
Examples 1-15
Pure water of zirconium oxychloride (ZrOCl 2 · 8H 2 O) 1292g was added, and 10 l solution (Zr terms 0.4 mol / l), precipitating a hydrous zirconia by hydrolysis reaction was heated at 100 ° C. 72 hours Then, it was dehydrated while heated to obtain 2 liters of concentrated slurry. The slurry was dried with an acid-resistant spray dryer (hot air inlet temperature: 170 ° C.), placed in a tubular furnace, and fired under atmospheric flow. The calcination temperature was 500 to 1100 ° C., each holding time was 2 hours, and zirconia base powders having different calcination temperatures were obtained.

次に、セリア含量12モル%となるように、ジルコニア粉末に塩化セリウム(CeCl・7HO)を溶解した水溶液を加え、粉末含量40wt%のスラリーを調製し、スプレードライヤー(熱風入口温度170℃)で乾燥した。乾燥粉末を管状炉に入れ、大気流通下で焼成した。焼成温度は600〜1150℃の各所定温度、保持は2時間とし、セリア・ジルコニア複合粉末を得た。 Next, an aqueous solution in which cerium chloride (CeCl 3 · 7H 2 O) is dissolved in zirconia powder so as to have a ceria content of 12 mol% is added to prepare a slurry with a powder content of 40 wt%, and a spray dryer (hot air inlet temperature 170 C.). The dry powder was placed in a tubular furnace and fired under atmospheric flow. The firing temperature was 600 to 1150 ° C. and the holding time was 2 hours to obtain a ceria / zirconia composite powder.

得られた粉末の結晶相、比表面積、結晶子径、平均二次粒子径等の特性を測定し、表1の結果を得た。また実施例9〜13の粉末X線回折図を図9に示す。得られたセリア・ジルコニア複合粉末の結晶相はすべてジルコニアとセリアの2相、あるいはそれにセリア・ジルコニア固溶相が加わった3相からなることがわかった。   The obtained powder was measured for characteristics such as crystal phase, specific surface area, crystallite diameter, average secondary particle diameter, and the results shown in Table 1 were obtained. Moreover, the powder X-ray-diffraction figure of Examples 9-13 is shown in FIG. It was found that the crystal phase of the obtained ceria / zirconia composite powder was composed of two phases of zirconia and ceria, or three phases in which a ceria / zirconia solid solution phase was added.

また、実施例14のジルコニア母体粉末並びにセリア・ジルコニア複合粉末を走査型電子顕微鏡で観察し、図4、図5の写真を得た。複合粉末はジルコニア母体粒子の表面に小さいセリア粒子が結合した粒子構造であることがわかった。   Moreover, the zirconia base powder and the ceria / zirconia composite powder of Example 14 were observed with a scanning electron microscope, and the photographs of FIGS. 4 and 5 were obtained. The composite powder was found to have a particle structure with small ceria particles bound to the surface of zirconia base particles.

実施例9、12のセリア・ジルコニア複合粉末を透過型電子顕微鏡で観察し、図6、図7の写真を得た。どちらの試料にもセリウムが強く濃縮した部分が認められ、セリア粒子の存在が示唆された。実施例12の試料にはセリウムが全体に濃度ムラがあるものの認められ、セリア・ジルコニア固溶相の存在が示唆された。表1に示した結晶相の結果とも一致しており、実施例9の粉末はジルコニア母体粒子の表面にセリア粒子が結合した粒子構造であり、実施例12の粉末はジルコニア母体粒子の表面にセリア粒子とセリア・ジルコニア固溶体相が結合した粒子構造であることがわかった。   The ceria / zirconia composite powders of Examples 9 and 12 were observed with a transmission electron microscope, and the photographs of FIGS. 6 and 7 were obtained. In both samples, cerium was strongly concentrated, suggesting the presence of ceria particles. In the sample of Example 12, although cerium had a concentration unevenness as a whole, the presence of a ceria-zirconia solid solution phase was suggested. The results of the crystal phases shown in Table 1 are also consistent, and the powder of Example 9 has a particle structure in which ceria particles are bonded to the surface of zirconia base particles, and the powder of Example 12 has ceria on the surface of zirconia base particles. The particle structure was found to be a combination of particles and ceria / zirconia solid solution phase.

実施例16
実施例1〜15と同様にしてオキシ塩化ジルコニウム(ZrOCl・8HO)の加水分解反応により水和ジルコニアを析出させた後、加熱したまま脱水し、2リットルの濃縮スラリーを得た。そのスラリーにイットリア含有量8モル%となるように、塩化イットリウム(YCl)を添加した。このスラリーを耐酸性スプレードライヤー(熱風入口温度170℃)で乾燥した後、管状炉に入れ、大気流通下で焼成した。焼成温度は1100℃、保持は2時間とし、イットリアが固溶したジルコニア母体粉末を得た。
Example 16
Hydrated zirconia was precipitated by hydrolysis of zirconium oxychloride (ZrOCl 2 .8H 2 O) in the same manner as in Examples 1 to 15 and then dehydrated while heating to obtain 2 liters of concentrated slurry. Yttrium chloride (YCl 3 ) was added to the slurry so that the yttria content was 8 mol%. The slurry was dried with an acid-resistant spray dryer (hot air inlet temperature: 170 ° C.), placed in a tubular furnace, and fired under atmospheric flow. The firing temperature was 1100 ° C. and the retention was 2 hours to obtain a zirconia base powder in which yttria was dissolved.

次に、セリア含量2モル%となるように、ジルコニア粉末に硝酸セリウム(Ce(NO・6HO)を溶解した水溶液を加え、粉末含量40wt%のスラリーを調製し、スプレードライヤー(熱風入口温度170℃)で乾燥した。乾燥粉末を管状炉に入れ、大気流通下で焼成した。焼成温度は800℃、保持は2時間とし、セリア・ジルコニア複合粉末を得た。 Next, as a 2 mol% ceria content, an aqueous solution prepared by dissolving cerium nitrate (Ce (NO 3) 3 · 6H 2 O) in the zirconia powder was added, the powder content 40 wt% slurry was prepared and spray dryer ( It was dried at a hot air inlet temperature of 170 ° C. The dry powder was placed in a tubular furnace and fired under atmospheric flow. The baking temperature was 800 ° C. and the holding time was 2 hours to obtain a ceria / zirconia composite powder.

得られた粉末の結晶相、比表面積、結晶子径、平均二次粒子径等の特性を測定し、表1の結果を得た。   The obtained powder was measured for characteristics such as crystal phase, specific surface area, crystallite diameter, average secondary particle diameter, and the results shown in Table 1 were obtained.

得られたセリア・ジルコニア複合粉末は立方晶型ジルコニア、セリアの2相からなることがわかった。なお、水和ジルコニアの特性は、濃縮スラリーを170℃で乾燥した粉末を用いて測定した。   The obtained ceria / zirconia composite powder was found to consist of two phases of cubic zirconia and ceria. In addition, the characteristic of hydrated zirconia was measured using the powder which dried the concentrated slurry at 170 degreeC.

実施例17
水和ジルコニアの濃縮スラリーを実施例1〜15に記載したのと全く同様の加水分解法で調製した。このスラリーを耐酸性スプレードライヤー(熱風入口温度170℃)で乾燥した後、管状炉に入れ、大気流通下で焼成した。焼成温度は1000℃、保持は2時間とし、焼成温度の異なるジルコニア母体粉末を得た。
Example 17
A concentrated slurry of hydrated zirconia was prepared by the same hydrolysis method as described in Examples 1-15. The slurry was dried with an acid-resistant spray dryer (hot air inlet temperature: 170 ° C.), placed in a tubular furnace, and fired under atmospheric flow. The calcination temperature was 1000 ° C., the retention was 2 hours, and zirconia base powders having different calcination temperatures were obtained.

次に、セリア含量1モル%となるように、ジルコニア粉末に塩化セリウム(CeCl・7HO)を溶解した水溶液を加え、粉末含量40wt%のスラリーを調製し、スプレードライヤー(熱風入口温度170℃)で乾燥した。乾燥粉末を管状炉に入れ、大気流通下で焼成した。焼成温度は800℃、保持は2時間とし、セリア・ジルコニア複合粉末を得た。 Next, an aqueous solution in which cerium chloride (CeCl 3 · 7H 2 O) is dissolved in zirconia powder so as to have a ceria content of 1 mol% is added to prepare a slurry with a powder content of 40 wt%, and a spray dryer (hot air inlet temperature 170 C.). The dry powder was placed in a tubular furnace and fired under atmospheric flow. The baking temperature was 800 ° C. and the holding time was 2 hours to obtain a ceria / zirconia composite powder.

得られたジルコニア粉末の特性を評価し、表1の結果を得た。結晶相は単斜晶ジルコニア型とセリアからなる2相であることがわかった。なお、水和ジルコニアの特性は、濃縮スラリーを170℃で乾燥した粉末を用いて測定した。   The characteristics of the obtained zirconia powder were evaluated, and the results shown in Table 1 were obtained. The crystal phase was found to be a two-phase composed of monoclinic zirconia type and ceria. In addition, the characteristic of hydrated zirconia was measured using the powder which dried the concentrated slurry at 170 degreeC.

比較例1、2
水和ジルコニアの濃縮スラリーを実施例1〜15に記載したのと全く同様の加水分解法で調製した。このスラリーに塩化セリウム(CeCl・7HO)溶液を12モル%セリア組成となるように加え、スプレードライヤー(熱風入口温度170℃)で乾燥した。乾燥粉末を管状炉に入れ、大気流通下で焼成した。焼成温度は600℃、950℃とし、保持は2時間とし、焼成温度の異なるセリア含有ジルコニア粉末を得た。
Comparative Examples 1 and 2
A concentrated slurry of hydrated zirconia was prepared by the same hydrolysis method as described in Examples 1-15. Add this slurry to the cerium chloride (CeCl 3 · 7H 2 O) solution to a 12 mol% ceria composition was dried with a spray dryer (℃ hot air inlet temperature 170). The dry powder was placed in a tubular furnace and fired under atmospheric flow. The firing temperature was 600 ° C. and 950 ° C., the holding was for 2 hours, and ceria-containing zirconia powders having different firing temperatures were obtained.

得られたセリア含有ジルコニア粉末の特性を評価し、表1の結果を得た。いずれの粉末も、結晶相は正方晶ジルコニア型100%であり、セリアが均一固溶した粉末であることがわかった。なお、ジルコニア母体粉末の特性は、濃縮スラリーを170℃で乾燥した粉末(水和ジルコニア)を用いて測定した。   The characteristics of the obtained ceria-containing zirconia powder were evaluated, and the results shown in Table 1 were obtained. All of the powders were found to be 100% tetragonal zirconia-type and a powder in which ceria was uniformly dissolved. The characteristics of the zirconia base powder were measured using a powder obtained by drying the concentrated slurry at 170 ° C. (hydrated zirconia).

また、比較例2のセリア含有ジルコニア粉末を透過型電子顕微鏡で観察し、図8の結果を得た。セリウムが均一に分布しており、セリアが均一固溶したジルコニア粉末であることがわかった。   Moreover, the ceria containing zirconia powder of the comparative example 2 was observed with the transmission electron microscope, and the result of FIG. 8 was obtained. It was found that cerium was uniformly distributed and ceria was a zirconia powder having a solid solution.

比較例3
水和ジルコニアの濃縮スラリーを実施例1〜15に記載したのと全く同様の加水分解法で調製した。このスラリーをスプレードライヤー(熱風入口温度170℃)で乾燥した後、400℃で2時間焼成した。この粉末に塩化セリウム(CeCl・7HO)溶液を12モル%セリア組成となるように加え、スプレードライヤー(熱風入口温度170℃)で乾燥した。乾燥粉末を管状炉に入れ、大気流通下、950℃で2時間焼成した。
Comparative Example 3
A concentrated slurry of hydrated zirconia was prepared by the same hydrolysis method as described in Examples 1-15. The slurry was dried with a spray dryer (hot air inlet temperature: 170 ° C.) and then calcined at 400 ° C. for 2 hours. The powder was added to the cerium chloride (CeCl 3 · 7H 2 O) solution to a 12 mol% ceria composition was dried with a spray dryer (hot air inlet temperature of 170 ° C.). The dry powder was placed in a tubular furnace and fired at 950 ° C. for 2 hours under atmospheric flow.

得られたセリア含有ジルコニア粉末の特性を評価し、表1の結果を得た。得られたセリア含有ジルコニア粉末は、セリアが均一固溶したジルコニア粉末とほとんど同一であることが分かった。   The characteristics of the obtained ceria-containing zirconia powder were evaluated, and the results shown in Table 1 were obtained. The obtained ceria-containing zirconia powder was found to be almost the same as the zirconia powder in which ceria was uniformly dissolved.

Figure 2013129056
(試験例1〜6)
実施例7、11、12、及び比較例2、3の各粉末に純水を加え、スラリー(固形分25wt%)とし、これを用いてアルミノシリケートガラス基板の研磨レートを評価した。片面小型研磨試験機にポリウレタン製研磨パッドとガラス基板(34mm角、1.0mm厚さ)3枚とをセットし、研磨圧力80g/cm、上下定盤回転数30rpm、スラリー流量120ml/minの条件で20分間研磨し、ガラス基板の厚さ減少量から研磨レートを算出した。ガラス基板の目視検査、顕微鏡検査によって傷発生の有無を確認した。
Figure 2013129056
(Test Examples 1-6)
Pure water was added to each of the powders of Examples 7, 11, 12 and Comparative Examples 2 and 3 to form a slurry (solid content 25 wt%), and this was used to evaluate the polishing rate of the aluminosilicate glass substrate. A polyurethane polishing pad and three glass substrates (34 mm square, 1.0 mm thickness) were set in a single-sided small polishing tester, and the polishing pressure was 80 g / cm 2 , the upper and lower platen rotation speed was 30 rpm, and the slurry flow rate was 120 ml / min. Polishing was performed for 20 minutes under the conditions, and the polishing rate was calculated from the thickness reduction amount of the glass substrate. The presence or absence of scratches was confirmed by visual inspection and microscopic inspection of the glass substrate.

比較として、市販セリア系研磨剤(三井金属製)の25wt%スラリーを用い、同様の試験を行った。それぞれの結果を表2に示す。   For comparison, a similar test was performed using a 25 wt% slurry of a commercially available ceria-based abrasive (Mitsui Metals). The results are shown in Table 2.

本発明のセリア・ジルコニア複合粉末は研磨レートが高く、研磨傷の発生もない良好な研磨剤になることがわかった。   It has been found that the ceria / zirconia composite powder of the present invention has a high polishing rate and is a good polishing agent with no generation of polishing flaws.

Figure 2013129056
Figure 2013129056

1:ジルコニア一次粒子
2:ジルコニア二次粒子 (母体粒子)
3:セリア結晶
4:セリア・ジルコニア固溶体
1: Primary zirconia particles 2: Secondary zirconia particles (base particles)
3: Ceria crystal 4: Ceria / zirconia solid solution

Claims (7)

ジルコニア粒子を母体とし、その表面にセリアの結晶、セリア・ジルコニア固溶体の結晶又はセリアの結晶とセリア・ジルコニア固溶体の結晶とが結合しているセリア・ジルコニア複合粒子からなる研磨剤用粉末。   A powder for abrasives comprising ceria / zirconia composite particles in which ceria crystals, ceria / zirconia solid solution crystals or ceria crystals and ceria / zirconia solid solution crystals are bonded to the surface of zirconia particles as a base. 粉末中のセリアの総含量が1モル%以上30モル%以下であることを特徴とする請求項1に記載の研磨剤用粉末。   The abrasive powder according to claim 1, wherein the total content of ceria in the powder is 1 mol% or more and 30 mol% or less. 比表面積が3m/g以上20m/g以下であって、平均二次粒子径が200nm以上1000nm以下であることを特徴とする請求項1または2に記載の研磨剤用粉末。 3. The abrasive powder according to claim 1, wherein the specific surface area is 3 m 2 / g or more and 20 m 2 / g or less, and the average secondary particle diameter is 200 nm or more and 1000 nm or less. ジルコニア母体粒子の結晶相が単斜晶ジルコニア型、正方晶ジルコニア型、立方晶ジルコニア型の少なくとも1相であって、その表面に存在するセリアの結晶相が立方晶セリア型又はセリア・ジルコニア固溶体の結晶相が正方晶ジルコニア型であることを特徴とする請求項1〜3のいずれかに記載の研磨剤用粉末。   The crystal phase of the zirconia base particles is at least one phase of monoclinic zirconia type, tetragonal zirconia type, cubic zirconia type, and the ceria crystal phase present on the surface is cubic ceria type or ceria zirconia solid solution. 4. The abrasive powder according to claim 1, wherein the crystal phase is a tetragonal zirconia type. 結晶子径が5nm以上100nm以下であって、比表面積が3m/g以上50m/g以下であるジルコニア粉末とセリウム塩水溶液を含んでなるスラリーを乾燥した後、500℃以上1200℃以下で焼成することを特徴とする請求項1〜4のいずれかに記載の研磨剤用粉末の製造方法。 After drying a slurry comprising a zirconia powder having a crystallite diameter of 5 nm to 100 nm and a specific surface area of 3 m 2 / g to 50 m 2 / g and a cerium salt aqueous solution, the slurry is heated to 500 ° C. to 1200 ° C. The method for producing a powder for abrasives according to any one of claims 1 to 4, wherein firing is performed. ジルコニア粉末としてジルコニウム塩水溶液を加熱し、加水分解反応により析出する水和ジルコニアを乾燥し、450℃以上1200℃以下で焼成したものを用いることを特徴とする請求項5に記載の製造方法。   6. The production method according to claim 5, wherein the zirconia powder is heated as an aqueous zirconium salt solution, dried hydrated zirconia precipitated by hydrolysis reaction, and fired at 450 ° C. or higher and 1200 ° C. or lower. ジルコニア粉末とセリウム塩水溶液を含んでなるスラリーをスプレードライヤーで乾燥することを特徴とする請求項5または6に記載の製造方法。   The manufacturing method according to claim 5 or 6, wherein a slurry comprising zirconia powder and a cerium salt aqueous solution is dried with a spray dryer.
JP2012250662A 2011-11-21 2012-11-14 Zirconia composite powder for polishing and method for producing the same Pending JP2013129056A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012250662A JP2013129056A (en) 2011-11-21 2012-11-14 Zirconia composite powder for polishing and method for producing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011253741 2011-11-21
JP2011253741 2011-11-21
JP2012250662A JP2013129056A (en) 2011-11-21 2012-11-14 Zirconia composite powder for polishing and method for producing the same

Publications (1)

Publication Number Publication Date
JP2013129056A true JP2013129056A (en) 2013-07-04

Family

ID=48907066

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012250662A Pending JP2013129056A (en) 2011-11-21 2012-11-14 Zirconia composite powder for polishing and method for producing the same

Country Status (1)

Country Link
JP (1) JP2013129056A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014012311A (en) * 2012-07-04 2014-01-23 Noritake Co Ltd Abrasive, and producing method thereof
WO2014034746A1 (en) * 2012-08-28 2014-03-06 Hoya株式会社 Process for producing glass substrate for magnetic disc
JP2015054967A (en) * 2013-09-12 2015-03-23 ユービーマテリアルズ インコーポレイテッド Abrasive particle, polishing slurry, and method of manufacturing semiconductor device using the same
JPWO2013187354A1 (en) * 2012-06-13 2016-02-04 コニカミノルタ株式会社 Abrasive particles and method for producing the same
JPWO2016017819A1 (en) * 2014-07-31 2017-05-25 Hoya株式会社 Polishing slurry preparation method, polishing abrasive grains, polishing slurry, and glass substrate manufacturing method
JP2020536992A (en) * 2017-11-15 2020-12-17 サン−ゴバン セラミックス アンド プラスティクス,インコーポレイティドSaint−Gobain Ceramics And Plastics, Inc. Compositions for performing material removal operations and methods for forming them
CN115785818A (en) * 2022-11-10 2023-03-14 湖北五方光电股份有限公司 Polishing solution and preparation method and application thereof

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09221304A (en) * 1995-12-07 1997-08-26 Toyota Central Res & Dev Lab Inc Oxide solid solution particle and its production
JPH1036819A (en) * 1996-07-26 1998-02-10 Nissan Chem Ind Ltd Polishing composition for aluminum disk
JPH10237425A (en) * 1997-02-24 1998-09-08 Toray Ind Inc Polishing agent
JP2001351882A (en) * 2000-06-06 2001-12-21 Toray Ind Inc Abrasive
JP2005152890A (en) * 2003-10-29 2005-06-16 Nippon Shokubai Co Ltd Reforming catalyst for partial oxidation and reforming method
JP2005314133A (en) * 2004-04-27 2005-11-10 Toyota Motor Corp Method for producing metal oxide particle
JP2009007543A (en) * 2006-12-28 2009-01-15 Kao Corp Polishing liquid composition
JP2009279544A (en) * 2008-05-23 2009-12-03 Toyota Motor Corp Core-shell structure and catalyst comprising the same and for cleaning exhaust gas

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09221304A (en) * 1995-12-07 1997-08-26 Toyota Central Res & Dev Lab Inc Oxide solid solution particle and its production
JPH1036819A (en) * 1996-07-26 1998-02-10 Nissan Chem Ind Ltd Polishing composition for aluminum disk
JPH10237425A (en) * 1997-02-24 1998-09-08 Toray Ind Inc Polishing agent
JP2001351882A (en) * 2000-06-06 2001-12-21 Toray Ind Inc Abrasive
JP2005152890A (en) * 2003-10-29 2005-06-16 Nippon Shokubai Co Ltd Reforming catalyst for partial oxidation and reforming method
JP2005314133A (en) * 2004-04-27 2005-11-10 Toyota Motor Corp Method for producing metal oxide particle
JP2009007543A (en) * 2006-12-28 2009-01-15 Kao Corp Polishing liquid composition
JP2009279544A (en) * 2008-05-23 2009-12-03 Toyota Motor Corp Core-shell structure and catalyst comprising the same and for cleaning exhaust gas

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2013187354A1 (en) * 2012-06-13 2016-02-04 コニカミノルタ株式会社 Abrasive particles and method for producing the same
US9850413B2 (en) 2012-06-13 2017-12-26 Konica Minolta, Inc. Abrasive particles and production method thereof
JP2014012311A (en) * 2012-07-04 2014-01-23 Noritake Co Ltd Abrasive, and producing method thereof
WO2014034746A1 (en) * 2012-08-28 2014-03-06 Hoya株式会社 Process for producing glass substrate for magnetic disc
JPWO2014034746A1 (en) * 2012-08-28 2016-08-08 Hoya株式会社 Manufacturing method of glass substrate for magnetic disk
JP2015054967A (en) * 2013-09-12 2015-03-23 ユービーマテリアルズ インコーポレイテッド Abrasive particle, polishing slurry, and method of manufacturing semiconductor device using the same
US9469800B2 (en) 2013-09-12 2016-10-18 Industrial Bank Of Korea Abrasive particle, polishing slurry, and method of manufacturing semiconductor device using the same
JPWO2016017819A1 (en) * 2014-07-31 2017-05-25 Hoya株式会社 Polishing slurry preparation method, polishing abrasive grains, polishing slurry, and glass substrate manufacturing method
JP2020536992A (en) * 2017-11-15 2020-12-17 サン−ゴバン セラミックス アンド プラスティクス,インコーポレイティドSaint−Gobain Ceramics And Plastics, Inc. Compositions for performing material removal operations and methods for forming them
US11161751B2 (en) 2017-11-15 2021-11-02 Saint-Gobain Ceramics & Plastics, Inc. Composition for conducting material removal operations and method for forming same
JP7071495B2 (en) 2017-11-15 2022-05-19 サン-ゴバン セラミックス アンド プラスティクス,インコーポレイティド Compositions for performing material removal operations and methods for forming them
CN115785818A (en) * 2022-11-10 2023-03-14 湖北五方光电股份有限公司 Polishing solution and preparation method and application thereof

Similar Documents

Publication Publication Date Title
JP2013129056A (en) Zirconia composite powder for polishing and method for producing the same
JP5034349B2 (en) Zirconia fine powder, production method thereof and use thereof
TWI546370B (en) Composite particles for glass grinding
JP5356639B2 (en) Zirconia fine powder and method for producing the same
JP5274487B2 (en) Method for producing cerium carbonate powder
TWI723107B (en) Method of preparing cerium oxide crystal and cmp application thereof
JPWO2012101871A1 (en) Abrasive fine particles and method for producing the same
JP2010502539A (en) Flaky alpha-alumina crystal having a large aspect ratio and method for producing the same
CN104370300A (en) High-dispersity spherical cerium oxide powder and preparation method thereof
CN109468684B (en) Preparation method of yttrium oxide nano-beam whisker
JP2012011526A (en) Abrasive and manufacturing method thereof
US20220212999A1 (en) Sintered body, powder and method for producing the same
WO2016106765A1 (en) Method for preparing cerium oxide crystals and cmp polishing application thereof
JP2007332026A (en) Zirconia sintered compact
TW200804193A (en) Process for producing metal oxide particle
JP2013104023A (en) Zirconia abrasive and method for manufacturing the same
JP6254913B2 (en) Method for producing α-lithium aluminate
WO2015049942A1 (en) Abrasive material, method for producing same, and abrasive slurry containing same
JP6665542B2 (en) Zirconia powder and method for producing the same
JP4273921B2 (en) Cerium oxide particles and production method by humidified firing
JP2013091585A (en) Zirconia powder, method for producing the same, and its application
JP2021059463A (en) Zirconia powder and its production method
TW202021908A (en) Tabular alumina particles and method of producing tabular alumina particles
US20150353795A1 (en) Core/Shell-Type Inorganic Particles
JP5861277B2 (en) Zirconia abrasive

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151026

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160830

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170307