JPH09219449A - Manufacture of semiconductor device and semiconductor device - Google Patents

Manufacture of semiconductor device and semiconductor device

Info

Publication number
JPH09219449A
JPH09219449A JP2393296A JP2393296A JPH09219449A JP H09219449 A JPH09219449 A JP H09219449A JP 2393296 A JP2393296 A JP 2393296A JP 2393296 A JP2393296 A JP 2393296A JP H09219449 A JPH09219449 A JP H09219449A
Authority
JP
Japan
Prior art keywords
connection hole
material layer
contact hole
wiring material
interlayer insulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2393296A
Other languages
Japanese (ja)
Other versions
JP3624513B2 (en
Inventor
Kazuhide Koyama
一英 小山
Mitsuru Taguchi
充 田口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP02393296A priority Critical patent/JP3624513B2/en
Publication of JPH09219449A publication Critical patent/JPH09219449A/en
Application granted granted Critical
Publication of JP3624513B2 publication Critical patent/JP3624513B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To ensure stability of processes by forming the shape of a contact hole in burying a wiring material layer into the contact hole by high-pressure reflow so that an aperture width of an aperture shoulder portion of the contact hole is gradually reduced in the direction of depth. SOLUTION: In a first process, a part of an interlayer insulating film 13 is etched to form a contact hole 14 in the interlayer insulating film 13. Then, by sputter-etching the interlayer insulating film 13 from the surface thereof, an aperture shoulder portion B of the contact hole 14 is intensively removed by etching so as to increase the radius of curvature of the aperture shoulder portion B. In a second process, an underlaying metal film 15 is formed on the interlayer insulating film 13 including inner walls of the contact hole 14, and then a wiring material layer 16 is formed on the underlying metal layer 15 in such a manner as to close the contact hole 14. In a third process, a part of the wiring material layer 16 is pushed into the contact hole 14 so as to bury the wiring material layer 16 into the contact hole 14. In this case, since the aperture shoulder portion B of the contact hole 14 has a large radius of curvature and small frictional resistance, the substrate heating temperature for ensuring reflow characteristics and the pressure in a ref1ow atmosphere may be restrained to low levels.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、半導体装置の製造
方法に関し、特には高圧リフロー法によって接続孔内に
配線材料を埋め込む半導体装置及び半導体装置の製造方
法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a semiconductor device, and more particularly to a semiconductor device and a method for manufacturing a semiconductor device in which a wiring material is embedded in a connection hole by a high pressure reflow method.

【0002】[0002]

【従来の技術】半導体装置の高集積化及び高機能化にと
もなってデバイス構造の微細化が進展すると、層間絶縁
膜に形成されるコンタクトホールやヴィアホール等の接
続孔はその開口幅が狭くかつ深くなる。ところが、この
ようにアスペクト比が高くなった接続孔内に、スパッタ
成膜法によって配線材料層を埋め込もうとすると、シャ
ドウウイング効果の影響を受けて接続孔の底面に近い部
分のカバレッジが得られずこの接続部分で断線が生じる
という不具合が発生する。このため、半導体装置の製造
工程においては、上記スパッタ成膜法に代わる方法とし
て高圧リフロー法が行われている。
2. Description of the Related Art As device structures have become finer with higher integration and higher functionality of semiconductor devices, contact holes such as contact holes and via holes formed in an interlayer insulating film have a narrow opening width. Get deeper. However, if the wiring material layer is embedded in the contact hole having such a high aspect ratio by the sputter deposition method, the shadow wing effect affects the coverage of the portion close to the bottom surface of the contact hole. However, there is a problem that a disconnection occurs at this connecting portion. Therefore, in the manufacturing process of the semiconductor device, a high pressure reflow method is performed as an alternative method to the sputter film forming method.

【0003】以下に、上記高圧リフロー法を適用した半
導体装置の製造方法を説明する。先ず、図4(1)に示
すように、例えば基板11上に下層配線12を形成し、
この下層配線12を覆う状態で基板11上に層間絶縁膜
13を成膜する。リソグラフィー法によって形成したレ
ジストパターン(図示せず)をマスクに用いたエッチン
グによって、下層配線12に達する接続孔14を層間絶
縁膜13に形成する。次いで、図4(2)に示すよう
に、接続孔14の内壁を含む層間絶縁膜12上を覆う状
態で、スパッタ成膜法によって下地金属膜15を成膜す
る。その後、層間絶縁膜13上に配線材料層16をスパ
ッタ成膜する。この際、接続孔14の上部で配線材料層
16がブリッジ形状を成して接続孔14の開口が配線材
料層16で塞がれ、接続孔14の内部に空隙Aが形成さ
れるように配線材料層16を成膜する。
A method of manufacturing a semiconductor device to which the above high pressure reflow method is applied will be described below. First, as shown in FIG. 4A, for example, the lower layer wiring 12 is formed on the substrate 11,
An interlayer insulating film 13 is formed on the substrate 11 so as to cover the lower layer wiring 12. By using a resist pattern (not shown) formed by the lithography method as a mask, etching is performed to form a connection hole 14 reaching the lower layer wiring 12 in the interlayer insulating film 13. Next, as shown in FIG. 4B, a base metal film 15 is formed by a sputter film formation method while covering the interlayer insulating film 12 including the inner wall of the connection hole 14. After that, the wiring material layer 16 is formed on the interlayer insulating film 13 by sputtering. At this time, the wiring material layer 16 forms a bridge shape above the connection hole 14, the opening of the connection hole 14 is closed by the wiring material layer 16, and the wiring A is formed inside the connection hole 14. The material layer 16 is formed.

【0004】次に、図4(3)に示すように、配線材料
層16を再結晶温度以上融点以下に加熱して軟化させる
と共に不活性ガスで満たされた高圧雰囲気によってこの
配線材料層16の一部を接続孔14内に押し込む、いわ
ゆる高圧リフロー法によって接続孔14内を配線材料層
16で埋め込む。
Next, as shown in FIG. 4C, the wiring material layer 16 is heated to a temperature not lower than the recrystallization temperature and not higher than the melting point to be softened, and the wiring material layer 16 is heated by a high pressure atmosphere filled with an inert gas. The wiring material layer 16 fills the inside of the connection hole 14 by a so-called high-pressure reflow method in which a part of the connection material is pushed into the connection hole 14.

【0005】[0005]

【発明が解決しようとする課題】しかし、上記半導体装
置の製造方法には、以下のような課題があった。すなわ
ち、図4(1)で示した層間絶縁膜13のエッチングに
よって形成される接続孔14は、その側壁と層間絶縁膜
13の表面とで構成される開口肩部Bがほぼ垂直にな
る。そして、図4(2)で示したように、このような接
続孔14の内壁を覆う様態で下地金属膜15をスパッタ
成膜すると、シャドウウイング効果によって接続孔14
の開口肩部Bを覆う下地金属膜15部分が接続孔14の
側壁を覆う部分よりも内側に張り出した形状になる。こ
のため、図4(3)に示したように、高圧リフローによ
って接続孔14内に配線材料層16を押し込む際、この
開口肩部Bでの摩擦が大きくなる。このような場合に、
配線材料層16の埋め込み特性を確保するためには、よ
り高温かつ高圧でのリフローを行う必要がある。例えば
Al(アルミニウム)を主成分とする配線材料層16の
場合には、リフロー温度を450℃以上,リフロー雰囲
気内圧力を106 Pa以上にする必要がある。この結
果、処理装置が大掛かりになったり、高温で処理する際
に層間絶縁膜13から脱ガスが発生してプロセスの安定
性が損なわれるという問題があった。
However, the above-mentioned method of manufacturing a semiconductor device has the following problems. That is, in the connection hole 14 formed by etching the interlayer insulating film 13 shown in FIG. 4A, the opening shoulder B formed by the side wall and the surface of the interlayer insulating film 13 is substantially vertical. Then, as shown in FIG. 4B, when the underlying metal film 15 is formed by sputtering so as to cover the inner wall of the connection hole 14, the connection hole 14 is formed by the shadow wing effect.
The portion of the underlying metal film 15 that covers the opening shoulder portion B of FIG. 2 has a shape that is projected more inward than the portion that covers the sidewall of the connection hole 14. Therefore, as shown in FIG. 4C, when the wiring material layer 16 is pushed into the connection hole 14 by the high pressure reflow, the friction at the opening shoulder B becomes large. In such a case,
In order to secure the filling characteristics of the wiring material layer 16, it is necessary to perform reflow at a higher temperature and a higher pressure. For example, in the case of the wiring material layer 16 containing Al (aluminum) as a main component, it is necessary to set the reflow temperature to 450 ° C. or higher and the reflow atmosphere pressure to 10 6 Pa or higher. As a result, there is a problem in that the processing apparatus becomes large-scaled, or degassing occurs from the interlayer insulating film 13 during processing at a high temperature, and the stability of the process is impaired.

【0006】[0006]

【課題を解決するための手段】そこで本発明は、高圧リ
フローによって接続孔内に配線材料層を埋め込む半導体
装置の製造方法において、開口肩部の開口幅が深さ方向
に向かって徐々に小さくなる形状の接続孔を基板上の層
間絶縁膜に形成するか、または、接続孔の内壁を含む上
記層間絶縁膜上に当該接続孔の開口肩部の開口幅を深さ
方向に向かって徐々に小さくする状態で下地金属膜を成
膜することを上記課題を解決するための手段としてい
る。
Therefore, according to the present invention, in a method of manufacturing a semiconductor device in which a wiring material layer is embedded in a connection hole by high-pressure reflow, the opening width of an opening shoulder portion gradually decreases in the depth direction. Forming a connection hole in a shape in the interlayer insulating film on the substrate, or gradually decreasing the opening width of the opening shoulder portion of the connection hole in the depth direction on the interlayer insulating film including the inner wall of the connection hole. Forming the underlying metal film in this state is used as a means for solving the above problems.

【0007】上記製造方法では、高圧リフローによって
接続孔内に配線材料層を埋め込む際の当該接続孔の形状
は、その開口肩部の開口幅が深さ方向に向かって徐々に
小さくなっているため、当該開口肩部における摩擦抵抗
が少なくなる。したがって、高圧リフローの際の基板温
度及び圧力をより低い値に設定して配線材料層の埋め込
みが行われる。
In the above manufacturing method, when the wiring material layer is embedded in the connection hole by high pressure reflow, the shape of the connection hole is such that the opening width of the opening shoulder portion becomes gradually smaller in the depth direction. The frictional resistance at the opening shoulder is reduced. Therefore, the wiring material layer is embedded by setting the substrate temperature and the pressure during the high pressure reflow to lower values.

【0008】[0008]

【発明の実施の形態】以下、本発明の半導体装置の製造
方法及び半導体装置を、図面に基づいて説明する。図1
(1)〜(3)は、本発明の半導体装置の製造方法の一
例を説明する製造工程図であり、これらの図を用いて半
導体装置の製造方法の第1実施形態を説明する。先ず、
図1(1)に示す第1工程では、例えばシリコンからな
る基板11上に下層配線(配線)12を形成する。次
に、この下層配線12を覆う状態で、基板11上に酸化
シリコンからなる層間絶縁膜13を成膜する。その後、
リソグラフィー法及びエッチング法によって、下層配線
12にまで達する接続孔14を層間絶縁膜13に形成す
る。一例として、この接続孔14の開口幅は0.35μ
m,アスペクト比は2程度であることとする。
BEST MODE FOR CARRYING OUT THE INVENTION A semiconductor device manufacturing method and a semiconductor device according to the present invention will be described below with reference to the drawings. FIG.
(1) to (3) are manufacturing process diagrams illustrating an example of a method for manufacturing a semiconductor device according to the present invention, and the first embodiment of the method for manufacturing a semiconductor device will be described with reference to these drawings. First,
In the first step shown in FIG. 1A, a lower layer wiring (wiring) 12 is formed on a substrate 11 made of, for example, silicon. Next, an interlayer insulating film 13 made of silicon oxide is formed on the substrate 11 in a state of covering the lower layer wiring 12. afterwards,
A contact hole 14 reaching the lower wiring 12 is formed in the interlayer insulating film 13 by the lithography method and the etching method. As an example, the opening width of the connection hole 14 is 0.35 μm.
m, the aspect ratio is about 2.

【0009】以上の工程までを従来と同様に行った後、
層間絶縁膜13の表面をスパッタエッチングし、接続孔
14の開口肩部Bの層間絶縁膜13部分を集中的にエッ
チング除去する。これによって、接続孔14の開口肩部
Bの曲率半径を大きくし、当該接続孔14の上部におい
ては開口幅が深さ方向に向かって徐々に小さくなるよう
にする。また、このスパッタエッチングでは、接続孔1
4底面のエッチクリーニングも同時に行われる。
After performing the above steps in the same manner as in the conventional method,
The surface of the interlayer insulating film 13 is sputter-etched, and the interlayer insulating film 13 portion of the opening shoulder B of the connection hole 14 is intensively removed by etching. As a result, the radius of curvature of the opening shoulder portion B of the connection hole 14 is increased, and the opening width in the upper portion of the connection hole 14 is gradually reduced in the depth direction. Also, in this sputter etching, the connection hole 1
Etching cleaning of the 4 bottom surface is also performed at the same time.

【0010】以下に、上記スパッタエッチング条件の一
例を示す。 スパッタガス及び流量 :Ar(アルゴンガス)=100sccm ただし、sccmはstandard cubic centimeter /minとする。 エッチング雰囲気内圧力:0.4Pa RF電圧 :1kV 基板加熱温度 :300℃ エッチング時間 :3min
An example of the sputter etching conditions will be shown below. Sputtering gas and flow rate: Ar (argon gas) = 100 sccm where sccm is standard cubic centimeter / min. Pressure in etching atmosphere: 0.4 Pa RF voltage: 1 kV Substrate heating temperature: 300 ° C. Etching time: 3 min

【0011】次に、図1(2)に示す第2工程では、接
続孔14の内壁を含む層間絶縁膜13上にトレスマイグ
レーションによる断線不良防止及び濡れ性改善用の下地
金属膜15を成膜する。この下地金属膜15の一例とし
ては、Ti20nm、TiN50nmを下層から順に積
層させた構成にする。
Next, in a second step shown in FIG. 1B, a base metal film 15 is formed on the interlayer insulating film 13 including the inner wall of the connection hole 14 for preventing disconnection defects due to tres migration and improving wettability. To do. As an example of the base metal film 15, a structure in which Ti 20 nm and TiN 50 nm are sequentially stacked from the lower layer is used.

【0012】以下に、下地金属膜15の成膜条件の一例
を示す。 Ti成膜条件 スパッタガス及び流量:Ar=100sccm 成膜雰囲気内圧力 :0.4Pa DC電力 :5kW 基板加熱温度 :300℃ TiN成膜条件 スパッタガス及び流量:Ar =30sccm N2 (窒素ガス)=80sccm 成膜雰囲気内圧力 :0.4Pa DC電力 :5kW 基板加熱温度 :300℃
An example of film forming conditions for the base metal film 15 is shown below. Ti film forming condition Sputtering gas and flow rate: Ar = 100 sccm Film forming atmosphere pressure: 0.4 Pa DC power: 5 kW Substrate heating temperature: 300 ° C. TiN film forming condition Sputtering gas and flow rate: Ar = 30 sccm N 2 (nitrogen gas) = 80 sccm Pressure in film forming atmosphere: 0.4 Pa DC power: 5 kW Substrate heating temperature: 300 ° C.

【0013】尚、下地金属膜15として用いる材料は上
記に限定されず、TiW(チタン−タングステン),W
(タングステン)等のように、信頼性上の冗長効果と次
に成膜する配線材料層16に対する濡れ性とを有する材
料であれば適用可能である。
The material used for the underlying metal film 15 is not limited to the above, but may be TiW (titanium-tungsten), W.
Any material such as (tungsten) that has a redundancy effect on reliability and wettability with respect to the wiring material layer 16 to be formed next is applicable.

【0014】次いで、下地金属膜15上に配線材料層1
6をスパッタ成膜する。この際、接続孔15上で配線材
料層16がブリッジ形状を成すことによって接続孔14
内を当該配線材料層16で塞ぎ、接続孔14の内部に空
隙Aが形成されるように、少なくとも接続孔14の開口
幅よりも配線材料層16の膜厚の値を大きく、例えば
0.5μm程度の膜厚に設定する。またここでは、この
配線材料層16として、例えば0.5重量%のCu
(銅)を含有するAlを用いる。この配線材料層17と
しては、上記の他にもAlまたはAlを主成分とする通
常の配線材料やCuまたはCuを主成分とする配線材料
が用いられる。また、上記Cuを含有するAlを用いる
場合にも、Cuの含有量は上記に限定されるものではな
い。
Next, the wiring material layer 1 is formed on the underlying metal film 15.
6 is deposited by sputtering. At this time, the wiring material layer 16 forms a bridge shape on the connection hole 15 so that the connection hole 14
The thickness of the wiring material layer 16 is larger than at least the opening width of the connection hole 14 so that the inside is closed with the wiring material layer 16 and the void A is formed inside the connection hole 14, for example, 0.5 μm. Set the film thickness to about the same. Further, here, as the wiring material layer 16, for example, 0.5 wt% of Cu is used.
Al containing (copper) is used. As the wiring material layer 17, in addition to the above, a normal wiring material containing Al or Al as a main component, or Cu or a wiring material containing Cu as a main component is used. Also, when using the above-mentioned Al containing Cu, the content of Cu is not limited to the above.

【0015】以下に、上記成膜条件の一例を示す。 スパッタガス及び流量:Ar=100sccm 成膜雰囲気内圧力 :0.4Pa DC電力 :20kW 基板加熱温度 :400℃ 尚、上記スパッタ成膜においては、基板加熱温度を40
0℃と高めに設定することで、接続孔14の上部で配線
材料層16がブリッジ形状になり易いようにしている。
An example of the above film forming conditions is shown below. Sputtering gas and flow rate: Ar = 100 sccm Pressure in film forming atmosphere: 0.4 Pa DC power: 20 kW Substrate heating temperature: 400 ° C. In the above sputter deposition, the substrate heating temperature is 40
By setting the temperature as high as 0 ° C., the wiring material layer 16 is likely to have a bridge shape above the connection hole 14.

【0016】次に、第3工程では、図1(3)に示すよ
うに高圧力の不活性ガス雰囲気内で熱処理を行うことに
よって、酸化を防止しながら流動化させた配線材料層1
6の一部を不活性ガス雰囲気の高圧で接続孔14内に押
し込む、いわゆる高圧リフロー処理を行う。以下に、上
記高圧リフロー条件の一例を示す。 リフロー雰囲気内圧力:104 Pa以上(Ar雰囲気内) 基板加熱温度 :420℃ 加熱時間 :1分
Next, in the third step, as shown in FIG. 1C, heat treatment is performed in an inert gas atmosphere at a high pressure to fluidize the wiring material layer 1 while preventing oxidation.
A so-called high-pressure reflow treatment is performed in which a part of 6 is pushed into the connection hole 14 at a high pressure in an inert gas atmosphere. An example of the high pressure reflow conditions will be shown below. Reflow atmosphere pressure: 10 4 Pa or more (Ar atmosphere) Substrate heating temperature: 420 ° C. Heating time: 1 minute

【0017】上記半導体装置の製造方法によれば、図1
(1)を用いて説明した第1工程で、層間絶縁膜13の
スパッタエッチングによって接続孔14の開口肩部Bの
開口幅が深さ方向に向かって徐々に小さくなるようにし
た。このため、図1(2)を用いて説明した第2工程で
下地金属膜15をスパッタ成膜する際、シャドウウイン
グ効果が起きにくくなり、接続孔14の開口肩部B上に
おける下地金属膜15の膜厚が特に厚くなることはな
い。したがって、図1(3)を用いて説明した第3工程
で高圧リフローを行う際の接続孔14は、その開口肩部
Bの開口幅が深さ方向に向かって徐々に小さくなる形状
に保たれ、当該開口肩部Bにおける摩擦抵抗が少なくな
る。したがって、高圧リフローの際には、基板加熱温度
を従来の450℃から420℃に、リフロー雰囲気内圧
力の下限を106 Paから104 Paに低下させること
ができる。また、接続孔14は、その開口肩部Bのみが
丸みを持って形成されることから、接続孔の側壁をテー
パー形状に形成した場合のように、上部の開口幅が広く
なりすぎて配線材料層がブリッジ形状になり難くなるこ
ともない。
According to the method of manufacturing a semiconductor device described above, FIG.
In the first step described using (1), the opening width of the opening shoulder portion B of the connection hole 14 is gradually reduced in the depth direction by the sputter etching of the interlayer insulating film 13. Therefore, when the underlying metal film 15 is formed by sputtering in the second step described with reference to FIG. 1B, the shadow wing effect is less likely to occur, and the underlying metal film 15 on the opening shoulder B of the connection hole 14 is less likely to occur. Does not become particularly thick. Therefore, when the high pressure reflow is performed in the third step described with reference to FIG. 1C, the connection hole 14 is maintained in a shape in which the opening width of the opening shoulder portion B gradually decreases in the depth direction. The frictional resistance at the opening shoulder B is reduced. Therefore, during high pressure reflow, the substrate heating temperature can be lowered from the conventional 450 ° C. to 420 ° C., and the lower limit of the internal pressure of the reflow atmosphere can be lowered from 10 6 Pa to 10 4 Pa. Further, since only the opening shoulder B of the connection hole 14 is formed to have a round shape, the opening width of the upper portion becomes too wide as in the case where the side wall of the connection hole is formed into a tapered shape, and the wiring material is formed. The layers do not easily become bridge-shaped.

【0018】尚、上記高圧リフローの際の基板加熱温度
は、リフロー雰囲気内の圧力の下限を上記実施形態より
も高めに設定することで配線材料層16の再結晶温度
(ここでは、350℃)にまで下げることが可能であ
る。ただし、好ましくは、配線材料層16の成膜温度
(この実施形態では400℃)よりも高い温度範囲に設
定するようにする。
The substrate heating temperature at the time of the high pressure reflow is set at a lower limit of the pressure in the reflow atmosphere to be higher than that in the above embodiment, so that the recrystallization temperature of the wiring material layer 16 (here, 350 ° C.). It is possible to lower it to. However, preferably, the temperature is set to a temperature range higher than the film formation temperature of the wiring material layer 16 (400 ° C. in this embodiment).

【0019】次に、図2を用いて本発明の半導体装置の
第2実施形態を説明する。先ず、図2(1)に示す第1
工程では、上記第1実施形態で図1(1)を用いて説明
したと同様に層間絶縁膜13に接続孔14を形成する。
ただしここでは、層間絶縁膜13を表面からスパッタエ
ッチングする工程は行わない。次いで、接続孔14の底
面のエッチクリーニングを行った後、図2(2)に示す
第2工程では、接続孔14の内壁を含む層間絶縁膜13
上に、上記第1実施形態と同様の材質からなる下地金属
膜15を成膜する。ただし、この下地金属膜15の成膜
は、基板加熱温度を350℃〜550℃の範囲内に設定
した高温スパッタ法によって行われることとする。この
基板加熱温度は、上記範囲内において、使用する材料や
プロセスへの適用性を考慮し、好ましくは下層配線12
の信頼性が確保され、基板11を構成するシリコンのシ
リサイド化を防止できる値に設定する。
Next, a second embodiment of the semiconductor device of the present invention will be described with reference to FIG. First, the first shown in FIG.
In the step, the connection hole 14 is formed in the interlayer insulating film 13 in the same manner as described with reference to FIG. 1A in the first embodiment.
However, here, the step of sputter etching the interlayer insulating film 13 from the surface is not performed. Next, after performing etching cleaning on the bottom surface of the connection hole 14, in a second step shown in FIG. 2B, the interlayer insulating film 13 including the inner wall of the connection hole 14 is formed.
A base metal film 15 made of the same material as that of the first embodiment is formed on top. However, the base metal film 15 is formed by the high temperature sputtering method in which the substrate heating temperature is set in the range of 350 ° C to 550 ° C. The substrate heating temperature is preferably within the above range, considering the applicability to the material used and the process, and is preferably lower layer wiring 12
Is set to a value that ensures the reliability of the above and prevents the silicon forming the substrate 11 from being silicidized.

【0020】以下に、高温スパッタ成膜による下地金属
膜15の成膜条件の一例を示す。 以下の工程は、上記第1実施形態と同様に行う。
An example of film forming conditions for the base metal film 15 by high temperature sputtering film formation will be shown below. The following steps are performed in the same manner as the first embodiment.

【0021】上記半導体装置の製造方法によれば、図2
(2)を用いて説明した第2工程で、高温スパッタ法に
よって下地金属膜15を成膜することから、下地金属膜
15は、成膜表面において成膜材料をマイグレートさせ
ながら成膜したものになる。このため、通常のスパッタ
法によって下地金属膜を成膜する場合と比較して、接続
孔14の開口肩部B上を覆う下地金属膜15部分は、そ
の曲率半径が大きく、接続孔14の開口肩部Bの開口幅
を深さ方向に向かって徐々に小さくする形状になる。し
たがって、上記第1実施形態と同様に、図2(3)を用
いて説明される第3工程では、配線材料層16を高圧リ
フロー処理する際に当該開口肩部Bにおける摩擦抵抗が
少なくなり、基板加熱温度及びリフロー雰囲気内圧力の
下限を低下させることができる。
According to the method of manufacturing a semiconductor device described above, FIG.
In the second step described using (2), since the underlying metal film 15 is formed by the high temperature sputtering method, the underlying metal film 15 is formed while migrating the film forming material on the film formation surface. become. Therefore, as compared with the case where the base metal film is formed by the normal sputtering method, the base metal film 15 portion covering the opening shoulder portion B of the connection hole 14 has a large radius of curvature, and the opening of the connection hole 14 is large. The shape is such that the opening width of the shoulder B is gradually reduced in the depth direction. Therefore, similar to the first embodiment, in the third step described with reference to FIG. 2C, the frictional resistance in the opening shoulder B is reduced when the wiring material layer 16 is subjected to the high pressure reflow treatment, It is possible to lower the lower limits of the substrate heating temperature and the pressure in the reflow atmosphere.

【0022】次に、図3を用いて本発明の半導体装置の
第3実施形態を説明する。ここで説明する半導体装置の
製造方法と上記第2実施形態で説明した方法との違い
は、図3(2)で示した第2工程で下地金属膜15を成
膜する際、バイアススパッタ法によって行う点にある。
そして、この工程以外は、上記第2実施形態と同様に行
う。
Next, a third embodiment of the semiconductor device of the present invention will be described with reference to FIG. The difference between the method of manufacturing the semiconductor device described here and the method described in the second embodiment is that when the base metal film 15 is formed in the second step shown in FIG. There is a point to do.
Then, except for this step, it is performed in the same manner as the second embodiment.

【0023】以下に、バイアススパッタ成膜による下地
金属膜15の成膜条件の一例を示す。
An example of film forming conditions for the base metal film 15 by bias sputtering film formation is shown below.

【0024】上記スパッタ成膜法では、DC電圧が印加
された基板11に向かって入射するArイオンによって
特に接続孔14の開口肩部Bに付着した下地金属膜材料
を再スパッタしながら成膜が進行する。このため、ここ
で成膜された下地金属膜15は、通常のスパッタ法で成
膜した下地金属膜と比較して、接続孔14の開口肩部B
上を覆う下地金属膜15部分の曲率半径が大きくなり、
接続孔14の開口幅を深さ方向に向かって徐々に小さく
する形状になる。したがって、上記第1及び第2実施形
態と同様に、図3(3)を用いて説明される第3工程で
は、配線材料層16の高圧リフロー処理を行う際に接続
孔14の開口肩部Bにおける摩擦抵抗が少なくなり、基
板加熱温度及びリフロー雰囲気内圧力の下限を低下させ
ることができる。
In the above-mentioned sputtering film formation method, film formation is performed while re-sputtering the underlying metal film material adhered particularly to the opening shoulder portion B of the connection hole 14 by Ar ions incident on the substrate 11 to which a DC voltage is applied. proceed. Therefore, the base metal film 15 formed here is compared with the base metal film formed by the normal sputtering method in the opening shoulder portion B of the connection hole 14.
The radius of curvature of the portion of the underlying metal film 15 that covers the upper portion increases,
The shape is such that the opening width of the connection hole 14 is gradually reduced in the depth direction. Therefore, as in the first and second embodiments, in the third step described with reference to FIG. 3C, the opening shoulder portion B of the connection hole 14 is subjected to the high pressure reflow treatment of the wiring material layer 16. And the lower limit of the substrate heating temperature and the reflow atmosphere internal pressure can be lowered.

【0025】以上説明した各実施形態は、第1実施形態
と第2実施形態及び第3実施形態のうちの少なくともい
づれか一つの実施形態とを組み合わせたり、第2実施形
態と第3実施形態とを組み合わせて実施することも可能
である。このように、各実施形態を組み合わせて実施さ
れる方法によれば、上記各実施形態を単独で実施する場
合よりも接続孔の開口肩部の曲率半径がさらに大きくな
り、高圧リフロー処理の際の基板加熱温度及びリフロー
雰囲気内圧力の下限をさらに低下させることができる。
また、接続孔14は基板11の表面側に形成された拡散
層に達するものでも良い。ただしこの場合、基板と配線
材料層とのバリア性を確保するため、拡散層をバリアメ
タルで覆うか、または下地金属膜としてバリア性を有す
る材料を用いることとする。
Each of the embodiments described above is a combination of the first embodiment and at least one of the second embodiment and the third embodiment, or the second embodiment and the third embodiment. It is also possible to carry out in combination. As described above, according to the method implemented by combining the embodiments, the radius of curvature of the opening shoulder portion of the connection hole is further increased as compared with the case where the above embodiments are implemented alone, and the high pressure reflow process is performed. The lower limits of the substrate heating temperature and the pressure in the reflow atmosphere can be further reduced.
Further, the connection hole 14 may reach the diffusion layer formed on the front surface side of the substrate 11. However, in this case, in order to secure the barrier property between the substrate and the wiring material layer, the diffusion layer is covered with a barrier metal, or a material having a barrier property is used as the base metal film.

【0026】[0026]

【発明の効果】以上説明したように本発明の半導体装置
の製造方法によれば、高圧リフローによって接続孔内に
配線材料層を埋め込む際の当該接続孔の形状を、その開
口肩部の開口幅が深さ方向に向かって徐々に小さくなる
ようにすることで、当該開口肩部における摩擦抵抗を少
なくし、高圧リフローの際の基板温度及び圧力をより低
い値に設定して配線材料層の埋め込みを行なうことがで
きる。したがって、半導体装置の製造装置の小規模化及
びプロセスの安定性を確保することが可能になる。
As described above, according to the method of manufacturing a semiconductor device of the present invention, the shape of the connection hole when the wiring material layer is embedded in the connection hole by the high pressure reflow is changed to the opening width of the opening shoulder portion. By gradually decreasing in the depth direction, the frictional resistance at the opening shoulder is reduced, and the substrate temperature and pressure during high-pressure reflow are set to lower values to embed the wiring material layer. Can be done. Therefore, it is possible to reduce the size of the semiconductor device manufacturing apparatus and ensure process stability.

【図面の簡単な説明】[Brief description of drawings]

【図1】第1実施形態を説明する製造工程図である。FIG. 1 is a manufacturing process diagram illustrating a first embodiment.

【図2】第2実施形態を説明する断面図である。FIG. 2 is a cross-sectional view illustrating a second embodiment.

【図3】第3実施形態を説明する断面図である。FIG. 3 is a cross-sectional view illustrating a third embodiment.

【図4】従来例を説明する製造工程図である。FIG. 4 is a manufacturing process diagram illustrating a conventional example.

【符号の説明】[Explanation of symbols]

13 層間絶縁膜 14 接続孔 15 下地金属
膜 16 配線材料層 B 開口肩部
13 Interlayer Insulating Film 14 Connection Hole 15 Base Metal Film 16 Wiring Material Layer B Opening Shoulder

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 接続孔が形成された層間絶縁膜上に当該
接続孔内を塞ぐ状態で配線材料層を成膜し、高圧リフロ
ーによって前記配線材料層の一部を前記接続孔内に押し
込む半導体装置の製造方法において、 前記接続孔は、その開口肩部の開口幅が深さ方向に向か
って徐々に小さくなる形状に形成されることを特徴とす
る半導体装置の製造方法。
1. A semiconductor in which a wiring material layer is formed on an interlayer insulating film in which a connection hole is formed so as to close the inside of the connection hole, and a part of the wiring material layer is pressed into the connection hole by high pressure reflow. The method of manufacturing a semiconductor device according to claim 1, wherein the connection hole is formed in a shape in which an opening width of an opening shoulder portion thereof gradually decreases in a depth direction.
【請求項2】 請求項1記載の半導体装置の製造方法に
おいて、 前記接続孔は、前記層間絶縁膜の一部をエッチングによ
って略垂直方向にエッチング除去した後、当該層間絶縁
膜の表面をスパッタエッチングすることによって形成さ
れることを特徴とする半導体装置の製造方法。
2. The method of manufacturing a semiconductor device according to claim 1, wherein the connection hole is formed by etching a portion of the interlayer insulating film in a substantially vertical direction by etching, and thereafter, the surface of the interlayer insulating film is sputter-etched. A method of manufacturing a semiconductor device, which is formed by:
【請求項3】 層間絶縁膜に形成された接続孔の内壁を
含む当該層間絶縁膜上に下地金属膜を成膜し、次いで当
該下地金属膜上に前記接続孔内を塞ぐ状態で配線材料層
を成膜した後、高圧リフローによって前記配線材料層の
一部を前記接続孔内に押し込む半導体装置の製造方法に
おいて、 前記下地金属膜は、前記接続孔の開口肩部の開口幅を深
さ方向に向かって徐々に小さくする形状に形成されるこ
とを特徴とする半導体装置。
3. A wiring material layer, in which a base metal film is formed on the interlayer insulating film including an inner wall of a connection hole formed in the interlayer insulating film, and then the connection hole is closed on the base metal film. In the method for manufacturing a semiconductor device in which a part of the wiring material layer is pressed into the connection hole by high-pressure reflow after forming a film, the base metal film has an opening width of an opening shoulder portion of the connection hole in a depth direction. A semiconductor device characterized in that the semiconductor device is formed in a shape that gradually decreases toward the front.
【請求項4】 請求項3記載の半導体装置の製造方法に
おいて、 前記下地金属膜は、高温スパッタ法によって成膜される
ことを特徴とする半導体装置の製造方法。
4. The method of manufacturing a semiconductor device according to claim 3, wherein the base metal film is formed by a high temperature sputtering method.
【請求項5】 請求項3記載の半導体装置の製造方法に
おいて、 前記下地金属膜は、バイアススパッタ法によって成膜さ
れること特徴とする半導体装置の製造方法。
5. The method of manufacturing a semiconductor device according to claim 3, wherein the base metal film is formed by a bias sputtering method.
JP02393296A 1996-02-09 1996-02-09 Manufacturing method of semiconductor device Expired - Fee Related JP3624513B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02393296A JP3624513B2 (en) 1996-02-09 1996-02-09 Manufacturing method of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02393296A JP3624513B2 (en) 1996-02-09 1996-02-09 Manufacturing method of semiconductor device

Publications (2)

Publication Number Publication Date
JPH09219449A true JPH09219449A (en) 1997-08-19
JP3624513B2 JP3624513B2 (en) 2005-03-02

Family

ID=12124312

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02393296A Expired - Fee Related JP3624513B2 (en) 1996-02-09 1996-02-09 Manufacturing method of semiconductor device

Country Status (1)

Country Link
JP (1) JP3624513B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009164510A (en) * 2008-01-10 2009-07-23 Renesas Technology Corp Semiconductor device and manufacturing method of same
US7812447B2 (en) * 2000-02-16 2010-10-12 Micron Technology, Inc. Wafer level pre-packaged flip chip

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7812447B2 (en) * 2000-02-16 2010-10-12 Micron Technology, Inc. Wafer level pre-packaged flip chip
JP2009164510A (en) * 2008-01-10 2009-07-23 Renesas Technology Corp Semiconductor device and manufacturing method of same

Also Published As

Publication number Publication date
JP3624513B2 (en) 2005-03-02

Similar Documents

Publication Publication Date Title
JP2003142484A (en) Method of manufacturing semiconductor device
US5985751A (en) Process for fabricating interconnection of semiconductor device
US5960314A (en) Semiconductor processing method of providing an electrically conductive interconnecting plug between an elevationally conductive node and an elevationally outer electrically conductive node
JPH04307933A (en) Forming method of tungsten plug
JPH10294365A (en) Semiconductor device and manufacture thereof
JPS63244858A (en) Formation of metallic wiring
US5904561A (en) Method for forming a barrier metal film with conformal step coverage in a semiconductor intergrated circuit
US6355554B1 (en) Methods of forming filled interconnections in microelectronic devices
US6682999B1 (en) Semiconductor device having multilevel interconnections and method of manufacture thereof
JP3133842B2 (en) Method of manufacturing multilayer wiring structure
JP3624513B2 (en) Manufacturing method of semiconductor device
JPH10163207A (en) Formation of wiring
JPH08139190A (en) Manufacture of semiconductor device
JPH05299397A (en) Forming method for metal plug
JP2697796B2 (en) Method for manufacturing semiconductor device
JP3087692B2 (en) Method for manufacturing semiconductor device
JPH10209276A (en) Wiring forming method
JP3183341B2 (en) Method for manufacturing semiconductor device
JP3407516B2 (en) Semiconductor device and manufacturing method thereof
JP2000216239A (en) Method for forming copper internal connection
JPH1050835A (en) Semiconductor device and manufacture thereof
JPH11265934A (en) Forming method of connecting part
JPH04298029A (en) Method of manufacturing semiconductor device
JP2904165B2 (en) Method for manufacturing semiconductor device
JP4967207B2 (en) Manufacturing method of semiconductor device

Legal Events

Date Code Title Description
A977 Report on retrieval

Effective date: 20040309

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040316

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040514

A02 Decision of refusal

Effective date: 20040824

Free format text: JAPANESE INTERMEDIATE CODE: A02

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040924

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20041018

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041122

LAPS Cancellation because of no payment of annual fees