JPH09219043A - Recording and reproducing device and recording and reproducing method - Google Patents

Recording and reproducing device and recording and reproducing method

Info

Publication number
JPH09219043A
JPH09219043A JP5106096A JP5106096A JPH09219043A JP H09219043 A JPH09219043 A JP H09219043A JP 5106096 A JP5106096 A JP 5106096A JP 5106096 A JP5106096 A JP 5106096A JP H09219043 A JPH09219043 A JP H09219043A
Authority
JP
Japan
Prior art keywords
recording
recording medium
probe
reproducing
information
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5106096A
Other languages
Japanese (ja)
Inventor
Takehiko Kawasaki
岳彦 川崎
Tsutomu Ikeda
勉 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP5106096A priority Critical patent/JPH09219043A/en
Publication of JPH09219043A publication Critical patent/JPH09219043A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To make it possible to execute a large capacity of recording and reproducing at a low error rate by constituting part or the whole of a recording medium of a flat planar gold single crystal. SOLUTION: The flat planar gold single crystal precipitated from the gold complex soln. in used as the recording medium 4. The front end of a probe 1 is brought near to the recording medium 4 by a Z-axis driving device 13. When both approach in extreme proximity, the tunnel current flowing according to the distance between both is measured by a detecting circuit 18. The driving device 13 is so controlled by a servo circuit 11 that the flowing tunnel current attains a prescribed value, by which the spacing between the probe 1 and the recording medium 4 is controlled. Next, an electric field is impressed between the front end of the probe 1 and the surface of the recording medium 4 by a recording voltage impressing device 14, by which the Au of the material of the probe 1 is evaporated by the electric field from the front end of the probe 1 and is supplied. A very small projecting structure 15 (recording bit) consisting of the material supplied onto the recording medium is thus formed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、探針と記録媒体と
の間への電界印加によって、該探針から該記録媒体上に
物質を供給して情報の記録を行うと共に、前記探針の走
査による情報の読み出しにより情報の再生を行う、大容
量の記録再生が可能な記録再生装置及び記録再生方法に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention supplies a substance from the probe to the recording medium to record information by applying an electric field between the probe and the recording medium. The present invention relates to a recording / reproducing apparatus and a recording / reproducing method capable of large-capacity recording / reproduction in which information is reproduced by reading information by scanning.

【0002】[0002]

【従来の技術】現在、Scanning Probe
Microscope(以下SPM)の原理を応用し、
探針と試料表面との相互作用を利用して、試料表面上に
微小な構造を形成する方法及び装置が開発されている。
この中で、探針と試料表面との間に電界を印加して探針
先端から物質を供給し、試料表面上に微小な構造を形成
する方法が提案されている(米国特許第5,043,5
78号明細書)。この方法によれば、試料表面上に10
nm以下の大きさの極めて微小な構造を形成でき、回路
素子やマスクなどへの応用と共に、この微小な構造を記
録ビットとして用いることで大容量記録技術への応用が
考えられている。この方法では試料として、金のワイヤ
を溶融して(111)面のファセットを形成した平滑
面、あるいはマイカ基板上に成長させた金薄膜を用いて
いた。
2. Description of the Related Art Currently, Scanning Probe
Applying the principle of Microscope (hereinafter SPM),
A method and an apparatus for forming a minute structure on the sample surface by utilizing the interaction between the probe and the sample surface have been developed.
Among them, a method has been proposed in which an electric field is applied between the probe and the sample surface to supply a substance from the tip of the probe to form a minute structure on the sample surface (US Pat. No. 5,043). , 5
No. 78). According to this method, 10
An extremely minute structure having a size of nm or less can be formed, and application to a large capacity recording technique is considered by using this minute structure as a recording bit as well as application to a circuit element or a mask. In this method, as a sample, a smooth surface formed by melting a gold wire to form facets of (111) plane, or a gold thin film grown on a mica substrate was used.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上述し
た従来技術には、次に述べるような問題点があった。金
のワイヤを溶融して得た平滑面はその広さが150nm
×l50nm程度であり、単一の平滑面上に形成できる
微小な構造の数は限られる。また、この平滑面は金のワ
イヤを溶融して得た球面上に形成されるものであるた
め、探針と平滑面の面合わせが難しく、平滑面を複数化
して大容量記録を行うことが非常に困難であり、この金
のワイヤを溶融して得た平滑面を記録媒体として用いた
場合には記録容量に限界があった。また、マイカ基板上
に成長させた金薄膜は、多数の結晶粒が集合してなるも
のである。そのため、単一の連続した平滑面は数μm×
数μm程度であり、それぞれの平滑面の間には不定型の
溝があり、多数の連続した微小な構造を形成してビット
列とすることで大容量の記録を行おうとした場合、平滑
面の間の不定型の溝のためにビット列が分断され、不規
則なビットの欠損が起きていた。したがって、大容量記
録技術への応用を行う上で、このマイカ基板上に成長さ
せた金薄膜を記録媒体として用いた場合、エラーが多数
発生するという問題点があった。また、マイカ基板は天
然物であり特性のばらつきが大きく、基板には不規則な
うねりが存在して平面性が低い。このような基板上に形
成した金薄膜に対しては、複数の探針を用いて記録再生
を行おうとした場合(特開平04−321955号公
報)探針と平滑面の面合わせが難しく、大容量記録を行
うことが非常に困難であり、このような理由からもマイ
カ基板上に成長させた金薄膜を記録媒体として用いた場
合、記録容量に限界があった。
However, the above-mentioned prior art has the following problems. The width of the smooth surface obtained by melting the gold wire is 150 nm.
It is about × 150 nm, and the number of minute structures that can be formed on a single smooth surface is limited. Moreover, since this smooth surface is formed on a spherical surface obtained by melting a gold wire, it is difficult to align the probe and the smooth surface, and it is possible to record a large amount of data by making the smooth surface plural. It is very difficult, and when a smooth surface obtained by melting this gold wire is used as a recording medium, the recording capacity is limited. The gold thin film grown on the mica substrate is composed of a large number of crystal grains. Therefore, a single continuous smooth surface is several μm ×
It is about several μm, and there are irregular grooves between each smooth surface, and when a large amount of recording is attempted by forming a large number of continuous minute structures to form a bit string, the smooth surface Due to the irregular groove between them, the bit string was divided and irregular bit loss occurred. Therefore, when the gold thin film grown on the mica substrate is used as a recording medium in the application to the large-capacity recording technique, many errors occur. Further, the mica substrate is a natural product and has a large variation in characteristics, and the substrate has irregular undulations and thus has low flatness. When recording and reproducing are performed on a gold thin film formed on such a substrate using a plurality of probes (Japanese Patent Laid-Open No. 04-321955), it is difficult to align the probes with a smooth surface, It is very difficult to perform capacity recording, and for this reason also, there is a limit in recording capacity when a gold thin film grown on a mica substrate is used as a recording medium.

【0004】そこで、本発明は、上記従来技術における
課題を解決し、微小な構造よりなる多数の記録ビット
を、周囲の環境によって酸化されにくい金の単一の連続
した平滑な面を有する記録媒体上に形成し、大容量の記
録再生を低エラーレートで可能とする記録再生装置及び
記録再生方法を提供することである。
Therefore, the present invention solves the above-mentioned problems in the prior art, and a recording medium having a single continuous smooth surface of gold, in which a large number of recording bits having a minute structure are hard to be oxidized by the surrounding environment. A recording / reproducing apparatus and a recording / reproducing method which are formed on the above and enable large-capacity recording / reproducing at a low error rate.

【0005】[0005]

【課題を解決するための手段】本発明は、上記課題を解
決するため、記録再生装置及び記録再生方法をつぎのよ
うに構成したものである。すなわち、本発明の記録再生
装置は、記録媒体と、導電性を持つ探針と、探針と記録
媒体との間に電界を印加する電圧印加手段とを備え、情
報の記録再生を行う記録再生装置において、前記記録媒
体の一部またはその全体が平板状金単結晶で構成されて
いることを特徴としている。そして、本発明の上記記録
再生装置においては、前記記録媒体は、その導電性基板
上に平板状金単結晶を形成することにより構成すること
が好ましく、また、その平板状金単結晶は、金錯体水溶
液中で金錯体を分解処理することにより形成することが
できる。また、本発明の上記記録再生装置においては、
前記探針は、多層構造よりなり表面に導電体層を有する
構成を採ることができ、また、複数個集積された構成を
採ることができる。また、本発明の上記記録再生装置に
おいては、前記探針と記録媒体との間は、加速電極を設
けるようにしてもよい。さらに、本発明の記録再生方法
は、探針と記録媒体との間への電界印加によって、該探
針から該記録媒体上に物質を供給して情報の記録を行う
と共に、前記探針の走査による情報の読み出しにより情
報の再生を行う記録再生方法において、前記記録媒体の
一部またはその全体を平板状金単結晶で構成し、情報の
記録または再生を行うようにしたことを特徴としてい
る。そして、本発明の記録再生方法においては、記録再
生手段として、前記情報の記録を記録媒体表面の形状を
局所的に変化させることによって行い、前記情報の再生
を記録媒体表面の形状を読み取ることによって行う構成
を採ることができる。また、本発明の記録再生方法にお
いては、記録再生手段として、前記情報の記録を記録媒
体表面の導電率を局所的に変化させることによって行
い、情報の再生を記録媒体表面の導電率を読み取ること
によって行う構成を採ることができる。
In order to solve the above-mentioned problems, the present invention comprises a recording / reproducing apparatus and a recording / reproducing method as follows. That is, the recording / reproducing apparatus of the present invention includes a recording medium, a conductive probe, and voltage applying means for applying an electric field between the probe and the recording medium, and performs recording / reproducing of information. In the apparatus, a part or the whole of the recording medium is composed of a flat gold single crystal. Further, in the recording / reproducing apparatus of the present invention, the recording medium is preferably constituted by forming a flat gold single crystal on the conductive substrate, and the flat gold single crystal is gold. It can be formed by decomposing a gold complex in a complex aqueous solution. In the recording / reproducing device of the present invention,
The probe may have a multi-layered structure having a conductor layer on the surface thereof, or may have a plurality of integrated structures. Further, in the recording / reproducing apparatus of the present invention, an acceleration electrode may be provided between the probe and the recording medium. Further, in the recording / reproducing method of the present invention, by applying an electric field between the probe and the recording medium, a substance is supplied from the probe onto the recording medium to record information, and the probe is scanned. In the recording / reproducing method for reproducing information by reading the information by the method, a part or the whole of the recording medium is composed of a flat gold single crystal, and the information is recorded or reproduced. In the recording / reproducing method of the present invention, the recording / reproducing means records the information by locally changing the shape of the recording medium surface, and reproduces the information by reading the shape of the recording medium surface. The configuration can be adopted. In the recording / reproducing method of the present invention, as the recording / reproducing means, the information is recorded by locally changing the conductivity of the surface of the recording medium, and the information is reproduced by reading the conductivity of the surface of the recording medium. The configuration can be adopted by

【0006】[0006]

【発明の実施の形態】本発明は、上記したように記録媒
体を平板状金単結晶で構成することにより、微小な構造
よりなる多数の記録ビットを、周囲の環境によって酸化
されにくい金の単一の連続した平滑な面を有する記録媒
体上に形成することが可能となり、大容量の記録再生を
低エラーレートで実現することができる。つぎに、本発
明の記録再生装置の内容について詳しく説明する。上記
したように本発明の記録再生装置は、記録媒体と、導電
性を持つ探針と、探針と記録媒体の間に電界を印加する
手段とを備えた記録再生装置であって、前記記録媒体が
平板状金単結晶よりなるものであるが、本発明の記録再
生装置にはSPMを応用して用いることができる。本発
明の記録再生装置に応用して用いることができるSPM
は、探針を走査して物体表面の形状、もしくは導電率を
測定できるものであればどのようなものでも用いること
ができる。代表的な例として、走査型トンネル顕微鏡
(Scanning Tunneling Micro
scope:以下STM)、原子間力顕微鏡(Atom
icForce Microscope:以下AFM)
などを用いることができる。本発明の記録再生装置にお
いては、上記したとおり記録媒体として平板状金単結晶
を用いる。この平板状金単結晶は、例えば次のようにし
て作製するものである(特開平5−201793号公
報)。金のヨウ化物錯体、臭化物錯体、塩化物錯体等を
含有する溶液に基体を投入して、溶液温度を30℃〜1
00℃に保って蒸発させ、溶液を過飽和状態に移行させ
て基板上に平板状金単結晶群を成長させるものである。
このようにすることで、基体の面内方向への粒径が2m
m程度以上の平板状金単結晶を得ることができる。ま
た、このようにして作製した平板状金単結晶は、位相差
顕微鏡による光学的観察とSTM、AFMによる表面観
察を行った場合でも、結晶の成長過程で発生する1段が
1原子層に相当する数段のステップのみが観察され、そ
れ以上の大きな段差や穴、溝などは確認されず非常に高
い平滑性を持つものである。このように、従来例と比較
して極めて大面積の連続した平滑面が得られる。
BEST MODE FOR CARRYING OUT THE INVENTION According to the present invention, since the recording medium is made of a flat gold single crystal as described above, a large number of recording bits having a minute structure can be formed by using a gold single crystal that is not easily oxidized by the surrounding environment. Since it can be formed on a recording medium having one continuous smooth surface, large-capacity recording / reproduction can be realized at a low error rate. Next, the contents of the recording / reproducing apparatus of the present invention will be described in detail. As described above, the recording / reproducing apparatus of the present invention is a recording / reproducing apparatus including a recording medium, a conductive probe, and means for applying an electric field between the probe and the recording medium. Although the medium is made of a flat gold single crystal, SPM can be applied to the recording / reproducing apparatus of the present invention. SPM that can be used by applying to the recording / reproducing apparatus of the present invention
Can be any as long as it can measure the shape of the object surface or the conductivity by scanning the probe. As a typical example, a scanning tunneling microscope (Scanning Tunneling Micro) is used.
Scope: STM, atomic force microscope (Atom)
icForce Microscope: AFM)
Etc. can be used. In the recording / reproducing apparatus of the present invention, the flat gold single crystal is used as the recording medium as described above. This flat gold single crystal is produced, for example, as follows (Japanese Patent Laid-Open No. 5-201793). The substrate is put into a solution containing a gold iodide complex, a bromide complex, a chloride complex, and the like, and the solution temperature is 30 ° C to 1 ° C.
The solution is maintained at 00 ° C. and evaporated, and the solution is transferred to a supersaturated state to grow a flat gold single crystal group on the substrate.
By doing this, the particle diameter in the in-plane direction of the substrate is 2 m.
It is possible to obtain a flat gold single crystal having a size of about m or more. Further, in the flat gold single crystal thus produced, even when the optical observation by the phase contrast microscope and the surface observation by the STM and AFM are performed, one step generated during the crystal growth process corresponds to one atomic layer. Only a few steps are observed, and no further large steps, holes, grooves, etc. are observed, and it has very high smoothness. Thus, a continuous smooth surface having an extremely large area can be obtained as compared with the conventional example.

【0007】記録媒体として用いる平板状金単結晶は、
金単結晶単体で用いることもできるが、好ましくは導電
性基板上に作製して用いる。このようにすることで、記
録媒体に電圧をかけるための配線を容易に行うことがで
き、探針との間に電界を印加することを容易に行うこと
ができる。導電性基板としては、基体上に電極層を形成
したものなどを用いることができる。基体としてはうね
りがなく平面性の高いものを用いることが好ましく、単
結晶シリコンや石英などの板が好ましい。電極層として
は、平板状金単結晶を成長させる際に溶液に溶解しない
金属を用いることが好ましく、特にTi、Crなどが好
ましい。
The flat gold single crystal used as the recording medium is
The gold single crystal can be used alone, but is preferably formed on a conductive substrate before use. By doing so, wiring for applying a voltage to the recording medium can be easily formed, and an electric field can be easily applied between the recording medium and the probe. As the conductive substrate, a substrate on which an electrode layer is formed can be used. It is preferable to use a substrate having no waviness and high flatness, and a plate such as single crystal silicon or quartz is preferable. As the electrode layer, it is preferable to use a metal that does not dissolve in the solution when the flat gold single crystal is grown, and Ti, Cr and the like are particularly preferable.

【0008】本発明の記録再生装置に用いる探針として
は、用いるSPMの種類などに応じて形状、材料を選ぶ
ことができる。ただし、探針は記録媒体との間に電界を
印加するために導電性を有する必要があるので、探針全
体を導電性物質で作製するか、あるいは半導体材料や絶
縁体材料で探針を作製した場合は多層構造として表面に
導電性物質よりなる導電体層を設ける。導電性物質とし
てはAu、Ga、W、Ptなどが好ましい。また、探針
と記録媒体の間には、必要に応じて引き出し用の加速電
極を設けても構わない。加速電極としては、導電性の物
質よりなる薄い板状のものに微小な穴を開けたものを用
いる。記録を行う際は、この穴の中心に探針の先端を近
づけて、探針と加速電極を互いに固定して用いる。ま
た、探針は複数個集積して用いることができる。集積し
た探針は、基板上にフォトリソグラフィー技術等を用い
て形成することができる。
For the probe used in the recording / reproducing apparatus of the present invention, the shape and material can be selected according to the type of SPM used. However, since the probe needs to have electrical conductivity in order to apply an electric field between it and the recording medium, either the entire probe is made of a conductive substance, or the probe is made of a semiconductor material or an insulator material. In this case, a conductor layer made of a conductive substance is provided on the surface as a multilayer structure. Au, Ga, W, Pt and the like are preferable as the conductive material. Further, an acceleration electrode for extraction may be provided between the probe and the recording medium, if necessary. As the accelerating electrode, a thin plate-shaped one made of a conductive substance and having minute holes is used. When recording, the tip of the probe is brought close to the center of this hole and the probe and the acceleration electrode are fixed to each other. Moreover, a plurality of probes can be used by accumulating them. The integrated probe can be formed on the substrate by using a photolithography technique or the like.

【0009】本発明の記録方法について以下に述べる。
探針の先端を記録媒体の表面に近づけた状態で探針先端
と記録媒体の間に電界を印加することにより、記録媒体
上に前記探針より物質を供給することで任意の記録ビッ
トとなる微小な構造を形成して情報の記録を行う。本発
明においては、記録媒体上に前記探針から供給した物質
を堆積することで任意の記録ビットとなる微小な凸構造
を形成する。もしくは同様にして、探針の先端より供給
した物質により記録媒体表面を局所的にエッチングする
ことで任意の記録ビットとなる微小な凹構造を形成す
る。記録ビットとなる微小な構造を形成するのには、探
針の材料によっても異なるが、数Vから数10Vで、数
100ナノ秒から数100マイクロ秒程度の幅のパルス
状電界を探針と記録媒体の間に印加する。堆積するかエ
ッチングするかは、印加する電界の極性や、パルスの条
件によって制御できる。また、本発明においては、探針
と記録媒体を相対的に走査することで、相対位置を制御
しながら探針と記録媒体の間に電界を印加することで、
任意の場所に任意の形状の記録ビットとなる微小な構造
を形成して記録を行うことができる。また、本発明にお
いては、前記探針により記録ビットの読み出しを行うこ
とで情報の再生を行う。探針の先端を記録媒体の表面に
近づけた状態で探針を走査し、記録ビットとなる微小な
構造の有無を検知して情報の読み出しを行うものであ
る。
The recording method of the present invention will be described below.
By applying an electric field between the tip of the probe and the recording medium in a state where the tip of the probe is brought close to the surface of the recording medium, a substance is supplied from the probe onto the recording medium to obtain an arbitrary recorded bit. Information is recorded by forming a minute structure. In the present invention, by depositing the substance supplied from the probe on the recording medium, a minute convex structure that becomes an arbitrary recording bit is formed. Alternatively, in the same manner, the surface of the recording medium is locally etched by the substance supplied from the tip of the probe to form a minute concave structure which becomes an arbitrary recording bit. To form a minute structure to be a recording bit, depending on the material of the probe, a pulsed electric field with a width of several hundred nanoseconds to several hundred microseconds is used as the probe. Apply between recording media. Whether to deposit or etch can be controlled by the polarity of the applied electric field and the pulse conditions. Further, in the present invention, by relatively scanning the probe and the recording medium, by applying an electric field between the probe and the recording medium while controlling the relative position,
Recording can be performed by forming a minute structure which becomes a recording bit of an arbitrary shape in an arbitrary place. Further, in the present invention, information is reproduced by reading the recording bit with the probe. Information is read out by scanning the probe with the tip of the probe brought close to the surface of the recording medium, detecting the presence or absence of a minute structure serving as a recording bit.

【0010】本発明の記録再生方法においては、情報の
記録を記録ビットとなる微小な構造を形成して記録媒体
表面の形状を局所的に変化することによって行い、情報
の再生を記録媒体表面の形状を読み取ることで行うこと
ができる。また本発明の記録再生方法においては、情報
の記録を記録ビットとなる微小な構造を形成して記録媒
体表面の導電率を局所的に変化することによって行い、
情報の再生を記録媒体表面の導電率を読み取ることで行
うことができる。このようにして記録再生を行う場合
は、探針を構成する導電性物質として、Ga、W、Pt
などを用い、記録媒体上に記録媒体と異なる材料からな
る微小な構造を形成する。
In the recording / reproducing method of the present invention, information is recorded by forming a minute structure which becomes a recording bit and locally changing the shape of the surface of the recording medium to reproduce the information on the surface of the recording medium. It can be done by reading the shape. Further, in the recording / reproducing method of the present invention, information is recorded by forming a minute structure to be a recording bit and locally changing the conductivity of the surface of the recording medium,
Information can be reproduced by reading the conductivity of the surface of the recording medium. When recording / reproducing is performed in this manner, Ga, W, Pt are used as the conductive substance forming the probe.
And the like are used to form a minute structure made of a material different from that of the recording medium on the recording medium.

【0011】[0011]

【実施例】以下に、本発明の実施例について説明する。 [実施例1]図1に、実施例1の記録再生装置の該略図
を示す。本実施例ではSPMの1種であるSTMを応用
して用いた。図1において、1探針、4は記録媒体、5
は基体、6は下部電極層、7はX−Yステージ、11は
サーボ回路、12はX−Y駆動制御装置、13はZ軸駆
動装置、14は記録電圧印加装置、15は凸構造(記録
ビット)、16は凹構造(記録ビット)、17は制御用
コンピュータ、18はトンネル電流検出回路である。ま
た、サーボ回路11、X−Y駆動制御装置12、記録電
圧印加装置14、トンネル電流検出回路18はすべて制
御用コンピュータ17に接続され制御されるようにし
た。
Embodiments of the present invention will be described below. [Embodiment 1] FIG. 1 shows a schematic view of a recording / reproducing apparatus of Embodiment 1. In this embodiment, STM which is one of SPM is applied and used. In FIG. 1, 1 probe, 4 is a recording medium, 5
Is a substrate, 6 is a lower electrode layer, 7 is an XY stage, 11 is a servo circuit, 12 is an XY drive control device, 13 is a Z-axis drive device, 14 is a recording voltage applying device, and 15 is a convex structure (recording). Bit), 16 is a concave structure (recording bit), 17 is a control computer, and 18 is a tunnel current detection circuit. Further, the servo circuit 11, the XY drive control device 12, the recording voltage application device 14, and the tunnel current detection circuit 18 are all connected to and controlled by the control computer 17.

【0012】本実施例の装置の記録媒体4としては、金
錯体溶液から析出させた平板状金単結晶を用いた。前記
平板状金単結晶は以下のようにして作製したものであ
る。蒸留水にヨウ化カリウム及びヨウ素を投入してヨウ
素水溶液を作製した後、金を投入して攪拌溶解し、金の
ヨウ化物錯体を含有する水溶液を作製した。次いで基体
5を前記水溶液中に投入した。基体5としては単結晶シ
リコン基板を用い、その上に電極層6としてTiをスパ
ッタリング法により100nm堆積した導電性基板を用
いた。次に前記水溶液の温度を80℃に保ち、ヨウ素成
分の揮発を促進した。
As the recording medium 4 of the apparatus of this embodiment, a flat gold single crystal deposited from a gold complex solution was used. The flat gold single crystal is produced as follows. After potassium iodide and iodine were added to distilled water to prepare an iodine aqueous solution, gold was added and dissolved by stirring to prepare an aqueous solution containing a gold iodide complex. Next, the substrate 5 was placed in the aqueous solution. A single crystal silicon substrate was used as the base body 5, and a conductive substrate having 100 nm of Ti deposited thereon by the sputtering method as the electrode layer 6 was used. Next, the temperature of the aqueous solution was maintained at 80 ° C. to promote the volatilization of the iodine component.

【0013】このようにすることで、前記金のヨウ化物
錯体を含有する水溶液を過飽和状態に移行させて金のヨ
ウ化物錯体を分解させ、基体5上に平板状金単結晶群を
成長させた。このようにして基体5の面内方向への粒径
が2mm以上の平板状金単結晶が得られた。またこのよ
うにして作製した平板状金単結晶について、位相差顕微
鏡による光学的観察と、STM、AFMによる表面観察
を行ったところ、結晶の成長過程で発生する1段が1原
子層に相当する数段のステップのみが観察され、それ以
上の大きな段差や穴、溝などは確認されず非常に高い平
滑性を持つものであった。このようにして、周囲の環境
によって酸化されにくい金の、極めて大面積の連続した
平滑面が得られた。また、本実施例の装置の探針1は、
材料としてはAuよりなり、機械研磨及び電解研磨で鋭
利な先端を持つように作製したものである。
By doing so, the aqueous solution containing the gold iodide complex was transferred to a supersaturated state to decompose the gold iodide complex and grow the flat gold single crystal group on the substrate 5. . Thus, a flat gold single crystal having a grain size of 2 mm or more in the in-plane direction of the substrate 5 was obtained. Further, the flat gold single crystal thus produced was optically observed by a phase contrast microscope and the surface was observed by STM and AFM. As a result, one step generated during the crystal growth process corresponds to one atomic layer. Only a few steps were observed, and there were no large steps, holes, or grooves, and it had very high smoothness. In this way, a very smooth, smooth surface of gold was obtained, which was not easily oxidized by the surrounding environment. Further, the probe 1 of the apparatus of the present embodiment is
The material is made of Au and is manufactured by mechanical polishing and electrolytic polishing so as to have a sharp tip.

【0014】本実施例の記録再生装置を用いた記録方法
について以下に述べる。まず、Z軸駆動装置13によっ
て、探針1の先端を記録媒体4の表面に近づけた。この
際、探針1と記録媒体4との間の間隔制御は次のように
行った。記録媒体4の表面と探針1の先端をごく近接し
た時に、両者の間の距離に応じて流れるトンネル電流を
トンネル電流検出回路18を用いて計測し、サーボ回路
11により流れるトンネル電流が所定の値になるように
Z軸駆動装置13を制御し、探針1と記録媒体4との間
の間隔を制御した。次に、記録電圧印加装置14によっ
て探針1の先端と記録媒体4の表面の間に電界を印加
し、上記探針1の材料であるAuを探針1の先端から電
界蒸発させて供給して、記録媒体4上に供給した物質よ
りなる微小な凸構造15(記録ビット)を形成した。も
しくは同様にして探針1の先端より供給した物質によ
り、記録媒体4表面を局所的にエッチングし、凹構造1
6(記録ビット)を形成した。
A recording method using the recording / reproducing apparatus of this embodiment will be described below. First, the tip of the probe 1 was brought close to the surface of the recording medium 4 by the Z-axis drive device 13. At this time, the space between the probe 1 and the recording medium 4 was controlled as follows. When the surface of the recording medium 4 and the tip of the probe 1 are very close to each other, the tunnel current flowing according to the distance between them is measured using the tunnel current detecting circuit 18, and the tunnel current flowing by the servo circuit 11 is set to a predetermined value. The Z-axis driving device 13 was controlled so as to obtain the value, and the distance between the probe 1 and the recording medium 4 was controlled. Next, an electric field is applied between the tip of the probe 1 and the surface of the recording medium 4 by the recording voltage applying device 14, and Au, which is the material of the probe 1, is field-evaporated and supplied from the tip of the probe 1. As a result, a minute convex structure 15 (recording bit) made of the supplied substance was formed on the recording medium 4. Alternatively, in the same manner, the surface of the recording medium 4 is locally etched by the substance supplied from the tip of the probe 1 to form the concave structure 1
6 (recording bits) were formed.

【0015】本実施例では、一例として、探針側を−と
した2V、10マイクロ秒のパルス状電界を印加するこ
とで凸構造15を形成し、同様に探針側を−とした3.
5V、10マイクロ秒のパルス状電界を印加することで
凹構造16を形成することができた。また、記録媒体4
を載せたX−Yステージ7をX−Y駆動制御装置12に
よってX−Y方向にスキャンして探針1と記録媒体4の
相対位置を制御しながら探針1と記録媒体4の間に電界
を印加することで、任意の場所に任意の形状の微小な凸
構造15もしくは凹構造16を形成して記録を行うこと
ができた。以上本実施例によれば、情報の記録を記録ビ
ットとなる微小な構造を形成して記録媒体表面の形状を
局所的に変化することによって行うことができた。
In the present embodiment, as an example, the convex structure 15 is formed by applying a pulsed electric field of 2 V for 10 microseconds with the probe side at −, and similarly, the probe side is set at −.
The concave structure 16 could be formed by applying a pulsed electric field of 5 V for 10 microseconds. In addition, the recording medium 4
The XY stage 7 on which is mounted is scanned in the XY direction by the XY drive control device 12 to control the relative position of the probe 1 and the recording medium 4, and the electric field between the probe 1 and the recording medium 4 is controlled. By applying, it was possible to form a minute convex structure 15 or concave structure 16 having an arbitrary shape at an arbitrary position for recording. As described above, according to the present embodiment, it is possible to record information by forming a minute structure serving as a recording bit and locally changing the shape of the recording medium surface.

【0016】本実施例の記録再生装置を用いた情報の再
生方法について以下に述べる。探針1を記録媒体4に近
づけ、両者の間に流れるトンネル電流をトンネル電流検
出回路18でモニタしながら、記録媒体4を載せたX−
Yステージ7をX−Y駆動制御装置12によってX−Y
方向にスキャンして、記録媒体4上の凹凸に対応するト
ンネル電流が所定の一定値になるようにZ軸駆動装置1
3を制御し、この時の制御のサーボ量を計測すること
で、記録媒体4表面の形状を測定して表面像を得て、記
録ビットである凸構造15もしくは凹構造16の有無を
検知して情報の読み出しを行った。
An information reproducing method using the recording / reproducing apparatus of this embodiment will be described below. The probe 1 is brought close to the recording medium 4, and the tunnel current flowing between the probe 1 and the recording medium 4 is monitored by the tunnel current detecting circuit 18, while the recording medium 4 is mounted on the X-.
The Y stage 7 is moved to XY by the XY drive controller 12.
Direction, so that the tunnel current corresponding to the unevenness on the recording medium 4 has a predetermined constant value.
3 is controlled, and the servo amount of the control at this time is measured to measure the shape of the surface of the recording medium 4 to obtain a surface image, and the presence or absence of the convex structure 15 or the concave structure 16 which is a recording bit is detected. Information was read out.

【0017】以上本実施例によれば、情報の再生を記録
媒体表面の形状を読み取ることで行うことができた。以
上のようにして記録再生を行ったところ、本実施例の記
録再生装置及び記録再生方法によれば、nmオーダーの
大きさの微小な構造よりなる多数の記録ビットを、周囲
の環境によって酸化されにくい金の単一の連続な平滑面
上に形成できた。これらの多数の記録ビットにおいて
は、ビット列におけるビットの欠損は見られなかった。
このように本実施例によれば、大容量の記録再生を低エ
ラーレー卜で可能とする記録再生装置及び記録再生方法
を提供することが可能であった。
As described above, according to this embodiment, the information can be reproduced by reading the shape of the surface of the recording medium. When recording / reproducing was performed as described above, according to the recording / reproducing apparatus and the recording / reproducing method of the present embodiment, a large number of recording bits having a minute structure of the order of nm were oxidized by the surrounding environment. It could be formed on a single continuous smooth surface of hard gold. In these many recorded bits, no bit loss was found in the bit string.
As described above, according to the present embodiment, it is possible to provide a recording / reproducing apparatus and a recording / reproducing method that enable large-capacity recording / reproduction with a low error rate.

【0018】[実施例2]図2に、実施例2の記録再生
装置の該略図を示す。本実施例ではSPMの1種である
STMを応用して用いた。図2において、1探針、4は
記録媒体、5は基体、6は電極層、7はX−Yステー
ジ、11はサーボ回路、12はX−Y駆動制御装置、1
3はZ軸駆動装置、14は記録電圧印加装置、15は凸
構造(記録ビット)、17は制御用コンピュータ、18
はトンネル電流検出回路である。また、サーボ回路1
1、X−Y駆動制御装置12、記録電圧印加装置14、
トンネル電流検出回路18はすべて制御用コンピュータ
17に接続され制御されるようにした。本実施例の装置
の記録媒体4としては、実施例1と同様にして基体5上
に電極層6を設けた導電性基板上に作製した平板状金単
結晶を用いた。また、本実施例の装置の探針1は、材料
としてはWよりなり、機械研磨及び電解研磨で鋭利な先
端を持つように作製したものである。
[Embodiment 2] FIG. 2 is a schematic view of a recording / reproducing apparatus of Embodiment 2. In this embodiment, STM which is one of SPM is applied and used. In FIG. 2, 1 probe, 4 is a recording medium, 5 is a substrate, 6 is an electrode layer, 7 is an XY stage, 11 is a servo circuit, 12 is an XY drive control device, 1
3 is a Z-axis driving device, 14 is a recording voltage applying device, 15 is a convex structure (recording bit), 17 is a control computer, 18
Is a tunnel current detection circuit. Also, the servo circuit 1
1, an XY drive control device 12, a recording voltage application device 14,
All the tunnel current detection circuits 18 are connected to and controlled by the control computer 17. As the recording medium 4 of the apparatus of this example, a flat gold single crystal produced on a conductive substrate in which the electrode layer 6 was provided on the substrate 5 in the same manner as in Example 1 was used. Further, the probe 1 of the apparatus of this embodiment is made of W as a material and is manufactured by mechanical polishing and electrolytic polishing so as to have a sharp tip.

【0019】本実施例の記録再生装置を用いた記録方法
について以下に述べる。まず、Z軸駆動装置13によっ
て、探針1の先端を記録媒体4の表面に近づけた。この
際、探針1と記録媒体4との間の間隔制御は実施例1と
同様にして行った。次に、記録電圧印加装置14によっ
て探針1の先端と記録媒体4の表面の間に電界を印加
し、上記探針1の材料であるWを探針1の先端から電界
蒸発させて供給して、記録媒体4上に供給した物質より
なる微小な凸構造15(記録ビット)を形成した。本実
施例においては、一例として探針1と記録媒体4の間に
探針側を−とした5V、10マイクロ秒のパルス状電界
を印加することで凸構造15を形成することができた。
また、記録媒体4を載せたX−Yステージ7をX−Y駆
動制御装置12によってX−Y方向にスキャンして探針
1と記録媒体4の相対位置を制御しながら探針1と記録
媒体4の間に電界を印加することで、任意の場所に任意
の形状の微小な凸構造15を形成して記録を行うことが
できた。以上本実施例によれば、情報の記録を、平板状
金単結晶よりなる記録媒体上に記録媒体と導電率の異な
るWを供給して、記録ビットとなる微小な構造を形成し
て行うことができた。
A recording method using the recording / reproducing apparatus of this embodiment will be described below. First, the tip of the probe 1 was brought close to the surface of the recording medium 4 by the Z-axis drive device 13. At this time, the gap between the probe 1 and the recording medium 4 was controlled in the same manner as in Example 1. Next, an electric field is applied between the tip of the probe 1 and the surface of the recording medium 4 by the recording voltage applying device 14, and W, which is the material of the probe 1, is field-evaporated and supplied from the tip of the probe 1. As a result, a minute convex structure 15 (recording bit) made of the supplied substance was formed on the recording medium 4. In this example, as an example, the convex structure 15 could be formed by applying a pulsed electric field of 5 V for 10 μsec with the probe side to − between the probe 1 and the recording medium 4.
Further, the XY stage 7 on which the recording medium 4 is placed is scanned in the XY directions by the XY drive control device 12 to control the relative positions of the probe 1 and the recording medium 4, and the probe 1 and the recording medium 4. By applying an electric field between No. 4 and No. 4, a minute convex structure 15 having an arbitrary shape was formed at an arbitrary position, and recording could be performed. As described above, according to the present embodiment, information is recorded by supplying W having a conductivity different from that of the recording medium onto the recording medium made of a flat gold single crystal to form a minute structure to be a recording bit. I was able to.

【0020】本実施例の記録再生装置を用いた情報の再
生方法について以下に述べる。探針1を記録媒体4に近
づけ、両者の間に流れるトンネル電流をトンネル電流検
出回路18でモニタしながら、記録媒体4を載せたX−
Yステージ7をX−Y駆動制御装置12によってX−Y
方向にスキャンして、記録媒体4表面の導電率を測定し
て表面像を得て、記録ビットである凸構造15の有無を
検知して情報の読み出しを行った。以上本実施例によれ
ば、情報の再生を記録媒体表面の導電率を読み取ること
で行うことができた。
A method of reproducing information using the recording / reproducing apparatus of this embodiment will be described below. The probe 1 is brought close to the recording medium 4, and the tunnel current flowing between the probe 1 and the recording medium 4 is monitored by the tunnel current detecting circuit 18, while the recording medium 4 is mounted on the X-.
The Y stage 7 is moved to XY by the XY drive controller 12.
Direction, the conductivity of the surface of the recording medium 4 was measured to obtain a surface image, and the presence or absence of the convex structure 15 as a recording bit was detected to read information. As described above, according to the present embodiment, information can be reproduced by reading the conductivity of the surface of the recording medium.

【0021】以上のようにして記録再生を行ったとこ
ろ、本実施例の記録再生装置及び記録再生方法によれ
ば、nmオーダーの大きさの微小な構造よりなる多数の
記録ビットを、周囲の環境によって酸化されにくい金の
単一の連続な平滑面上に形成できた。これらの多数の記
録ビットにおいては、ビット列におけるビットの欠損は
見られなかった。このように本実施例によれば、大容量
の記録再生を低エラーレートで可能とする記録再生装置
及び記録再生方法を提供することが可能であった。
When recording / reproducing was performed as described above, according to the recording / reproducing apparatus and the recording / reproducing method of the present embodiment, a large number of recording bits having a minute structure of the order of nm were recorded in the surrounding environment. It could be formed on a single continuous smooth surface of gold, which is not easily oxidized by. In these many recorded bits, no bit loss was found in the bit string. As described above, according to the present embodiment, it is possible to provide a recording / reproducing apparatus and a recording / reproducing method that enable large-capacity recording / reproducing at a low error rate.

【0022】[実施例3]図3に、実施例3の記録再生
装置の該略図を示す。本実施例ではSPMの1種である
STMを応用して用い、さらに探針と記録媒体の間に加
速電極を設けたものである。図3において、1は探針、
4は記録媒体、5は基体、6は電極層、7はX−Yステ
ージ、11はサーボ回路、12はX−Y駆動制御装置、
13はZ軸駆動装置、14は記録電圧印加装置、15は
凸構造(記録ビット)、16は凹構造(記録ビット)、
17は制御用コンピュータ、18はトンネル電流検出回
路、19は加速電極、20は加速電圧印加装置である。
また、サーボ回路11、X−Y駆動制御装置12、記録
電圧印加装置14、トンネル電流検出回路18、加速電
圧印加装置20はすべて制御用コンピュータ17に接続
され、制御されるようにした。
[Third Embodiment] FIG. 3 is a schematic diagram of a recording / reproducing apparatus according to a third embodiment. In this embodiment, an STM, which is a type of SPM, is applied and used, and an accelerating electrode is provided between the probe and the recording medium. In FIG. 3, 1 is a probe,
4 is a recording medium, 5 is a substrate, 6 is an electrode layer, 7 is an XY stage, 11 is a servo circuit, 12 is an XY drive control device,
13 is a Z-axis driving device, 14 is a recording voltage applying device, 15 is a convex structure (recording bit), 16 is a concave structure (recording bit),
Reference numeral 17 is a control computer, 18 is a tunnel current detection circuit, 19 is an accelerating electrode, and 20 is an accelerating voltage applying device.
Further, the servo circuit 11, the XY drive control device 12, the recording voltage application device 14, the tunnel current detection circuit 18, and the acceleration voltage application device 20 are all connected to the control computer 17 so as to be controlled.

【0023】本実施例の装置の記録媒体4としては、実
施例1と同様にして基体5上に電極層6を設けた導電性
基板上に作製した平板状金単結晶を用いた。また、本実
施例の装置の探針1は、材料としてはPtよりなり、機
械研磨及び電解研磨で鋭利な先端を持つように作製した
ものである。本実施例の装置の加速電極19は、導電率
の高いシリコン単結晶基板を薄く加工し、さらにフォト
リソグラフィー技術により0.5μmの径の円形の穴を
開けたものを用いた。記録時はこの穴の中心に前記探針
1の先端を近づけて、探針1と加速電極19を互いに固
定して用いた。
As the recording medium 4 of the apparatus of this example, a flat gold single crystal prepared on a conductive substrate having an electrode layer 6 on a substrate 5 was used as in Example 1. Further, the probe 1 of the apparatus of this embodiment is made of Pt as a material and is manufactured by mechanical polishing and electrolytic polishing so as to have a sharp tip. As the accelerating electrode 19 of the apparatus of this embodiment, a silicon single crystal substrate having a high conductivity was thinly processed, and a circular hole having a diameter of 0.5 μm was formed by a photolithography technique. At the time of recording, the tip of the probe 1 was brought close to the center of this hole, and the probe 1 and the acceleration electrode 19 were fixed to each other.

【0024】本実施例の記録再生装置を用いた記録方法
について以下に述べる。まず、Z軸駆動装置13によっ
て、探針1の先端及び加速電極19を記録媒体4の表面
に近づけた。この際、探針1と記録媒体4との間の間隔
制御は実施例1と同様にして行った。
A recording method using the recording / reproducing apparatus of this embodiment will be described below. First, the tip of the probe 1 and the acceleration electrode 19 were brought close to the surface of the recording medium 4 by the Z-axis drive device 13. At this time, the gap between the probe 1 and the recording medium 4 was controlled in the same manner as in Example 1.

【0025】次に、記録電圧印加装置14によって探針
1の先端と記録媒体4の表面の間に電界を印加し、同時
に加速電圧印加回路20を用いて探針1の先端と加速電
極19の間に加速電圧を印加した。このようにすること
で、上記探針1の材料であるPtを探針1の先端から電
界蒸発させたうえで、さらに加速電極19により加速し
て供給し、記録媒体4上に供給した物質よりなる微小な
凸構造15(記録ビット)を形成した。もしくは同様に
して探針1の先端より供給した物質により、記録媒体4
表面を局所的にエッチングし、凹構造16(記録ビッ
ト)を形成した。本実施例においては、一例として、探
針1の先端と加速電極19の間に探針側を+とした5V
の加速電圧を印加しながら、探針1と記録媒体4の間に
探針側を−とした2V、10マイクロ秒のパルス状電界
を印加することで凸構造15を形成した。また加速電圧
の極性を反転させたうえで探針1と記録媒体4の間に同
様のパルス状電界を印加することで凹構造16を形成す
ることができた。また、記録媒体4を載せたX−Yステ
ージ7をX−Y駆動制御装置12によってX−Y方向に
スキャンして探針1と記録媒体4の相対位置を制御しな
がら探針1と記録媒体4の問に電界を印加することで、
任意の場所に任意の形状の微小な凸構造15もしくは凹
構造16を形成して記録を行うことができた。
Next, an electric field is applied between the tip of the probe 1 and the surface of the recording medium 4 by the recording voltage application device 14, and at the same time, the tip of the probe 1 and the acceleration electrode 19 are applied by using the acceleration voltage application circuit 20. An accelerating voltage was applied in between. By doing so, Pt, which is the material of the probe 1, is field-evaporated from the tip of the probe 1, and further accelerated by the accelerating electrode 19 to be supplied. The minute convex structure 15 (recording bit) was formed. Alternatively, in the same manner, the material supplied from the tip of the probe 1 causes the recording medium 4
The surface was locally etched to form the concave structure 16 (recording bit). In this embodiment, as an example, 5 V is set between the tip of the probe 1 and the acceleration electrode 19 with the probe side being +.
The convex structure 15 was formed by applying a pulsed electric field of 2 V for 10 microseconds with the probe side to − between the probe 1 and the recording medium 4 while applying the accelerating voltage. Further, the concave structure 16 could be formed by reversing the polarity of the acceleration voltage and then applying the same pulsed electric field between the probe 1 and the recording medium 4. Further, the XY stage 7 on which the recording medium 4 is placed is scanned in the XY directions by the XY drive control device 12 to control the relative positions of the probe 1 and the recording medium 4, and the probe 1 and the recording medium 4. By applying an electric field to question 4,
Recording could be performed by forming a minute convex structure 15 or concave structure 16 having an arbitrary shape at an arbitrary location.

【0026】本実施例の記録再生装置を用いた情報の再
生方法としては、加速電極19を取りはずし、実施例1
と同様にして、情報の再生を記録媒体表面の形状を読み
取ることで行うことができた。以上のようにして記録再
生を行ったところ、本実施例の記録再生装置及び記録再
生方法によれば、nmオーダーの大きさの微小な構造よ
りなる多数の記録ビットを、周囲の環境によって酸化さ
れにくい金の単一の連続な平滑面上に形成できた。これ
らの多数の記録ビットにおいては、ビット列におけるビ
ットの欠損は見られなかった。このように本実施例によ
れば、大容量の記録再生を低エラーレートで可能とする
記録再生装置及び記録再生方法を提供することが可能で
あった。
As a method of reproducing information using the recording / reproducing apparatus of this embodiment, the acceleration electrode 19 is removed and the first embodiment is used.
In the same manner as above, information could be reproduced by reading the shape of the recording medium surface. When recording / reproducing was performed as described above, according to the recording / reproducing apparatus and the recording / reproducing method of the present embodiment, a large number of recording bits having a minute structure of the order of nm were oxidized by the surrounding environment. It could be formed on a single continuous smooth surface of hard gold. In these many recorded bits, no bit loss was found in the bit string. As described above, according to the present embodiment, it is possible to provide a recording / reproducing apparatus and a recording / reproducing method that enable large-capacity recording / reproducing at a low error rate.

【0027】[実施例4]図4に、実施例4の記録再生
装置の該略図を示す。本実施例ではSPMの1種である
AFMを応用して用いた。図4において、1は探針、2
はカンチレバー、3は導電体層、4は記録媒体、5は基
体、6は電極層、7はX−Yステージ、8は半導体レー
ザー、9は4分割フォトダイオード、10は変位検出
系、11はサーボ回路、12はX−Y駆動制御装置、1
3はZ軸駆動装置、14は記録電圧印加装置、15は凸
構造(記録ビット)、16は凹構造(記録ビット)、1
7は制御用コンピュータである。また、変位検出系1
0、サーボ回路11、X−Y駆動制御装置12、記録電
圧印加装置14は、すべて制御用コンピュータ17に接
続され制御されるようにした。本実施例の装置の記録媒
体4としては、実施例1と同様にして基体5上に電極層
6を設けた導電性基板上に作製した平板状金単結晶を用
いた。本実施例の装置の探針1は、カンチレバー2の自
由端上に形成した。探針1はカンチレバー2と一体形成
したもので、材料としては絶縁体材料であるSi3N4を
用いた。さらに探針1、及びカンチレバー2の両面にA
uをスパッタリング法により100nm堆積し、導電体
層3を形成したものとした。
[Embodiment 4] FIG. 4 shows a schematic diagram of a recording / reproducing apparatus of Embodiment 4. In this embodiment, an AFM, which is one type of SPM, is applied and used. In FIG. 4, 1 is a probe, 2
Is a cantilever, 3 is a conductor layer, 4 is a recording medium, 5 is a substrate, 6 is an electrode layer, 7 is an XY stage, 8 is a semiconductor laser, 9 is a four-division photodiode, 10 is a displacement detection system, 11 is Servo circuit, 12 is an XY drive controller, 1
3 is a Z-axis driving device, 14 is a recording voltage applying device, 15 is a convex structure (recording bit), 16 is a concave structure (recording bit), 1
Reference numeral 7 is a control computer. Also, the displacement detection system 1
0, the servo circuit 11, the XY drive control device 12, and the recording voltage application device 14 are all connected to and controlled by the control computer 17. As the recording medium 4 of the apparatus of this example, a flat gold single crystal produced on a conductive substrate in which the electrode layer 6 was provided on the substrate 5 in the same manner as in Example 1 was used. The probe 1 of the apparatus of this embodiment is formed on the free end of the cantilever 2. The probe 1 is integrally formed with the cantilever 2 and is made of Si3N4 which is an insulating material. A on both sides of the probe 1 and cantilever 2
The conductor layer 3 was formed by depositing 100 nm of u by the sputtering method.

【0028】本実施例の記録再生装置を用いた記録方法
について以下に述べる。まず、Z軸駆動装置13によっ
て、導電体層3をもつ探針1の先端を記録媒体4の表面
に近づけた。この際、探針1と記録媒体4との間の間隔
制御は次のように行った。記録媒体4と探針1の先端を
ごく近接した時に両者の間の距離に応じて発生する力に
よって生じるカンチレバー2のたわみを、半導体レーザ
ー8、4分割フォトダイオード9、変位検出系10を用
いて計測し、サーボ回路11によりカンチレバー2のた
わみが所定の値になるようにZ軸駆動装置13を制御し
て、探針1と記録媒体4との間の間隔を制御した。次
に、実施例1と同様にして、記録電圧印加装置14によ
って探針1の先端と記録媒体4の表面の間に電界を印加
し、微小な凸構造15(記録ビット)及び、凹構造16
(記録ビット)を形成した。印加した電界の条件は実施
例1と同様とした。また、記録媒体4を載せたX−Yス
テージ7をX−Y駆動制御装置12によってX−Y方向
にスキャンして探針1と記録媒体4の相対位置を制御し
ながら探針1と記録媒体4の間に電界を印加すること
で、任意の場所に任意の形状の微小な凸構造15もしく
は凹構造16を形成して記録を行うことができた。以上
本実施例によれば、情報の記録を記録ビットとなる微小
な構造を形成して記録媒体表面の形状を局所的に変化す
ることによって行うことができた。
A recording method using the recording / reproducing apparatus of this embodiment will be described below. First, the tip of the probe 1 having the conductor layer 3 was brought close to the surface of the recording medium 4 by the Z-axis drive device 13. At this time, the space between the probe 1 and the recording medium 4 was controlled as follows. The deflection of the cantilever 2 caused by the force generated according to the distance between the recording medium 4 and the tip of the probe 1 when they are very close to each other is used by using the semiconductor laser 8, the four-division photodiode 9, and the displacement detection system 10. The Z-axis drive device 13 was measured by the servo circuit 11 so that the deflection of the cantilever 2 was a predetermined value, and the distance between the probe 1 and the recording medium 4 was controlled. Next, in the same manner as in Example 1, an electric field is applied between the tip of the probe 1 and the surface of the recording medium 4 by the recording voltage applying device 14, and the minute convex structure 15 (recording bit) and the concave structure 16 are formed.
(Record bit) formed. The conditions of the applied electric field were the same as in Example 1. Further, the XY stage 7 on which the recording medium 4 is placed is scanned in the XY directions by the XY drive control device 12 to control the relative positions of the probe 1 and the recording medium 4, and the probe 1 and the recording medium 4. By applying an electric field between No. 4 and No. 4, it was possible to form a minute convex structure 15 or concave structure 16 having an arbitrary shape at an arbitrary position for recording. As described above, according to the present embodiment, it is possible to record information by forming a minute structure serving as a recording bit and locally changing the shape of the recording medium surface.

【0029】本実施例の記録再生装置を用いた情報の再
生方法について以下に述べる。探針1を記録媒体4に近
づけた後に記録媒体4を載せたX−Yステージ7をX−
Y駆動制御装置12によってX−Y方向にスキャンし
て、記録媒体4上の凹凸によって生じるカンチレバー2
のたわみを半導体レーザー8、4分割フォトダイオード
9、変位検出系10を用いて計測し、サーボ回路11に
よりカンチレバー2のたわみが所定の一定値になるよう
にZ軸駆動装置13を制御し、この時の制御のサーボ量
を計測することで、記録媒体4表面の形状を測定して表
面像を得て、記録ビットである凸構造15もしくは凹構
造16の有無を検知して情報の読み出しを行った。以上
本実施例によれば、情報の再生を記録媒体表面の形状を
読み取ることで行うことができた。
A method of reproducing information using the recording / reproducing apparatus of this embodiment will be described below. After the probe 1 is brought close to the recording medium 4, the XY stage 7 on which the recording medium 4 is placed is moved to the X-
The cantilever 2 generated by the unevenness on the recording medium 4 is scanned in the XY direction by the Y drive control device 12.
The deflection of the cantilever 2 is measured by using the semiconductor laser 8, the 4-division photodiode 9, and the displacement detection system 10, and the servo circuit 11 controls the Z-axis drive device 13 so that the deflection of the cantilever 2 becomes a predetermined constant value. The shape of the surface of the recording medium 4 is measured to obtain a surface image by measuring the servo amount of the control at the time, and the presence or absence of the convex structure 15 or the concave structure 16 which is a recording bit is detected to read information. It was As described above, according to this embodiment, the information can be reproduced by reading the shape of the surface of the recording medium.

【0030】以上のようにして記録再生を行ったとこ
ろ、本実施例の記録再生装置及び記録再生方法によれ
ば、nmオーダーの大きさの微小な構造よりなる多数の
記録ビットを、周囲の環境によって酸化されにくい金の
単一の連続な平滑面上に形成できた。これらの多数の記
録ビットにおいては、ビット列におけるビットの欠損は
見られなかった。このように本実施例によれば、大容量
の記録再生を低エラーレートで可能とする記録再生装置
及び記録再生方法を提供することが可能であった。
When recording / reproducing was performed as described above, according to the recording / reproducing apparatus and the recording / reproducing method of the present embodiment, a large number of recording bits having a minute structure with a size of nm order were recorded in the surrounding environment. It could be formed on a single continuous smooth surface of gold, which is not easily oxidized by. In these many recorded bits, no bit loss was found in the bit string. As described above, according to the present embodiment, it is possible to provide a recording / reproducing apparatus and a recording / reproducing method that enable large-capacity recording / reproducing at a low error rate.

【0031】[実施例5]図5に、実施例5の記録再生
装置の該略図を示す。本実施例ではSPMの1種である
AFMを応用して用いた。さらに本実施例においては、
探針を複数個集積して用いた。図5において、1は探
針、2はカンチレバー、3は導電体層、4は記録媒体、
5は基体、6は電極層、15は凸構造(記録ビット)、
16は凹構造(記録ビット)、21は探針基板である。
なお、実施例4と同様の、X−Yステージ、X−Y駆動
制御装置からなるX−Y駆動系を設けた。またそれぞれ
の探針について、実施例4と同様の半導体レーザー、4
分割フォトダイオードヽ変位検出系、サーボ回路、Z軸
駆動装置からなるZ軸駆動系を設けた。また、それぞれ
の探針について記録電圧印加装置を設けた。これらX−
Y及びZ軸駆動系及び記録電圧印加装置は、すべて制御
用コンピュータに接続され制御されるようにした。本実
施例の装置の記録媒体4としては、実施例1と同様にし
て基体5上に電極層6を設けた導電性基板上に作製した
平板状金単結晶を用いた。
[Embodiment 5] FIG. 5 shows a schematic view of a recording / reproducing apparatus of Embodiment 5. In this embodiment, an AFM, which is one type of SPM, is applied and used. Furthermore, in this embodiment,
A plurality of probes were accumulated and used. In FIG. 5, 1 is a probe, 2 is a cantilever, 3 is a conductor layer, 4 is a recording medium,
5 is a substrate, 6 is an electrode layer, 15 is a convex structure (recording bit),
Reference numeral 16 is a concave structure (recording bit), and 21 is a probe substrate.
An XY drive system including an XY stage and an XY drive control device similar to that in Example 4 was provided. For each probe, a semiconductor laser similar to that of the fourth embodiment,
A Z-axis drive system consisting of a split photodiode, displacement detection system, servo circuit, and Z-axis drive device was provided. Further, a recording voltage applying device was provided for each probe. These X-
The Y and Z axis drive systems and the recording voltage application device were all connected to and controlled by a control computer. As the recording medium 4 of the apparatus of this example, a flat gold single crystal produced on a conductive substrate in which the electrode layer 6 was provided on the substrate 5 in the same manner as in Example 1 was used.

【0032】本実施例の装置の探針1は、カンチレバー
2の自由端上に形成した。探針1はカンチレバー2と一
体形成したもので、材料としては絶縁体材料であるSi
3N4を用いた。さらに探針1、及びカンチレバー2の両
面にAuをスパッタリング法により100nm堆積し、
導電体層3を形成したものとした。これらは、シリコン
単結晶よりなる探針基板21上にフォトリソグラフィー
技術を用いて複数個集積して形成したものである。ま
ず、複数の探針1を記録媒体4に対して面合わせを行っ
た。本実施例においては、記録媒体として極めて大面積
の連続した平滑面を持つ平板状金単結晶を用いること
で、記録媒体を載せた基体5と探針基板21を平行に接
近させるだけで複数の探針1すべてと記録媒体4の間隔
を所望の範囲に制御して、容易に面合わせを行うことが
できた。引き続いて、複数の探針1を用いて実施例4と
同様にして記録再生を行った。
The probe 1 of the apparatus of this embodiment is formed on the free end of the cantilever 2. The probe 1 is integrally formed with the cantilever 2, and the material is Si which is an insulator material.
3N4 was used. Further, Au is deposited to 100 nm on both surfaces of the probe 1 and the cantilever 2 by a sputtering method,
The conductor layer 3 was formed. These are formed by integrating a plurality of them on a probe substrate 21 made of silicon single crystal by using a photolithography technique. First, the plurality of probes 1 were aligned with the recording medium 4. In this embodiment, a flat gold single crystal having an extremely large area and having a continuous smooth surface is used as the recording medium, so that the substrate 5 on which the recording medium is placed and the probe substrate 21 are made to approach each other in parallel. The spacing between all of the probes 1 and the recording medium 4 was controlled within a desired range, so that the surfaces could be easily aligned. Subsequently, recording and reproduction were performed using a plurality of probes 1 in the same manner as in Example 4.

【0033】以上のようにして記録再生を行ったとこ
ろ、本実施例の記録再生装置及び記録再生方法によれ
ば、nmオーダーの大きさの微小な構造よりなる多数の
記録ビットを、周囲の環境によって酸化されにくい金の
単一の連続な平滑面上に形成できた。これらの多数の記
録ビットにおいては、ビット列におけるビットの欠損は
見られなかった。また、これら記録再生は、すべての探
針で同様に良好に行うことができた。このように本実施
例によれば、大容量の記録再生を低エラーレートで可能
とする記録再生装置及び記録再生方法を提供することが
可能であった。
When recording / reproducing was performed as described above, according to the recording / reproducing apparatus and the recording / reproducing method of the present embodiment, a large number of recording bits having a minute structure of the order of nm were recorded in the surrounding environment. It could be formed on a single continuous smooth surface of gold, which is not easily oxidized by. In these many recorded bits, no bit loss was found in the bit string. Also, these recording / reproducing operations could be performed equally well with all the probes. As described above, according to the present embodiment, it is possible to provide a recording / reproducing apparatus and a recording / reproducing method that enable large-capacity recording / reproducing at a low error rate.

【0034】[0034]

【発明の効果】本発明は、上記したように記録媒体を平
板状金単結晶で構成することにより、微小な構造よりな
る多数の記録ビットを、周囲の環境によって酸化されに
くい金の単一の連続した平滑な面を有する記録媒体上に
形成することができ、大容量の記録再生を低エラーレー
トで行うことの可能な記録再生装置及び記録再生方法を
実現することができる。
As described above, according to the present invention, since the recording medium is composed of the flat plate-shaped gold single crystal as described above, a large number of recording bits having a minute structure can be formed by using a single gold layer which is not easily oxidized by the surrounding environment. A recording / reproducing apparatus and a recording / reproducing method capable of being formed on a recording medium having a continuous smooth surface and capable of performing large-capacity recording / reproduction at a low error rate can be realized.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例1の概略を示す図である。FIG. 1 is a diagram showing an outline of a first embodiment of the present invention.

【図2】本発明の実施例2の概略を示す図である。FIG. 2 is a diagram showing an outline of a second embodiment of the present invention.

【図3】本発明の実施例3の概略を示す図である。FIG. 3 is a diagram showing an outline of a third embodiment of the present invention.

【図4】本発明の実施例4の概略を示す図である。FIG. 4 is a diagram showing an outline of a fourth embodiment of the present invention.

【図5】本発明の実施例5の概略を示す図である。FIG. 5 is a diagram showing an outline of a fifth embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1:探針 2:カンチレバー 3:導電体層 4:記録媒体 5:基体 6:電極層 7:X−Yステージ 8:半導体レーザー 9:4分割フォトダイオード 10:変位検出系 11:サーボ回路 12:X−Y駆動制御装置 13:Z軸駆動装置 14:記録電圧印加装置 15:凸構造(記録ビット) 16:凹構造(記録ビット) 17:制御用コンピュータ 18:トンネル電流検出回路 19:加速電極 20:加速電圧印加装置 21:探針基板 1: Probe 2: Cantilever 3: Conductor Layer 4: Recording Medium 5: Substrate 6: Electrode Layer 7: XY Stage 8: Semiconductor Laser 9: Quadrant Photodiode 10: Displacement Detection System 11: Servo Circuit 12: XY drive control device 13: Z-axis drive device 14: Recording voltage application device 15: Convex structure (recording bit) 16: Concave structure (recording bit) 17: Control computer 18: Tunnel current detection circuit 19: Accelerating electrode 20 : Accelerating voltage application device 21: Probe substrate

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】記録媒体と、導電性を持つ探針と、探針と
記録媒体との間に電界を印加する電圧印加手段とを備
え、情報の記録再生を行う記録再生装置において、前記
記録媒体の一部またはその全体が平板状金単結晶で構成
されていることを特徴とする記録再生装置。
1. A recording / reproducing apparatus for recording / reproducing information, comprising a recording medium, a conductive probe, and voltage applying means for applying an electric field between the probe and the recording medium. A recording / reproducing apparatus characterized in that a part or the whole of the medium is composed of a flat gold single crystal.
【請求項2】前記記録媒体は、その導電性基板上に平板
状金単結晶を形成することにより構成されていることを
特徴とする請求項1に記載の記録再生装置。
2. The recording / reproducing apparatus according to claim 1, wherein the recording medium is constituted by forming a flat gold single crystal on a conductive substrate thereof.
【請求項3】前記平板状金単結晶は、金錯体水溶液中で
金錯体を分解処理することにより形成されたものである
ことを特徴とする請求項1または請求項2に記載の記録
再生装置。
3. The recording / reproducing apparatus according to claim 1, wherein the flat gold single crystal is formed by decomposing a gold complex in a gold complex aqueous solution. .
【請求項4】前記探針は、多層構造よりなり表面に導電
体層を有していることを特徴とする請求項1〜請求項3
のいずれか1項に記載の記録再生装置。の記録再生装
置。
4. The probe has a multi-layered structure and has a conductor layer on its surface.
The recording / reproducing device according to any one of the above items. Recording and reproducing device.
【請求項5】前記探針は、複数個集積されたものである
ことを特徴とする請求項1〜請求項4のいずれか1項に
記載の記録再生装置。
5. The recording / reproducing apparatus according to claim 1, wherein a plurality of the probes are integrated.
【請求項6】前記探針と記録媒体との間には、加速電極
が設けられていることを特徴とする請求項1〜請求項5
のいずれか1項に記載の記録再生装置。
6. An accelerating electrode is provided between the probe and the recording medium.
The recording / reproducing device according to any one of the above items.
【請求項7】探針と記録媒体との間への電界印加によっ
て、該探針から該記録媒体上に物質を供給して情報の記
録を行うと共に、前記探針の走査による情報の読み出し
により情報の再生を行う記録再生方法において、前記記
録媒体の一部またはその全体を平板状金単結晶で構成
し、情報の記録または再生を行うようにしたことを特徴
とする記録再生方法。
7. An information is recorded by supplying a substance from the probe onto the recording medium by applying an electric field between the probe and the recording medium, and reading the information by scanning the probe. A recording / reproducing method for reproducing information, characterized in that a part or the whole of the recording medium is composed of a flat gold single crystal to record or reproduce information.
【請求項8】前記情報の記録を記録媒体表面の形状を局
所的に変化させることによって行い、前記情報の再生を
記録媒体表面の形状を読み取ることによって行うことを
特徴とする請求項7に記載の記録再生方法。
8. The method according to claim 7, wherein the recording of the information is performed by locally changing the shape of the surface of the recording medium, and the reproduction of the information is performed by reading the shape of the surface of the recording medium. Recording and playback method.
【請求項9】前記情報の記録を記録媒体表面の導電率を
局所的に変化させることによって行い、情報の再生を記
録媒体表面の導電率を読み取ることによって行うことを
特徴とする特許請求の範囲第7項に記載の記録再生方
法。
9. The method according to claim 1, wherein the recording of the information is performed by locally changing the conductivity of the surface of the recording medium, and the reproduction of the information is performed by reading the conductivity of the surface of the recording medium. The recording / reproducing method according to item 7.
JP5106096A 1996-02-14 1996-02-14 Recording and reproducing device and recording and reproducing method Pending JPH09219043A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5106096A JPH09219043A (en) 1996-02-14 1996-02-14 Recording and reproducing device and recording and reproducing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5106096A JPH09219043A (en) 1996-02-14 1996-02-14 Recording and reproducing device and recording and reproducing method

Publications (1)

Publication Number Publication Date
JPH09219043A true JPH09219043A (en) 1997-08-19

Family

ID=12876267

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5106096A Pending JPH09219043A (en) 1996-02-14 1996-02-14 Recording and reproducing device and recording and reproducing method

Country Status (1)

Country Link
JP (1) JPH09219043A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009512847A (en) * 2005-10-21 2009-03-26 サントル ナショナル デ ラ ルシェルシュ シィアンティフィク (セ.エヌ.エール.エス.) Read / write chip, head and apparatus, method of use thereof, and method of manufacture thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009512847A (en) * 2005-10-21 2009-03-26 サントル ナショナル デ ラ ルシェルシュ シィアンティフィク (セ.エヌ.エール.エス.) Read / write chip, head and apparatus, method of use thereof, and method of manufacture thereof

Similar Documents

Publication Publication Date Title
JP3029499B2 (en) Recording and playback device
US5329514A (en) Information processing apparatus, and electrode substrate and information recording medium used in the apparatus
JPH04147448A (en) Cantilever probe, scanning tunnelling microscope and information processor using the probe
JPH0793830A (en) Method and equipment for writing of submicron structure on surface
US6308405B1 (en) Process for preparing an electrode substrate
JP3135779B2 (en) Information processing device
JP3029143B2 (en) Information playback method
JP3127341B2 (en) Electrode substrate, method of manufacturing the same, recording medium, and information processing device
JPH09219043A (en) Recording and reproducing device and recording and reproducing method
JPH01312753A (en) Recording and reproducing device
EP0441626B1 (en) Medium, process for preparing the same, information processing device, information processing method
JP2942013B2 (en) Recording and / or playback device
JPH1081951A (en) Recording medium, its production and information recording and reproducing device using the recording medium
JPH0875761A (en) Scanning probe microscope as well as processing apparatus using the microscope and data-processing apparatus
JP2949651B2 (en) Method of manufacturing electrode substrate and recording medium
JP3261539B2 (en) Manufacturing method of electrode substrate
JP3095915B2 (en) Information processing device
JPH07110969A (en) Face alignment method, position control mechanism and information processor with the mechanism
JPH0528545A (en) Device and method for information processing and face fitting method, using scanning probe microscope
JP2992909B2 (en) Manufacturing method of recording medium
JP3056901B2 (en) Recording and playback device
JP2866165B2 (en) Recording medium, method of manufacturing the same, information processing method, and information processing apparatus
JP4079397B2 (en) Tracking mechanism and tracking method for recording / reproducing apparatus
JPH04206536A (en) Probe driving mechanism, tunnel current detector and record reproducer fitted with the mechanism
JP2934057B2 (en) Probe unit and information recording and / or reproducing apparatus using the same