JPH09215970A - Concentration control method in removal of anion contaminant - Google Patents
Concentration control method in removal of anion contaminantInfo
- Publication number
- JPH09215970A JPH09215970A JP8048187A JP4818796A JPH09215970A JP H09215970 A JPH09215970 A JP H09215970A JP 8048187 A JP8048187 A JP 8048187A JP 4818796 A JP4818796 A JP 4818796A JP H09215970 A JPH09215970 A JP H09215970A
- Authority
- JP
- Japan
- Prior art keywords
- water
- anode
- soil
- cathode
- concentration
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Processing Of Solid Wastes (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、CrO4 2-、Cr
2O7 2-、AsO4 3-、AsO3 3-、SeO4 2-、SeO3 2-、CN-、PbO2 2-
等の陰イオン汚染物を土壌内から除去する方法に関す
る。TECHNICAL FIELD The present invention relates to CrO 4 2− , Cr
2 O 7 2-, AsO 4 3- , AsO 3 3-, SeO 4 2-, SeO 3 2-, CN -, PbO 2 2-
The present invention relates to a method for removing anionic pollutants such as the like from the soil.
【0002】[0002]
【従来の技術】工場廃水、工場廃棄物、鉱山廃水などに
よって汚染された土壌には、カドミウム、鉛、銅、亜
鉛、砒素、セレン、ニッケル、クロム等の汚染物質が含
まれていることがあり、このような土壌をそのまま放置
すると、かかる物質が地下水や生物サイクルを介して環
境に拡散する危険性がある。2. Description of the Related Art Soil contaminated by factory wastewater, factory waste, mining wastewater, etc., may contain pollutants such as cadmium, lead, copper, zinc, arsenic, selenium, nickel and chromium. If such soil is left as it is, there is a risk that such substances will diffuse into the environment through groundwater or biological cycles.
【0003】そのため、汚染された土壌は、これを掘削
除去して所定の処理を施し、しかる後に管理型あるいは
遮断型の処分地に廃棄処分する一方、掘削された孔内に
は通常の土を客土して原状復帰するのが一般的である。Therefore, the contaminated soil is excavated and removed, subjected to a predetermined treatment, and then disposed of at a management-type or blocking-type disposal site, while normal soil is excavated in the excavated hole. It is common to return to the original state after returning to the soil.
【0004】ところが、かかる方法では、掘削の際に汚
染土を攪乱して二次汚染のおそれがあるとともに、汚染
土を大量に搬出、運搬しなければならないという問題
や、既存建築物の近接部や直下では掘削除去自体が困難
になるという問題が生じる。そのため、最近では、原位
置で浄化する技術が研究され始めており、その一つとし
て通電により汚染物質を回収する方法が特開平5-59716
号公報に開示されている。However, in such a method, there is a possibility that the contaminated soil may be disturbed during excavation to cause secondary pollution, and a large amount of the contaminated soil must be carried out and transported, and the proximity of existing buildings. There is a problem that the excavation and removal itself becomes difficult directly below. Therefore, recently, in-situ purification technology has begun to be researched, and one of them is a method of collecting pollutants by energization.
No. 6,086,045.
【0005】当該方法においては、まず、処理対象の地
盤範囲に止水壁を構築し、次いで、その地盤範囲に多数
の通水孔を有する中空管からなる陽極および陰極を挿入
し、次いで、当該地盤範囲に適宜散水してから電極間に
直流電圧を印加し、次いで、電気浸透現象によって陰極
側に集まった水を中空管を介して排水回収する。In the method, first, a water blocking wall is constructed in the ground area to be treated, and then an anode and a cathode consisting of hollow tubes having a large number of water passage holes are inserted in the ground area, and then, A DC voltage is applied between the electrodes after water is appropriately sprayed on the ground area, and then the water collected on the cathode side by the electroosmosis phenomenon is drained and recovered through the hollow tube.
【0006】かかる方法によれば、所定の汚染物質は、
電気浸透現象による水の流れに乗って陰極側に流れ込む
ので、これを排水回収することにより、当該汚染物質を
除去することができる。According to such a method, the predetermined pollutant is
Since the water flows due to the electroosmosis phenomenon and flows into the cathode side, the pollutant can be removed by collecting the waste water.
【0007】[0007]
【発明が解決しようとする課題】一方、クロム、砒素、
セレン、シアン、鉛などは、それぞれCrO4 2-、Cr
2O7 2-、AsO4 3-、AsO3 3-、SeO4 2-、SeO3 2-、CN-、PbO2 2-
等の陰イオンの形で土壌に含まれている。そして、こ
れら陰イオン汚染物は、通電を行うと、陰極に移動する
水の流れに逆らいながら電気泳動によって陽極方向に力
を受けるので、陰極側ではほとんど回収できないことが
本出願人が行った実験で判明した。そのため、陰イオン
汚染物を回収するには、陽極付近に集まったものを土と
ともに除去するしかないが、土の掘削、運搬、客土など
一連の作業が必要となり、その除去効率はきわめて悪
い。On the other hand, chromium, arsenic,
For selenium, cyanide, lead, etc., CrO 4 2- and Cr, respectively
2 O 7 2-, AsO 4 3- , AsO 3 3-, SeO 4 2-, SeO 3 2-, CN -, PbO 2 2-
Contained in the soil in the form of anions such as. And, when these anionic contaminants are energized, they are subjected to a force in the direction of the anode by electrophoresis against the flow of water moving to the cathode, so that the cathode side can hardly recover them. Found out. Therefore, in order to collect the anion contaminants, the material collected in the vicinity of the anode must be removed together with the soil, but a series of operations such as soil excavation, transportation, and soil for the soil are required, and the removal efficiency is extremely poor.
【0008】本発明は、上述した事情を考慮してなされ
たもので、陰イオン汚染物を効率よく土壌内から回収可
能な陰イオン汚染物の除去における濃度管理方法を提供
することを目的とする。The present invention has been made in consideration of the above-mentioned circumstances, and an object of the present invention is to provide a concentration control method for removing anionic contaminants that can efficiently recover the anionic contaminants from the soil. .
【0009】[0009]
【課題を解決するための手段】上記目的を達成するた
め、本発明の陰イオン汚染物の除去における濃度管理方
法は請求項1に記載したように、陰イオン汚染物を含む
土壌内に陽極および陰極を埋設し、次に前記土壌への給
水および前記陽極近傍からの排水を継続的に行いながら
前記陽極および前記陰極間に直流電圧を印加して通電を
行い、前記陽極側に集まった前記陰イオン汚染物の濃度
を測定して該測定濃度が所定の範囲内でない場合に前記
給排水の量を調整するものである。In order to achieve the above object, the method for controlling concentration in removing anionic contaminants according to the present invention is, as described in claim 1, an anode and a soil in soil containing anionic contaminants. A cathode is buried, and then a DC voltage is applied between the anode and the cathode while continuously supplying water to the soil and draining from the vicinity of the anode to energize the cathode, and the shadow gathered on the anode side. The concentration of ion contaminants is measured, and when the measured concentration is not within a predetermined range, the amount of water supply and drainage is adjusted.
【0010】また、本発明に係る陰イオン汚染物の除去
における濃度管理方法は、排水された水に含まれる前記
陰イオン汚染物の分離除去処理を酸性環境下で行い、そ
の処理水を給水用にリサイクルするものである。Further, the concentration control method for removing anionic contaminants according to the present invention is a method for separating and removing the anionic contaminants contained in drained water in an acidic environment and supplying the treated water for water supply. It is to be recycled.
【0011】本発明に係る陰イオン汚染物の除去におけ
る濃度管理方法においては、陰イオン汚染物を含む土壌
内に陽極および陰極を埋設し、次に前記土壌への給水お
よび前記陽極近傍からの排水を継続的に行いながら前記
陽極および前記陰極間に直流電圧を印加して通電を行う
が、通電中をはじめとして終始、陰極側では非排水と
し、電気浸透による陰極への水の移動を阻止しておく。In the concentration control method for removing anionic contaminants according to the present invention, an anode and a cathode are embedded in soil containing anionic contaminants, and then water is supplied to the soil and drainage from the vicinity of the anode is performed. DC voltage is applied between the positive electrode and the negative electrode while continuously conducting the current, but it is not drained on the negative electrode side at all times, including during the current is passed, and water migration to the negative electrode is prevented by electroosmosis. Keep it.
【0012】すると、陰イオン汚染物は、電気浸透によ
る陰極への水の移動にあえて逆らうことなく、電気泳動
によって自然に陽極に集まる。なお、陽極に近づくほど
酸性度が上昇して陰イオン汚染物の溶解度が高くなるの
で、より効率的に回収される。[0012] Then, the anionic contaminants naturally collect on the anode by electrophoresis, without countering the migration of water to the cathode by electroosmosis. It should be noted that the closer to the anode, the higher the acidity and the higher the solubility of the anionic contaminants, and thus the more efficient recovery.
【0013】一方、陽極側に集まった陰イオン汚染物の
濃度を測定監視し、該測定濃度が所定の範囲内でない場
合、給排水の量を調整し、陽極近傍の陰イオン汚染物の
濃度を一定に維持する。On the other hand, the concentration of anionic contaminants collected on the anode side is measured and monitored, and if the measured concentration is not within a predetermined range, the amount of water supply and drainage is adjusted to keep the concentration of anionic contaminants near the anode constant. To maintain.
【0014】ここで、排水された水に含まれる陰イオン
汚染物の分離除去処理を酸性環境下で行い、その処理水
を土壌に給水リサイクルすれば、土壌中の陰イオン汚染
物の溶解度が増大し、除去効率が向上する。Here, if the separation and removal treatment of the anion contaminants contained in the drained water is performed in an acidic environment and the treated water is recycled to the soil, the solubility of the anion contaminants in the soil is increased. However, the removal efficiency is improved.
【0015】[0015]
【発明の実施の形態】以下、本発明に係る陰イオン汚染
物の除去における濃度管理方法の実施の形態について、
添付図面を参照して説明する。BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the concentration control method for removing anionic contaminants according to the present invention will be described below.
This will be described with reference to the accompanying drawings.
【0016】図1は、本実施形態に係る陰イオン汚染物
の除去における濃度管理方法の手順を示したフローチャ
ートである。本実施形態の除去における濃度管理方法に
おいては、まず図2(a) に示すように、CrO4 2-、Cr2O7
2-、AsO4 3-、AsO3 3-、SeO4 2-、SeO3 2-、CN-、PbO2 2-等
の陰イオン汚染物を含む土壌1内に陽極2および陰極3
を埋設する(図1、ステップ101)。FIG. 1 is a flow chart showing the procedure of a concentration control method for removing anionic contaminants according to this embodiment. In the concentration control method in the removal of this embodiment, first, as shown in FIG. 2 (a), CrO 4 2− , Cr 2 O 7
2-, AsO 4 3-, AsO 3 3-, SeO 4 2-, SeO 3 2-, CN -, anode within the soil 1 containing anionic contaminants PbO 2 2-like 2 and cathode 3
Is buried (step 101 in FIG. 1).
【0017】ここで、陰極3は例えば鉄筋棒で構成する
のがよい。また、陽極2は、炭素棒等の導電性中空管に
多数の孔を設けて構成してあり、電極とストレーナ管と
を兼用させてある。そして、陽極2の中には、給水管5
およびポンプアップによる排水を行うための排水管6を
配設してあり、該給水管5、排水管6は、地上に設置さ
れた給排水ポンプ7に接続してある。Here, the cathode 3 is preferably composed of, for example, a reinforcing rod. Further, the anode 2 is configured by providing a large number of holes in a conductive hollow tube such as a carbon rod, and serves as both an electrode and a strainer tube. Then, in the anode 2, there is a water supply pipe 5
Also, a drainage pipe 6 for draining water by pumping up is provided, and the water supply pipe 5 and the drainage pipe 6 are connected to a water supply / drainage pump 7 installed on the ground.
【0018】一方、陽極2の内部には陰イオン汚染物の
濃度を測定する濃度センサ8を設置してあり、地上に設
置されたコンピュータ9に随時計測データを転送するよ
うになっている。そして、コンピュータ9は、該データ
の大きさに応じて給排水ポンプ7の作動並びに停止を切
替制御するようになっている。On the other hand, a concentration sensor 8 for measuring the concentration of anionic contaminants is installed inside the anode 2, and the measurement data is transferred to a computer 9 installed on the ground at any time. Then, the computer 9 switches and controls the operation and stop of the water supply / drainage pump 7 according to the size of the data.
【0019】次に、同図に示すように、コンピュータ9
を操作して給排水ポンプ7を作動させ、給水管5および
陽極2を介して汚染土壌1に給水を行うとともに排水管
6を介して陽極2からの排水を行う。また、これらの給
排水を行いながら陽極2および陰極3の間に直流電圧を
印加して通電を行う(ステップ102)。Next, as shown in FIG.
Is operated to operate the water supply / drainage pump 7 to supply water to the contaminated soil 1 via the water supply pipe 5 and the anode 2 and to drain water from the anode 2 via the drainage pipe 6. Further, while supplying and draining these, a DC voltage is applied between the anode 2 and the cathode 3 to conduct electricity (step 102).
【0020】ここで、通電時間は、土質性状、陰イオン
汚染物の種類や濃度などによってさまざまであるが、例
えば数日間継続して行うのがよい。水の交換量について
も、通電量や土の性状に合わせて適宜設定すればよい。Here, the energization time varies depending on the soil properties, the type and concentration of the anion contaminants, etc., but it is preferable to continue for several days. The amount of water exchanged may also be set appropriately according to the amount of electricity and the properties of the soil.
【0021】また、陽極2付近の水位は、陰極3側の水
位が地表面に達することがない程度に適宜調整する。ま
た、陰極3側では、通電中をはじめ終始非排水とし、電
気浸透による陰極3への水の移動を阻止しておく。The water level near the anode 2 is appropriately adjusted so that the water level on the cathode 3 side does not reach the ground surface. On the cathode 3 side, water is not drained from beginning to beginning during energization to prevent water from moving to the cathode 3 due to electroosmosis.
【0022】すると、土壌1中の水は、電気浸透によっ
て陰極3へ移動しようとするが、陰極3側では排水され
ないため、陰極3へ移動しようとする力と陰極3付近の
水位の若干の上昇による圧力とが平衡し、水は移動しな
くなる。Then, the water in the soil 1 tries to move to the cathode 3 by electroosmosis, but is not drained on the side of the cathode 3, so the force to move to the cathode 3 and a slight rise in the water level near the cathode 3 occur. Equilibrium with the pressure due to, the water does not move.
【0023】かかる状態で通電を継続すれば、陰イオン
汚染物は、図2(b) に示すように電気浸透による陰極3
への水の移動にあえて逆らうことなく、電気泳動によっ
て自然に陽極2に集まる。しかも、陽極2に近づくほど
酸性度が上昇して陰イオン汚染物の溶解度が高くなるの
で、より効率的な回収が可能となる。If the energization is continued in such a state, the anion contaminants will be absorbed by the cathode 3 by electroosmosis as shown in FIG. 2 (b).
The water naturally collects on the anode 2 by electrophoresis without countering the movement of water. Moreover, the closer to the anode 2, the higher the acidity and the higher the solubility of the anionic contaminants, so that more efficient recovery is possible.
【0024】なお、陽極2から回収された水は、酸性環
境のままイオン交換樹脂等を用いて水処理を行い、該水
中の陰イオン汚染物を分離除去するとともに、陰イオン
汚染物が除去された後の処理水を給水用にリサイクルす
る。The water recovered from the anode 2 is subjected to water treatment in an acidic environment using an ion exchange resin or the like to separate and remove anionic contaminants in the water, and at the same time, remove the anionic contaminants. After treatment, the treated water is recycled for water supply.
【0025】陽極側で回収された水は酸性度が高い。し
たがって、これをアルカリにして一般的な水処理を行う
よりも、酸性環境をそのまま生かして陰イオン汚染物を
分離処理し、処理された後の処理水を給水用にリサイク
ルするようにすれば、陰イオン汚染物を溶解させやすい
水を土壌中に給水することができる。The water recovered on the anode side has a high acidity. Therefore, rather than making this an alkali and performing general water treatment, if the acidic environment is used as it is to separate the anion contaminants and the treated water after treatment is recycled for water supply, Water capable of dissolving anionic contaminants can be supplied to the soil.
【0026】一方、陽極2の側に集まってくる陰イオン
汚染物の濃度を濃度センサ8でリアルタイムで計測して
コンピュータ9に随時転送し(ステップ103)、測定
された陰イオン汚染物の濃度が所定の範囲内に収まって
いるかどうかをコンピュータ9で継続監視する(ステッ
プ104)。ここで、所定範囲の上限は、電気泳動の効
果が低下する限界を考慮して、500〜1000ppm
とするのがよい。On the other hand, the concentration of the anionic contaminant collected on the side of the anode 2 is measured by the concentration sensor 8 in real time and transferred to the computer 9 at any time (step 103). The computer 9 continuously monitors whether it is within a predetermined range (step 104). Here, the upper limit of the predetermined range is 500 to 1000 ppm in consideration of the limit that the effect of electrophoresis decreases.
It is good to do.
【0027】そして、測定濃度が所定の範囲内であれば
そのまま陰イオン汚染物の濃度の監視を続行し、測定濃
度が所定の範囲内に収まっていない場合には、陰イオン
汚染物の濃度が一定になるようにコンピュータ9で給排
水ポンプ7を駆動制御し、給排水量を適宜調整する(ス
テップ105)。If the measured concentration is within the predetermined range, monitoring of the concentration of the anionic contaminant is continued as it is. If the measured concentration is not within the predetermined range, the concentration of the anionic contaminant is The computer 9 drives and controls the water supply / drainage pump 7 so as to be constant, and the amount of water supply / drainage is appropriately adjusted (step 105).
【0028】このような給排水の監視を土壌の洗浄が終
了するまで繰り返し、工事終了後は、陰イオン汚染物が
分離除去された排水をpH処理して下水に放流する。Such monitoring of water supply and drainage is repeated until the soil cleaning is completed, and after the construction is completed, the wastewater from which the anionic contaminants have been separated and removed is subjected to pH treatment and discharged into the sewage.
【0029】以上説明したように、本実施形態に係る陰
イオン汚染物の除去における濃度管理方法によれば、陰
極側を非排水とし陽極側からのみ排水するようにしたの
で、CrO4 2-、Cr2O7 2-、AsO4 3-、AsO3 3-、SeO4 2-、SeO3
2-、CN-、PbO2 2-などの陰イオン汚染物は、電気浸透に
よる水の流れに邪魔されることなく、電気泳動によって
スムーズに陽極に到達し、かくして、陰イオン汚染物を
効率よく陽極に集めてこれを回収することが可能とな
る。As described above, according to the concentration control method for removing anionic contaminants according to the present embodiment, since the cathode side is not drained and only the anode side is drained, CrO 4 2− , Cr 2 O 7 2- , AsO 4 3- , AsO 3 3- , SeO 4 2- , SeO 3
2-, CN -, PbO 2 2- anion contaminants, such as, without being disturbed by the flow of water by electroosmosis, smoothly reach the anode by electrophoresis, thus efficiently anion contaminants It becomes possible to collect this by collecting it at the anode.
【0030】また、陽極に近づくほど陰イオン汚染物の
溶解度が高くなるので、陰極〜陽極間の広い範囲の土壌
を除染することができる。Further, since the solubility of the anionic contaminant becomes higher as it gets closer to the anode, it is possible to decontaminate a wide range of soil between the cathode and the anode.
【0031】また、陰極非排水としたことによって電気
浸透による水の移動がなくなり、その分、給排水の量や
位置によって土壌中の水の流れを制御できるようにな
る。In addition, since the cathode is not drained, the movement of water due to electroosmosis is eliminated, and accordingly, the flow of water in the soil can be controlled by the amount and position of water supply and drainage.
【0032】また、排水中の陰イオン汚染物の分離除去
処理を酸性状態のまま行い、該処理水を給水用にリサイ
クルするようにしたので、土壌中の陰イオン汚染物が溶
解しやすい状態となり、いったんアルカリに戻して分離
除去し、これを給水用にリサイクルするよりも土壌中の
陰イオン汚染物をより効率的に回収除去することが可能
となる。Further, since the treatment for separating and removing the anionic contaminants in the waste water is carried out in an acidic state and the treated water is recycled for water supply, the anionic contaminants in the soil are easily dissolved. It becomes possible to recover and remove anionic contaminants in soil more efficiently than once returning to alkali to separate and remove it, and to recycle it for water supply.
【0033】また、陽極に集まった陰イオン汚染物の濃
度が一定となるように必要に応じて給排水量を調整する
ようにしたので、長期的な自動管理が可能になるととも
に、陽極から回収された陰イオン汚染物の濃度も常に一
定となり、後工程である分離除去処理がきわめてやりや
すくなる。Further, since the amount of water supply and drainage is adjusted as necessary so that the concentration of the anionic contaminants collected in the anode becomes constant, long-term automatic management becomes possible and the anion contaminants are collected from the anode. Also, the concentration of the anionic contaminants is always constant, and the post-process of separation and removal is extremely easy to perform.
【0034】本実施形態では、炭素棒で構成した陽極を
ストレーナ管兼用としたが、陽極とストレーナ管とを別
体としてもよい。In the present embodiment, the anode made of carbon rod is also used as the strainer tube, but the anode and the strainer tube may be separately provided.
【0035】また、本実施形態では、給水を陽極側から
行うようにしたが、給水位置については特に限定される
ものではなく、陽極側に加えてあるいはその代わりに電
極間の所望の位置で地表面から散水し、例えば電気分解
による損失分を補充するようにしてもよい。Further, in the present embodiment, the water is supplied from the anode side, but the water supply position is not particularly limited, and in addition to or instead of the anode side, the ground is provided at a desired position between the electrodes. You may make it sprinkle water from the surface and supplement the loss by electrolysis, for example.
【0036】また、本実施形態では、酸性環境のまま水
処理を行う方法として、イオン交換樹脂を用いた方法を
採用したが、かかる方法に代えて、例えば砒素やセレン
を鉄化合物に吸着させて除去を図る方法を採用してもよ
い。In this embodiment, a method using an ion exchange resin is adopted as a method for water treatment in an acidic environment. Instead of such a method, for example, arsenic or selenium is adsorbed on an iron compound. You may employ the method of removing.
【0037】また、本実施形態では、排水された水を酸
性環境のまま水処理するようにしたが、必ずしも酸性の
ままで処理する必要はなく、いったんアルカリ性にして
から陰イオン汚染物の分離除去水処理を行うようにして
もよいし、かかる場合、処理水を給水用にリサイクルし
なくてもよい。Further, in the present embodiment, the drained water is treated in an acidic environment, but it is not always necessary to treat it in an acidic state, and once it is made alkaline, separation and removal of anionic contaminants are carried out. Water treatment may be performed, and in such a case, treated water may not be recycled for water supply.
【0038】[0038]
【発明の効果】以上述べたように、本発明の陰イオン汚
染物の除去における濃度管理方法は、陰イオン汚染物を
含む土壌内に陽極および陰極を埋設し、次に前記土壌へ
の給水および前記陽極近傍からの排水を継続的に行いな
がら前記陽極および前記陰極間に直流電圧を印加して通
電を行い、前記陽極側に集まった前記陰イオン汚染物の
濃度を測定して該測定濃度が所定の範囲内でない場合に
前記給排水の量を調整するので、陰イオン汚染物を効率
よく土壌内から回収することができる。As described above, the concentration control method for removing anionic contaminants according to the present invention comprises burying an anode and a cathode in soil containing anionic contaminants, and then supplying water to the soil and While continuously discharging water from the vicinity of the anode, a direct current voltage is applied between the anode and the cathode to conduct electricity, and the concentration of the anionic contaminant collected on the anode side is measured to obtain the measured concentration. Since the amount of water supply and drainage is adjusted when it is not within the predetermined range, anion contaminants can be efficiently recovered from the soil.
【0039】[0039]
【図1】本実施形態に係る陰イオン汚染物の除去におけ
る濃度管理方法の手順を示したフローチャート。FIG. 1 is a flowchart showing a procedure of a concentration management method in removing anionic contaminants according to the present embodiment.
【図2】本実施形態に係る陰イオン汚染物の除去におけ
る濃度管理方法の作用を説明したものであり、(a)は通
電前の様子、(b)は通電中の様子を示した図。2A and 2B are diagrams for explaining the operation of the concentration control method in removing anionic contaminants according to the present embodiment, FIG. 2A showing a state before energization and FIG. 2B showing a state during energization.
1 汚染土壌 2 陽極(ストレーナ管) 3 陰極 5 給水管 6 排水管 7 給排水ポンプ 1 Contaminated soil 2 Anode (strainer pipe) 3 Cathode 5 Water supply pipe 6 Drain pipe 7 Water supply / drainage pump
Claims (2)
び陰極を埋設し、次に前記土壌への給水および前記陽極
近傍からの排水を継続的に行いながら前記陽極および前
記陰極間に直流電圧を印加して通電を行い、前記陽極側
に集まった前記陰イオン汚染物の濃度を測定して該測定
濃度が所定の範囲内でない場合に前記給排水の量を調整
することを特徴とする陰イオン汚染物の除去における濃
度管理方法。1. A direct current voltage is applied between the anode and the cathode while burying the anode and the cathode in the soil containing anion contaminants and then continuously supplying water to the soil and draining water from the vicinity of the anode. Is applied to conduct current, and the concentration of the anion contaminants collected on the anode side is measured, and when the measured concentration is not within a predetermined range, the amount of the water supply / drainage is adjusted. Concentration control method for contaminant removal.
染物の分離除去処理を酸性環境下で行い、その処理水を
給水用にリサイクルする請求項1記載の陰イオン汚染物
の除去における濃度管理方法。2. The concentration for removing anionic contaminants according to claim 1, wherein the treatment for separating and removing the anionic contaminants contained in the drained water is performed in an acidic environment, and the treated water is recycled for water supply. Management method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP04818796A JP3149425B2 (en) | 1996-02-09 | 1996-02-09 | Concentration control method for removal of anionic contaminants |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP04818796A JP3149425B2 (en) | 1996-02-09 | 1996-02-09 | Concentration control method for removal of anionic contaminants |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH09215970A true JPH09215970A (en) | 1997-08-19 |
JP3149425B2 JP3149425B2 (en) | 2001-03-26 |
Family
ID=12796391
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP04818796A Expired - Fee Related JP3149425B2 (en) | 1996-02-09 | 1996-02-09 | Concentration control method for removal of anionic contaminants |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3149425B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007237148A (en) * | 2006-03-13 | 2007-09-20 | Fujita Corp | Evaluation method of polluted ground cleaning by electro-osmosis method |
CN114072362A (en) * | 2019-07-08 | 2022-02-18 | 梅特基因有限公司 | Electrochemical soil treatment device and method |
-
1996
- 1996-02-09 JP JP04818796A patent/JP3149425B2/en not_active Expired - Fee Related
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007237148A (en) * | 2006-03-13 | 2007-09-20 | Fujita Corp | Evaluation method of polluted ground cleaning by electro-osmosis method |
CN114072362A (en) * | 2019-07-08 | 2022-02-18 | 梅特基因有限公司 | Electrochemical soil treatment device and method |
Also Published As
Publication number | Publication date |
---|---|
JP3149425B2 (en) | 2001-03-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Alshawabkeh et al. | Practical aspects of in-situ electrokinetic extraction | |
JP3178581B2 (en) | How to clean contaminated soil | |
CN110434166B (en) | Double-ring vertical self-cleaning type in-situ dehydration pollution-reduction electric repair device and method | |
KR100427692B1 (en) | system of Electrokinetic soil remediation | |
JP4718585B2 (en) | Treatment method of contaminated soil | |
CN206305191U (en) | Heavy metal-polluted soil electricity based on electronic geotextiles promotees drip washing removal device | |
JPH115077A (en) | Contaminated ground purification system | |
JPH09215970A (en) | Concentration control method in removal of anion contaminant | |
CN109304365B (en) | Electric remediation method for antimony-polluted soil | |
JP3180312B2 (en) | Concentration control method for removal of anionic contaminants | |
JP3381764B2 (en) | How to clean contaminated soil | |
JP3214607B2 (en) | Electrode placement method for removal of anionic contaminants | |
JP3610916B2 (en) | How to remove anionic contaminants | |
JP3575544B2 (en) | Electrode placement method for removal of anionic contaminants | |
JPH11221553A (en) | Purifying method of heavy metal contamination soil | |
JP3343662B2 (en) | In-situ treatment method and apparatus for hydrous soil by electroosmosis | |
JPH1034126A (en) | Method and apparatus for purifying soil polluted with heavy metal | |
JPH11128901A (en) | Method and apparatus for purifying polluted soil | |
JP3214606B2 (en) | How to remove anionic contaminants | |
JPH09215972A (en) | Anion contaminant removing apparatus | |
JP3214600B2 (en) | How to clean contaminated soil | |
KR0134078B1 (en) | Device for solidifying solid polluted with heavy metals | |
JP3142050B2 (en) | Method for removing and cleaning anionic contaminants | |
JP2002035736A (en) | Treatment device for contaminated soil and method therefor | |
KR20060009978A (en) | The clean-up and remediation equipment of contaminated ground mixed with cohesionless and cohesive soils by electro flushing reactive pile technology and the method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20001218 |
|
LAPS | Cancellation because of no payment of annual fees |