JPH05288991A - Rear focus type zoom lens - Google Patents

Rear focus type zoom lens

Info

Publication number
JPH05288991A
JPH05288991A JP4118396A JP11839692A JPH05288991A JP H05288991 A JPH05288991 A JP H05288991A JP 4118396 A JP4118396 A JP 4118396A JP 11839692 A JP11839692 A JP 11839692A JP H05288991 A JPH05288991 A JP H05288991A
Authority
JP
Japan
Prior art keywords
lens
group
positive
negative
refractive power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4118396A
Other languages
Japanese (ja)
Inventor
Hiroki Nakayama
博喜 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP4118396A priority Critical patent/JPH05288991A/en
Publication of JPH05288991A publication Critical patent/JPH05288991A/en
Pending legal-status Critical Current

Links

Landscapes

  • Lenses (AREA)

Abstract

PURPOSE:To obtain the rear focus type zoom lens which has an 8 power variation ratio and an about 1.8 F number by providing four lens groups on the whole, performing focusing operation by a lens group behind a power variation system, and reducing the overall size of the lens system. CONSTITUTION:This zoom lens has 1st, 2nd, 3rd, and 4th groups 1, 2, 3, and 4 with positive, negative, positive, and positive refracting powers in order from the object side, and the 2nd group 2 is moved toward the image plane to perform power variation from the wide-angle end to the telephoto end; and image plane variation accompanying the power vairation is corrected by moving the 4th group 4 and the focusing operation is carried out by moving the 4th group 4. The 1st group 1 has three negative, positive, and positive lenses and the 2nd group 2 has three negative, negative, and positive lenses; and the 4th group 4 has a negative lens 4N on the most image plane side and a positive lens 4P on the object side of the lens 4N and satisfies -1.5<phia/phi4<0.5, where phia is the refracting power of the air lens formed between the lenses 4P and 4N and phi4 is the refracting power of the 4th group 4.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はリヤーフォーカス式のズ
ームレンズに関し、特に写真用カメラやビデオカメラ、
そして放送用カメラ等に用いられる変倍比8、Fナンバ
ー1.8程度の大口径比で高変倍比でしかも小型のズー
ムレンズに好適なリヤーフォーカス式のズームレンズに
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a rear focus type zoom lens, and more particularly to a photographic camera, a video camera,
Further, the present invention relates to a rear focus type zoom lens which is used for a broadcasting camera or the like and has a large aperture ratio such as an F number of about 1.8 and a high zoom ratio and is suitable for a compact zoom lens.

【0002】[0002]

【従来の技術】最近の写真用カメラやビデオカメラ等で
はカメラ全体の小型軽量化に伴ないそれに装着されるズ
ームレンズにも小型軽量であることが要望されている。
2. Description of the Related Art With the recent reduction in size and weight of the entire camera in a photographic camera, a video camera or the like, there is a demand for a zoom lens attached to the camera to be small and lightweight.

【0003】一般にズームレンズにおいてレンズ系全体
の小型化を図る1つの方法として物体側の第1群以外の
レンズ群を光軸上移動させてフォーカスを行なう、所謂
リヤーフォーカス式を用いる方法がある。
In general, as a method for reducing the size of the entire lens system in a zoom lens, there is a so-called rear focus type method in which a lens group other than the first lens group on the object side is moved along the optical axis for focusing.

【0004】一般にリヤーフォーカス式のズームレンズ
は第1群を移動させてフォーカスを行うズームレンズに
比べて第1群の有効径が小さくなり、レンズ系全体の小
型化が容易になり、又近接撮影、特に極近接撮影が容易
となり、更に比較的小型軽量のレンズ群を移動させて行
っているので、レンズ群の駆動力が小さくてすみ迅速な
焦点合わせが出来る等の特長がある。
Generally, in a rear focus type zoom lens, the effective diameter of the first lens group is smaller than that of a zoom lens in which the first lens group is moved to perform focusing, which facilitates downsizing of the entire lens system and close-up photography. Especially, it is easy to perform very close-up photography, and since the relatively small and lightweight lens group is moved, the driving force of the lens group is small, and quick focusing is possible.

【0005】このようなリヤーフォーカス式のズームレ
ンズとして例えば特開昭62−24213号公報、特開
昭63−247316号公報、特開昭63−29718
号公報、特開昭63−29719号公報、特開昭63−
123009号公報、特開平2−48621号公報等で
は物体側より順に正の屈折力の第1群、変倍用の負の屈
折力の第2群、正の屈折力の第3群、そして正の屈折力
の第4群の4つのレンズ群を有し、該第1群と第3群を
固定とし、該第2群を移動させて変倍を行い、該第4群
を変倍に伴う像面変動を補正する為に移動させると共に
該第4群を移動させてフォーカスを行っている。
As such a rear focus type zoom lens, for example, JP-A-62-24213, JP-A-63-247316, and JP-A-63-29718.
JP-A-63-29719, JP-A-63-
No. 1,230,09 and Japanese Patent Laid-Open No. 2-48621 disclose a first group having a positive refractive power, a second group having a negative refractive power for zooming, a third group having a positive refractive power, and a positive group in order from the object side. 4 lens groups of the fourth lens group having a refracting power of, the first group and the third group are fixed, the second group is moved to perform zooming, and the fourth group is accompanied by zooming. Focusing is performed by moving the fourth lens unit while moving the fourth lens unit to correct the image plane variation.

【0006】[0006]

【発明が解決しようとする課題】一般にズームレンズに
おいてリヤーフォーカス方式を採用すると前述の如くレ
ンズ系全体が小型化され又迅速なるフォーカスが可能と
なり、更に近接撮影が容易となる等の特長が得られる。
Generally, when a rear focus system is adopted in a zoom lens, the entire lens system is downsized as described above, quick focusing is possible, and further close-up photography is facilitated. ..

【0007】しかしながら反面、フォーカスの際の収差
変動が大きくなり、無限遠物体から近距離物体に至る物
体距離全般にわたりレンズ系全体の小型化を図りつつ高
い光学性能を得るのが大変難しくなってくるという問題
点が生じてくる。
On the other hand, however, the aberration variation during focusing becomes large, and it becomes very difficult to obtain high optical performance while miniaturizing the entire lens system over the entire object distance from an infinite object to a short-distance object. The problem arises.

【0008】特に大口径比で高変倍のズームレンズでは
全変倍範囲にわたり、又物体距離全般にわたり高い光学
性能を得るのが大変難しくなってくるという問題点が生
じてくる。
Particularly, in a zoom lens having a large aperture ratio and a high zoom ratio, it becomes very difficult to obtain high optical performance over the entire zoom range and over the entire object distance.

【0009】本発明はリヤーフォーカス方式を採用しつ
つ、大口径比化及び高変倍化を図る際、レンズ系全体の
小型化を図りつつ、広角端から望遠端に至る全変倍範囲
にわたり、又無限遠物体から近距離物体に至る物体距離
全般にわたり、良好なる光学性能を有したリヤーフォー
カス式のズームレンズの提供を目的とする。
The present invention adopts the rear focus system, and at the time of achieving a large aperture ratio and a high zoom ratio, downsizing the entire lens system, and over the entire zoom range from the wide-angle end to the telephoto end. Another object of the present invention is to provide a rear focus type zoom lens having good optical performance over the entire object distance from an object at infinity to a near object.

【0010】[0010]

【課題を解決するための手段】本発明のリヤーフォーカ
ス式のズームレンズは、物体側より順に正の屈折力の第
1群、負の屈折力の第2群、正の屈折力の第3群、そし
て正の屈折力の第4群の4つのレンズ群を有し、該第2
群を像面側へ移動させて広角端から望遠端への変倍を行
い、変倍に伴う像面変動を該第4群を移動させて補正す
ると共に該第4群を移動させてフォーカスを行い、該第
1群は負の第11レンズ、正の第12レンズ、そして正
の第13レンズの3つのレンズを有し、該第2群は物体
側に比べ像面側に強い屈折力の凹面を向けた負の第21
レンズ、両レンズ面が凹面の第22レンズ、そして像面
側に比べ物体側に強い屈折力の凸面を向けた正の第23
レンズの3つのレンズを有し、該第4群は最も像面側に
負の第4Nレンズと該第4Nレンズの物体側に正の第4
Pレンズとを有しており、該第4Pレンズと第4Nレン
ズとで形成される空気レンズの屈折力をφa、該第4群
の屈折力をφ4としたとき −1.5<φa/φ4<0.5 ‥‥‥‥(1) なる条件を満足することを特徴としている。
A rear focus type zoom lens according to the present invention comprises a first group having a positive refractive power, a second group having a negative refractive power, and a third group having a positive refractive power in order from the object side. , And a fourth lens unit of a fourth lens unit of positive refractive power,
The lens unit is moved to the image plane side to perform zooming from the wide-angle end to the telephoto end, and the image plane variation due to zooming is corrected by moving the fourth lens unit and moving the fourth lens unit to focus. The first group has three lenses, a negative eleventh lens, a positive twelfth lens, and a positive thirteenth lens, and the second group has a strong refractive power on the image plane side as compared to the object side. Negative 21st with concave face
A lens, a 22nd lens whose both lens surfaces are concave, and a 23rd positive lens with a convex surface having a stronger refractive power facing the object side than the image side.
The third lens group has three lenses, and the fourth lens group has a negative fourth N lens element closest to the image plane side and a positive fourth lens element side closer to the object side of the fourth N lens element.
When the refractive power of the air lens formed by the fourth P lens and the fourth N lens is φa, and the refractive power of the fourth lens group is φ4, then −1.5 <φa / φ4 <0.5 ... (1) It is characterized by satisfying the condition.

【0011】[0011]

【実施例】図1は本発明のリヤーフォーカス式のズーム
レンズの近軸屈折力配置を示す一実施例の概略図であ
る。
1 is a schematic view of an embodiment showing the paraxial refractive power arrangement of a rear focus type zoom lens according to the present invention.

【0012】図2〜図6は本発明の後述する数値実施例
1〜5のレンズ断面図、図7〜図21は本発明の後述す
る数値実施例1〜5の諸収差図である。収差図において
図7,図10,図13,図16,図19は広角端、図
8,図11,図14,図17,図20は中間、図9,図
12,図15,図18,図21は望遠端を示す。
2 to 6 are lens cross-sectional views of Numerical Examples 1 to 5 described later of the present invention, and FIGS. 7 to 21 are various aberration diagrams of Numerical Examples 1 to 5 described later of the present invention. In the aberration diagrams, FIGS. 7, 10, 13, 16, and 19 are wide-angle ends, FIGS. 8, 11, 14, 17, and 20 are intermediate, and FIGS. 9, 12, 15, and 18, FIG. 21 shows the telephoto end.

【0013】図中1は正の屈折力の第1群、2は負の屈
折力の第2群、3は正の屈折力の第3群、4は正の屈折
力の第4群である。SPは開口絞りであり、第3群3の
前方に配置している。Gはフェースプレート等のガラス
ブロックである。
In the figure, 1 is a first group having a positive refractive power, 2 is a second group having a negative refractive power, 3 is a third group having a positive refractive power, and 4 is a fourth group having a positive refractive power. .. SP is an aperture stop, which is arranged in front of the third group 3. G is a glass block such as a face plate.

【0014】本実施例では広角端から望遠端への変倍に
際して矢印のように第2群を像面側へ移動させると共
に、変倍に伴う像面変動を第4群を移動させて補正して
いる。
In this embodiment, the second lens unit is moved to the image plane side as indicated by the arrow when the magnification is changed from the wide-angle end to the telephoto end, and the image plane variation due to the magnification change is corrected by moving the fourth lens unit. ing.

【0015】又、第4群を光軸上移動させてフォーカス
を行うリヤーフォーカス式を採用している。同図に示す
第4群の実線の曲線4aと点線の曲線4bは各々無限遠
物体と近距離物体にフォーカスしているときの広角端か
ら望遠端への変倍に伴う際の像面変動を補正する為の移
動軌跡を示している。尚、第1群と第3群は変倍及びフ
ォーカスの際固定である。
Further, a rear focus type in which focusing is performed by moving the fourth lens unit on the optical axis is adopted. The solid curve 4a and the dotted curve 4b of the fourth group shown in the same figure show the image plane variation during zooming from the wide-angle end to the telephoto end when focusing on an object at infinity and a near object, respectively. The movement locus for correction is shown. The first and third groups are fixed during zooming and focusing.

【0016】本実施例においては第4群を移動させて変
倍に伴う像面変動の補正を行うと共に第4群を移動させ
てフォーカスを行うようにしている。特に同図の曲線4
a、4bに示すように広角端から望遠端への変倍に際し
て物体側へ凸状の軌跡を有するように移動させている。
これにより第3群と第4群との空間の有効利用を図りレ
ンズ全長の短縮化を効果的に達成している。
In the present embodiment, the fourth lens unit is moved to correct the image plane variation due to zooming, and the fourth lens unit is moved to perform focusing. Curve 4 in the figure
As shown in a and 4b, when the magnification is changed from the wide-angle end to the telephoto end, the object side is moved so as to have a convex locus.
As a result, the space between the third group and the fourth group is effectively used, and the total lens length is effectively shortened.

【0017】本実施例において、例えば望遠端において
無限遠物体から近距離物体へフォーカスを行う場合は同
図の直線4cに示すように第4群を前方へ繰り出すこと
により行っている。
In the present embodiment, for example, when focusing from an object at infinity to a near object at the telephoto end, the fourth lens unit is moved forward as indicated by a straight line 4c in the figure.

【0018】本実施例におけるズームレンズは第1群と
第2群の合成系で形成した虚像を第3群と第4群で感光
面上に結像するズーム方式をとっている。
The zoom lens in this embodiment adopts a zoom system in which a virtual image formed by a combined system of the first group and the second group is formed on the photosensitive surface by the third group and the fourth group.

【0019】本実施例では従来の所謂4群ズームレンズ
において第1群を繰り出してフォーカスを行う場合に比
べて前述のようなリヤーフォーカス方式を採ることによ
り第1群の偏心誤差による性能劣化を防止しつつ第1群
のレンズ有効径の増大化を効果的に防止している。
In this embodiment, as compared with the conventional so-called four-group zoom lens in which the first group is extended and focused, the rear focus system as described above is employed, thereby preventing performance deterioration due to the eccentricity error of the first group. At the same time, the effective lens diameter of the first lens group is effectively prevented from increasing.

【0020】そして開口絞りを第3群の直前に配置する
ことにより可動レンズ群による収差変動を少なくし、開
口絞りより前方のレンズ群の間隔を短くすることにより
前玉レンズ径の縮少化を容易に達成している。
By arranging the aperture stop immediately before the third lens unit, variation in aberration due to the movable lens unit is reduced, and by shortening the distance between the lens units in front of the aperture stop, the diameter of the front lens is reduced. Achieved easily.

【0021】特に本実施例では第4群の最も像面側に負
の第4Nレンズを配置し、レンズ系全体を望遠タイプと
して、レンズ系全体の小型化を容易にしている。
In particular, in this embodiment, the negative fourth N lens is arranged on the most image side of the fourth lens unit, and the entire lens system is of the telephoto type, which facilitates downsizing of the entire lens system.

【0022】更に第4群の正の第4Pレンズと負の第4
Nレンズにより所定の空気間隔を確保し、これにより全
系の主点位置が物体側に移動しやすくなるようにしてレ
ンズ系全体の小型化を図っている。
Further, the positive fourth P lens of the fourth group and the negative fourth P lens
A predetermined air gap is secured by the N lens so that the principal point position of the entire system can be easily moved to the object side, and the overall size of the lens system is reduced.

【0023】又、本発明では第2群を前述の如く所定形
状の分離した3枚のレンズより構成し、変倍比8程度と
高変倍化を図る際の変倍に伴う収差変動を良好に補正し
ている。
Further, according to the present invention, the second lens group is composed of three lenses which are separated from each other and has a predetermined shape as described above, and the variation of the aberration is increased to about 8 and the variation of the aberration caused by the variation of the magnification when the magnification is increased is improved. Has been corrected to.

【0024】一般に例えば特開昭62−24213号公
報で提案されているようにリヤーフォーカス式のズーム
レンズにおいては変倍を行う第2群の一部に負レンズと
正レンズとを接合した貼合わせレンズを設けている。
Generally, for example, in a rear focus type zoom lens as proposed in Japanese Patent Laid-Open No. 62-24213, a negative lens and a positive lens are bonded to a part of the second lens unit for zooming. A lens is provided.

【0025】この貼合わせレンズの接合レンズ面により
主に軸上の色収差,球面収差、そして軸外のコマ収差等
の補正をバランス良く行っている。
The cemented lens surface of this cemented lens mainly corrects axial chromatic aberration, spherical aberration, and off-axis coma aberration in a well-balanced manner.

【0026】このようなレンズ系においてレンズ系全体
の小型化を図りつつ高変倍化を図る為には第2群の負の
屈折力を強めるのが効果的である。しかしながら第2群
の屈折力を強めると貼合わせレンズの接合レンズ面にお
ける収差補正の負担が大きくなりすぎ全変倍範囲にわた
り高い光学性能を得るのが難しくなってくる。
In such a lens system, it is effective to increase the negative refracting power of the second lens group in order to reduce the size of the entire lens system and achieve a high zoom ratio. However, if the refracting power of the second group is increased, the burden of aberration correction on the cemented lens surface of the cemented lens becomes too large, and it becomes difficult to obtain high optical performance over the entire zoom range.

【0027】そこで本発明では第2群を独立した3つの
レンズより構成し、接合レンズ面の代わりに適切なる形
状の空気レンズを有するように構成し、これにより全変
倍範囲にわたり収差補正をバランス良く行っている。
Therefore, in the present invention, the second group is composed of three independent lenses, and is constructed so as to have an appropriately shaped air lens instead of the cemented lens surface, whereby the aberration correction is balanced over the entire zoom range. I'm doing well.

【0028】そして前述の如く各レンズ群のレンズ構成
を特定すると共に条件式(1)を満足させることによ
り、レンズ全長の短縮化を図りつつ全変倍範囲にわたり
更に物体距離全般にわたり良好なる光学性能を有した高
変倍比のズームレンズを得ている。
By specifying the lens configuration of each lens group and satisfying conditional expression (1) as described above, the overall lens length can be shortened, and good optical performance can be obtained over the entire zoom range and over the entire object distance. We have obtained a zoom lens with a high zoom ratio.

【0029】条件式(1)の上限値を越えて空気レンズ
の屈折力φaが強くなりすぎると望遠タイプが弱まりレ
ンズ系全体の小型化が難しくなる。又下限値を越えて空
気レンズの屈折力φaが弱くなりすぎると諸収差、特に
球面収差が大きくなり、更に第4群でフォーカスする際
の物体距離の変化に伴なう収差変動が増大してくるので
良くない。
When the upper limit of conditional expression (1) is exceeded and the refractive power φa of the air lens becomes too strong, the telephoto type becomes weak and it becomes difficult to downsize the entire lens system. If the lower limit value is exceeded and the refractive power φa of the air lens becomes too weak, various aberrations, particularly spherical aberration, increase, and further, the aberration variation accompanying the change of the object distance at the time of focusing with the fourth lens unit increases. It's not good because it comes.

【0030】本発明の目的とするリヤーフォーカス式の
ズームレンズは以上の諸条件を満足することにより達成
されるが、更に好ましくは次の諸条件を満足させるのが
良い。
The rear focus type zoom lens which is the object of the present invention can be achieved by satisfying the above-mentioned various conditions, but it is more preferable to satisfy the following various conditions.

【0031】(イ)前記第4群は物体側より順に正レン
ズ、正レンズ、そして負レンズの3つのレンズより、又
は正レンズと負レンズの2つのレンズより構成するのが
レンズ系全体の小型化を図りつつ光学性能を良好に維持
するのに好ましい。
(B) The fourth lens group is composed of three lenses, a positive lens, a positive lens, and a negative lens in order from the object side, or two lenses, a positive lens and a negative lens. It is preferable to maintain good optical performance while achieving good performance.

【0032】(ロ)前記第3群は少なくとも1つの非球
面を有する単一の正レンズより構成するのが絞りに近い
第3群で発生する球面収差を良好に補正するのに好まし
い。
(B) It is preferable that the third lens unit is composed of a single positive lens having at least one aspherical surface in order to satisfactorily correct spherical aberration generated in the third lens unit close to the stop.

【0033】(ハ)第2群の広角端と望遠端における結
像倍率を各々β2W,β2Tとするとき |1/β2W|≦|β2T| ‥‥‥‥(2) なる条件を満足すること。
(C) When the imaging magnifications at the wide-angle end and the telephoto end of the second lens unit are β2W and β2T, respectively | 1 / β2W | ≦ | β2T | (2) The condition (2) is satisfied.

【0034】一般にレンズ系全体の小型化を図るには第
4群から像面までの距離が望遠端に比べて広角端で長い
方が良い。これには変倍に伴ない第2群の結像倍率が等
倍以上の領域を使うことである。
Generally, in order to reduce the size of the entire lens system, it is preferable that the distance from the fourth lens unit to the image plane is longer at the wide-angle end than at the telephoto end. This is to use a region in which the image forming magnification of the second lens unit is equal to or larger than that in accordance with the magnification change.

【0035】条件式(2)はこれを満足させる為のもの
である。条件式(2)において等号は第4群が変倍に伴
ない像面変動の補正の為に完全なる往復運動をしている
ことを示している。
Conditional expression (2) is for satisfying this condition. In the conditional expression (2), the equal sign indicates that the fourth lens group makes a complete reciprocating motion for the purpose of correcting the image plane variation accompanying the magnification change.

【0036】(ニ)広角端におけるレンズ最終面から射
出瞳までの距離をTkw´、広角端における第1レンズ
面から最終レンズ面までの距離をΣDw、広角端におけ
るバックフォーカスをbfw、広角端における全系の焦
点距離をFw、最大像高をYmax 、第i群の焦点距離を
fiとしたとき 0.5<(|Tkw´|+bfw)/(ΣDw+bfw)<0.8 ‥(3) 0.5<bfw/f4<0.75 ‥‥‥‥(4) 4.0<|Tkw´|/Ymax <10 ‥‥‥‥(5) 4.0<(|Tkw´|+bfw)/Fw<8.0 ‥‥‥‥(6) 0.5<|Tkw´|/f4<2.5 ‥‥‥‥(7) なる条件を満足すること。
(D) The distance from the final lens surface to the exit pupil at the wide-angle end is Tkw ', the distance from the first lens surface to the final lens surface at the wide-angle end is ΣDw, the back focus at the wide-angle end is bfw, and the back focus at the wide-angle end. Fw the focal length of the entire system, the maximum image height Y max, when the focal length of the i-th group and fi 0.5 <(| Tkw' | + bfw) / (ΣDw + bfw) <0.8 ‥ (3) 0 .5 <bfw / f4 <0.75 ‥‥‥‥ (4) 4.0 <| Tkw' | / Y max <10 ‥‥‥‥ (5) 4.0 <(| Tkw' | + bfw) / Fw <8.0 ... (6) 0.5 <| Tkw '| / f4 <2.5 ... (7) The following condition must be satisfied.

【0037】条件式(3),(5),(6),(7)は
レンズ全長(ΣDw+bfw)と射出瞳位置に関する式
である。各条件式のいずれも上限値を逸脱するとレンズ
全長が大きくなってくる。又下限値を逸脱すると撮像面
に達する光束がテレセントリックから外れてくるために
斜光束となり、撮像面位置が光軸上ずれたとき(例えば
オートフォーカスのための撮像面のウォブリング(変調
方式等))結像倍率が変わったように見えたり、又CC
Dなどの素子を撮像面に用いるときは所謂シェーディン
グなどが目立つので適当でない。条件式(4)もレンズ
全長に関するもので、上限値を越えると全系が大型化
し、下限値を越えると撮像面に最終レンズに付着したゴ
ミなどが写り込んでしまいがちになるので適当でない。
Conditional expressions (3), (5), (6) and (7) are expressions relating to the total lens length (ΣDw + bfw) and the exit pupil position. If any of the conditional expressions deviates from the upper limit value, the total lens length becomes large. Also, when the value goes below the lower limit, the light flux reaching the imaging surface deviates from telecentricity and becomes an oblique light flux, and the imaging surface position deviates on the optical axis (for example, wobbling of the imaging surface for autofocus (modulation method, etc.)). It looks like the imaging magnification has changed, or CC
When a device such as D is used for the image pickup surface, so-called shading is conspicuous, which is not suitable. Conditional expression (4) also relates to the total length of the lens. If the upper limit is exceeded, the entire system becomes large, and if the lower limit is exceeded, dust or the like attached to the final lens tends to be reflected on the imaging surface, which is not appropriate.

【0038】(ホ)望遠端における全系の焦点距離をF
t、変倍に伴なう第2群の移動量をM2としたとき 0.7<|f2|/Fw<0.9 ‥‥‥‥(8) 2.5< f4 /Fw<4.0 ‥‥‥‥(9) 0.2<|M2|/(Ft−Fw)<0.4 ‥‥‥‥(10) 0.3< f1 /(ΣDw+bfw)<0.6 ‥‥‥‥(11) なる条件を満足すること。
(E) The focal length of the entire system at the telephoto end is F
t, when the moving amount of the second lens unit associated with zooming is M2 0.7 <| f2 | / Fw <0.9 (8) 2.5 <f4 / Fw <4.0 (9) 0.2 <| M2 | / (Ft-Fw) <0.4 ... (10) 0.3 <f1 / (ΣDw + bfw) <0.6 ... (11) ) The following conditions must be satisfied.

【0039】条件式(8)はズームレンズの主たるバリ
エータの第2群の屈折力の全系に対するバランスを表わ
したものである。上限値を越えると所望の変倍比を得る
ために第2群の移動量を大きくする必要があり、レンズ
系全体が大型化してしまい適当でない。又下限値を越え
るとペッツバール和が正の値で大きくなり、像面がオー
バーになり適当でない。
Conditional expression (8) represents the balance of the refracting power of the second group of the main variator of the zoom lens with respect to the entire system. If the value exceeds the upper limit, it is necessary to increase the amount of movement of the second lens unit in order to obtain a desired zoom ratio, which is not appropriate because the entire lens system becomes large. On the other hand, if the lower limit is exceeded, the Petzval sum will increase with a positive value, and the image plane will be over, which is not appropriate.

【0040】条件式(9)はフォーカシングに使われる
第4群の屈折力に関するもので、上限値を越えるとフォ
ーカスレンズの焦点距離が長くなり所望の最短撮影距離
に寄るための第4群の移動量が大きくなり適当でない。
又下限値を越えると第4群の位置による像面の敏感度が
大きくなり制御が難しくなり、バックフォーカスも短く
なりがちとなるので適当でない。
Conditional expression (9) relates to the refracting power of the fourth lens unit used for focusing. When the upper limit is exceeded, the focal length of the focus lens becomes long, and the fourth lens unit moves toward the desired shortest shooting distance. The amount is too large to be suitable.
On the other hand, if the value goes below the lower limit, the sensitivity of the image plane due to the position of the fourth lens unit becomes large, control becomes difficult, and the back focus tends to become short, which is not suitable.

【0041】条件式(10)はバリエータの第2群の適
当な屈折力配置について規定したものである。上限値を
越えると第2群の移動量が大きくなりレンズ系が大型化
する、もしくは変倍比が小さくなり適当でない。又下限
値を越えると所望の変倍比を得るために第2群の移動量
が取れず第2群の屈折力が強くなりペッツバール和が負
の値に大きくなり像面がオーバーになり適当でない。
Conditional expression (10) defines an appropriate refractive power arrangement of the second group of variators. When the value exceeds the upper limit, the amount of movement of the second lens unit becomes large and the lens system becomes large, or the zoom ratio becomes small, which is not suitable. If the lower limit is exceeded, the moving amount of the second lens unit cannot be obtained to obtain a desired zoom ratio, the refractive power of the second lens unit becomes strong, the Petzval sum increases to a negative value, and the image surface becomes unsuitable. ..

【0042】条件式(11)は第1群の屈折力に関する
式である。上限値を越えると第2群の倍率が広角端でか
なり低倍率になり、所望の変倍比を得る為に大型化して
しまい適当でない。又下限値を越えるとズーミングの為
の第2群の移動範囲が取れなくなり所望の変倍比を確保
できなくなる。
Conditional expression (11) relates to the refractive power of the first lens group. When the value exceeds the upper limit, the magnification of the second lens unit becomes considerably low at the wide-angle end, and it becomes large to obtain a desired zoom ratio, which is not suitable. On the other hand, when the value goes below the lower limit, the moving range of the second lens unit for zooming cannot be secured and a desired zoom ratio cannot be secured.

【0043】(ヘ)第4群内の正レンズの少なくとも1
面の非球面を配するのがより良い光学性能を維持するの
に好ましい。
(F) At least one of the positive lenses in the fourth lens unit.
It is preferable to dispose aspherical surfaces to maintain better optical performance.

【0044】(ト)前記第3群及び第4群内の正レンズ
を構成するガラスのアッベ数をνpとし、第4群の負レ
ンズを構成するガラスのアッベ数をνn とすると、 νp >45 ‥‥‥‥(12) νn <35 ‥‥‥‥(13) なる条件を満足すること。
(G) If the Abbe number of the glass that constitutes the positive lens in the third and fourth groups is ν p and the Abbe number of the glass that constitutes the negative lens of the fourth group is ν n , then ν Satisfy the condition of p > 45 (12) ν n <35 (13).

【0045】条件式(12),(13)はレンズ系全体
の小型化を達成しつつ色収差を良好に補正する為のもの
である。この範囲を逸脱するとg線の倍率色収差がアン
ダーに、軸上色収差が補正不足になり適当でない。
Conditional expressions (12) and (13) are for satisfactorily correcting chromatic aberration while achieving downsizing of the entire lens system. If it deviates from this range, the g-line chromatic aberration of magnification becomes under-corrected and the axial chromatic aberration becomes insufficiently corrected, which is not appropriate.

【0046】次に本発明の数値実施例を示す。数値実施
例においてRiは物体側より順に第i番目のレンズ面の
曲率半径、Diは物体側より第i番目のレンズ厚及び空
気間隔、Niとνiは各々物体側より順に第i番目のレ
ンズのガラスの屈折率とアッベ数である。
Next, numerical examples of the present invention will be shown. In the numerical examples, Ri is the radius of curvature of the i-th lens surface in order from the object side, Di is the i-th lens thickness and air gap from the object side, and Ni and νi are the values of the i-th lens in order from the object side, respectively. The refractive index of glass and the Abbe number.

【0047】非球面形状は、光軸方向にX軸、光軸と垂
直な方向にY軸、光の進行方向を正とし、レンズの頂点
とX軸の交点を原点に採り、rをレンズ面の近軸曲率半
径、a1 ,a2 ,a3 ,a4 ,a5 を非球面計数とする
とき
The aspherical shape has the X axis in the optical axis direction, the Y axis in the direction perpendicular to the optical axis, the traveling direction of light is positive, the intersection of the apex of the lens and the X axis is taken as the origin, and r is the lens surface. When paraxial radius of curvature of a 1 , a 2 , a 3 , a 4 , a 5 is aspherical

【0048】[0048]

【数1】 なる式で表わされるものである。[Equation 1] It is represented by the following formula.

【0049】尚、数値実施例1,2,3,4におけるR
19,R20と数値実施例5におけるR21,R22は
フェースプレート、フィルター等の平行平面板を示して
いる。又表−1に各数値実施例における各条件式との関
係を示す。 数値実施例 1 f= 1.0 〜7.97 FNO=1:1.85〜2.73 2ω= 56.1°〜 7.6° R 1= 4.289 D 1= 0.17 N 1=1.84666 ν 1= 23.8 R 2= 2.631 D 2= 0.74 N 2=1.51633 ν 2= 64.2 R 3=-30.429 D 3= 0.03 R 4= 2.866 D 4= 0.42 N 3=1.71300 ν 3= 53.8 R 5= 10.497 D 5= 可変 R 6= 7.448 D 6= 0.08 N 4=1.80610 ν 4= 41.0 R 7= 1.062 D 7= 0.33 R 8= -1.918 D 8= 0.08 N 5=1.71300 ν 5= 53.8 R 9= 1.333 D 9= 0.08 R10= 1.408 D10= 0.28 N 6=1.78472 ν 6= 25.7 R11= 6.437 D11= 可変 R12=(絞り) D12= 0.18 R13= 2.075 D13= 0.54 N 7=1.48749 ν 7= 70.2 R14= -4.119 D14= 可変 R15= 3.074 D15= 0.55 N 8=1.51633 ν 8= 64.2 R16= -1.269 D16= 0.02 R17= -1.227 D17= 0.08 N 9=1.84666 ν 9= 23.8 R18= -1.953 D18= 0.50 R19= ∞ D19= 0.83 N10=1.51633 ν10= 64.2 R20= ∞
R in the numerical embodiments 1, 2, 3, and 4
Reference numerals 19 and R20 and R21 and R22 in Numerical Embodiment 5 indicate parallel plane plates such as a face plate and a filter. Table 1 shows the relationship with each conditional expression in each numerical example. Numerical Example 1 f = 1.0 to 7.97 FNO = 1: 1.85 to 2.73 2ω = 56.1 ° to 7.6 ° R 1 = 4.289 D 1 = 0.17 N 1 = 1.84666 ν 1 = 23.8 R 2 = 2.631 D 2 = 0.74 N 2 = 1.51633 ν 2 = 64.2 R 3 = -30.429 D 3 = 0.03 R 4 = 2.866 D 4 = 0.42 N 3 = 1.71300 ν 3 = 53.8 R 5 = 10.497 D 5 = variable R 6 = 7.448 D 6 = 0.08 N 4 = 1.80610 ν 4 = 41.0 R 7 = 1.062 D 7 = 0.33 R 8 = -1.918 D 8 = 0.08 N 5 = 1.71300 ν 5 = 53.8 R 9 = 1.333 D 9 = 0.08 R10 = 1.408 D10 = 0.28 N 6 = 1.78472 ν 6 = 25.7 R11 = 6.437 D11 = Variable R12 = (Aperture) D12 = 0.18 R13 = 2.075 D13 = 0.54 N 7 = 1.48749 ν 7 = 70.2 R14 = -4.119 D14 = Variable R15 = 3.074 D15 = 0.55 N 8 = 1.51633 ν 8 = 64.2 R16 = -1.269 D16 = 0.02 R17 = -1.227 D17 = 0.08 N 9 = 1.84666 ν 9 = 23.8 R18 = -1.953 D18 = 0.50 R19 = ∞ D19 = 0.83 N10 = 1.51633 ν10 = 64.2 R20 = ∞

【0050】[0050]

【表1】 非球面 R13面 R15面 a1 = 0 a1 = 0 a2 = -2.87×10-22 = -3.26×10-23 3.02×10-23 = 7.38×10-34 = -5.28×10-24 = 5.24×10-35 = 1.16×10-25 = -6.23×10-3 数値実施例 2 f= 1.0 〜7.99 FNO=1:1.85〜2.65 2ω= 56.1°〜 7.6° R 1= 4.150 D 1= 0.17 N 1=1.84666 ν 1= 23.8 R 2= 2.556 D 2= 0.76 N 2=1.51633 ν 2= 64.2 R 3=-25.070 D 3= 0.03 R 4= 2.866 D 4= 0.41 N 3=1.71300 ν 3= 53.8 R 5= 9.998 D 5= 可変 R 6= 8.825 D 6= 0.08 N 4=1.80610 ν 4= 41.0 R 7= 0.973 D 7= 0.36 R 8= -1.724 D 8= 0.08 N 5=1.71300 ν 5= 53.8 R 9= 1.538 D 9= 0.08 R10= 1.541 D10= 0.29 N 6=1.78472 ν 6= 25.7 R11= 33.375 D11= 可変 R12=(絞り) D12= 0.18 R13= 3.829 D13= 0.62 N 7=1.48749 ν 7= 70.2 R14= -2.176 D14= 可変 R15= 3.037 D15= 0.55 N 8=1.51633 ν 8= 64.2 R16= -1.299 D16= 0.02 R17= -1.211 D17= 0.08 N 9=1.84666 ν 9= 23.8 R18= -2.089 D18= 0.50 R19= ∞ D19= 0.83 N10=1.51633 ν10= 64.2 R20= ∞ [Table 1] Aspheric surface R13 surface R15 surface a 1 = 0 a 1 = 0 a 2 = -2.87 x 10 -2 a 2 = -3.26 x 10 -2 a 3 = 3.02 x 10 -2 a 3 = 7.38 x 10 -3 a 4 = -5.28 x 10 -2 a 4 = 5.24 x 10 -3 a 5 = 1.16 x 10 -2 a 5 = -6.23 x 10 -3 Numerical Example 2 f = 1.0 to 7.99 FNO = 1: 1.85 to 2.65 2ω = 56.1 ° to 7.6 ° R 1 = 4.150 D 1 = 0.17 N 1 = 1.84666 ν 1 = 23.8 R 2 = 2.556 D 2 = 0.76 N 2 = 1.51633 ν 2 = 64.2 R 3 = -25.070 D 3 = 0.03 R 4 = 2.866 D 4 = 0.41 N 3 = 1.71300 ν 3 = 53.8 R 5 = 9.998 D 5 = Variable R 6 = 8.825 D 6 = 0.08 N 4 = 1.80610 ν 4 = 41.0 R 7 = 0.973 D 7 = 0.36 R 8 = -1.724 D 8 = 0.08 N 5 = 1.71300 ν 5 = 53.8 R 9 = 1.538 D 9 = 0.08 R10 = 1.541 D10 = 0.29 N 6 = 1.78472 ν 6 = 25.7 R11 = 33.375 D11 = Variable R12 = (Aperture) D12 = 0.18 R13 = 3.829 D13 = 0.62 N 7 = 1.48749 ν 7 = 70.2 R14 = -2.176 D14 = Variable R15 = 3.037 D15 = 0.55 N 8 = 1.51633 ν 8 = 64.2 R16 =- 1.299 D16 = 0.02 R17 = -1.211 D17 = 0.08 N 9 = 1.84666 ν 9 = 23.8 R18 = -2.089 D18 = 0.50 R19 = ∞ D19 = 0.83 N10 = 1.51633 ν10 = 64.2 R20 = ∞

【0051】[0051]

【表2】 非球面 R14面 R15面 a1 = 0 a1 = 0 a2 = 2.87×10-22 = 1.72×10-23 = -1.37×10-23 = -1.07×10-24 = 2.22×10-34 = 1.79×10-25 = 2.12×10-25 = 7.39×10-2 数値実施例 3 f= 1.0 〜7.97 FNO=1:1.85〜2.75 2ω= 56.1°〜 7.6° R 1= 4.305 D 1= 0.17 N 1=1.80518 ν 1= 25.4 R 2= 2.459 D 2= 0.80 N 2=1.51633 ν 2= 64.2 R 3=-693.37 D 3= 0.03 R 4= 2.801 D 4= 0.48 N 3=1.69680 ν 3= 55.5 R 5= 13.956 D 5= 可変 R 6= 5.392 D 6= 0.08 N 4=1.80610 ν 4= 41.0 R 7= 0.943 D 7= 0.36 R 8= -1.458 D 8= 0.08 N 5=1.69680 ν 5= 55.5 R 9= 1.486 D 9= 0.07 R10= 1.592 D10= 0.26 N 6=1.84666 ν 6= 23.8 R11= 17.094 D11= 可変 R12=(絞り) D12= 0.18 R13= 1.815 D13= 0.44 N 7=1.48749 ν 7= 70.2 R14= -4.608 D14= 可変 R15= 2.247 D15= 0.55 N 8=1.51633 ν 8= 64.2 R16= -1.198 D16= 0.01 R17= -1.531 D17= 0.08 N 9=1.84666 ν 9= 23.8 R18= -4.557 D18= 0.50 R19= ∞ D19= 0.83 N10=1.51633 ν10= 64.2 R20= ∞ [Table 2] Aspheric surface R14 surface R15 surface a 1 = 0 a 1 = 0 a 2 = 2.87 × 10 -2 a 2 = 1.72 × 10 -2 a 3 = -1.37 × 10 -2 a 3 = -1.07 × 10 -2 a 4 = 2.22 × 10 -3 a 4 = 1.79 × 10 -2 a 5 = 2.12 × 10 -2 a 5 = 7.39 × 10 -2 Numerical example 3 f = 1.0 to 7.97 FNO = 1: 1.85 to 2.75 2ω = 56.1 ° ~ 7.6 ° R 1 = 4.305 D 1 = 0.17 N 1 = 1.80518 ν 1 = 25.4 R 2 = 2.459 D 2 = 0.80 N 2 = 1.51633 ν 2 = 64.2 R 3 = -693.37 D 3 = 0.03 R 4 = 2.801 D 4 = 0.48 N 3 = 1.69680 ν 3 = 55.5 R 5 = 13.956 D 5 = Variable R 6 = 5.392 D 6 = 0.08 N 4 = 1.80610 ν 4 = 41.0 R 7 = 0.943 D 7 = 0.36 R 8 = -1.458 D 8 = 0.08 N 5 = 1.69680 ν 5 = 55.5 R 9 = 1.486 D 9 = 0.07 R10 = 1.592 D10 = 0.26 N 6 = 1.84666 ν 6 = 23.8 R11 = 17.094 D11 = Variable R12 = (Aperture) D12 = 0.18 R13 = 1.815 D13 = 0.44 N 7 = 1.48749 ν 7 = 70.2 R14 = -4.608 D14 = Variable R15 = 2.247 D15 = 0.55 N 8 = 1.51633 ν 8 = 64.2 R16 = -1.198 D16 = 0.01 R17 = -1.531 D17 = 0.08 N 9 = 1.84666 ν 9 = 23.8 R18 = -4.557 D18 = 0.50 R19 = ∞ D19 = 0.83 N10 = 1.51633 ν10 = 64.2 R20 = ∞

【0052】[0052]

【表3】 非球面 R13面 R16面 a1 = 0 a1 = 0 a2 = -4.64×10-22 = 9.79×10-23 = 2.94×10-23 = 4.11×10-24 = -4.41×10-24 = -2.50×10-25 = 3.41×10-35 = 3.11×10-2 数値実施例 4 f= 1.0 〜7.98 FNO=1:1.85〜2.67 2ω= 56.1°〜 7.6° R 1= 3.424 D 1= 0.17 N 1=1.80518 ν 1= 25.4 R 2= 2.260 D 2= 0.70 N 2=1.51633 ν 2= 64.2 R 3= 33.150 D 3= 0.03 R 4= 2.801 D 4= 0.43 N 3=1.69680 ν 3= 55.5 R 5= 10.004 D 5= 可変 R 6= 4.847 D 6= 0.08 N 4=1.80518 ν 4= 25.4 R 7= 0.781 D 7= 0.32 R 8= -1.218 D 8= 0.08 N 5=1.69680 ν 5= 55.5 R 9= 1.418 D 9= 0.04 R10= 1.487 D10= 0.31 N 6=1.84666 ν 6= 23.8 R11= -5.766 D11= 可変 R12=(絞り) D12= 0.18 R13= 2.209 D13= 0.37 N 7=1.58313 ν 7= 59.4 R14=-15.937 D14= 可変 R15= 1.960 D15= 0.63 N 8=1.58313 ν 8= 59.4 R16= -1.257 D16= 0.00 R17= -2.293 D17= 0.08 N 9=1.84666 ν 9= 23.8 R18= 17.522 D18= 0.50 R19= ∞ D19= 0.83 N10=1.51633 ν10= 64.2 R20= ∞ [Table 3] Aspheric surface R13 surface R16 surface a 1 = 0 a 1 = 0 a 2 = -4.64 x 10 -2 a 2 = 9.79 x 10 -2 a 3 = 2.94 x 10 -2 a 3 = 4.11 x 10 -2 a 4 = -4.41 x 10 -2 a 4 = -2.50 x 10 -2 a 5 = 3.41 x 10 -3 a 5 = 3.11 x 10 -2 Numerical Example 4 f = 1.0 to 7.98 FNO = 1: 1.85 to 2.67 2ω = 56.1 ° ~ 7.6 ° R 1 = 3.424 D 1 = 0.17 N 1 = 1.80518 ν 1 = 25.4 R 2 = 2.260 D 2 = 0.70 N 2 = 1.51633 ν 2 = 64.2 R 3 = 33.150 D 3 = 0.03 R 4 = 2.801 D 4 = 0.43 N 3 = 1.69680 ν 3 = 55.5 R 5 = 10.004 D 5 = Variable R 6 = 4.847 D 6 = 0.08 N 4 = 1.80518 ν 4 = 25.4 R 7 = 0.781 D 7 = 0.32 R 8 = -1.218 D 8 = 0.08 N 5 = 1.69680 ν 5 = 55.5 R 9 = 1.418 D 9 = 0.04 R10 = 1.487 D10 = 0.31 N 6 = 1.84666 ν 6 = 23.8 R11 = -5.766 D11 = Variable R12 = (Aperture) D12 = 0.18 R13 = 2.209 D13 = 0.37 N 7 = 1.58313 ν 7 = 59.4 R14 = -15.937 D14 = Variable R15 = 1.960 D15 = 0.63 N 8 = 1.58313 ν 8 = 59.4 R16 = -1.257 D16 = 0.00 R17 = -2.293 D17 = 0.08 N 9 = 1.84666 ν 9 = 23.8 R18 = 17.522 D18 = 0.50 R19 = ∞ D19 = 0.83 N10 = 1.51633 ν10 = 64.2 R20 = ∞

【0053】[0053]

【表4】 非球面 R13面 R16面 a1 = 0 a1 = 0 a2 = -3.55×10-22 = 1.48×10-13 = 1.23×10-23 = 3.61×10-24 = -5.41×10-34 = -4.42×10-25 = -1.58×10-25 = 3.57×10-2 数値実施例 5 f= 1.0 〜8.00 FNO=1:1.85〜2.61 2ω= 56.1°〜 7.6° R 1= 3.061 D 1= 0.17 N 1=1.84666 ν 1= 23.8 R 2= 2.085 D 2= 0.75 N 2=1.51633 ν 2= 64.2 R 3= 13.994 D 3= 0.03 R 4= 2.866 D 4= 0.44 N 3=1.71300 ν 3= 53.8 R 5= 11.512 D 5= 可変 R 6= 6.420 D 6= 0.08 N 4=1.80610 ν 4= 41.0 R 7= 0.803 D 7= 0.39 R 8= -1.412 D 8= 0.08 N 5=1.71300 ν 5= 53.8 R 9= 2.511 D 9= 0.03 R10= 1.989 D10= 0.25 N 6=1.78472 ν 6= 25.7 R11= -8.325 D11= 可変 R12=(絞り) D12= 0.18 R13= 2.277 D13= 0.43 N 7=1.58313 ν 7= 59.4 R14= -7.975 D14= 可変 R15= 5.647 D15= 0.38 N 8=1.58313 ν 8= 59.4 R16= -3.202 D16= 0.03 R17= 3.648 D17= 0.47 N 9=1.48749 ν 9= 70.2 R18= -1.446 D18= 0.03 R19= -2.531 D19= 0.12 N10=1.84666 ν10= 23.8 R20= 6.987 D20= 0.50 R21= ∞ D21= 0.83 N11=1.51633 ν11= 64.2 R22= ∞ [Table 4] Aspherical surface R13 surface R16 surface a 1 = 0 a 1 = 0 a 2 = -3.55 × 10 -2 a 2 = 1.48 × 10 -1 a 3 = 1.23 × 10 -2 a 3 = 3.61 × 10 -2 a 4 = -5.41 x 10 -3 a 4 = -4.42 x 10 -2 a 5 = -1.58 x 10 -2 a 5 = 3.57 x 10 -2 Numerical Example 5 f = 1.0 to 8.00 FNO = 1: 1.85 to 2.61 2ω = 56.1 ° ~ 7.6 ° R 1 = 3.061 D 1 = 0.17 N 1 = 1.84666 ν 1 = 23.8 R 2 = 2.085 D 2 = 0.75 N 2 = 1.51633 ν 2 = 64.2 R 3 = 13.994 D 3 = 0.03 R 4 = 2.866 D 4 = 0.44 N 3 = 1.71300 ν 3 = 53.8 R 5 = 11.512 D 5 = Variable R 6 = 6.420 D 6 = 0.08 N 4 = 1.80610 ν 4 = 41.0 R 7 = 0.803 D 7 = 0.39 R 8 = -1.412 D 8 = 0.08 N 5 = 1.71300 ν 5 = 53.8 R 9 = 2.511 D 9 = 0.03 R10 = 1.989 D10 = 0.25 N 6 = 1.78472 ν 6 = 25.7 R11 = -8.325 D11 = Variable R12 = (Aperture) D12 = 0.18 R13 = 2.277 D13 = 0.43 N 7 = 1.58313 ν 7 = 59.4 R14 = -7.975 D14 = Variable R15 = 5.647 D15 = 0.38 N 8 = 1.58313 ν 8 = 59.4 R16 = -3.202 D16 = 0.03 R17 = 3.648 D17 = 0.47 N 9 = 1.48749 ν 9 = 70.2 R18 = -1.446 D18 = 0.03 R19 = -2.531 D19 = 0.12 N10 = 1.84666 ν10 = 23.8 R20 = 6.987 D20 = 0.50 R21 = ∞ D21 = 0.8 3 N11 = 1.51633 ν11 = 64.2 R22 = ∞

【0054】[0054]

【表5】 非球面 R13面 R16面 a1 = 0 a1 = 0 a2 = -2.43×10-22 = 7.80×10-23 = 7.06×10-33 = 3.58×10-24 = 1.08×10-24 = 2.20×10-25 = -3.57×10-25 = 2.05×10-2 [Table 5] Aspherical surface R13 surface R16 surface a 1 = 0 a 1 = 0 a 2 = -2.43 x 10 -2 a 2 = 7.80 x 10 -2 a 3 = 7.06 x 10 -3 a 3 = 3.58 x 10 -2 a 4 = 1.08 x 10 -2 a 4 = 2.20 x 10 -2 a 5 = -3.57 x 10 -2 a 5 = 2.05 x 10 -2

【0055】[0055]

【表6】 [Table 6]

【0056】[0056]

【発明の効果】本発明によれば前述の如く4つのレンズ
群の屈折力及びレンズ構成そして第4群中の空気レンズ
の屈折力を設定すると共にフォーカスの際に第4群を移
動させるレンズ構成を採ることにより、レンズ系全体の
小型化を図りつつ変倍比8程と全変倍範囲にわたり良好
なる収差補正を達成しつつ、かつフォーカスの際の収差
変動の少ない高い光学性能を有したFナンバー1.8と
大口径比のリヤーフォーカス式のズームレンズを達成す
ることができる。
According to the present invention, as described above, the refractive powers and lens configurations of the four lens groups and the refractive power of the air lens in the fourth lens group are set, and the fourth lens group is moved during focusing. By adopting the above-mentioned lens system, it is possible to reduce the size of the entire lens system, achieve a good aberration correction over a zoom ratio of about 8 and the entire zoom range, and to have high optical performance with little aberration fluctuation during focusing. A rear focus type zoom lens with a number 1.8 and a large aperture ratio can be achieved.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の近軸屈折力配置を示す一実施例
の概略図
FIG. 1 is a schematic view of an embodiment showing a paraxial refractive power arrangement of the present invention.

【図2】 本発明の数値実施例1のレンズ断面図FIG. 2 is a lens cross-sectional view of Numerical Example 1 of the present invention.

【図3】 本発明の数値実施例2のレンズ断面図FIG. 3 is a lens cross-sectional view of Numerical Example 2 of the present invention.

【図4】 本発明の数値実施例3のレンズ断面図FIG. 4 is a lens sectional view of Numerical Example 3 of the present invention.

【図5】 本発明の数値実施例4のレンズ断面図FIG. 5 is a lens cross-sectional view of Numerical Example 4 of the present invention.

【図6】 本発明の数値実施例5のレンズ断面図FIG. 6 is a lens cross-sectional view of Numerical Example 5 of the present invention.

【図7】 本発明の数値実施例1の広角端の収差図FIG. 7 is an aberration diagram at the wide-angle end according to Numerical Example 1 of the present invention.

【図8】 本発明の数値実施例1の中間の収差図FIG. 8 is an intermediate aberration diagram of Numerical Example 1 of the present invention.

【図9】 本発明の数値実施例1の望遠端の収差図FIG. 9 is an aberration diagram at a telephoto end according to Numerical Example 1 of the present invention.

【図10】 本発明の数値実施例2の広角端の収差図FIG. 10 is an aberration diagram at a wide-angle end according to Numerical Example 2 of the present invention.

【図11】 本発明の数値実施例2の中間の収差図FIG. 11 is an intermediate aberration diagram of Numerical example 2 of the present invention.

【図12】 本発明の数値実施例2の望遠端の収差図FIG. 12 is an aberration diagram at a telephoto end according to Numerical Example 2 of the present invention.

【図13】 本発明の数値実施例3の広角端の収差図FIG. 13 is an aberration diagram at a wide-angle end according to Numerical Example 3 of the present invention.

【図14】 本発明の数値実施例3の中間の収差図FIG. 14 is an intermediate aberration diagram of Numerical Example 3 of the present invention.

【図15】 本発明の数値実施例3の望遠端の収差図FIG. 15 is an aberration diagram at a telephoto end according to Numerical Example 3 of the present invention.

【図16】 本発明の数値実施例4の広角端の収差図FIG. 16 is an aberration diagram at a wide-angle end according to Numerical Example 4 of the present invention.

【図17】 本発明の数値実施例4の中間の収差図FIG. 17 is an intermediate aberration diagram of Numerical Example 4 of the present invention.

【図18】 本発明の数値実施例4の望遠端の収差図FIG. 18 is an aberration diagram at a telephoto end according to Numerical Example 4 of the present invention.

【図19】 本発明の数値実施例5の広角端の収差図FIG. 19 is an aberration diagram at a wide-angle end according to Numerical Example 5 of the present invention.

【図20】 本発明の数値実施例5の中間の収差図FIG. 20 is an intermediate aberration diagram of Numerical example 5 of the present invention.

【図21】 本発明の数値実施例5の望遠端の収差図FIG. 21 is an aberration diagram at a telephoto end according to Numerical Example 5 of the present invention.

【符号の説明】[Explanation of symbols]

1 第1群 2 第2群 3 第3群 4 第4群 SP 絞り d d線 g g線 ΔS サジタル像面 ΔM メリディオナル像面 1 1st group 2 2nd group 3 3rd group 4 4th group SP stop d d line g g line ΔS sagittal image plane ΔM meridional image plane

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 物体側より順に正の屈折力の第1群、負
の屈折力の第2群、正の屈折力の第3群、そして正の屈
折力の第4群の4つのレンズ群を有し、該第2群を像面
側へ移動させて広角端から望遠端への変倍を行い、変倍
に伴う像面変動を該第4群を移動させて補正すると共に
該第4群を移動させてフォーカスを行い、該第1群は負
の第11レンズ、正の第12レンズ、そして正の第13
レンズの3つのレンズを有し、該第2群は物体側に比べ
像面側に強い屈折力の凹面を向けた負の第21レンズ、
両レンズ面が凹面の第22レンズ、そして像面側に比べ
物体側に強い屈折力の凸面を向けた正の第23レンズの
3つのレンズを有し、該第4群は最も像面側に負の第4
Nレンズと該第4Nレンズの物体側に正の第4Pレンズ
とを有しており、該第4Pレンズと第4Nレンズとで形
成される空気レンズの屈折力をφa、該第4群の屈折力
をφ4としたとき −1.5<φa/φ4<0.5 なる条件を満足することを特徴とするリヤーフォーカス
式のズームレンズ。
1. Four lens groups, a first group having a positive refractive power, a second group having a negative refractive power, a third group having a positive refractive power, and a fourth group having a positive refractive power, in order from the object side. And moving the second lens unit toward the image side to perform zooming from the wide-angle end to the telephoto end, and moving the fourth lens unit to correct the image surface variation due to zooming and The group is moved to perform focusing, and the first group includes a negative eleventh lens, a positive twelfth lens, and a positive thirteenth lens.
A negative 21st lens having three lenses, the second group of which has a concave surface having a stronger refractive power toward the image side than toward the object side;
It has three lenses, a 22nd lens whose both lens surfaces are concave and a 23rd positive lens with a convex surface having a stronger refracting power toward the object side than the image side, and the 4th group is the most negative on the image side. The fourth
It has an N lens and a positive fourth P lens on the object side of the fourth N lens, the refractive power of the air lens formed by the fourth P lens and the fourth N lens is φa, and the refraction of the fourth group is A rear focus type zoom lens which satisfies the condition of −1.5 <φa / φ4 <0.5 when the force is φ4.
【請求項2】 前記第4群は物体側より順に正レンズ、
正レンズ、そして負レンズの3つのレンズより又は正レ
ンズと負レンズの2つのレンズより成っていることを特
徴とする請求項1のリヤーフォーカス式のズームレン
ズ。
2. The fourth lens group, in order from the object side, is a positive lens,
The rear focus type zoom lens according to claim 1, wherein the rear focus type zoom lens comprises three lenses of a positive lens and a negative lens, or two lenses of a positive lens and a negative lens.
【請求項3】 前記第3群は少なくとも1つの非球面を
有する単一の正レンズより成っていることを特徴とする
請求項1のリヤーフォーカス式のズームレンズ。
3. The rear focus type zoom lens according to claim 1, wherein the third lens unit is composed of a single positive lens having at least one aspherical surface.
JP4118396A 1992-04-10 1992-04-10 Rear focus type zoom lens Pending JPH05288991A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4118396A JPH05288991A (en) 1992-04-10 1992-04-10 Rear focus type zoom lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4118396A JPH05288991A (en) 1992-04-10 1992-04-10 Rear focus type zoom lens

Publications (1)

Publication Number Publication Date
JPH05288991A true JPH05288991A (en) 1993-11-05

Family

ID=14735637

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4118396A Pending JPH05288991A (en) 1992-04-10 1992-04-10 Rear focus type zoom lens

Country Status (1)

Country Link
JP (1) JPH05288991A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1152236A (en) * 1997-08-04 1999-02-26 Canon Inc Rear focus type zoom lens
US6320701B1 (en) * 1999-03-18 2001-11-20 Fuji Photo Optical Co., Ltd. Rear-focus-type zoom lens
JP2008209751A (en) * 2007-02-27 2008-09-11 Nikon Corp Zoom lens and optical device having the same
JP2008209753A (en) * 2007-02-27 2008-09-11 Nikon Corp Zoom lens and optical device having the same
KR101499556B1 (en) * 2009-04-29 2015-03-06 삼성전자주식회사 Zoom lens and imaging optical device having the same
WO2016104793A1 (en) * 2014-12-26 2016-06-30 株式会社ニコン Variable-power optical system, optical device, and method for manufacturing variable-power optical system

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1152236A (en) * 1997-08-04 1999-02-26 Canon Inc Rear focus type zoom lens
US6320701B1 (en) * 1999-03-18 2001-11-20 Fuji Photo Optical Co., Ltd. Rear-focus-type zoom lens
JP2008209751A (en) * 2007-02-27 2008-09-11 Nikon Corp Zoom lens and optical device having the same
JP2008209753A (en) * 2007-02-27 2008-09-11 Nikon Corp Zoom lens and optical device having the same
KR101499556B1 (en) * 2009-04-29 2015-03-06 삼성전자주식회사 Zoom lens and imaging optical device having the same
WO2016104793A1 (en) * 2014-12-26 2016-06-30 株式会社ニコン Variable-power optical system, optical device, and method for manufacturing variable-power optical system
JPWO2016104793A1 (en) * 2014-12-26 2017-10-12 株式会社ニコン Variable magnification optical system, optical apparatus, and variable magnification optical system manufacturing method

Similar Documents

Publication Publication Date Title
JP2988164B2 (en) Rear focus zoom lens
JPH07151967A (en) Zoom lens of rear focusing system
JPH0850244A (en) Zoom lens having high variable power ratio
JP2876823B2 (en) Rear focus zoom lens
JPH05323194A (en) Rear focus type zoom lens
JPH08201695A (en) Rear focus type zoom lens
JPH06175024A (en) Rear-focusing type zoom lens
JPH0876015A (en) Zoom lens
JP4914097B2 (en) Zoom lens and imaging apparatus having the same
JP2000121942A (en) Zoom lens
JP3363688B2 (en) Zoom lens
JP3368099B2 (en) Rear focus zoom lens
JPH11160621A (en) Zoom lens
JP2001091830A (en) Zoom lens
JPH06337353A (en) Rear-focus system zoom lens
JP3063459B2 (en) Rear focus type zoom lens and camera using the same
JPH05288991A (en) Rear focus type zoom lens
JPH0593862A (en) Rear focus type zoom lens
JPH06300972A (en) Zoom lens with wide field angle
JP3320396B2 (en) Rear focus type zoom lens and camera using the same
JP2623835B2 (en) Rear focus zoom lens
JPH04301811A (en) Zoom lens of rear focus system
JP2623836B2 (en) Rear focus zoom lens
JP3019664B2 (en) Rear focus zoom lens
JP3368106B2 (en) Rear focus zoom lens