JP3624513B2 - Manufacturing method of semiconductor device - Google Patents

Manufacturing method of semiconductor device Download PDF

Info

Publication number
JP3624513B2
JP3624513B2 JP02393296A JP2393296A JP3624513B2 JP 3624513 B2 JP3624513 B2 JP 3624513B2 JP 02393296 A JP02393296 A JP 02393296A JP 2393296 A JP2393296 A JP 2393296A JP 3624513 B2 JP3624513 B2 JP 3624513B2
Authority
JP
Japan
Prior art keywords
connection hole
material layer
semiconductor device
wiring material
base metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP02393296A
Other languages
Japanese (ja)
Other versions
JPH09219449A (en
Inventor
一英 小山
充 田口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP02393296A priority Critical patent/JP3624513B2/en
Publication of JPH09219449A publication Critical patent/JPH09219449A/en
Application granted granted Critical
Publication of JP3624513B2 publication Critical patent/JP3624513B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Electrodes Of Semiconductors (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、半導体装置の製造方法に関し、特には高圧リフロー法によって接続孔内に配線材料を埋め込む半導体装置及び半導体装置の製造方法に関する。
【0002】
【従来の技術】
半導体装置の高集積化及び高機能化にともなってデバイス構造の微細化が進展すると、層間絶縁膜に形成されるコンタクトホールやヴィアホール等の接続孔はその開口幅が狭くかつ深くなる。ところが、このようにアスペクト比が高くなった接続孔内に、スパッタ成膜法によって配線材料層を埋め込もうとすると、シャドウウイング効果の影響を受けて接続孔の底面に近い部分のカバレッジが得られずこの接続部分で断線が生じるという不具合が発生する。このため、半導体装置の製造工程においては、上記スパッタ成膜法に代わる方法として高圧リフロー法が行われている。
【0003】
以下に、上記高圧リフロー法を適用した半導体装置の製造方法を説明する。
先ず、図4(1)に示すように、例えば基板11上に下層配線12を形成し、この下層配線12を覆う状態で基板11上に層間絶縁膜13を成膜する。リソグラフィー法によって形成したレジストパターン(図示せず)をマスクに用いたエッチングによって、下層配線12に達する接続孔14を層間絶縁膜13に形成する。次いで、図4(2)に示すように、接続孔14の内壁を含む層間絶縁膜12上を覆う状態で、スパッタ成膜法によって下地金属膜15を成膜する。その後、層間絶縁膜13上に配線材料層16をスパッタ成膜する。この際、接続孔14の上部で配線材料層16がブリッジ形状を成して接続孔14の開口が配線材料層16で塞がれ、接続孔14の内部に空隙Aが形成されるように配線材料層16を成膜する。
【0004】
次に、図4(3)に示すように、配線材料層16を再結晶温度以上融点以下に加熱して軟化させると共に不活性ガスで満たされた高圧雰囲気によってこの配線材料層16の一部を接続孔14内に押し込む、いわゆる高圧リフロー法によって接続孔14内を配線材料層16で埋め込む。
【0005】
【発明が解決しようとする課題】
しかし、上記半導体装置の製造方法には、以下のような課題があった。すなわち、図4(1)で示した層間絶縁膜13のエッチングによって形成される接続孔14は、その側壁と層間絶縁膜13の表面とで構成される開口肩部Bがほぼ垂直になる。そして、図4(2)で示したように、このような接続孔14の内壁を覆う様態で下地金属膜15をスパッタ成膜すると、シャドウウイング効果によって接続孔14の開口肩部Bを覆う下地金属膜15部分が接続孔14の側壁を覆う部分よりも内側に張り出した形状になる。このため、図4(3)に示したように、高圧リフローによって接続孔14内に配線材料層16を押し込む際、この開口肩部Bでの摩擦が大きくなる。このような場合に、配線材料層16の埋め込み特性を確保するためには、より高温かつ高圧でのリフローを行う必要がある。例えばAl(アルミニウム)を主成分とする配線材料層16の場合には、リフロー温度を450℃以上,リフロー雰囲気内圧力を10Pa以上にする必要がある。この結果、処理装置が大掛かりになったり、高温で処理する際に層間絶縁膜13から脱ガスが発生してプロセスの安定性が損なわれるという問題があった。
【0006】
【課題を解決するための手段】
そこで本発明は、高圧リフローによって接続孔内に配線材料層を埋め込む半導体装置の製造方法において、開口肩部の開口幅が深さ方向に向かって徐々に小さくなる形状の接続孔を基板上の層間絶縁膜に形成するか、または、接続孔の内壁を含む上記層間絶縁膜上に当該接続孔の開口肩部の開口幅を深さ方向に向かって徐々に小さくする状態で下地金属膜を成膜することを上記課題を解決するための手段としている。
【0007】
上記製造方法では、高圧リフローによって接続孔内に配線材料層を埋め込む際の当該接続孔の形状は、その開口肩部の開口幅が深さ方向に向かって徐々に小さくなっているため、当該開口肩部における摩擦抵抗が少なくなる。したがって、高圧リフローの際の基板温度及び圧力をより低い値に設定して配線材料層の埋め込みが行われる。
【0008】
【発明の実施の形態】
以下、本発明の半導体装置の製造方法及び半導体装置を、図面に基づいて説明する。
図1(1)〜(3)は、本発明の半導体装置の製造方法の一例を説明する製造工程図であり、これらの図を用いて半導体装置の製造方法の第1実施形態を説明する。
先ず、図1(1)に示す第1工程では、例えばシリコンからなる基板11上に下層配線(配線)12を形成する。次に、この下層配線12を覆う状態で、基板11上に酸化シリコンからなる層間絶縁膜13を成膜する。その後、リソグラフィー法及びエッチング法によって、下層配線12にまで達する接続孔14を層間絶縁膜13に形成する。一例として、この接続孔14の開口幅は0.35μm,アスペクト比は2程度であることとする。
【0009】
以上の工程までを従来と同様に行った後、層間絶縁膜13の表面をスパッタエッチングし、接続孔14の開口肩部Bの層間絶縁膜13部分を集中的にエッチング除去する。これによって、接続孔14の開口肩部Bの曲率半径を大きくし、当該接続孔14の上部においては開口幅が深さ方向に向かって徐々に小さくなるようにする。また、このスパッタエッチングでは、接続孔14底面のエッチクリーニングも同時に行われる。
【0010】
以下に、上記スパッタエッチング条件の一例を示す。
スパッタガス及び流量 :Ar(アルゴンガス)=100sccm
ただし、sccmはstandard cubic centimeter /minとする。
エッチング雰囲気内圧力:0.4Pa
RF電圧 :1kV
基板加熱温度 :300℃
エッチング時間 :3min
【0011】
次に、図1(2)に示す第2工程では、接続孔14の内壁を含む層間絶縁膜13上にトレスマイグレーションによる断線不良防止及び濡れ性改善用の下地金属膜15を成膜する。この下地金属膜15の一例としては、Ti20nm、TiN50nmを下層から順に積層させた構成にする。
【0012】
以下に、下地金属膜15の成膜条件の一例を示す。

Figure 0003624513
【0013】
尚、下地金属膜15として用いる材料は上記に限定されず、TiW(チタン−タングステン),W(タングステン)等のように、信頼性上の冗長効果と次に成膜する配線材料層16に対する濡れ性とを有する材料であれば適用可能である。
【0014】
次いで、下地金属膜15上に配線材料層16をスパッタ成膜する。この際、接続孔15上で配線材料層16がブリッジ形状を成すことによって接続孔14内を当該配線材料層16で塞ぎ、接続孔14の内部に空隙Aが形成されるように、少なくとも接続孔14の開口幅よりも配線材料層16の膜厚の値を大きく、例えば0.5μm程度の膜厚に設定する。またここでは、この配線材料層16として、例えば0.5重量%のCu(銅)を含有するAlを用いる。この配線材料層17としては、上記の他にもAlまたはAlを主成分とする通常の配線材料やCuまたはCuを主成分とする配線材料が用いられる。また、上記Cuを含有するAlを用いる場合にも、Cuの含有量は上記に限定されるものではない。
【0015】
以下に、上記成膜条件の一例を示す。
スパッタガス及び流量:Ar=100sccm
成膜雰囲気内圧力 :0.4Pa
DC電力 :20kW
基板加熱温度 :400℃
尚、上記スパッタ成膜においては、基板加熱温度を400℃と高めに設定することで、接続孔14の上部で配線材料層16がブリッジ形状になり易いようにしている。
【0016】
次に、第3工程では、図1(3)に示すように高圧力の不活性ガス雰囲気内で熱処理を行うことによって、酸化を防止しながら流動化させた配線材料層16の一部を不活性ガス雰囲気の高圧で接続孔14内に押し込む、いわゆる高圧リフロー処理を行う。以下に、上記高圧リフロー条件の一例を示す。
リフロー雰囲気内圧力:10Pa以上(Ar雰囲気内)
基板加熱温度 :420℃
加熱時間 :1分
【0017】
上記半導体装置の製造方法によれば、図1(1)を用いて説明した第1工程で、層間絶縁膜13のスパッタエッチングによって接続孔14の開口肩部Bの開口幅が深さ方向に向かって徐々に小さくなるようにした。このため、図1(2)を用いて説明した第2工程で下地金属膜15をスパッタ成膜する際、シャドウウイング効果が起きにくくなり、接続孔14の開口肩部B上における下地金属膜15の膜厚が特に厚くなることはない。したがって、図1(3)を用いて説明した第3工程で高圧リフローを行う際の接続孔14は、その開口肩部Bの開口幅が深さ方向に向かって徐々に小さくなる形状に保たれ、当該開口肩部Bにおける摩擦抵抗が少なくなる。したがって、高圧リフローの際には、基板加熱温度を従来の450℃から420℃に、リフロー雰囲気内圧力の下限を10Paから10Paに低下させることができる。
また、接続孔14は、その開口肩部Bのみが丸みを持って形成されることから、接続孔の側壁をテーパー形状に形成した場合のように、上部の開口幅が広くなりすぎて配線材料層がブリッジ形状になり難くなることもない。
【0018】
尚、上記高圧リフローの際の基板加熱温度は、リフロー雰囲気内の圧力の下限を上記実施形態よりも高めに設定することで配線材料層16の再結晶温度(ここでは、350℃)にまで下げることが可能である。ただし、好ましくは、配線材料層16の成膜温度(この実施形態では400℃)よりも高い温度範囲に設定するようにする。
【0019】
次に、図2を用いて本発明の半導体装置の第2実施形態を説明する。
先ず、図2(1)に示す第1工程では、上記第1実施形態で図1(1)を用いて説明したと同様に層間絶縁膜13に接続孔14を形成する。ただしここでは、層間絶縁膜13を表面からスパッタエッチングする工程は行わない。
次いで、接続孔14の底面のエッチクリーニングを行った後、図2(2)に示す第2工程では、接続孔14の内壁を含む層間絶縁膜13上に、上記第1実施形態と同様の材質からなる下地金属膜15を成膜する。ただし、この下地金属膜15の成膜は、基板加熱温度を350℃〜550℃の範囲内に設定した高温スパッタ法によって行われることとする。この基板加熱温度は、上記範囲内において、使用する材料やプロセスへの適用性を考慮し、好ましくは下層配線12の信頼性が確保され、基板11を構成するシリコンのシリサイド化を防止できる値に設定する。
【0020】
以下に、高温スパッタ成膜による下地金属膜15の成膜条件の一例を示す。
Figure 0003624513
以下の工程は、上記第1実施形態と同様に行う。
【0021】
上記半導体装置の製造方法によれば、図2(2)を用いて説明した第2工程で、高温スパッタ法によって下地金属膜15を成膜することから、下地金属膜15は、成膜表面において成膜材料をマイグレートさせながら成膜したものになる。このため、通常のスパッタ法によって下地金属膜を成膜する場合と比較して、接続孔14の開口肩部B上を覆う下地金属膜15部分は、その曲率半径が大きく、接続孔14の開口肩部Bの開口幅を深さ方向に向かって徐々に小さくする形状になる。したがって、上記第1実施形態と同様に、図2(3)を用いて説明される第3工程では、配線材料層16を高圧リフロー処理する際に当該開口肩部Bにおける摩擦抵抗が少なくなり、基板加熱温度及びリフロー雰囲気内圧力の下限を低下させることができる。
【0022】
次に、図3を用いて本発明の半導体装置の第3実施形態を説明する。
ここで説明する半導体装置の製造方法と上記第2実施形態で説明した方法との違いは、図3(2)で示した第2工程で下地金属膜15を成膜する際、バイアススパッタ法によって行う点にある。そして、この工程以外は、上記第2実施形態と同様に行う。
【0023】
以下に、バイアススパッタ成膜による下地金属膜15の成膜条件の一例を示す。
Figure 0003624513
【0024】
上記スパッタ成膜法では、DC電圧が印加された基板11に向かって入射するArイオンによって特に接続孔14の開口肩部Bに付着した下地金属膜材料を再スパッタしながら成膜が進行する。このため、ここで成膜された下地金属膜15は、通常のスパッタ法で成膜した下地金属膜と比較して、接続孔14の開口肩部B上を覆う下地金属膜15部分の曲率半径が大きくなり、接続孔14の開口幅を深さ方向に向かって徐々に小さくする形状になる。したがって、上記第1及び第2実施形態と同様に、図3(3)を用いて説明される第3工程では、配線材料層16の高圧リフロー処理を行う際に接続孔14の開口肩部Bにおける摩擦抵抗が少なくなり、基板加熱温度及びリフロー雰囲気内圧力の下限を低下させることができる。
【0025】
以上説明した各実施形態は、第1実施形態と第2実施形態及び第3実施形態のうちの少なくともいづれか一つの実施形態とを組み合わせたり、第2実施形態と第3実施形態とを組み合わせて実施することも可能である。このように、各実施形態を組み合わせて実施される方法によれば、上記各実施形態を単独で実施する場合よりも接続孔の開口肩部の曲率半径がさらに大きくなり、高圧リフロー処理の際の基板加熱温度及びリフロー雰囲気内圧力の下限をさらに低下させることができる。
また、接続孔14は基板11の表面側に形成された拡散層に達するものでも良い。ただしこの場合、基板と配線材料層とのバリア性を確保するため、拡散層をバリアメタルで覆うか、または下地金属膜としてバリア性を有する材料を用いることとする。
【0026】
【発明の効果】
以上説明したように本発明の半導体装置の製造方法によれば、高圧リフローによって接続孔内に配線材料層を埋め込む際の当該接続孔の形状を、その開口肩部の開口幅が深さ方向に向かって徐々に小さくなるようにすることで、当該開口肩部における摩擦抵抗を少なくし、高圧リフローの際の基板温度及び圧力をより低い値に設定して配線材料層の埋め込みを行なうことができる。したがって、半導体装置の製造装置の小規模化及びプロセスの安定性を確保することが可能になる。
【図面の簡単な説明】
【図1】第1実施形態を説明する製造工程図である。
【図2】第2実施形態を説明する断面図である。
【図3】第3実施形態を説明する断面図である。
【図4】従来例を説明する製造工程図である。
【符号の説明】
13 層間絶縁膜 14 接続孔 15 下地金属膜
16 配線材料層 B 開口肩部[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for manufacturing a semiconductor device, and more particularly to a semiconductor device in which a wiring material is embedded in a connection hole by a high-pressure reflow method and a method for manufacturing the semiconductor device.
[0002]
[Prior art]
When the miniaturization of the device structure progresses with higher integration and higher functionality of the semiconductor device, the opening width of contact holes such as contact holes and via holes formed in the interlayer insulating film becomes narrower and deeper. However, if the wiring material layer is embedded in the connection hole with such a high aspect ratio by the sputtering film formation method, the coverage near the bottom surface of the connection hole is obtained due to the influence of the shadow wing effect. However, there is a problem that disconnection occurs at this connection portion. For this reason, in the manufacturing process of a semiconductor device, a high-pressure reflow method is performed as a method replacing the sputter film forming method.
[0003]
Below, the manufacturing method of the semiconductor device which applied the said high voltage | pressure reflow method is demonstrated.
First, as shown in FIG. 4A, for example, a lower layer wiring 12 is formed on a substrate 11, and an interlayer insulating film 13 is formed on the substrate 11 so as to cover the lower layer wiring 12. A connection hole 14 reaching the lower layer wiring 12 is formed in the interlayer insulating film 13 by etching using a resist pattern (not shown) formed by lithography as a mask. Next, as shown in FIG. 4B, a base metal film 15 is formed by a sputtering film forming method so as to cover the interlayer insulating film 12 including the inner wall of the connection hole 14. Thereafter, a wiring material layer 16 is formed on the interlayer insulating film 13 by sputtering. At this time, the wiring material layer 16 forms a bridge shape above the connection hole 14, the opening of the connection hole 14 is blocked by the wiring material layer 16, and the wiring A is formed in the connection hole 14. A material layer 16 is formed.
[0004]
Next, as shown in FIG. 4 (3), the wiring material layer 16 is softened by being heated to a recrystallization temperature or higher and a melting point or lower, and a part of the wiring material layer 16 is formed by a high-pressure atmosphere filled with an inert gas. The inside of the connection hole 14 is filled with the wiring material layer 16 by a so-called high pressure reflow method which is pushed into the connection hole 14.
[0005]
[Problems to be solved by the invention]
However, the manufacturing method of the semiconductor device has the following problems. That is, in the connection hole 14 formed by etching the interlayer insulating film 13 shown in FIG. 4A, the opening shoulder B constituted by the side wall and the surface of the interlayer insulating film 13 is substantially vertical. Then, as shown in FIG. 4B, when the base metal film 15 is formed by sputtering in such a manner as to cover the inner wall of the connection hole 14, the base that covers the opening shoulder B of the connection hole 14 by the shadow wing effect. The metal film 15 has a shape projecting inward from the portion covering the side wall of the connection hole 14. For this reason, as shown in FIG. 4 (3), when the wiring material layer 16 is pushed into the connection hole 14 by high-pressure reflow, the friction at the opening shoulder B increases. In such a case, in order to ensure the embedding property of the wiring material layer 16, it is necessary to perform reflow at a higher temperature and a higher pressure. For example, in the case of the wiring material layer 16 mainly composed of Al (aluminum), the reflow temperature needs to be 450 ° C. or higher and the reflow atmosphere internal pressure needs to be 10 6 Pa or higher. As a result, there has been a problem that the processing apparatus becomes large-scale, or degassing occurs from the interlayer insulating film 13 when processing at a high temperature, thereby impairing process stability.
[0006]
[Means for Solving the Problems]
Accordingly, the present invention provides a method for manufacturing a semiconductor device in which a wiring material layer is embedded in a connection hole by high-pressure reflow, and a connection hole having a shape in which an opening width of an opening shoulder portion gradually decreases in a depth direction is provided between layers on a substrate. Form an insulating film, or form a base metal film on the interlayer insulating film including the inner wall of the connection hole in a state where the opening width of the opening shoulder of the connection hole is gradually reduced in the depth direction. This is a means for solving the above problems.
[0007]
In the above manufacturing method, the shape of the connection hole when the wiring material layer is embedded in the connection hole by high-pressure reflow is such that the opening width of the opening shoulder portion gradually decreases in the depth direction. Frictional resistance at the shoulder is reduced. Therefore, the wiring material layer is embedded by setting the substrate temperature and pressure during high-pressure reflow to lower values.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, a method for manufacturing a semiconductor device and a semiconductor device according to the present invention will be described with reference to the drawings.
1A to 1C are manufacturing process diagrams for explaining an example of a method for manufacturing a semiconductor device according to the present invention. The first embodiment of the method for manufacturing a semiconductor device will be described with reference to these drawings.
First, in the first step shown in FIG. 1A, a lower layer wiring (wiring) 12 is formed on a substrate 11 made of, for example, silicon. Next, an interlayer insulating film 13 made of silicon oxide is formed on the substrate 11 so as to cover the lower layer wiring 12. Thereafter, a connection hole 14 reaching the lower layer wiring 12 is formed in the interlayer insulating film 13 by lithography and etching. As an example, the connection hole 14 has an opening width of 0.35 μm and an aspect ratio of about 2.
[0009]
After the above steps are performed in the same manner as in the prior art, the surface of the interlayer insulating film 13 is sputter-etched, and the interlayer insulating film 13 portion of the opening shoulder B of the connection hole 14 is intensively etched away. Thus, the radius of curvature of the opening shoulder B of the connection hole 14 is increased, and the opening width is gradually reduced in the depth direction at the upper part of the connection hole 14. Further, in this sputter etching, the bottom surface of the connection hole 14 is also cleaned at the same time.
[0010]
An example of the sputter etching conditions will be shown below.
Sputtering gas and flow rate: Ar (argon gas) = 100 sccm
Here, sccm is standard cubic center meter / min.
Etching atmosphere pressure: 0.4 Pa
RF voltage: 1 kV
Substrate heating temperature: 300 ° C
Etching time: 3 min
[0011]
Next, in the second step shown in FIG. 1B, a base metal film 15 is formed on the interlayer insulating film 13 including the inner wall of the connection hole 14 to prevent disconnection failure and improve wettability due to tresmigration. As an example of the base metal film 15, a structure in which Ti 20 nm and TiN 50 nm are sequentially stacked from the lower layer is used.
[0012]
Hereinafter, an example of film formation conditions for the base metal film 15 is shown.
Figure 0003624513
[0013]
Note that the material used for the base metal film 15 is not limited to the above, and a redundant effect on reliability and wettability to the wiring material layer 16 to be formed next, such as TiW (titanium-tungsten) or W (tungsten) Any material having the properties can be applied.
[0014]
Next, the wiring material layer 16 is formed on the base metal film 15 by sputtering. At this time, at least the connection hole is formed so that the wiring material layer 16 forms a bridge shape on the connection hole 15, thereby closing the connection hole 14 with the wiring material layer 16 and forming the void A in the connection hole 14. The value of the film thickness of the wiring material layer 16 is set to be larger than the opening width of 14, for example, about 0.5 μm. Here, as the wiring material layer 16, for example, Al containing 0.5% by weight of Cu (copper) is used. As the wiring material layer 17, in addition to the above, an ordinary wiring material mainly containing Al or Al or a wiring material mainly containing Cu or Cu is used. Moreover, also when using Al containing the said Cu, content of Cu is not limited above.
[0015]
An example of the film forming conditions is shown below.
Sputtering gas and flow rate: Ar = 100 sccm
Deposition atmosphere pressure: 0.4 Pa
DC power: 20 kW
Substrate heating temperature: 400 ° C
In the sputter film formation, the substrate heating temperature is set to a high value of 400 ° C. so that the wiring material layer 16 tends to be in a bridge shape above the connection hole 14.
[0016]
Next, in the third step, as shown in FIG. 1 (3), a part of the fluidized wiring material layer 16 is inactivated while heat treatment is performed in an inert gas atmosphere of high pressure while preventing oxidation. A so-called high-pressure reflow process is performed in which the high-pressure active gas atmosphere is pressed into the connection hole 14. Below, an example of the said high-pressure reflow conditions is shown.
Reflow atmosphere pressure: 10 4 Pa or more (in Ar atmosphere)
Substrate heating temperature: 420 ° C
Heating time: 1 minute [0017]
According to the semiconductor device manufacturing method, the opening width of the opening shoulder B of the connection hole 14 is directed in the depth direction by the sputter etching of the interlayer insulating film 13 in the first step described with reference to FIG. And gradually made it smaller. For this reason, when the base metal film 15 is formed by sputtering in the second step described with reference to FIG. 1B, the shadow wing effect is less likely to occur, and the base metal film 15 on the opening shoulder B of the connection hole 14. There is no particular increase in the film thickness. Therefore, the connection hole 14 when performing high-pressure reflow in the third step described with reference to FIG. 1 (3) is maintained in a shape in which the opening width of the opening shoulder B gradually decreases in the depth direction. The frictional resistance at the opening shoulder B is reduced. Therefore, during high-pressure reflow, the substrate heating temperature can be lowered from the conventional 450 ° C. to 420 ° C., and the lower limit of the pressure in the reflow atmosphere can be lowered from 10 6 Pa to 10 4 Pa.
Further, since only the opening shoulder B of the connection hole 14 is rounded, the upper opening width becomes too wide as in the case where the side wall of the connection hole is formed in a tapered shape, and the wiring material is formed. The layer does not become difficult to become a bridge shape.
[0018]
The substrate heating temperature during the high-pressure reflow is lowered to the recrystallization temperature of the wiring material layer 16 (here, 350 ° C.) by setting the lower limit of the pressure in the reflow atmosphere higher than that in the above embodiment. It is possible. However, preferably, the temperature is set to be higher than the film forming temperature of the wiring material layer 16 (in this embodiment, 400 ° C.).
[0019]
Next, a second embodiment of the semiconductor device of the present invention will be described with reference to FIG.
First, in the first step shown in FIG. 2 (1), the connection hole 14 is formed in the interlayer insulating film 13 in the same manner as described with reference to FIG. 1 (1) in the first embodiment. However, here, the step of sputter etching the interlayer insulating film 13 from the surface is not performed.
Next, after performing etch cleaning of the bottom surface of the connection hole 14, in the second step shown in FIG. 2B, the same material as that of the first embodiment is formed on the interlayer insulating film 13 including the inner wall of the connection hole 14. A base metal film 15 made of is formed. However, the base metal film 15 is formed by a high-temperature sputtering method in which the substrate heating temperature is set in the range of 350 ° C. to 550 ° C. This substrate heating temperature is within the above range, considering the applicability to materials and processes to be used, and preferably the reliability of the lower wiring 12 is ensured, and the silicon constituting the substrate 11 can be prevented from silicidation. Set.
[0020]
Hereinafter, an example of film formation conditions for the base metal film 15 by high-temperature sputtering film formation is shown.
Figure 0003624513
The following steps are performed in the same manner as in the first embodiment.
[0021]
According to the semiconductor device manufacturing method, since the base metal film 15 is formed by the high-temperature sputtering method in the second step described with reference to FIG. The film is formed while the film forming material is migrated. For this reason, compared with the case where the base metal film is formed by a normal sputtering method, the base metal film 15 portion covering the opening shoulder B of the connection hole 14 has a large curvature radius, and the opening of the connection hole 14 The opening width of the shoulder B is gradually reduced in the depth direction. Therefore, as in the first embodiment, in the third step described with reference to FIG. 2 (3), when the wiring material layer 16 is subjected to a high-pressure reflow process, the frictional resistance in the opening shoulder B is reduced. The lower limit of the substrate heating temperature and the pressure in the reflow atmosphere can be lowered.
[0022]
Next, a third embodiment of the semiconductor device of the present invention will be described with reference to FIG.
The difference between the manufacturing method of the semiconductor device described here and the method described in the second embodiment is that when the base metal film 15 is formed in the second step shown in FIG. There is in point to do. The steps other than this step are performed in the same manner as in the second embodiment.
[0023]
Hereinafter, an example of the deposition conditions for the base metal film 15 by bias sputtering deposition will be shown.
Figure 0003624513
[0024]
In the sputter deposition method, the deposition proceeds while re-sputtering the base metal film material adhering to the opening shoulder B of the connection hole 14 by Ar ions incident on the substrate 11 to which a DC voltage is applied. Therefore, the base metal film 15 formed here has a radius of curvature of the portion of the base metal film 15 covering the opening shoulder B of the connection hole 14 as compared with the base metal film formed by a normal sputtering method. And the opening width of the connection hole 14 is gradually reduced in the depth direction. Therefore, as in the first and second embodiments, in the third step described with reference to FIG. 3 (3), the opening shoulder B of the connection hole 14 when the high-pressure reflow treatment of the wiring material layer 16 is performed. In this case, the frictional resistance is reduced, and the lower limit of the substrate heating temperature and the pressure in the reflow atmosphere can be lowered.
[0025]
Each embodiment described above is implemented by combining the first embodiment with at least one of the second embodiment and the third embodiment, or combining the second embodiment and the third embodiment. It is also possible to do. Thus, according to the method implemented by combining the embodiments, the radius of curvature of the opening shoulder of the connection hole is further increased compared to the case where each of the above embodiments is implemented alone, and the high-pressure reflow process is performed. The lower limits of the substrate heating temperature and the reflow atmosphere pressure can be further reduced.
Further, the connection hole 14 may reach the diffusion layer formed on the surface side of the substrate 11. However, in this case, in order to ensure the barrier property between the substrate and the wiring material layer, the diffusion layer is covered with a barrier metal, or a material having a barrier property is used as the base metal film.
[0026]
【The invention's effect】
As described above, according to the method of manufacturing a semiconductor device of the present invention, the shape of the connection hole when the wiring material layer is embedded in the connection hole by high-pressure reflow, the opening width of the opening shoulder portion in the depth direction. By gradually decreasing the distance, the frictional resistance at the opening shoulder is reduced, and the wiring material layer can be embedded by setting the substrate temperature and pressure during the high-pressure reflow to lower values. . Therefore, it is possible to reduce the size of the semiconductor device manufacturing apparatus and to ensure process stability.
[Brief description of the drawings]
FIG. 1 is a manufacturing process diagram for explaining a first embodiment;
FIG. 2 is a cross-sectional view illustrating a second embodiment.
FIG. 3 is a cross-sectional view illustrating a third embodiment.
FIG. 4 is a manufacturing process diagram illustrating a conventional example.
[Explanation of symbols]
13 Interlayer insulation film 14 Connection hole 15 Base metal film 16 Wiring material layer B Open shoulder

Claims (1)

層間絶縁膜に形成された接続孔の内壁を含む当該層間絶縁膜上に下地金属膜を成膜し、次いで当該下地金属膜上に前記接続孔内を塞ぐ状態で配線材料層を成膜した後、高圧リフローによって前記配線材料層の一部を前記接続孔内に押し込む半導体装置の製造方法において、
前記下地金属膜は、高温スパッタ法によって成膜表面において成膜材料をマイグレートさせながら成膜されることにより、前記接続孔の開口肩部の開口幅を深さ方向に向かって徐々に小さくする形状に形成される
ことを特徴とする半導体装置の製造方法。
After forming a base metal film on the interlayer insulating film including the inner wall of the connection hole formed in the interlayer insulating film, and then forming a wiring material layer on the base metal film in a state of closing the connection hole In the method for manufacturing a semiconductor device in which a part of the wiring material layer is pushed into the connection hole by high-pressure reflow,
The base metal film is deposited while the deposition material is migrated on the deposition surface by a high-temperature sputtering method, thereby gradually reducing the opening width of the opening shoulder of the connection hole in the depth direction. A method for manufacturing a semiconductor device, wherein the semiconductor device is formed into a shape.
JP02393296A 1996-02-09 1996-02-09 Manufacturing method of semiconductor device Expired - Fee Related JP3624513B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02393296A JP3624513B2 (en) 1996-02-09 1996-02-09 Manufacturing method of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02393296A JP3624513B2 (en) 1996-02-09 1996-02-09 Manufacturing method of semiconductor device

Publications (2)

Publication Number Publication Date
JPH09219449A JPH09219449A (en) 1997-08-19
JP3624513B2 true JP3624513B2 (en) 2005-03-02

Family

ID=12124312

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02393296A Expired - Fee Related JP3624513B2 (en) 1996-02-09 1996-02-09 Manufacturing method of semiconductor device

Country Status (1)

Country Link
JP (1) JP3624513B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6710454B1 (en) * 2000-02-16 2004-03-23 Micron Technology, Inc. Adhesive layer for an electronic apparatus having multiple semiconductor devices
JP2009164510A (en) * 2008-01-10 2009-07-23 Renesas Technology Corp Semiconductor device and manufacturing method of same

Also Published As

Publication number Publication date
JPH09219449A (en) 1997-08-19

Similar Documents

Publication Publication Date Title
US5985751A (en) Process for fabricating interconnection of semiconductor device
US5496773A (en) Semiconductor processing method of providing an electrically conductive interconnecting plug between an elevationally inner electrically conductive node and an elevationally outer electrically conductive node
JPH04307933A (en) Forming method of tungsten plug
JP2000323571A (en) Manufacture of semiconductor device
JP3348553B2 (en) Forming connection holes
US6355554B1 (en) Methods of forming filled interconnections in microelectronic devices
US6682999B1 (en) Semiconductor device having multilevel interconnections and method of manufacture thereof
JP2000332106A (en) Semiconductor device for its manufacture
JP3624513B2 (en) Manufacturing method of semiconductor device
JPH09283624A (en) Manufacture of semiconductor device
JP2616402B2 (en) Method for manufacturing semiconductor device
JPH10209278A (en) Semiconductor device and its manufacture
JP2736370B2 (en) Semiconductor device and manufacturing method thereof
JP2007251135A (en) Semiconductor device and its manufacture
JP3890722B2 (en) Copper wiring of semiconductor devices
JPH08139190A (en) Manufacture of semiconductor device
JPH05299397A (en) Forming method for metal plug
JPH10209276A (en) Wiring forming method
JP3087692B2 (en) Method for manufacturing semiconductor device
JP3407516B2 (en) Semiconductor device and manufacturing method thereof
JP3337758B2 (en) Method for manufacturing semiconductor device
JPH08330251A (en) Manufacture of semiconductor device
JPH11297699A (en) Diffusion barrier layer and its manufacture
JPH09237768A (en) Semiconductor device and manufacture thereof
JPH11265934A (en) Forming method of connecting part

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040316

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040514

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040824

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040924

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20041018

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041122

LAPS Cancellation because of no payment of annual fees