JP2623835B2 - Rear focus zoom lens - Google Patents

Rear focus zoom lens

Info

Publication number
JP2623835B2
JP2623835B2 JP1147595A JP14759589A JP2623835B2 JP 2623835 B2 JP2623835 B2 JP 2623835B2 JP 1147595 A JP1147595 A JP 1147595A JP 14759589 A JP14759589 A JP 14759589A JP 2623835 B2 JP2623835 B2 JP 2623835B2
Authority
JP
Japan
Prior art keywords
lens
refractive power
group
lens unit
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1147595A
Other languages
Japanese (ja)
Other versions
JPH0312621A (en
Inventor
博之 浜野
研一 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP1147595A priority Critical patent/JP2623835B2/en
Priority to US07/534,241 priority patent/US5134524A/en
Priority to DE69023815T priority patent/DE69023815T2/en
Priority to EP90110914A priority patent/EP0401862B1/en
Publication of JPH0312621A publication Critical patent/JPH0312621A/en
Application granted granted Critical
Publication of JP2623835B2 publication Critical patent/JP2623835B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/144Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only
    • G02B15/1441Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only the first group being positive
    • G02B15/144113Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only the first group being positive arranged +-++

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はリヤーフォーカス式のズームレンズに関し、
特に写真用カメラやビデオカメラそして放送用カメラ等
に用いられる変倍比6、Fナンバー1.8程度の大口径比
で高変倍比のズームレンズに好適なリヤーフォーカス式
のズームレンズに関するものである。
Description: TECHNICAL FIELD The present invention relates to a rear focus type zoom lens,
More particularly, the present invention relates to a rear focus type zoom lens suitable for a zoom lens having a large aperture ratio and an F number of about 1.8, which is used in a photographic camera, a video camera, a broadcast camera and the like, and which has a large aperture ratio and a high zoom ratio.

(従来の技術) 従来より写真用カメラやビデオカメラ等のズームレン
ズにおいては物体側の第1群以外のレンズ群を移動させ
てフォーカスを行う、所謂リヤーフォーカス式を採用し
たものが種々と提案されている。
2. Description of the Related Art Conventionally, various types of zoom lenses such as a photographic camera and a video camera adopting a so-called rear focus type in which a lens group other than the first group on the object side is moved to perform focusing is proposed. ing.

一般にリヤーフォーカス式のズームレンズは第1群を
移動させてフォーカスを行うズームレンズに比べて第1
群の有効径が小さくなり、レンズ系全体の小型化が容易
になり、又近接撮影、特に極近接撮影が容易となり、更
に比較的小型軽量のレンズ群を移動させて行っているの
で、レンズ群の駆動力が小さくてすみ迅速な焦点合わせ
が出来る等の特長がある。
Generally, a rear focus type zoom lens has a first lens position compared to a zoom lens which moves the first lens unit to perform focusing.
Since the effective diameter of the lens group is small, it is easy to reduce the size of the entire lens system, and it is also easy to perform close-up photography, especially very close-up photography. Has a small driving force so that quick focusing can be performed.

このようなリヤーフォーカス式のズームレンズとして
例えば特開昭63−44614号公報では物体側より順の正の
屈折力の第1群、変培用の負の屈折力の第2群、変倍に
伴う像面変動を補正する為の負の屈折力の第3群、そし
て正の屈折力の第4群の4つのレンズ群より成る所謂4
群ズームレンズにおいて、第3群を移動させてフォーカ
スを行っている。しかしながらこのズームレンズは第3
群の移動空間を確保しなければならずレンズ全長が増大
する傾向があった。
For example, Japanese Patent Application Laid-Open No. 63-44614 discloses a rear focus type zoom lens having a first lens unit having a positive refractive power in order from the object side, a second lens unit having a negative refractive power for magnification, and variable power. A so-called 4th lens group including a third lens unit having a negative refractive power and a fourth lens unit having a positive refractive power for correcting the accompanying image plane fluctuation.
In the group zoom lens, the third group is moved to perform focusing. However, this zoom lens is the third
The moving space of the group must be secured, and the overall length of the lens tends to increase.

特開昭58−136012号公報では変倍部を3つ以上のレン
ズ群で構成し、このうち一部のレンズ群を移動させてフ
ォーカスを行っている。
In Japanese Patent Application Laid-Open No. 58-136012, a variable power unit is composed of three or more lens groups, and focusing is performed by moving some of the lens groups.

特開昭63−247316号公報では物体側より順に正の屈折
力の第1群、負の屈折力の第2群、正の屈折力の第3
群、そして正の屈折力の第4群の4つのレンズ群を有
し、第2群を移動させて変倍を行い、第4群を移動させ
て変倍に伴う像面変動とフォーカスを行っている。
In JP-A-63-247316, a first lens unit having a positive refractive power, a second lens unit having a negative refractive power, and a third lens unit having a positive refractive power are sequentially arranged from the object side.
Group, and a fourth lens group having a positive refractive power. The fourth lens group is moved, and the second group is moved to perform zooming. The fourth group is moved to perform image plane fluctuation and focusing caused by zooming. ing.

特開昭58−160913号公報では物体側より順に正の屈折
力の第1群、負の屈折力の第2群、正の屈折力の第3
群、そして正の屈折力の第4群の4つのレンズ群を有
し、第1群と第2群を移動させて変倍を行い、変倍に伴
う像面変動を第4群を移動させて行っている。そしてこ
れらのレンズ群のうちの1つ又は2つ以上のレンズ群を
移動させてフォーカスを行っている。
JP-A-58-160913 discloses a first lens unit having a positive refractive power, a second lens unit having a negative refractive power, and a third lens unit having a positive refractive power.
Group, and a fourth lens group having a positive refractive power. The fourth lens group is moved. The first and second groups are moved to perform zooming. Have gone. Then, focusing is performed by moving one or more of these lens groups.

(発明が解決しようとする問題点) 一般にズームレンズにおいてリヤーフォーカス方式を
採用すると前述の如くレンズ系全体が小型化され又迅速
なるフォーカスが可能となり、更に近接撮影が容易とな
る等の特長が得られる。
(Problems to be Solved by the Invention) In general, when a rear focus method is adopted in a zoom lens, features such as miniaturization of the whole lens system, quick focusing as described above, and easier close-up photographing are obtained. Can be

しかしながら反面、フォーカスの際の収差変動が大き
くなり、無限遠物体から近距離物体に至る物体距離全般
にわたりレンズ系全体の小型化を図りつつ高い光学性能
を得るのが大変難しくなってくるという問題点が生じて
くる。
However, on the other hand, aberration fluctuations during focusing become large, and it becomes extremely difficult to obtain high optical performance while miniaturizing the entire lens system over the entire object distance from an object at infinity to a close object. Will occur.

特に大口径比で高変倍のズームレンズでは全変倍範囲
にわたり、又物体距離全般にわたり高い光学性能を得る
のが大変難しくなってくるという問題点が生じてくる。
In particular, a zoom lens having a large aperture ratio and a high zoom ratio has a problem that it becomes very difficult to obtain high optical performance over the entire zoom range and over the entire object distance.

従来よりズームレンズに限らず多くの撮影系では球面
の他に非球面を用いてレンズ枚数を減少させると共に諸
収差を良好に補正することが種々と行なわれている。し
かしながら単に球面の代わりに非球面を用いても光学系
は何ら簡素化されず、又諸収差を良好に補正し高い光学
性能を得ることは難しい。
2. Description of the Related Art Conventionally, not only a zoom lens but also many photographing systems use an aspheric surface in addition to a spherical surface to reduce the number of lenses and satisfactorily correct various aberrations. However, simply using an aspherical surface instead of a spherical surface does not simplify the optical system, and it is difficult to satisfactorily correct various aberrations and obtain high optical performance.

本発明はリヤーフォーカス方式を採用しつつ、大口径
比化及び高変倍化を図る際、非球面を施すレンズ群及び
非球面形状を適切に設定することにより、レンズ枚数を
減少させレンズ系全体の大型化を防止しつつ、広角端か
ら望遠端に至る全変倍範囲にわたり、又無限遠物体から
近距離物体に至る物体距離全般にわたり、良好なる光学
性能を有した簡易な構成のリヤーフォーカス式のズーム
レンズの提供を目的とする。
The present invention reduces the number of lenses by adopting the rear focus method and appropriately setting the aspherical lens group and the aspherical shape to achieve a large aperture ratio and a high zoom ratio. Rear focus type with good optical performance over the entire zoom range from the wide-angle end to the telephoto end, and over the entire object distance from the object at infinity to the close object while preventing the size of The purpose of the present invention is to provide a zoom lens.

(問題点を解決するための手段) 本発明のリヤーフォーカス式のズームレンズは、物体
側より順に正の屈折力の第1群、負の屈折力の第2群、
正の屈折力の第3群、そして正の屈折力の第4群の4つ
のレンズ群を有し、該第1群を物体側へ、該第2群を像
面側へ移動させて広角端から望遠端への変倍を行い、変
倍に伴う像面変動を該第4群を移動させて補正すると共
に該第4群を移動させてフォーカスを行い、該第3群中
の少なくとも1つのレンズ面にレンズ面中心から周辺部
にいくに従い正の屈折力が減少する形状の非球面を施し
たことを特徴としている。
(Means for Solving the Problems) The rear focus type zoom lens according to the present invention includes, in order from the object side, a first lens unit having a positive refractive power, a second lens unit having a negative refractive power,
A fourth lens group having a positive refractive power and a fourth lens group having a positive refractive power. The first lens group is moved toward the object side, and the second lens group is moved toward the image plane. From the zoom lens to the telephoto end, and corrects the image plane variation caused by the zooming by moving the fourth lens unit, and focuses by moving the fourth lens unit. It is characterized in that the lens surface is provided with an aspherical surface having a shape such that the positive refractive power decreases from the center of the lens surface toward the peripheral portion.

更に本発明では全変倍範囲にわたり良好なる光学性能
を得る為に前記第i群の焦点距離をfi、全系の広角端に
おける焦点距離をfw、ズーム比をz、該第2群の望遠端
における結像倍率をβ2Tとしたとき 0.9<|f2/fw|<1.35 ……(1) 2.0<f4/fw<3.1 ……(3) なる条件を満足することを特徴としている。
Further, in the present invention, in order to obtain good optical performance over the entire zoom range, the focal length of the i-th unit is fi, the focal length at the wide-angle end of the entire system is fw, the zoom ratio is z, and the telephoto end of the second unit is 0.9 <| f2 / fw | <1.35 where β2T is the imaging magnification at 2.0 <f4 / fw <3.1 (3) It is characterized by satisfying the following condition.

(実施例) 第1図は本発明のリヤーフォーカス式のズームレンズ
の近軸屈折力配置を示す一実施例の概略図である。
(Embodiment) FIG. 1 is a schematic view of an embodiment showing a paraxial refractive power arrangement of a rear focus type zoom lens according to the present invention.

図中、Iは正の屈折力の第1群、IIは負の屈折力の第
2群、IIIは正の屈折力の第3群、IVは正の屈折力の第
4群である。SPは開口絞りであり、第3群IIIの前方に
配置されている。
In the figure, I is a first group having a positive refractive power, II is a second group having a negative refractive power, III is a third group having a positive refractive power, and IV is a fourth group having a positive refractive power. SP denotes an aperture stop, which is arranged in front of the third lens group III.

広角端から望遠端への変倍に際して矢印のように第1
群を物体側へ第2群を像面側へ移動させると共に、変倍
を伴う像面変動を第4群を移動させて補正している。
When zooming from the wide-angle end to the telephoto end, the first
The second lens unit is moved to the object side toward the object side, and the image plane fluctuation accompanying zooming is corrected by moving the fourth lens unit to the object side.

又、第4群を光軸上移動させてフォーカスを行うリヤ
ーフォーカス式を採用している。同図に示す第4群の実
線の曲線4aと点線の曲線4bは各々無限遠物体と近距離物
体にフォーカスしているときの広角端から望遠端への変
倍に伴う際の像面変動を補正する為の移動軌跡を示して
いる。
In addition, a rear focus type in which the fourth unit is moved on the optical axis to perform focusing is adopted. The solid line curve 4a and the dotted line curve 4b of the fourth lens group shown in the same figure show the image plane fluctuation caused by zooming from the wide-angle end to the telephoto end when focusing on an object at infinity and an object at a short distance, respectively. The movement locus for correction is shown.

尚、第3群は変倍及びフォーカスの際固定である。 The third unit is fixed during zooming and focusing.

本実施例においては第4群を移動させて変倍に伴う像
面変動の補正を行うと共に第4群を移動させてフォーカ
スを行うようにしている。特に同図の曲線4a,4bに示す
ように広角端から望遠端への変倍に際して物体側へ凸状
の軌跡を有するように移動させている。これにより第3
群と第4群との空間の有効利用を図りレンズ全長の短縮
化を効果的に達成している。
In the present embodiment, the fourth unit is moved to correct the image plane fluctuation caused by zooming, and the fourth unit is moved to perform focusing. In particular, as shown by curves 4a and 4b in the same figure, the zoom lens is moved so as to have a convex trajectory toward the object side when zooming from the wide-angle end to the telephoto end. This makes the third
By effectively utilizing the space between the group and the fourth group, the overall length of the lens is effectively reduced.

本実施例において、例えば望遠端において無限遠物体
から近距離物体へフォーカスを行う場合は同図の直線4c
に示すように第4群を前方へ繰りすことにより行ってい
る。
In the present embodiment, for example, when focusing from an object at infinity to a close object at the telephoto end, a straight line 4c in FIG.
This is performed by turning the fourth group forward as shown in FIG.

本実施例では従来の4群ズームレンズにおいて第1群
を繰り出してフォーカスを行う場合に比べて前述のよう
なリヤーフォーカス方式を採ることにより第1群のレン
ズ有効径の増大化を効果的に防止している。
In the present embodiment, the rear focus method as described above is employed to effectively prevent an increase in the effective lens diameter of the first group, as compared with a conventional four-group zoom lens in which the first group is extended and focused. doing.

そして開口絞りを第3群の直前に配置することにより
可動レンズ群による収差変動を少なくし、開口絞りより
前方のレンズ群の間隔を短くすることにより前玉レンズ
径の縮少化を容易に達成している。
By arranging the aperture stop immediately before the third lens unit, aberration variation due to the movable lens unit is reduced, and the distance between the lens units in front of the aperture stop is shortened, so that the diameter of the front lens can be easily reduced. doing.

又、本実施例では第3群中の少なくとも1つのレンズ
面にレンズ面中心から周辺部にいくに従い正の屈折力が
弱くなる形状の非球面を施すことにより、変倍に伴う収
差変動、特に広角端から中間のズーム位置における球面
収差、コマ収差等を良好に補正している。又第3群に前
述したような所定形状の非球面を施すことにより第3群
を1枚、又は2枚のレンズより構成し、レンズ系全体の
レンズ枚数を減少させている。
In this embodiment, at least one lens surface in the third lens unit is provided with an aspherical surface having a shape in which the positive refractive power becomes weaker from the center of the lens surface toward the peripheral portion, so that aberration variation due to zooming, particularly, Spherical aberration, coma, and the like at the middle zoom position from the wide-angle end are favorably corrected. Further, the third group is constituted by one or two lenses by applying an aspheric surface having a predetermined shape as described above, thereby reducing the number of lenses in the entire lens system.

即ち、後述する数値実施例では第3群を両レンズ面が
凸面の単一の正レンズより、又は両レンズ面が凸面の正
レンズと像面側に凸面を向けたメニスカス状の負レンズ
の2つのレンズより構成しつつ良好なる光学性能を得て
いる。
That is, in the numerical examples described later, the third lens unit is composed of a single positive lens having both lens surfaces convex, or a meniscus negative lens having both lens surfaces convex and a convex surface facing the image surface side. Excellent optical performance is obtained while being composed of two lenses.

尚、第3群を単一の正レンズより構成するときは材質
のアッベ数が58以上の材質を選ぶのが軸上色収差を良好
に補正するのに好ましい。
When the third group is constituted by a single positive lens, it is preferable to select a material having an Abbe number of 58 or more in order to satisfactorily correct longitudinal chromatic aberration.

そして本実施例では後述する数値実施例において示す
ように全体として10枚〜11枚のレンズ枚数より構成し、
レンズ系の小型化を図りつつ変倍比6、Fナンバー1.8
程度の良好なる光学性能を有した4群より成るリヤーフ
ォーカス式のズームレンズを達成している。
In the present embodiment, as shown in Numerical Examples described later, the lens is configured by a total of 10 to 11 lenses,
Zoom ratio 6 and F-number 1.8 while miniaturizing the lens system
A rear focus type zoom lens composed of four groups having a good optical performance is achieved.

そして前述の条件式(1)〜(3)の如く各レンズ群
の光学的諸定数を特定することによりレンズ系全体の小
型化を図りつつ全変倍範囲にわたり更に物体距離全般に
わたり良好なる光学性能を有した高変倍比のズームレン
ズを得ている。
By specifying the optical constants of each lens unit as in the above-mentioned conditional expressions (1) to (3), good optical performance over the entire zoom range and over the entire object distance while miniaturizing the entire lens system is achieved. And a high zoom ratio zoom lens having

次に前述の各条件式の技術的意味について説明する。 Next, the technical meaning of each of the above conditional expressions will be described.

条件式(1)は第2群の屈折力に関し、変倍に伴う収
差変動、特に非点収差の変動を少なくしつつ所定の変倍
比を効果的に得る為のものである。下限値を越えて第2
群の屈折力が強くなりすぎるとレンズ系全体の小型化は
容易となるが、変倍に伴う非点収差の変動が大きくなっ
てくる。又上限値を越えて第2群の屈折力が弱くなりす
ぎると変倍に伴う非点収差等の収差変動は少なくなるが
所定の変倍比を得る為の第2群の移動量が増大し、レン
ズ全長が長くなってくるので良くない。
Conditional expression (1) relates to the refractive power of the second lens unit, and is intended to effectively obtain a predetermined zoom ratio while reducing the variation in aberration due to zooming, particularly the variation in astigmatism. 2nd over the lower limit
If the refracting power of the group becomes too strong, it is easy to reduce the size of the entire lens system, but the astigmatism varies greatly with zooming. If the refractive power of the second lens unit becomes too weak beyond the upper limit, aberration fluctuation such as astigmatism due to zooming will decrease, but the amount of movement of the second lens unit for obtaining a predetermined zoom ratio will increase. However, since the overall length of the lens becomes longer, it is not good.

条件式(2)はズーム比に対する第2群の望遠端にお
ける結像倍率に関するものである。下限値を越えて結像
倍率が小さくなりすぎると所定の変倍比を得る為の第2
群の移動量が大きくなりレンズ全長が増大してくる。又
逆に上限値を越えて結像倍率が大きくなりすぎるとレン
ズ全長は短縮化されるが無限遠物体における望遠端付近
での第4群の移動軌跡が急激に変化し、モーター等の駆
動手段に対する負荷が大きくなってくるので良くない。
Conditional expression (2) relates to the imaging magnification at the telephoto end of the second lens unit with respect to the zoom ratio. If the imaging magnification becomes too small below the lower limit, a second magnification for obtaining a predetermined zoom ratio is obtained.
The amount of movement of the group increases and the overall length of the lens increases. Conversely, if the imaging magnification becomes too large beyond the upper limit, the overall length of the lens will be shortened, but the moving trajectory of the fourth group near the telephoto end of an infinite object will change abruptly, and driving means such as a motor Is not good because the load on

条件式(3)は第4群の正の屈折力に関し、主に変倍
及びフォーカスの際の収差変動を良好に補正する為のも
のである。下限値を越えて第4群の正の屈折力が強くな
りすぎると球面収差が補正不足となると共に変倍に伴う
収差変動、特に倍率色収差の変動が大きくなり、これを
良好に補正するのが難しくなってくる。又上限値を越え
て第4群の正の屈折力が弱くなりすぎると変倍及びフォ
ーカスの際の第4群の移動量が大きくなりすぎレンズ全
長が増大してくるので良くない。
Conditional expression (3) mainly relates to the positive refracting power of the fourth lens unit, and is used for favorably correcting aberration fluctuation during zooming and focusing. If the positive refractive power of the fourth lens unit becomes too strong below the lower limit, spherical aberration will be insufficiently corrected, and aberration fluctuations due to zooming, particularly fluctuations of chromatic aberration of magnification, will increase. It becomes difficult. On the other hand, if the positive refractive power of the fourth lens unit becomes too weak beyond the upper limit, the amount of movement of the fourth lens unit during zooming and focusing becomes too large, which is not good.

尚、本実施例において第3群中に設ける非球面は有効
径の7割における参照球面からのずれ量をΔ、近軸参照
球面の曲率半径をRとしたとき 1×10-4<|Δ/R|<4×10-3 なる条件を満足する形状より構成している。これにより
全変倍範囲にわたり良好なる光学性能を得ている。
In this embodiment, the aspherical surface provided in the third lens unit has a deviation from the reference spherical surface at 70% of the effective diameter as Δ and a radius of curvature of the paraxial reference spherical surface as R, where 1 × 10 −4 <| Δ / R | <4 × 10 −3 . Thereby, good optical performance is obtained over the entire zoom range.

次に本発明の数値実施例を示す。数値実施例において
Riは物体側より順に第i番目のレンズ面の曲率半径、Di
は物体側より第i番目のレンズ厚及び空気間隔、Niとν
iは各々物体側より順に第i番目のレンズのガラスの屈
折率とアッベ数である。
Next, numerical examples of the present invention will be described. In numerical examples
Ri is the radius of curvature of the i-th lens surface in order from the object side,
Is the i-th lens thickness and air gap from the object side, Ni and ν
i is the refractive index and Abbe number of the glass of the i-th lens in order from the object side.

非球面形状は光軸方向にX軸、光軸と垂直方向にH
軸、光の進行方向を正としRを近軸曲率半径、A,B,C,D,
Eを各々非球面係数としたとき なる式で表わしている。
The aspheric surface has an X-axis in the optical axis direction and H in the direction perpendicular to the optical axis.
R and paraxial radius of curvature, A, B, C, D,
When E is each aspheric coefficient It is represented by the following equation.

又表−1に各数値実施例における各条件式との関係を
示す。尚、数値実施例1,2におけるR20,R21、数値実施例
3におけるR22,R23はフェースプレート等のガラス材で
ある。
Table 1 shows the relationship with each conditional expression in each numerical example. R20 and R21 in Numerical Examples 1 and 2 and R22 and R23 in Numerical Example 3 are glass materials such as a face plate.

数値実施例 1 F=1.0〜5.56 FNo=1:1.8〜2.4 2ω=49.1゜〜9.4
゜ R 1= 8.927 D 1=0.139 N 1=1.80518 ν 1=25.4 R 2= 3.812 D 2=0.494 N 2=1.60311 ν 2=60.7 R 3=-19.739 D 3=0.021 R 4= 3.122 D 4=0.322 N 3=1.61271 ν 3=58.8 R 5= 8.999 D 5=可変 R 6= 2.437 D 6=0.086 N 4=1.74950 ν 4=35.3 R 7= 0.802 D 7=0.360 R 8=−1.098 D 8=0.086 N 5=1.53172 ν 5=48.9 R 9= 1.250 D 9=0.247 N 6=1.84666 ν 6=23.9 R10=113.103 D10=可変 R11=絞り D11=0.1 R12=非球面 D12=0.301 N 7=1.51633 ν 7=64.
1 R13=−5.555 D13=可変 R14= 80.968 D14=0.086 N 8=1.84666 ν 8=23.9 R15= 1.913 D15=0.064 R16= 2.649 D16=0.268 N 9=1.60311 ν 9=60.7 R17=−2.328 D17=0.016 R18= 1.712 D18=0.258 N10=1.51633 ν10=64.1 R19=∞ D19=0.537 R20=∞ D20=0.645 N11=1.51633 ν11=64.
1 R21=∞ 第12面 非球面 Ro=1.721 B=−4.769×10-2 C=−2.347×10-2 D=2.179×10-2 数値実施例2 F=1.0〜5.56 FNo=1:1.8〜2.4 2ω=49.1゜〜9.4
゜ R 1= 9.287 D 1=0.139 N 1=1.80518 ν 1=25.4 R 2= 3.766 D 2=0.494 N 2=1.62299 ν 2=58.1 R 3=-20,115 D 3=0.021 R 4= 3.155 D 4=0.322 N 3=1.60729 ν 3=59.4 R 5= 8.904 D 5=可変 R 6= 2.421 D 6=0.085 N 4=1.74950 ν 4=35.3 R 7= 0.803 D 7=0.363 R 8=−1.099 D 8=0.085 N 5=1.52310 ν 5=50.8 R 9= 1.250 D 9=0.247 N 6=1.84666 ν 6=23.9 R10= 36.218 D10=可変 R11=絞り D11=0.1 R12=非球面 D12=0.300 N 7=1.51633 ν 7=64.
1 R13=−5.571 D13=可変 R14= 84.072 D14=0.085 N 8=1.84666 ν 8=23.9 R15= 1.910 D15=0.064 R16= 2.633 D16=0.268 N 9=1.60311 ν 9=60.7 R17=−2.324 D17=0.016 R18= 1.717 D18=0.257 N10=1.51633 ν10=64.1 R19=∞ D19=0.537 R20=∞ D20=0.644 N11=1.51633 ν11=64.
1 R21=∞ 第12面 非球面 Ro=1.721 B=−4.786×10-2 C=−2.339×10-2 D=2.184×10-2 数値実施例 3 F=1.0〜5.55 FNo=1:1.8〜2.4 2ω=49.1゜〜9.4
゜ R 1= 10.107 D 1=0.139 N 1=1.80518 ν 1=25.4 R 2= 3.716 D 2=0.537 N 2=1.51633 ν 2=64.1 R 3=−9.672 D 3=0.021 R 4= 2.896 D 4=0.354 N 3=1.65844 ν 3=50.9 R 5= 8.874 D 5=可変 R 6= 7.391 D 6=0.086 N 4=1.83400 ν 4=37.2 R 7= 0.783 D 7=0.241 R 8=−0.936 D 8=0.086 N 5=1.51823 ν 5=59.0 R 9= 1.295 D 9=0.247 N 6=1.84666 ν 6=23.9 R10=−4.058 D10=可変 R11=絞り D11=0.16 R12= 1.588 D12=0.483 N 7=1.58313 ν 7=59.4 R13=非球面 D13=0.555 R14=−1.373 D14=0.086 N 8=1.80518 ν 8=25.4 R15=−3.883 D15=可変 R16= 3.986 D16=0.086 N 9=1.84666 ν 9=23.9 R17= 1.829 D17=0.078 R18= 6.766 D18=0.258 N10=1.60311 ν10=60.7 R19=−2.113 D19=0.016 R20= 1.784 D20=0.268 N11=1.51633 ν11=64.1 R21=∞ D21=0.537 R22=∞ D22=0.645 N12=1.51633 ν12=64.
1 R23=∞ 第13面 非球面 Ro=−1.542 B=3.512×10-2 C=3.204×10-2 D=−7.259×10-2 (発明の効果) 本発明によれば前述の如く4つのレンズ群の屈折力及
び変倍における第1群と第2群と第4群の移動条件を設
定すると共にフォーカスの際に第4群を移動させるレン
ズ構成を採ることにより、更に第3群中の少なくとも1
つのレンズ面に所定形状の非球面を用いることにより、
全体として10〜11枚程度とレンズ枚数の減少化及びレン
ズ系全体の小型化を図りつつ変倍比6程と全変倍範囲に
わたり良好なる収差補正を達成しつつ、かつフォーカス
の際の収差変動の少ない高い光学性能を有したFナンバ
ー1.8と大口径比のリヤーフォーカス式のズームレンズ
を達成することができる。
Numerical Example 1 F = 1.0 to 5.56 FNo = 1: 1.8 to 2.4 2ω = 49.1 ゜ to 9.4
゜ R 1 = 8.927 D 1 = 0.139 N 1 = 1.80518 ν 1 = 25.4 R 2 = 3.812 D 2 = 0.494 N 2 = 1.60311 ν 2 = 60.7 R 3 = -19.739 D 3 = 0.021 R 4 = 3.122 D 4 = 0.322 N 3 = 1.61271 ν 3 = 58.8 R 5 = 8.999 D 5 = Variable R 6 = 2.437 D 6 = 0.086 N 4 = 1.74950 ν 4 = 35.3 R 7 = 0.802 D 7 = 0.360 R 8 = -1.098 D 8 = 0.086 N 5 = 1.53172 ν 5 = 48.9 R 9 = 1.250 D 9 = 0.247 N 6 = 1.84666 ν 6 = 23.9 R10 = 113.103 D10 = Variable R11 = Aperture D11 = 0.1 R12 = Aspherical surface D12 = 0.301 N 7 = 1.51633 ν 7 = 64 .
1 R13 = -5.555 D13 = Variable R14 = 80.968 D14 = 0.086 N 8 = 1.84666 ν 8 = 23.9 R15 = 1.913 D15 = 0.064 R16 = 2.649 D16 = 0.268 N 9 = 1.60311 ν 9 = 60.7 R17 = -2.328 D17 = 0.016 R18 = 1.712 D18 = 0.258 N10 = 1.51633 ν10 = 64.1 R19 = ∞ D19 = 0.537 R20 = ∞ D20 = 0.645 N11 = 1.51633 ν11 = 64.
1 R21 = ∞ 12th surface Aspheric surface Ro = 1.721 B = −4.769 × 10 −2 C = −2.347 × 10 −2 D = 2.179 × 10 −2 Numerical Example 2 F = 1.0 to 5.56 FNo = 1: 1.8 to 2.4 2ω = 49.1 ゜ to 9.4
゜ R 1 = 9.287 D 1 = 0.139 N 1 = 1.80518 ν 1 = 25.4 R 2 = 3.766 D 2 = 0.494 N 2 = 1.62299 ν 2 = 58.1 R 3 = -20,115 D 3 = 0.021 R 4 = 3.155 D 4 = 0.322 N 3 = 1.60729 ν 3 = 59.4 R 5 = 8.904 D 5 = variable R 6 = 2.421 D 6 = 0.085 N 4 = 1.74950 ν 4 = 35.3 R 7 = 0.803 D 7 = 0.363 R 8 = -1.099 D 8 = 0.085 N 5 = 1.52310 ν 5 = 50.8 R 9 = 1.250 D 9 = 0.247 N 6 = 1.84666 ν 6 = 23.9 R10 = 36.218 D10 = Variable R11 = Aperture D11 = 0.1 R12 = Aspherical surface D12 = 0.300 N 7 = 1.51633 ν 7 = 64 .
1 R13 = -5.571 D13 = Variable R14 = 84.072 D14 = 0.085 N 8 = 1.84666 ν 8 = 23.9 R15 = 1.910 D15 = 0.064 R16 = 2.633 D16 = 0.268 N 9 = 1.60311 ν 9 = 60.7 R17 = -2.324 D17 = 0.016 R18 = 1.717 D18 = 0.257 N10 = 1.51633 ν10 = 64.1 R19 = ∞ D19 = 0.537 R20 = ∞ D20 = 0.644 N11 = 1.51633 ν11 = 64.
1 R21 = ∞ 12th surface Aspheric surface Ro = 1.721 B = −4.786 × 10 −2 C = −2.339 × 10 −2 D = 2.184 × 10 −2 Numerical Example 3 F = 1.0 to 5.55 FNo = 1: 1.8 to 2.4 2ω = 49.1 ゜ to 9.4
゜ R 1 = 10.107 D 1 = 0.139 N 1 = 1.80518 ν 1 = 25.4 R 2 = 3.716 D 2 = 0.537 N 2 = 1.51633 ν 2 = 64.1 R 3 = -9.672 D 3 = 0.021 R 4 = 2.896 D 4 = 0.354 N 3 = 1.58484 ν 3 = 50.9 R 5 = 8.874 D 5 = Variable R 6 = 7.391 D 6 = 0.086 N 4 = 1.83400 ν 4 = 37.2 R 7 = 0.783 D 7 = 0.241 R 8 = -0.936 D 8 = 0.086 N 5 = 1.51823 ν 5 = 59.0 R 9 = 1.295 D 9 = 0.247 N 6 = 1.84666 ν 6 = 23.9 R10 = -4.058 D10 = Variable R11 = Aperture D11 = 0.16 R12 = 1.588 D12 = 0.483 N 7 = 1.58313 ν 7 = 59.4 R13 = aspheric surface D13 = 0.555 R14 = -1.373 D14 = 0.086 N 8 = 1.80518 ν 8 = 25.4 R15 = -3.883 D15 = variable R16 = 3.986 D16 = 0.086 N 9 = 1.84666 ν 9 = 23.9 R17 = 1.829 D17 = 0.078 R18 = 6.766 D18 = 0.258 N10 = 1.60311 ν10 = 60.7 R19 = -2.113 D19 = 0.016 R20 = 1.784 D20 = 0.268 N11 = 1.51633 ν11 = 64.1 R21 = ∞ D21 = 0.537 R22 = ∞ D22 = 0.645 N12 = 1.51633 ν12 = 64.
1 R23 = ∞ 13th surface Aspheric surface Ro = −1.542 B = 3.512 × 10 −2 C = 3.204 × 10 −2 D = −7.259 × 10 −2 (Effects of the Invention) According to the present invention, as described above, the refracting power of the four lens units and the moving conditions of the first, second, and fourth units in zooming are set, and the fourth unit is focused during focusing. By adopting a lens configuration to move, at least one of the third group
By using an aspheric surface of a predetermined shape for one lens surface,
While reducing the number of lenses to about 10 to 11 as a whole and reducing the size of the entire lens system, achieving excellent aberration correction over the entire zoom range with a zoom ratio of about 6, and aberration fluctuation during focusing It is possible to achieve a rear-focus type zoom lens having an F-number of 1.8 and a large aperture ratio having a high optical performance with little.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の近軸屈折力配置を示す一実施例の概略
図、第2図,第3図は本発明の数値実施例1〜3のレン
ズ断面図、第4図〜第6図は本発明の数値実施例1〜3
の諸収差図である。収差図において(A)は広角端、
(B)は中間、(C)は望遠端のズーム位置での収差図
である。 第1図,第2図,第3図においてI,II,III,IVは順に第
1,第2,第3,第4群、dはd線、gはg線、ΔMはメリデ
ィオナル像面、ΔSはサジタル像面、SPは開口絞りであ
る。
FIG. 1 is a schematic view of an embodiment showing a paraxial refractive power arrangement of the present invention, FIGS. 2 and 3 are lens sectional views of Numerical Embodiments 1 to 3 of the present invention, and FIGS. Are numerical examples 1 to 3 of the present invention.
FIG. 4 is a diagram of various aberrations of FIG. In the aberration diagram, (A) is at the wide-angle end,
(B) is an aberration diagram at an intermediate position, and (C) is an aberration diagram at a zoom position at a telephoto end. I, II, III, and IV in FIG. 1, FIG.
The first, second, third, and fourth lens units, d is a d-line, g is a g-line, ΔM is a meridional image plane, ΔS is a sagittal image plane, and SP is an aperture stop.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】物体側より順に正の屈折力の第1群、負の
屈折力の第2群、正の屈折力の第3群、そして正の屈折
力の第4群の4つのレンズ群を有し、該第1群を物体側
へ、該第2群を像面側へ移動させて広角端から望遠端へ
の変倍を行い、変倍に伴う像面変動を該第4群を移動さ
せて補正すると共に該第4群を移動させてフォーカスを
行い、該第3群中の少なくとも1つのレンズ面にレンズ
面中心から周辺部にいくに従い正の屈折力が減少する形
状の非球面を施しており、該第i群の焦点距離をfi、全
系の広角端における焦点距離をfw、ズーム比をz、該第
2群の望遠端における結像倍率をβ2Tとしたとき 0.9<|f2/fw|<1.35 2.0<f4/fw<3.1 なる条件を満足することを特徴とするリヤーフォーカス
式のズームレンズ。
1. A first lens unit having a positive refractive power, a second lens unit having a negative refractive power, a third lens unit having a positive refractive power, and a fourth lens unit having a positive refractive power. The first lens unit is moved to the object side, and the second lens unit is moved to the image plane side to perform zooming from the wide-angle end to the telephoto end. An aspheric surface having a shape in which positive refractive power decreases from the center of the lens surface toward the peripheral portion of at least one lens surface in the third group while correcting by moving and performing focusing by moving the fourth group. When the focal length of the i-th unit is fi, the focal length at the wide-angle end of the entire system is fw, the zoom ratio is z, and the imaging magnification at the telephoto end of the second unit is β2T, 0.9 <| f2 / fw | <1.35 A rear focus zoom lens that satisfies the condition 2.0 <f4 / fw <3.1.
JP1147595A 1989-06-09 1989-06-09 Rear focus zoom lens Expired - Fee Related JP2623835B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP1147595A JP2623835B2 (en) 1989-06-09 1989-06-09 Rear focus zoom lens
US07/534,241 US5134524A (en) 1989-06-09 1990-06-07 Rear focus type zoom lens
DE69023815T DE69023815T2 (en) 1989-06-09 1990-06-08 Rear focus type zoom lens.
EP90110914A EP0401862B1 (en) 1989-06-09 1990-06-08 Zoom lens of rear focus type

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1147595A JP2623835B2 (en) 1989-06-09 1989-06-09 Rear focus zoom lens

Publications (2)

Publication Number Publication Date
JPH0312621A JPH0312621A (en) 1991-01-21
JP2623835B2 true JP2623835B2 (en) 1997-06-25

Family

ID=15433904

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1147595A Expired - Fee Related JP2623835B2 (en) 1989-06-09 1989-06-09 Rear focus zoom lens

Country Status (1)

Country Link
JP (1) JP2623835B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3033274B2 (en) * 1991-09-12 2000-04-17 松下電器産業株式会社 Aspherical zoom lens and video camera using it
JP3033276B2 (en) * 1991-09-18 2000-04-17 松下電器産業株式会社 Wide-angle aspheric zoom lens
JP2000267006A (en) * 1999-03-18 2000-09-29 Fuji Photo Optical Co Ltd Rear focusing zoom lens
JP4865137B2 (en) * 2001-02-13 2012-02-01 キヤノン株式会社 Zoom lens and optical apparatus using the same
JP5906735B2 (en) 2011-12-28 2016-04-20 スズキ株式会社 Body rear structure

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4256381A (en) * 1980-01-31 1981-03-17 Vivitar Corporation Zoom lens
JPS575012A (en) * 1980-06-12 1982-01-11 Minolta Camera Co Ltd Four component zoom lens system
JPS57192918A (en) * 1981-05-25 1982-11-27 Konishiroku Photo Ind Co Ltd Compact zoom lens

Also Published As

Publication number Publication date
JPH0312621A (en) 1991-01-21

Similar Documents

Publication Publication Date Title
JP3109342B2 (en) Rear focus zoom lens
JP2988164B2 (en) Rear focus zoom lens
JP3352240B2 (en) High zoom ratio zoom lens
JP2876823B2 (en) Rear focus zoom lens
JPH06175024A (en) Rear-focusing type zoom lens
JPH05323194A (en) Rear focus type zoom lens
JP2629904B2 (en) Rear focus zoom lens
JP3363688B2 (en) Zoom lens
JP4533437B2 (en) Zoom lens
JP3144059B2 (en) Rear focus zoom lens
JPH04358108A (en) Rear focus type zoom lens
JP3097395B2 (en) Rear focus zoom lens
JP3376143B2 (en) Zoom lens
JPH05313066A (en) Zoom lens
JP2001091830A (en) Zoom lens
JP2917567B2 (en) Rear focus zoom lens
JP2623835B2 (en) Rear focus zoom lens
JP2623836B2 (en) Rear focus zoom lens
JP3063459B2 (en) Rear focus type zoom lens and camera using the same
JP3320396B2 (en) Rear focus type zoom lens and camera using the same
JPH07151972A (en) Rear focus type zoom lens
JP3376142B2 (en) Zoom lens
JPH05288991A (en) Rear focus type zoom lens
JP3019664B2 (en) Rear focus zoom lens
JPH09304697A (en) Zoom lens

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090411

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees