JPH0921954A - Rear focusing type zoom lens - Google Patents

Rear focusing type zoom lens

Info

Publication number
JPH0921954A
JPH0921954A JP19256895A JP19256895A JPH0921954A JP H0921954 A JPH0921954 A JP H0921954A JP 19256895 A JP19256895 A JP 19256895A JP 19256895 A JP19256895 A JP 19256895A JP H0921954 A JPH0921954 A JP H0921954A
Authority
JP
Japan
Prior art keywords
lens
group
positive
refractive power
wide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19256895A
Other languages
Japanese (ja)
Other versions
JP3368106B2 (en
Inventor
Akinaga Horiuchi
昭永 堀内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP19256895A priority Critical patent/JP3368106B2/en
Publication of JPH0921954A publication Critical patent/JPH0921954A/en
Application granted granted Critical
Publication of JP3368106B2 publication Critical patent/JP3368106B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Lenses (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a rear focusing type zoom lens provided with satisfactory performance extending over the whole zooming area and entire object distance as possessing four lens groups and securing a high variable power ratio and of short entire length. SOLUTION: This lens is provided with the four lens groups of a first group L1 of positive refracting power, a second group L2 of negative refracting power, a third group L3 of positive refracting power, and a fourth group L4 of positive refracting power sequentially from an object side. Variable magnification from a wide angle terminal to a telescopic terminal is performed by moving the second group L2 to an image surface side, and the fluctuation of an image surface according to the variable magnification is corrected by moving the fourth group L4 as holding a projecting locus, and also, focusing is performed by moving the fourth group L4. The lens constitution of the third group L3 and the fourth group L4, the focal distance f2 of the second group L2, the F number and the focal distances fNW, fW of the whole system of at the wide angle terminal, and the focal distance fT of the whole system at the telescopic terminal, etc., are set appropriately.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はリヤーフォーカス式のズ
ームレンズに関し、特に写真用カメラやビデオカメラ、
そして放送用カメラ等に用いられる変倍比14〜15,
広角端のFナンバー1.45程度の大口径比で高変倍比
のレンズ全長の短い小型のリヤーフォーカス式のズーム
レンズに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a rear focus type zoom lens, and more particularly to a photographic camera, a video camera,
And a zoom ratio of 14 to 15 used for broadcast cameras, etc.
The present invention relates to a compact rear focus type zoom lens having a large aperture ratio of about F / 1.4 at the wide angle end and a high zoom ratio and a short overall lens length.

【0002】[0002]

【従来の技術】最近、ホームビデオカメラ等の小型軽量
化に伴い、撮像用のズームレンズの小型化にも目覚まし
い進歩が見られ、特にレンズ全長の短縮化や前玉径の小
型化、構成の簡略化に力が注がれている。
2. Description of the Related Art In recent years, as home video cameras and the like have become smaller and lighter, remarkable progress has been made in miniaturization of zoom lenses for image pickup. Emphasis is placed on simplification.

【0003】これらの目的を達成する一つの手段とし
て、物体側の第1群以外のレンズ群を移動させてフォー
カスを行う、所謂リヤーフォーカス式のズームレンズが
知られている。
As one means for achieving these objects, there is known a so-called rear focus type zoom lens in which a lens unit other than the first lens unit on the object side is moved for focusing.

【0004】一般にリヤーフォーカス式のズームレンズ
は第1群を移動させてフォーカスを行うズームレンズに
比べて第1群の有効径が小さくなり、レンズ系全体の小
型化が容易になり、又近接撮影、特に極近接撮影が容易
となり、更に比較的小型軽量のレンズ群を移動させて行
っているので、レンズ群の駆動力が小さくてすみ迅速な
焦点合わせができる等の特長がある。
Generally, in a rear focus type zoom lens, the effective diameter of the first lens group is smaller than that of a zoom lens in which the first lens group is moved to perform focusing, which facilitates downsizing of the entire lens system and close-up photography. In particular, since extremely close-up photography is facilitated and the relatively small and lightweight lens group is moved, the driving force of the lens group is small, and quick focusing is possible.

【0005】このようなリヤーフォーカス式のズームレ
ンズとして、例えば特開昭62−215225号公報
や、特開昭62−206516号公報,特開昭62−2
4213号公報,特開昭63−247316号公報、そ
して特開平4−43311号公報では、物体側より順に
正の屈折力の第1群、負の屈折力の第2群、正の屈折力
の第3群、そして正の屈折力の第4群の4つのレンズ群
を有し、第2群を移動させて変倍を行い、第4群を移動
させて変倍に伴う像面変動とフォーカスを行っている。
As such a rear focus type zoom lens, for example, JP-A-62-215225, JP-A-62-206516, and JP-A-62-2.
4213, JP-A-63-247316, and JP-A-4-43311, the first group having a positive refractive power, the second group having a negative refractive power, and the second group having a positive refractive power are arranged in this order from the object side. It has four lens units, a third lens unit and a fourth lens unit having a positive refractive power, moves the second lens unit to perform zooming, and moves the fourth lens unit to move the image surface and focus upon zooming. It is carried out.

【0006】一般にレンズ全長の短縮化を図る方法とし
て、例えば単焦点レンズの望遠レンズ等では、正の屈折
力のレンズ群を物体側に負の屈折力のレンズ群を像面側
に配置し、全系の主点位置を物体側に位置させ、これに
よりテレフォト比を向上させた、所謂テレフォトタイプ
と呼ばれるレンズ配置をとっている。
As a method for shortening the total lens length, for example, in a telephoto lens such as a single focus lens, a lens group having a positive refractive power is arranged on the object side and a lens group having a negative refractive power is arranged on the image plane side. The principal point position of the entire system is located on the object side, whereby the so-called telephoto type lens arrangement in which the telephoto ratio is improved is adopted.

【0007】一方、レンズ全長の短いズームレンズとし
て、本出願人は特開平4−26811号公報及び特開平
4−88309号公報等において、第3レンズ群の物体
側に正の屈折力のレンズ群を、最後部に負の屈折力のレ
ンズを配置することにより、レンズ全長の短縮化を図っ
たテレフォトタイプのズームレンズを提案している。
On the other hand, as a zoom lens having a short total lens length, the applicant of the present invention has disclosed in Japanese Unexamined Patent Publication No. 4-26811 and Japanese Unexamined Patent Publication No. 4-88309 that a lens group having a positive refractive power on the object side of the third lens group. By disposing a lens having a negative refractive power at the rearmost part, a telephoto type zoom lens has been proposed in which the total lens length is shortened.

【0008】又、特開平4−43311号公報,特開平
4−153615号公報,特開平5−19165号公
報,特開平5−27167号公報及び特開平5−609
73号公報では、第4レンズ群を正レンズ1枚又は正レ
ンズ2枚で構成したレンズ全長の短いズームレンズが提
案されている。特開平5−60974号公報では、第4
レンズ群が正レンズと負レンズの2枚で構成されたズー
ムレンズが提案されている。
Further, JP-A-4-43311, JP-A-4-153615, JP-A-5-19165, JP-A-5-27167 and JP-A-5-609.
In Japanese Patent Laid-Open No. 73-73, a zoom lens having a short overall lens length is proposed, in which the fourth lens group is composed of one positive lens or two positive lenses. In JP-A-5-60974, the fourth
A zoom lens has been proposed in which the lens group includes two lenses, a positive lens and a negative lens.

【0009】特開昭55−62419号公報,特開昭6
2−24213号公報,特開昭62−215225号公
報,特開昭56−114920号公報,特開平3−20
0113号公報,特開平4−242707号公報,特開
平4−343313号公報,特開平5−297275号
公報等では、その実施例中に第3群と第4群をそれぞれ
が正レンズと負レンズの2枚のレンズより成るズームレ
ンズを開示している。
JP-A-55-62419, JP-A-6-62
No. 2-24213, No. 62-215225, No. 56-114920, and No. 3-20.
No. 0113, JP-A-4-242707, JP-A-4-343313, and JP-A-5-297275 disclose a positive lens and a negative lens in the third group and the fourth group, respectively. Discloses a zoom lens including two lenses.

【0010】[0010]

【発明が解決しようとする課題】一般にズームレンズに
おいてリヤーフォーカス方式を採用するとレンズ系全体
が小型化され又迅速なるフォーカスが可能となり、更に
近接撮影が容易となる等の特長が得られる。
Generally, when a rear focus system is adopted in a zoom lens, the entire lens system is downsized, quick focusing is possible, and further close-up photography is facilitated.

【0011】しかしながら反面、フォーカスの際の収差
変動が大きくなり、無限遠物体から近距離物体に至る物
体距離全般にわたり高い光学性能を得るのが大変難しく
なってくるという問題点が生じてくる。
On the other hand, however, the aberration variation at the time of focusing becomes large, and it becomes very difficult to obtain high optical performance over the entire object distance from an object at infinity to a near object.

【0012】特に大口径比で高変倍のズームレンズでは
全変倍範囲にわたり、又物体距離全般にわたり高い光学
性能を得るのが大変難しくなってくるという問題点が生
じてくる。
Particularly, in a zoom lens having a large aperture ratio and a high zoom ratio, it becomes very difficult to obtain high optical performance over the entire zoom range and the entire object distance.

【0013】特開平4−26811号公報や特開平4−
88309号公報で開示されているズームレンズは第4
群を負レンズ,正レンズ、そして正レンズの3つのレン
ズより構成している為に、更なる小型化が望まれてい
る。
JP-A-4-26811 and JP-A-4-26811
The zoom lens disclosed in Japanese Patent No. 88309 is the fourth zoom lens.
Since the group is composed of three lenses, a negative lens, a positive lens, and a positive lens, further miniaturization is desired.

【0014】特開平4−43311号公報,特開平4−
153615号公報,特開平5−19165号公報,特
開平5−27167号公報及び特開平5−60973号
公報で開示されているズームレンズではズーム比が6倍
から8倍程度であり、これ以上の高変倍比のズームレン
ズを得ようとすると、変倍による色収差の変動が大きく
なりすぎて、これを良好に補正するのが難しくなってく
る。
JP-A-4-43311 and JP-A-4-43311
In the zoom lenses disclosed in JP-A-153615, JP-A-5-19165, JP-A-5-27167 and JP-A-5-60973, the zoom ratio is about 6 to 8 times and more. When trying to obtain a zoom lens having a high zoom ratio, the variation of chromatic aberration due to zooming becomes too large, and it becomes difficult to satisfactorily correct this.

【0015】特開昭55−62419号公報,特開昭5
6−114920号公報,特開平3−200113号公
報で開示されているズームレンズでは、第1群又は第3
群が変倍に伴って移動するため鏡筒構造が複雑になり、
小型化を達成するのが難しいという問題点があった。
Japanese Patent Laid-Open Nos. 55-62419 and 5
In the zoom lens disclosed in JP-A-6-114920 and JP-A-3-200113, the first lens group or the third lens group is used.
Since the group moves with zooming, the lens barrel structure becomes complicated,
There was a problem that it was difficult to achieve miniaturization.

【0016】特開平4−242707号公報及び特開平
4−343313号公報,特開平5−297275号公
報等に開示されているズームレンズでは第3群が大きな
空気間隔を持つレンズ構成となっており、更に第3群中
の負レンズの屈折力が弱いため高変倍化のズームレンズ
に適用しようとすると第3群で色収差が多く発生し、こ
れを充分に補正するのが難しいという問題点があった。
In the zoom lenses disclosed in JP-A-4-242707, JP-A-4-343313 and JP-A-5-297275, the third lens unit has a lens structure having a large air gap. Further, since the negative lens in the third lens group has a weak refractive power, when it is applied to a zoom lens having a high zoom ratio, a large amount of chromatic aberration occurs in the third lens group, and it is difficult to sufficiently correct this. there were.

【0017】特開平5−297275号公報で提案され
ているズームレンズでは、第3群中のメニスカス状の負
レンズが像面側に強い凹面を向けたレンズ構成となって
いるためテレフォト化には有効であるが、正レンズで発
生した高次のフレアー成分を該負レンズで補正するのが
難しく、大口径化、高変倍化が難しいという問題点がっ
た。
In the zoom lens proposed in Japanese Unexamined Patent Publication No. 5-297275, the meniscus-shaped negative lens in the third lens unit has a lens structure with a strong concave surface facing the image plane side, and therefore is not suitable for telephoto conversion. Although effective, it is difficult to correct high-order flare components generated by the positive lens with the negative lens, and it is difficult to increase the aperture and zoom ratio.

【0018】本発明はリヤーフォーカス方式を採用しつ
つ、大口径比化及び高変倍化を図る際、広角端から望遠
端に至る全変倍範囲にわたり、又無限遠物体から超至近
物体に至る物体距離全般にわたり、良好なる光学性能を
有したレンズ全長の短い小型のリヤーフォーカス式のズ
ームレンズの提供を目的とする。
The present invention adopts the rear focus method and achieves a large aperture ratio and a high zoom ratio, over the entire zoom range from the wide-angle end to the telephoto end, and from the infinity object to the ultra close object. An object of the present invention is to provide a compact rear focus type zoom lens having a short overall lens length, which has good optical performance over the entire object distance.

【0019】[0019]

【課題を解決するための手段】本発明のリヤーフォーカ
ス式のズームレンズは、物体側より順に正の屈折力の第
1群、負の屈折力の第2群、正の屈折力の第3群、そし
て正の屈折力の第4群の4つのレンズ群を有し、該第2
群を像面側へ移動させて広角端から望遠端への変倍を行
い、変倍に伴う像面変動を該第4群を物体側に凸状の軌
跡を有しつつ移動させて補正すると共に該第4群を移動
させてフォーカスを行い、該第3群は正の第31レンズ
と像面側に凸面を向けたメニスカス状の負の第32レン
ズとを接合した貼り合わせレンズより成り、該第4群は
物体側に凸面を向けたメニスカス状の負の第41レンズ
と正の第42レンズより成り、該第2群の焦点距離をf
2、広角端における全系のFナンバーと焦点距離を各々
fNW,fW、望遠端における全系の焦点距離をfTと
し、
A rear focus type zoom lens according to the present invention comprises, in order from the object side, a first lens unit having a positive refractive power, a second lens unit having a negative refractive power, and a third lens unit having a positive refractive power. And a fourth lens unit of a fourth group having a positive refractive power.
The lens unit is moved to the image plane side to perform zooming from the wide-angle end to the telephoto end, and the image plane variation due to zooming is corrected by moving the fourth lens unit to the object side while having a convex locus. Together with this, the fourth group is moved to perform focusing, and the third group is composed of a cemented lens in which a positive 31st lens and a meniscus negative 32nd lens having a convex surface facing the image surface side are cemented, The fourth lens unit is composed of a negative meniscus 41st lens having a convex surface directed toward the object side and a positive 42nd lens. The focal length of the second lens unit is f
2. The f-number and focal length of the entire system at the wide-angle end are fNW and fW, respectively, and the focal length of the entire system at the telephoto end is fT,

【0020】[0020]

【数3】 とおいたとき 0.45<|f2|×fNW/fM<0.7 ‥‥‥(1) なる条件を満足することを特徴としている。(Equation 3) It is characterized in that the condition of 0.45 <| f2 | × fNW / fM <0.7 (1) is satisfied.

【0021】[0021]

【実施例】図1〜図4は本発明のリヤーフォーカス式の
ズームレンズの後述する数値実施例1〜4のレンズ断面
図、図5〜図7は数値実施例1,図8〜図10は数値実
施例2,図11〜図13は数値実施例3,図14〜図1
6は数値実施例4の諸収差図である。
1 to 4 are sectional views of numerical examples 1 to 4 of a rear focus type zoom lens according to the present invention, which will be described later. FIGS. 5 to 7 are numerical examples 1 and 8 to 10. Numerical Example 2 and FIGS. 11 to 13 are Numerical Example 3 and FIGS.
6 is a diagram of various types of aberration in Numerical Example 4. FIG.

【0022】収差図において図5,8,11,14は広
角端、図6,9,12,15は中間、図7,10,1
3,16は望遠端を示す。
In the aberration diagrams, FIGS. 5, 8, 11, and 14 are wide-angle ends, FIGS. 6, 9, 12, and 15 are intermediate, and FIGS.
3 and 16 indicate the telephoto end.

【0023】図中L1は正の屈折力の第1群、L2は負
の屈折力の第2群、L3は正の屈折力の第3群、L4は
正の屈折力の第4群である。SPは開口絞りであり、第
3群L3の前方に配置している。Gはフェースプレート
やフィルター等のガラスブロックである。IPは像面で
ある。
In the figure, L1 is a first group having a positive refractive power, L2 is a second group having a negative refractive power, L3 is a third group having a positive refractive power, and L4 is a fourth group having a positive refractive power. . SP denotes an aperture stop, which is arranged in front of the third lens unit L3. G is a glass block such as a face plate or a filter. IP is an image plane.

【0024】本実施例では広角端から望遠端への変倍に
際して矢印のように第2群を像面側へ移動させると共
に、変倍に伴う像面変動を第4群を物体側に凸状の軌跡
を有しつつ移動させて補正している。
In this embodiment, the second lens unit is moved to the image plane side as indicated by the arrow when the magnification is changed from the wide-angle end to the telephoto end, and the fourth lens unit is convex toward the object side due to the image plane variation due to the magnification change. It is corrected by moving while having the locus of.

【0025】又、第4群を光軸上移動させてフォーカス
を行うリヤーフォーカス式を採用している。同図に示す
第4群の実線の曲線4aと点線の曲線4bは各々無限遠
物体と近距離物体にフォーカスしているときの広角端か
ら望遠端への変倍に伴う際の像面変動を補正する為の移
動軌跡を示している。尚、第1群と第3群は変倍及びフ
ォーカスの際固定である。
Further, a rear focus type in which focusing is performed by moving the fourth lens unit on the optical axis is adopted. A solid line curve 4a and a dotted line curve 4b of the fourth lens group shown in the same figure show the image plane fluctuation caused by zooming from the wide-angle end to the telephoto end when focusing on an object at infinity and an object at a short distance, respectively. The movement locus for correction is shown. The first and third units are fixed during zooming and focusing.

【0026】本実施例においては第4群を移動させて変
倍に伴う像面変動の補正を行うと共に第4群を移動させ
てフォーカスを行うようにしている。特に同図の曲線4
a、4bに示すように広角端から望遠端への変倍に際し
て物体側へ凸状の軌跡を有するように移動させている。
これにより第3群と第4群との空間の有効利用を図りレ
ンズ全長の短縮化を効果的に達成している。
In the present embodiment, the fourth lens unit is moved to correct the image plane variation due to zooming, and the fourth lens unit is moved to perform focusing. Curve 4 in the figure
As shown in a and 4b, the zoom lens is moved so as to have a convex locus toward the object side during zooming from the wide-angle end to the telephoto end.
Thereby, the space between the third and fourth units is effectively used, and the overall length of the lens is effectively reduced.

【0027】本実施例において、例えば望遠端において
無限遠物体から近距離物体へフォーカスを行う場合は同
図の直線4cに示すように第4群を前方へ繰り出すこと
により行っている。
In the present embodiment, when focusing from an object at infinity to a near object at the telephoto end, for example, the fourth lens unit is moved forward as indicated by a straight line 4c in FIG.

【0028】本発明では物体側より順に該第3群は正の
第31レンズと像面側に凸面を向けたメニスカス状の負
の第32レンズとを接合した貼り合わせレンズより成
り、該第4群は物体側に凸面を向けたメニスカス状の負
の第41レンズと正の第42レンズより成ると共に条件
式(1)を満足していることを特徴としている。
In the present invention, in order from the object side, the third lens group is a cemented lens in which a positive thirty-first lens element and a meniscus-shaped negative thirty-second lens element having a convex surface directed toward the image side are cemented together. The lens unit is characterized by being composed of a negative meniscus 41st lens element having a convex surface facing the object side and a positive 42nd lens element, and satisfying conditional expression (1).

【0029】これは高変倍を達成すべく第2群の屈折力
を強くし、更にその変倍を行うための移動量を確保する
ことにより残留する軸上の色収差を効果的に補正するた
めに第3群の正の第31レンズの像面側に物体側に凹面
を持つメニスカス状の負の第32レンズを配置すること
により達成している。
This is for strengthening the refracting power of the second lens unit in order to achieve a high zoom ratio, and for effectively correcting the residual axial chromatic aberration by securing a moving amount for performing the zoom ratio. Is achieved by arranging a negative meniscus thirty-second lens element having a concave surface on the object side on the image side of the positive thirty-first lens element of the third lens group.

【0030】そして大口径化及び高変倍化を図る際の変
倍に伴う収差変動、特にコマ収差の変動を良好に補正す
る為に第2群の屈折力(焦点距離f2)とFナンバーと
が条件式(1)を満足するように各要素を設定してい
る。
The refractive power (focal length f2) and the F number of the second lens group are adjusted in order to satisfactorily correct aberration fluctuations, especially coma aberration fluctuations associated with zooming when increasing the aperture and zooming. Each element is set so as to satisfy the conditional expression (1).

【0031】この条件式(1)は第2群の焦点距離f2
を規制するもので、広角端のFナンバーFNWと大きく
関係してくる。第2群は主に変倍機能を有する為ズーミ
ングで光軸上を移動する。その為に発生する収差変動を
良好に補正しなければならない。特にコマ収差が大きく
変動する。条件式(1)はこれを良好に補正する為のも
のである。
This conditional expression (1) is defined by the focal length f2 of the second lens unit.
The F number FNW at the wide-angle end has a great relation with the F number. Since the second lens group mainly has a variable magnification function, it moves on the optical axis by zooming. Therefore, fluctuations in aberration that occur must be corrected well. In particular, coma changes greatly. Conditional expression (1) is for satisfactorily correcting this.

【0032】条件式(1)の下限値を越えて広角端のF
ナンバーFNWを明るくしたり、第2群の焦点距離を短
くすると高次のコマフレアーが大きく発生して補正が困
難になる。逆に上限値を越えて第2群の焦点距離をむや
みに長くしたり、広角端のFナンバーFNWを暗くする
と、光学性能は上がるものの、レンズ全長が長くなり、
小型化が難しくなってくる。又、望ましくは条件式
(1)の範囲を0.45〜0.65の範囲に抑えること
が望ましい。
If the lower limit of conditional expression (1) is exceeded and F at the wide-angle end is exceeded,
If the number FNW is made brighter or the focal length of the second lens unit is made shorter, high-order coma flare will occur greatly, making correction difficult. On the contrary, if the focal length of the second lens unit is excessively lengthened beyond the upper limit or the F number FNW at the wide-angle end is darkened, the optical performance is improved, but the total lens length is increased.
Miniaturization becomes difficult. Further, it is desirable to suppress the range of conditional expression (1) to a range of 0.45 to 0.65.

【0033】本発明のリヤーフォーカス式のズームレン
ズのこの他のレンズ構成の特徴について説明する。
Other features of the lens structure of the rear focus type zoom lens of the present invention will be described.

【0034】(イ)本発明の主旨は、前述の如く高変倍
を目的としたものであるから、変倍に伴って発生する色
収差は第1群及び第2群においてキャンセルすることが
望ましい。しかるに変倍に伴う倍率の色収差の発生の仕
方は第1群と第2群のそれとでは大きく異なり、広角端
では補正過剰の傾向となりやすい。従って第4群の倍率
の色収差を補正不足とすることにより全体としての色収
差のバランスを保っている。
(B) Since the purpose of the present invention is to achieve high zooming as described above, it is desirable to cancel the chromatic aberration caused by zooming in the first and second groups. However, the way in which chromatic aberration of magnification occurs due to zooming differs greatly between that of the first group and that of the second group, and there is a tendency for overcorrection at the wide-angle end. Therefore, the chromatic aberration of the magnification of the fourth lens group is undercorrected to maintain the balance of the chromatic aberration as a whole.

【0035】この場合、軸上の色収差は変倍比が小さい
ときは大きくバランスを崩すことなく補正することが可
能である。従って第3群を正の単一のレンズとすること
も可能であるが、本発明の如く高変倍、大口径をねらう
場合、軸上の色収差が全体として補正不足となり高い性
能を維持することが困難となる。
In this case, the axial chromatic aberration can be corrected without greatly disturbing the balance when the zoom ratio is small. Therefore, it is possible to make the third lens group a positive single lens, but when aiming for a high zoom ratio and a large aperture as in the present invention, chromatic aberration on the axis as a whole is insufficiently corrected and high performance is maintained. Will be difficult.

【0036】従って本発明では第3群を適切な屈折力と
アッベ数を持つ正レンズと物体側に強い凹面を向けたメ
ニスカス状の負レンズの2枚で構成し、第3群に1枚の
非球面を採用することによって、ことにより全変倍範囲
にわたり最適に色収差を補正している。また高次のフレ
アー成分を持つ球面収差を小さく抑えている。
Therefore, in the present invention, the third lens unit is composed of two lenses, a positive lens having an appropriate refractive power and an Abbe number, and a meniscus-shaped negative lens having a strong concave surface facing the object side, and one lens for the third lens unit. By adopting an aspherical surface, chromatic aberration is optimally corrected over the entire zoom range. In addition, spherical aberration with high-order flare components is kept small.

【0037】このように本発明では簡単なレンズ構成で
ありながら変倍比14〜15,広角端のFナンバー1.
4程度と、高変倍比及び大口径で、しかも高い光学性能
を維持している。
As described above, according to the present invention, the zoom ratio is 14 to 15 and the F number 1.
It has a high zoom ratio of about 4, a large aperture, and maintains high optical performance.

【0038】(ロ)基本的に各群のレンズ構成において
レンズを接合する構成をとると、群内偏心を効果的に抑
制可能であり製品性能の安定化を図ることが可能である
が、設計の自由度が1つ減り大口径、小型ズームという
仕様を満足しつつ充分な初期性能を達成することが困難
となる。
(B) Basically, if the lenses are cemented in the lens structure of each group, the decentering within the group can be effectively suppressed and the product performance can be stabilized. This reduces the degree of freedom by 1 and makes it difficult to achieve sufficient initial performance while satisfying the specifications of large aperture and small zoom.

【0039】そこで本発明では第3群に正レンズ及び物
体側に凹面を向けたメニスカス状の負レンズとを接合し
た貼り合わせレンズより構成すると共に第3群中の最も
強い正の屈折力の凸面にレンズ周辺にいくに従って正の
屈折力が弱くなる形状の非球面を施すことにより、球面
収差の高次のフレアー成分を補正すると共に群内偏心等
の抑制が効果的に行われ、より精度の高いズームレンズ
で大口径化を達成している。また第4群を接合レンズで
構成することにより第3群と同様に群内偏心等の抑制が
効果的に行われ、より精度の高いズームレンズを達成し
ている。
Therefore, the present invention comprises a cemented lens in which a positive lens and a meniscus negative lens having a concave surface facing the object side are cemented to the third lens group, and the convex surface having the strongest positive refractive power in the third lens group. By providing an aspherical surface having a shape in which the positive refractive power becomes weaker toward the lens periphery, the high-order flare component of spherical aberration is corrected and the decentering within the group is effectively suppressed, and more accurate Achieving a large aperture with a high zoom lens. Further, by constructing the fourth lens unit with a cemented lens, the decentering within the lens unit is effectively suppressed as in the third lens unit, and a more accurate zoom lens is achieved.

【0040】更に第4群中の最も強い正の屈折力の凸面
にレンズ周辺部にいくに従って正の屈折力が弱くなる形
状の非球面を採用することにより大口径,超高倍のズー
ムレンズでありながらも精度の高いズームレンズを達成
している。
Further, by adopting an aspherical surface having a shape in which the positive refracting power becomes weaker toward the lens peripheral portion on the convex surface of the strongest positive refracting power in the fourth group, it is a zoom lens of large aperture and super high magnification. However, it has achieved a highly accurate zoom lens.

【0041】(ハ)広角端と望遠端における全系の焦点
距離を各々fW,fT、広角端と望遠端における前記第
1群から第3群までの合成の焦点距離を各々fMW,f
MTとし、
(C) The focal lengths of the entire system at the wide-angle end and the telephoto end are fW and fT, respectively, and the combined focal lengths of the first to third groups at the wide-angle end and the telephoto end are fMW and f, respectively.
MT,

【0042】[0042]

【数4】 とおいたとき、 0<fM/fAM<1.0 ‥‥‥(2) なる条件を満足することである。(Equation 4) It means that the condition of 0 <fM / fAM <1.0 (2) is satisfied.

【0043】条件式(2)は第3群からの光線束の収斂
度合いを意味するものである。一般的に変倍部で発散さ
れた光線束を第3群で略アフォーカルにすることが最も
安定した収差補正方法である。しかしながら第3群から
出てくる光線束を略平行光線にすると、レンズ全長の短
縮化が難しくなってくる。そこで本発明では条件式
(2)を満足させることにより、第3群から射出される
光線束を収斂光線として更なるレンズ全長の短縮化を図
っている。
Conditional expression (2) means the degree of convergence of the ray bundle from the third group. Generally, the most stable aberration correction method is to make the light flux diverged in the variable power portion substantially afocal in the third lens unit. However, if the bundle of rays that emerges from the third group is made to be substantially parallel rays, it becomes difficult to shorten the total lens length. Therefore, in the present invention, by satisfying the conditional expression (2), the bundle of rays emitted from the third lens group is used as a convergent ray to further shorten the total lens length.

【0044】条件式(2)の意味は、即ち下限値を越え
ると光線束は発散系となりレンズ全長がのび、更に第4
群への入射光線の高さも高くなるため第4群が大型化す
るため好ましくない。また上限値を越えると収斂度が大
きくなり小型化には効果が上がるズーミング及びフォー
カシングによる収差変動が大きくなり、ズーム全域で良
好な収差補正を行うことが困難となる。
The meaning of the conditional expression (2) is as follows: When the lower limit value is exceeded, the light flux becomes a divergent system and the entire lens length extends.
Since the height of the incident light beam to the group also becomes high, the fourth group becomes large, which is not preferable. If the value exceeds the upper limit, the degree of convergence becomes large, which is effective for downsizing, and the aberration variation due to zooming and focusing becomes large, making it difficult to perform good aberration correction in the entire zoom range.

【0045】尚、本発明において条件式(2)の上限値
を、 0.38<fM/fAM<0.52 ‥‥‥(2a) とすれば、更に安定した収差補正とレンズ全長の短縮化
の両立が容易となる。
In the present invention, if the upper limit of conditional expression (2) is set to 0.38 <fM / fAM <0.52 (2a), more stable aberration correction and shortening of the total lens length can be achieved. It becomes easy to achieve both.

【0046】(ニ)第4群において正の第42レンズの
第41レンズ側のレンズ面の曲率半径をR42a、負の
第41レンズの第42レンズ側のレンズ面の曲率半径を
R41bとしたとき、
(D) In the fourth group, when the radius of curvature of the lens surface on the 41st lens side of the positive 42nd lens is R42a and the radius of curvature of the lens surface on the 42nd lens side of the negative 41st lens is R41b. ,

【0047】[0047]

【数5】 なる条件を満足するのが良い。(Equation 5) It is better to satisfy the following conditions.

【0048】条件式(3)は第4群内で発生する高次の
非点収差及び球面収差成分が第42レンズと第41レン
ズの間で発生しており、それを抑制するためのものであ
る。下限値は接合又はそれと同等の効果をもち非常に安
定した状態であり、上限値を越えると高次のフレアー成
分の補正が非球面の高次の項に集中するため製造誤差を
考慮すると非常に不安定となりやすい。
Conditional expression (3) is for suppressing high-order astigmatism and spherical aberration components occurring in the fourth lens unit between the 42nd lens and the 41st lens, and suppressing them. is there. The lower limit value is in a very stable state with an effect equivalent to that of bonding, and when the upper limit value is exceeded, correction of high-order flare components concentrates on the high-order terms of the aspherical surface, which is extremely high considering manufacturing errors. Prone to instability.

【0049】次に本発明の数値実施例を示す。数値実施
例においてRiは物体側より順に第i番目のレンズ面の
曲率半径、Diは物体側より第i番目のレンズ厚及び空
気間隔、Niとνiは各々物体側より順に第i番目のレ
ンズのガラスの屈折率とアッベ数である。又、前述の各
条件式と数値実施例における諸数値との関係を表−1に
示す。
Next, numerical examples of the present invention will be described. In the numerical examples, Ri is the radius of curvature of the i-th lens surface in order from the object side, Di is the i-th lens thickness and air spacing from the object side, and Ni and νi are the i-th lens surfaces in order from the object side. The refractive index and Abbe number of glass. Table 1 shows the relationship between the above-mentioned conditional expressions and various numerical values in the numerical examples.

【0050】非球面形状は光軸方向にX軸、光軸と垂直
方向にH軸、光の進行方向を正としRを近軸曲率半径、
K,B,C,D,Eを各々非球面係数としたとき、
The aspherical shape has an X axis in the optical axis direction, an H axis in a direction perpendicular to the optical axis, a positive light traveling direction, and R as a paraxial radius of curvature.
When K, B, C, D and E are aspherical coefficients,

【0051】[0051]

【数6】 なる式で表わしている。また「e−0x」は10-x
意味している。また最後の2つの面はフェースプレート
やフィルター等のガラスブロックを示している。
(Equation 6) It is represented by the following equation. "E-0x" means 10 -x . The last two faces show glass blocks such as face plates and filters.

【0052】 〈数値実施例1〉 f= 1 〜14.82 Fno=1.45 〜2.59 2ω= 61.9°〜 4.6° R 1= 10.453 D 1= 0.31 N 1=1.84666 ν 1= 23.8 R 2= 5.756 D 2= 1.22 N 2=1.60311 ν 2= 60.7 R 3=13834.736 D 3= 0.05 R 4= 5.404 D 4= 0.71 N 3=1.71299 ν 3= 53.8 R 5= 18.917 D 5= 可変 R 6= 7.597 D 6= 0.15 N 4=1.77249 ν 4= 49.6 R 7= 1.296 D 7= 0.67 R 8= -3.232 D 8= 0.15 N 5=1.69679 ν 5= 55.5 R 9= 3.232 D 9= 0.24 R10= 3.193 D10= 0.37 N 6=1.84666 ν 6= 23.8 R11= 31.817 D11= 可変 R12= 絞り D12= 0.29 R13= 3.860 D13= 1.17 N 7=1.58312 ν 7= 59.4 R14= -3.372 D14= 0.17 N 8=1.84666 ν 8= 23.8 R15= -5.267 D15= 可変 R16= 2.871 D16= 0.20 N 9=1.84666 ν 9= 23.8 R17= 1.652 D17= 0.02 R18= 1.724 D18= 0.98 N10=1.58312 ν10= 59.4 R19= -7.817 D19= 0.73 R20= ∞ D20= 0.81 N11=1.51633 ν11= 64.2 R21= ∞ W M T \焦点距離 1.00 6.98 14.82 可変間隔\ D 5 0.23 4.54 5.41 D11 5.47 1.17 0.30 D15 2.14 1.09 2.27 非球面R13面 K= 2.554 e-01 B=-6.490 e-03 C= 2.077 e-04 D=-2.006 e-04 E= 3.713 e-05 非球面R19面 K= 2.078 e+01 B= 5.390 e-03 C= 2.933 e-03 D= 1.115 e-04 E=-2.659 e-03 〈数値実施例2〉 f= 1 〜14.01 Fno=1.45 〜2.45 2ω= 61.9°〜 4.9° R 1= 10.417 D 1= 0.31 N 1=1.84666 ν 1= 23.8 R 2= 5.799 D 2= 1.22 N 2=1.60311 ν 2= 60.7 R 3=-1442.930 D 3= 0.05 R 4= 5.340 D 4= 0.71 N 3=1.71299 ν 3= 53.8 R 5= 13.097 D 5= 可変 R 6= 8.357 D 6= 0.15 N 4=1.77249 ν 4= 49.6 R 7= 1.294 D 7= 0.67 R 8= -3.531 D 8= 0.15 N 5=1.69679 ν 5= 55.5 R 9= 3.531 D 9= 0.24 R10= 3.086 D10= 0.37 N 6=1.84666 ν 6= 23.8 R11= 15.330 D11= 可変 R12= 絞り D12= 0.29 R13= 3.932 D13= 1.17 N 7=1.58312 ν 7= 59.4 R14= -3.295 D14= 0.17 N 8=1.84666 ν 8= 23.8 R15= -5.014 D15= 0.00 R16= ∞ D16= 可変 R17= 2.917 D17= 0.20 N 9=1.84666 ν 9= 23.8 R18= 1.693 D18= 0.02 R19= 1.773 D19= 0.98 N10=1.58312 ν10= 59.4 R20= -7.570 D20= 0.73 R21= ∞ D21= 0.81 N11=1.51633 ν11= 64.2 R22= ∞ W M T \焦点距離 1.00 5.60 14.01 可変間隔\ D 5 0.23 4.23 5.36 D11 5.47 1.47 0.34 D16 2.19 1.12 2.15 非球面R13面 K= 1.509 e-01 B=-6.945 e-03 C= 3.566 e-04 D=-1.911 e-04 E= 3.705 e-05 〈数値実施例3〉 f= 1 〜14.00 Fno=1.45 〜2.51 2ω= 61.9°〜 4.9° R 1= 11.322 D 1= 0.31 N 1=1.84666 ν 1= 23.8 R 2= 5.988 D 2= 1.22 N 2=1.60311 ν 2= 60.7 R 3= -111.865 D 3= 0.05 R 4= 5.241 D 4= 0.71 N 3=1.71299 ν 3= 53.8 R 5= 12.638 D 5= 可変 R 6= 9.339 D 6= 0.15 N 4=1.77249 ν 4= 49.6 R 7= 1.316 D 7= 0.63 R 8= -3.356 D 8= 0.15 N 5=1.69679 ν 5= 55.5 R 9= 3.358 D 9= 0.25 R10= 3.238 D10= 0.37 N 6=1.84666 ν 6= 23.8 R11= 28.550 D11= 可変 R12= 絞り D12= 0.29 R13= 4.295 D13= 1.30 N 7=1.58312 ν 7= 59.4 R14= -2.579 D14= 0.17 N 8=1.83400 ν 8= 37.2 R15= -4.545 D15= 可変 R16= 3.193 D16= 0.20 N 9=1.84666 ν 9= 23.8 R17= 1.720 D17= 1.10 N10=1.58312 ν10= 59.4 R18= -6.609 D18= 0.73 R19= ∞ D19= 0.81 N11=1.51633 ν11= 64.2 R20= ∞ W M T \焦点距離 1.00 5.67 14.00 可変間隔\ D 5 0.23 4.24 5.36 D11 5.48 1.47 0.34 D15 2.01 0.94 1.95 非球面R13面 K= 1.523 e-01 B=-5.363 e-03 C= 5.667 e-04 D=-2.733 e-04 E= 5.658 e-05 非球面R18面 K= 1.104 e+01 B= 6.484 e-03 C= 2.407 e-03 D= 4.765 e-04 E=-1.402 e-03 〈数値実施例4〉 f= 1 〜14.00 Fno=1.45 〜2.48 2ω= 61.9°〜 4.9° R 1= 10.862 D 1= 0.31 N 1=1.84666 ν 1= 23.8 R 2= 5.926 D 2= 1.22 N 2=1.60311 ν 2= 60.7 R 3= -255.457 D 3= 0.05 R 4= 5.234 D 4= 0.71 N 3=1.71299 ν 3= 53.8 R 5= 12.577 D 5= 可変 R 6= 10.508 D 6= 0.15 N 4=1.77249 ν 4= 49.6 R 7= 1.315 D 7= 0.63 R 8= -3.666 D 8= 0.15 N 5=1.69679 ν 5= 55.5 R 9= 3.666 D 9= 0.25 R10= 3.176 D10= 0.37 N 6=1.84666 ν 6= 23.8 R11= 15.677 D11= 可変 R12= 絞り D12= 0.29 R13= 4.350 D13= 1.30 N 7=1.58312 ν 7= 59.4 R14= -2.569 D14= 0.17 N 8=1.83400 ν 8= 37.2 R15= -4.208 D15= 可変 R16= 3.095 D16= 0.20 N 9=1.84666 ν 9= 23.8 R17= 1.610 D17= 1.10 N10=1.58312 ν10= 59.4 R18= -7.079 D18= 0.73 R19= ∞ D19= 0.81 N11=1.51633 ν11= 64.2 R20= ∞ W M T \焦点距離 1.00 5.63 14.00 可変間隔\ D 5 0.23 4.24 5.37 D11 5.48 1.47 0.34 D15 2.08 0.98 2.02 非球面R13面 K=-2.721 e-01 B=-5.778 e-03 C= 6.569 e-04 D=-3.000 e-04 E= 6.474 e-05Numerical Example 1 f = 1 to 14.82 Fno = 1.45 to 2.59 2ω = 61.9 ° to 4.6 ° R 1 = 10.453 D 1 = 0.31 N 1 = 1.84666 ν 1 = 23.8 R 2 = 5.756 D 2 = 1.22 N 2 = 1.60311 ν 2 = 60.7 R 3 = 13834.736 D 3 = 0.05 R 4 = 5.404 D 4 = 0.71 N 3 = 1.71299 ν 3 = 53.8 R 5 = 18.917 D 5 = Variable R 6 = 7.597 D 6 = 0.15 N 4 = 1.77249 ν 4 = 49.6 R 7 = 1.296 D 7 = 0.67 R 8 = -3.232 D 8 = 0.15 N 5 = 1.69679 ν 5 = 55.5 R 9 = 3.232 D 9 = 0.24 R10 = 3.193 D10 = 0.37 N 6 = 1.84666 ν 6 = 23.8 R11 = 31.817 D11 = Variable R12 = Aperture D12 = 0.29 R13 = 3.860 D13 = 1.17 N 7 = 1.58312 ν 7 = 59.4 R14 = -3.372 D14 = 0.17 N 8 = 1.84666 ν 8 = 23.8 R15 = -5.267 D15 = Variable R16 = 2.871 D16 = 0.20 N 9 = 1.84666 ν 9 = 23.8 R17 = 1.652 D17 = 0.02 R18 = 1.724 D18 = 0.98 N10 = 1.58312 ν10 = 59.4 R19 = -7.817 D19 = 0.73 R20 = ∞ D20 = 0.81 N11 = 1.51633 ν11 = 64.2 R21 = ∞ W M T \ Focal length 1.00 6.98 14.82 Variable spacing \ D 5 0.23 4.54 5.41 D11 5.47 1.17 0.30 D15 2.14 1.09 2.27 Aspherical R13 surface K = 2.554 e-01 B = -6.490 e-03 C = 2.077 e-04 D = -2.006 e-04 E = 3.713 e-05 Spherical surface R19 surface K = 2.078 e + 01 B = 5.390 e-03 C = 2.933 e-03 D = 1.115 e-04 E = -2.659 e-03 <Numerical example 2> f = 1 to 14.01 Fno = 1.45 to 2.45 2ω = 61.9 ° ~ 4.9 ° R 1 = 10.417 D 1 = 0.31 N 1 = 1.84666 ν 1 = 23.8 R 2 = 5.799 D 2 = 1.22 N 2 = 1.60311 ν 2 = 60.7 R 3 = -1442.930 D 3 = 0.05 R 4 = 5.340 D 4 = 0.71 N 3 = 1.71299 ν 3 = 53.8 R 5 = 13.097 D 5 = Variable R 6 = 8.357 D 6 = 0.15 N 4 = 1.77249 ν 4 = 49.6 R 7 = 1.294 D 7 = 0.67 R 8 =- 3.531 D 8 = 0.15 N 5 = 1.69679 ν 5 = 55.5 R 9 = 3.531 D 9 = 0.24 R10 = 3.086 D10 = 0.37 N 6 = 1.84666 ν 6 = 23.8 R11 = 15.330 D11 = Variable R12 = Aperture D12 = 0.29 R13 = 3.932 D13 = 1.17 N 7 = 1.58312 ν 7 = 59.4 R14 = -3.295 D14 = 0.17 N 8 = 1.84666 ν 8 = 23.8 R15 = -5.014 D15 = 0.00 R16 = ∞ D16 = Variable R17 = 2.917 D17 = 0.20 N 9 = 1.84666 ν 9 = 23.8 R18 = 1.693 D18 = 0.02 R19 = 1.773 D19 = 0.98 N10 = 1.58312 ν10 = 59.4 R20 = -7.570 D20 = 0.73 R21 = ∞ D21 = 0.81 N11 = 1.51633 ν11 = 64.2 R22 = ∞ W M T \ Focal length 1.00 5.60 14.01 Variable spacing \ D 5 0.23 4.23 5.36 D11 5.47 1.47 0.34 D16 2.19 1.12 2.15 Non Surface R13 surface K = 1.509 e-01 B = -6.945 e-03 C = 3.566 e-04 D = -1.911 e-04 E = 3.705 e-05 <Numerical example 3> f = 1 to 14.00 Fno = 1.45 to 2.51 2 ω = 61.9 ° ~ 4.9 ° R 1 = 11.322 D 1 = 0.31 N 1 = 1.84666 ν 1 = 23.8 R 2 = 5.988 D 2 = 1.22 N 2 = 1.60311 ν 2 = 60.7 R 3 = -111.865 D 3 = 0.05 R 4 = 5.241 D 4 = 0.71 N 3 = 1.71299 ν 3 = 53.8 R 5 = 12.638 D 5 = Variable R 6 = 9.339 D 6 = 0.15 N 4 = 1.77249 ν 4 = 49.6 R 7 = 1.316 D 7 = 0.63 R 8 = -3.356 D 8 = 0.15 N 5 = 1.69679 ν 5 = 55.5 R 9 = 3.358 D 9 = 0.25 R10 = 3.238 D10 = 0.37 N 6 = 1.84666 ν 6 = 23.8 R11 = 28.550 D11 = Variable R12 = Aperture D12 = 0.29 R13 = 4.295 D13 = 1.30 N 7 = 1.58312 ν 7 = 59.4 R14 = -2.579 D14 = 0.17 N 8 = 1.83400 ν 8 = 37.2 R15 = -4.545 D15 = Variable R16 = 3.193 D16 = 0.20 N 9 = 1.84666 ν 9 = 23.8 R17 = 1.720 D17 = 1.10 N10 = 1.58312 ν10 = 59.4 R18 = -6.609 D18 = 0.73 R19 = ∞ D19 = 0.81 N11 = 1.51633 ν11 = 64.2 R20 = ∞ W M T \ Focal length 1.00 5.67 14.00 Variable spacing \ D 5 0.23 4.24 5.36 D11 5.48 1.47 0.34 D15 2.01 0.94 1.95 Aspherical R13 surface K = 1.523 e-01 B = -5.363 e-03 C = 5.667 e-04 D = -2.733 e-04 E = 5.658 e-05 Aspherical R18 surface K = 1.104 e + 01 B = 6.484 e-03 C = 2.407 e-03 D = 4.765 e-04 E =- 1.402 e-03 <Numerical Example 4> f = 1 to 14.00 Fno = 1.45 to 2.48 2ω = 61.9 ° to 4.9 ° R 1 = 10.862 D 1 = 0.31 N 1 = 1.84666 ν 1 = 23.8 R 2 = 5.926 D 2 = 1.22 N 2 = 1.60311 ν 2 = 60.7 R 3 = -255.457 D 3 = 0.05 R 4 = 5.234 D 4 = 0.71 N 3 = 1.71299 ν 3 = 53.8 R 5 = 12.577 D 5 = Variable R 6 = 10.508 D 6 = 0.15 N 4 = 1.77249 ν 4 = 49.6 R 7 = 1.315 D 7 = 0.63 R 8 = -3.666 D 8 = 0.15 N 5 = 1.69679 ν 5 = 55.5 R 9 = 3.666 D 9 = 0.25 R10 = 3.176 D10 = 0.37 N 6 = 1.84666 ν 6 = 23.8 R11 = 15.677 D11 = Variable R12 = Aperture D12 = 0.29 R13 = 4.350 D13 = 1.30 N 7 = 1.58312 ν 7 = 59.4 R14 = -2.569 D14 = 0.17 N 8 = 1.83400 ν 8 = 37.2 R15 = -4.208 D15 = Variable R16 = 3.095 D16 = 0.20 N 9 = 1.84666 ν 9 = 23.8 R17 = 1.610 D17 = 1.10 N10 = 1.58312 ν10 = 59.4 R18 = -7.079 D18 = 0.73 R19 = ∞ D19 = 0.81 N11 = 1.51633 ν11 = 64.2 R20 = ∞ W M T \ Focal length 1.00 5.63 14.00 Variable spacing \ D 5 0.23 4.24 5.37 D11 5.48 1.47 0.34 D15 2.08 0.98 2.02 Aspherical surface R13 surface K = -2.721 e-01 B = -5.778 e-03 C = 6.569 e-04 D = -3.000 e-04 E = 6.474 e-05

【0053】[0053]

【表1】 [Table 1]

【0054】[0054]

【発明の効果】本発明によれば以上のようにレンズ構成
を設定することにより、リヤーフォーカス方式を採用し
つつ、大口径比化及び高変倍化を図る際、広角端から望
遠端に至る全変倍範囲にわたり、又無限遠物体から超至
近物体に至る物体距離全般にわたり、良好なる光学性能
を有したリヤーフォーカス式のズームレンズを達成する
ことができる。
According to the present invention, by setting the lens structure as described above, when a rear focus system is adopted and a large aperture ratio and a high zoom ratio are achieved, from the wide-angle end to the telephoto end. It is possible to achieve a rear focus type zoom lens having good optical performance over the entire zoom range and over the entire object distance from an infinitely distant object to a super close object.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の数値実施例1のレンズ断面図FIG. 1 is a sectional view of a lens according to a numerical example 1 of the present invention.

【図2】本発明の数値実施例2のレンズ断面図FIG. 2 is a sectional view of a lens according to a numerical example 2 of the present invention.

【図3】本発明の数値実施例3のレンズ断面図FIG. 3 is a sectional view of a lens according to a numerical example 3 of the present invention.

【図4】本発明の数値実施例4のレンズ断面図FIG. 4 is a lens cross-sectional view of Numerical Example 4 of the present invention.

【図5】本発明の数値実施例1の広角端の収差図FIG. 5 is an aberration diagram at a wide-angle end according to Numerical Embodiment 1 of the present invention.

【図6】本発明の数値実施例1の中間の収差図FIG. 6 is an intermediate aberration diagram of Numerical example 1 of the present invention.

【図7】本発明の数値実施例1の望遠端の収差図FIG. 7 is an aberration diagram at a telephoto end according to Numerical Example 1 of the present invention.

【図8】本発明の数値実施例2の広角端の収差図FIG. 8 is an aberration diagram at the wide-angle end according to Numerical Example 2 of the present invention.

【図9】本発明の数値実施例2の中間の収差図FIG. 9 is an intermediate aberration diagram of Numerical example 2 of the present invention.

【図10】本発明の数値実施例2の望遠端の収差図FIG. 10 is an aberration diagram at a telephoto end according to Numerical Example 2 of the present invention.

【図11】本発明の数値実施例3の広角端の収差図FIG. 11 is an aberration diagram at a wide-angle end according to Numerical Example 3 of the present invention.

【図12】本発明の数値実施例3の中間の収差図FIG. 12 is an intermediate aberration diagram of Numerical example 3 of the present invention.

【図13】本発明の数値実施例3の望遠端の収差図FIG. 13 is an aberration diagram at a telephoto end according to Numerical Example 3 of the present invention.

【図14】本発明の数値実施例4の広角端の収差図FIG. 14 is an aberration diagram at the wide-angle end according to Numerical Example 4 of the present invention.

【図15】本発明の数値実施例4の中間の収差図FIG. 15 is an intermediate aberration diagram of Numerical example 4 of the present invention.

【図16】本発明の数値実施例4の望遠端の収差図FIG. 16 is an aberration diagram at a telephoto end according to Numerical Example 4 of the present invention.

【符号の説明】[Explanation of symbols]

L1 第1群 L2 第2群 L3 第3群 L4 第4群 SP 絞り ΔM メリディオナル像面 ΔS サジタル像面 d d線 g g線 L1 1st group L2 2nd group L3 3rd group L4 4th group SP Aperture ΔM Meridional image surface ΔS Sagittal image surface d d line g g line

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 物体側より順に正の屈折力の第1群、負
の屈折力の第2群、正の屈折力の第3群、そして正の屈
折力の第4群の4つのレンズ群を有し、該第2群を像面
側へ移動させて広角端から望遠端への変倍を行い、変倍
に伴う像面変動を該第4群を物体側に凸状の軌跡を有し
つつ移動させて補正すると共に該第4群を移動させてフ
ォーカスを行い、該第3群は正の第31レンズと像面側
に凸面を向けたメニスカス状の負の第32レンズとを接
合した貼り合わせレンズより成り、該第4群は物体側に
凸面を向けたメニスカス状の負の第41レンズと正の第
42レンズより成り、該第2群の焦点距離をf2、広角
端における全系のFナンバーと焦点距離を各々fNW,
fW、望遠端における全系の焦点距離をfTとし、 【数1】 とおいたとき 0.45<|f2|×fNW/fM<0.7 なる条件を満足することを特徴とするリヤーフォーカス
式のズームレンズ。
1. Four lens groups, in order from the object side, a first group having a positive refractive power, a second group having a negative refractive power, a third group having a positive refractive power, and a fourth group having a positive refractive power. The second lens unit is moved to the image plane side to perform zooming from the wide-angle end to the telephoto end, and the image plane variation due to zooming causes the fourth lens unit to have a convex locus on the object side. The third group is made up of a positive 31st lens and a meniscus negative 32nd lens having a convex surface directed toward the image plane side. The fourth lens unit is composed of a negative meniscus 41st lens having a convex surface facing the object side and a positive 42nd lens. The second lens unit has a focal length of f2 and a total length at the wide-angle end. The f-number and focal length of the system are fNW,
fW, the focal length of the entire system at the telephoto end is fT, and A rear focus type zoom lens which satisfies the condition 0.45 <| f2 | × fNW / fM <0.7.
【請求項2】 前記第3群又は/及び第4群は少なくと
も1つの非球面を有していることを特徴とする請求項1
のリヤーフォーカス式のズームレンズ。
2. The third group and / or the fourth group has at least one aspherical surface.
Rear focus type zoom lens.
【請求項3】 前記第41レンズと第42レンズとは接
合されていることを特徴とする請求項1のリヤーフォー
カス式のズームレンズ。
3. The rear focus type zoom lens according to claim 1, wherein the forty-first lens and the forty-second lens are cemented together.
【請求項4】 広角端と望遠端における全系の焦点距離
を各々fW,fT、広角端と望遠端における前記第1群
から第3群までの合成の焦点距離を各々fMW,fMT
とし、 【数2】 とおいたとき、 0<fM/fAM<1.0 なる条件を満足することを特徴とする請求項1,2又は
3のリヤーフォーカス式のズームレンズ。
4. The focal lengths of the entire system at the wide-angle end and the telephoto end are fW and fT, respectively, and the combined focal lengths of the first group to the third group at the wide-angle end and the telephoto end are fMW and fMT, respectively.
And The rear focus type zoom lens according to claim 1, wherein the condition 0 <fM / fAM <1.0 is satisfied.
JP19256895A 1995-07-05 1995-07-05 Rear focus zoom lens Expired - Fee Related JP3368106B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19256895A JP3368106B2 (en) 1995-07-05 1995-07-05 Rear focus zoom lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19256895A JP3368106B2 (en) 1995-07-05 1995-07-05 Rear focus zoom lens

Publications (2)

Publication Number Publication Date
JPH0921954A true JPH0921954A (en) 1997-01-21
JP3368106B2 JP3368106B2 (en) 2003-01-20

Family

ID=16293454

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19256895A Expired - Fee Related JP3368106B2 (en) 1995-07-05 1995-07-05 Rear focus zoom lens

Country Status (1)

Country Link
JP (1) JP3368106B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6118593A (en) * 1998-09-09 2000-09-12 Canon Kabushiki Kaisha Zoom lens and optical apparatus having the same
WO2001092941A1 (en) * 2000-05-31 2001-12-06 Matsushita Electric Industrial Co., Ltd. Zoom lens and video camera comprising the same
US6710933B2 (en) 2000-05-31 2004-03-23 Matsushita Electric Industrial Co., Ltd. Zoom lens and video camera comprising the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6118593A (en) * 1998-09-09 2000-09-12 Canon Kabushiki Kaisha Zoom lens and optical apparatus having the same
US6388818B1 (en) 1998-09-09 2002-05-14 Canon Kabushiki Kaisha Zoom lens and optical apparatus having the same
WO2001092941A1 (en) * 2000-05-31 2001-12-06 Matsushita Electric Industrial Co., Ltd. Zoom lens and video camera comprising the same
EP1306711A1 (en) * 2000-05-31 2003-05-02 Matsushita Electric Industrial Co., Ltd. Zoom lens and video camera comprising the same
US6710933B2 (en) 2000-05-31 2004-03-23 Matsushita Electric Industrial Co., Ltd. Zoom lens and video camera comprising the same
EP1306711A4 (en) * 2000-05-31 2006-09-06 Matsushita Electric Ind Co Ltd Zoom lens and video camera comprising the same

Also Published As

Publication number Publication date
JP3368106B2 (en) 2003-01-20

Similar Documents

Publication Publication Date Title
JPH02201310A (en) Zoom lens with internal focus lens
JP2876823B2 (en) Rear focus zoom lens
JPH08201695A (en) Rear focus type zoom lens
JPH05323194A (en) Rear focus type zoom lens
JPH06281861A (en) Small variable power lens
JP3368099B2 (en) Rear focus zoom lens
JPH1164732A (en) Zoom lens
JPH09189862A (en) Zoom lens
JP3696966B2 (en) Rear focus zoom lens
JP4564625B2 (en) Zoom lens and optical apparatus using the same
JP2001091830A (en) Zoom lens
JP3219574B2 (en) Zoom lens
JP3593400B2 (en) Rear focus zoom lens
JPH0593862A (en) Rear focus type zoom lens
JP3679502B2 (en) Rear focus zoom lens
JP2819727B2 (en) Inner focus zoom lens
JPH08179214A (en) Zoom lens
JP3063459B2 (en) Rear focus type zoom lens and camera using the same
JP4379957B2 (en) Rear focus zoom lens and optical apparatus using the same
JPH04301811A (en) Zoom lens of rear focus system
JP3368106B2 (en) Rear focus zoom lens
JP3320396B2 (en) Rear focus type zoom lens and camera using the same
JPH05288991A (en) Rear focus type zoom lens
JP4720005B2 (en) Zoom lens
JPH0990226A (en) Variable power optical system

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081108

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081108

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091108

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101108

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101108

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111108

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121108

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131108

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees