JPH09214019A - Magnetoelectric transducer - Google Patents

Magnetoelectric transducer

Info

Publication number
JPH09214019A
JPH09214019A JP8019883A JP1988396A JPH09214019A JP H09214019 A JPH09214019 A JP H09214019A JP 8019883 A JP8019883 A JP 8019883A JP 1988396 A JP1988396 A JP 1988396A JP H09214019 A JPH09214019 A JP H09214019A
Authority
JP
Japan
Prior art keywords
thin film
layer
magnetic
single crystal
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP8019883A
Other languages
Japanese (ja)
Inventor
Kazuhiro Tanaka
和弘 田中
Takeki Matsui
雄毅 松居
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP8019883A priority Critical patent/JPH09214019A/en
Publication of JPH09214019A publication Critical patent/JPH09214019A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)
  • Hall/Mr Elements (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an indium-antimony-arsenic magnetoelectric transducer which is high in sensitivity and excellent in heat resistance. SOLUTION: The magnetoelectric transducer comprises, as its magnetism sensitive part, a laminate which is made up of a silicon single crystal substrate 1, a crystalline rare earth oxide layer 2 of 3,000-30,000Å thick formed on the silicon single crystal substrate 1, and a semiconductor thin film 3 of stoichiometric indium/antimony/arsenic compound having a thickness of 0.5-2μm and expressed by a formula of InSb1-x Asx (where X being 0-1) formed on the layer 2.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、高い移動度を有す
るインジウムアンチモン砒素系(以下、InSb 1-X
X と略す)化合物半導体薄膜を感磁部とする磁電変換
素子であって、高い感度でかつ、耐熱性の改良された磁
電変換素子に関する。
TECHNICAL FIELD The present invention has high mobility.
Indium antimony arsenic (hereinafter referred to as InSb 1-XA
sXAbbreviated) Magnetoelectric conversion using compound semiconductor thin film as magnetic sensing part
An element that is highly sensitive and has improved heat resistance.
The present invention relates to an electric conversion element.

【0002】[0002]

【従来の技術】ホール素子や半導体磁気抵抗素子といっ
た磁電変換素子は、VTR、フロッピーディスクやCD
−ROM等のドライブモータ用の回転位置検出センサあ
るいは紙幣認識用磁気センサとして広く用いられてい
る。そのような素子の感磁部として最適なのは、高い移
動度を有するインジウムアンチモン砒素系化合物半導体
薄膜である。ここにインジウムアンチモン砒素系とは、
一般式InSb1-X AsX(Xは0〜1)で表される化
合物半導体である。
2. Description of the Related Art Magnetoelectric conversion elements such as Hall elements and semiconductor magnetoresistive elements are VTRs, floppy disks and CDs.
It is widely used as a rotational position detection sensor for a drive motor such as a ROM or a magnetic sensor for bill recognition. An indium antimony arsenide-based compound semiconductor thin film having high mobility is most suitable as the magnetic sensing part of such an element. Here, indium antimony arsenic is
It is a compound semiconductor represented by the general formula InSb 1-X As X (X is 0 to 1).

【0003】これらの化合物半導体を感磁部とする磁電
変換素子がセンサとして機能するためには、実用上の抵
抗値を確保する必要があり、厚みを0.5〜1.5μm
程度に薄膜化することが必須の要件である。また、高い
感度を確保するために、高い移動度も必要である。この
要求に応じる一つの方法としては、化合物半導体の単結
晶をつくり、それを切り出し研磨して薄膜化する方法が
ある。しかしながら、この方法によるとほぼ単結晶なみ
の移動度が確保できるものの、上記の厚さの薄膜を均一
につくることは困難である。また、この方法ではコスト
が非常に高いという問題がある。
In order for the magnetoelectric conversion element using these compound semiconductors as the magnetic sensing portion to function as a sensor, it is necessary to secure a practical resistance value, and the thickness is 0.5 to 1.5 μm.
It is an essential requirement to thin the film to a certain degree. In addition, high mobility is also required to ensure high sensitivity. One method that meets this demand is a method of forming a single crystal of a compound semiconductor, cutting it out, and polishing it to form a thin film. However, although this method can secure a mobility almost equal to that of a single crystal, it is difficult to uniformly form a thin film having the above thickness. Further, this method has a problem that the cost is very high.

【0004】そこで、蒸着等により直接薄膜をつくる方
法が種々検討されてきた。この場合、単結晶に近い高い
移動度を得るためには、薄膜形成時にその薄膜の結晶を
成長させることが必要であり、そのためには結晶性でか
つ、絶縁性の基板を使用することが不可欠である。その
ような基板としては例えば、絶縁性GaAsやサファイ
アをあげることができる。しかし、これらの基板は高価
であるのが難点で、素子の価格ダウンという時代の要請
に応えることができない。
Therefore, various methods for directly forming a thin film by vapor deposition have been studied. In this case, in order to obtain high mobility close to that of a single crystal, it is necessary to grow the crystal of the thin film when forming the thin film, and for that purpose it is essential to use a crystalline and insulating substrate. Is. Examples of such a substrate include insulating GaAs and sapphire. However, since these substrates are expensive, they cannot meet the demand of the era of cost reduction of elements.

【0005】また、例えば特公昭51−45234号公
報には、いわゆる転写法が提案されている。即ち、雲母
等の結晶性基板上に化合物半導体薄膜を蒸着等により形
成した後、この薄膜をエポキシ樹脂などの接着剤を用い
て別の基板に接着し、次いで雲母等の基板を除去すると
いうものである。その場合、樹脂層が直接半導体薄膜と
接触しているために、耐熱用途には向かないのが難点と
なっている。
Further, for example, Japanese Patent Publication No. 51-45234 discloses a so-called transfer method. That is, after forming a compound semiconductor thin film on a crystalline substrate such as mica by vapor deposition, etc., this thin film is adhered to another substrate using an adhesive such as epoxy resin, and then the substrate such as mica is removed. Is. In that case, since the resin layer is in direct contact with the semiconductor thin film, it is not suitable for heat resistant applications.

【0006】[0006]

【発明が解決しようとする課題】本発明は、感度が高く
耐熱性にも優れた磁電変換素子を提供することを目的と
するものである。
SUMMARY OF THE INVENTION An object of the present invention is to provide a magnetoelectric conversion element having high sensitivity and excellent heat resistance.

【0007】[0007]

【課題を解決するための手段】本発明者らは、直接蒸着
等により高い移動度の薄膜を形成できる絶縁性で安価な
基板が、シリコン上にまず希土類酸化物層を形成させて
おくことにより得られることを見出し本発明を完成する
にいたった。即ち、本発明は、シリコン単結晶基板と、
該シリコン基板上に形成された結晶性でかつ厚みが3,
000〜30,000Åの希土類酸化物層、更にその上
に形成された一般式InSb1-X AsX (但し、Xは0
〜1である)で表される化学量論的組成でかつ厚みが
0.5〜2μmのインジウムアンチモン砒素系化合物半
導体薄膜、との積層体を感磁部とすることを特徴とする
磁電変換素子である。
Means for Solving the Problems The present inventors have found that an insulating and inexpensive substrate capable of forming a thin film having high mobility by direct vapor deposition or the like is formed by first forming a rare earth oxide layer on silicon. They have found that they can be obtained and have completed the present invention. That is, the present invention is a silicon single crystal substrate,
The crystalline and thickness formed on the silicon substrate is 3,
000 to 30,000 Å rare earth oxide layer, and the general formula InSb 1-X As X (where X is 0
To 1) and a stoichiometric composition and a thickness of 0.5 to 2 μm of an indium antimony arsenide-based compound semiconductor thin film, which is used as a magnetic sensing element. Is.

【0008】また、本発明は、樹脂層を介して強磁性体
が上記化合物半導体層と希土類酸化物層を有するシリコ
ン基板に張り付けられ、化合物半導体薄膜の感磁部上に
磁気集束用磁性体チップが樹脂層を介して張り付けられ
た構造であることを特徴とする、上記の磁電変換素子で
ある。図1に本発明の一つの態様を示す。単結晶シリコ
ン基板1の上に希土類酸化物層2、更にその上にInS
1-X AsX 層3が形成されている。図2は本発明のも
う一つの態様を示している。すなわち、図1の構造体を
樹脂層6を介した強磁性体7と、やはり樹脂層4を介し
た磁気集束用磁性体チップ5により挟んだ構造体をなし
ている。磁気集束効果により、図2の態様は図1の態様
より数倍の感度とすることができる。
Further, according to the present invention, a ferromagnetic material is adhered to a silicon substrate having the compound semiconductor layer and the rare earth oxide layer via a resin layer, and a magnetic chip for magnetic focusing is provided on the magnetic sensing portion of the compound semiconductor thin film. Is a structure in which the element is attached via a resin layer, and the magnetoelectric conversion element is characterized in that. FIG. 1 shows one embodiment of the present invention. A rare earth oxide layer 2 is formed on the single crystal silicon substrate 1, and InS is formed on the rare earth oxide layer 2.
The b 1-X As X layer 3 is formed. FIG. 2 shows another embodiment of the present invention. That is, the structure shown in FIG. 1 is sandwiched between the ferromagnetic material 7 having the resin layer 6 interposed therebetween and the magnetic focusing magnetic material chip 5 having the resin layer 4 interposed therebetween. Due to the magnetic focusing effect, the embodiment of FIG. 2 can be several times more sensitive than the embodiment of FIG.

【0009】本発明に係る構造体の形成は主に蒸着手段
を用いることが出来る。まず、単結晶シリコン基板を用
意し、その上に単純蒸着、エレクトロンビーム蒸着、ス
パッタリングにより希土類酸化物層を形成させる。この
際、希土類酸化物をそのまま試料として用いるか、本発
明者らの出願に係る特公平1−32601号公報に記載
の希土類金属を試料としてある特定の蒸着条件下で蒸着
するかどちらでもよい。2種以上の酸化物でもよいし、
積層にしてもよい。これらの層の厚みとしては、3,0
00〜30,000Åが好ましい。薄すぎると実用上の
移動度が出ない、又、厚すぎるとその上には外観上良好
な化合物半導体薄膜が得られない。
The structure according to the present invention can be formed mainly by vapor deposition means. First, a single crystal silicon substrate is prepared, and a rare earth oxide layer is formed on it by simple vapor deposition, electron beam vapor deposition, and sputtering. At this time, the rare earth oxide may be used as it is as a sample, or the rare earth metal described in Japanese Patent Publication No. 1-32601 filed by the inventors of the present invention may be deposited as a sample under a specific vapor deposition condition. Two or more kinds of oxides may be used,
It may be laminated. The thickness of these layers is 3,0
It is preferably from 00 to 30,000Å. If it is too thin, practical mobility does not appear, and if it is too thick, a compound semiconductor thin film having a good appearance cannot be obtained thereon.

【0010】感磁部となるInSb1-X AsX 層は、実
用上の抵抗値を確保するために、厚みを0.5〜2μm
程度にするのが好ましい。本発明者らは、この系の高移
動度化の方法を下記出願等により種々提案してきたが、
これら出願に記載の方法により作製した半導体薄膜を本
発明に好適に適用できる(特公平1−13211号公
報、特公平1−15135号公報、特公平2−4784
9号公報、特公平2−47850号公報、特公平3−5
9571号公報参照)。半導体薄膜は、単純蒸着、MB
E等の手段により形成できる。
The InSb 1-X As X layer serving as the magnetically sensitive portion has a thickness of 0.5 to 2 μm in order to secure a practical resistance value.
It is preferable to set the degree. The present inventors have proposed various methods for increasing the mobility of this system by the following applications,
The semiconductor thin films produced by the methods described in these applications can be preferably applied to the present invention (Japanese Patent Publication No. 1-13211, Japanese Patent Publication No. 1-15135, Japanese Patent Publication No. 2-4784).
Japanese Patent Publication No. 9, Japanese Patent Publication No. 2-47850, Japanese Patent Publication No. 3-5
9571). Semiconductor thin film is simple vapor deposition, MB
It can be formed by means such as E.

【0011】強磁性体、磁気集束用チップの材料として
は、パーマロイ、フェロシリコン、フェライト等の磁性
体を用いることが出来る。接着剤として用いられる樹脂
層6としては、エポキシやポリイミドの樹脂あるいは、
ガラス等を用いることができる。チップ用接着剤として
用いられる樹脂層4としては、種々の樹脂が用いられる
が、柔らかいシリコーン樹脂が好適に使用出来る。
Magnetic materials such as permalloy, ferrosilicon, and ferrite can be used as the material of the ferromagnetic material and the magnetic focusing chip. As the resin layer 6 used as an adhesive, a resin of epoxy or polyimide, or
Glass or the like can be used. Various resins are used as the resin layer 4 used as the chip adhesive, but a soft silicone resin can be preferably used.

【0012】以上のようにして形成されたInSb1-X
AsX 薄膜を担持した基板を、パターニング工程で感磁
部形成、電極形成及び個別素子化を行う。電極金属とし
てAl、Ni、Cr、Cu、Pd、Au等が用いられ、
電極は、一般にこれらの金属の積層構造とするのが好ま
しい。さらにダイシング工程により、一個一個のペレッ
トとし、これらのペレットをダイボンダ等でリードフレ
ームに固着し、ペレットの電極とリードフレームとをワ
イヤボンダ等でつなぎ、さらにモールド工程等により磁
電変換素子とする。
InSb 1-X formed as described above
The substrate carrying the As X thin film is subjected to a patterning process to form a magnetically sensitive portion, electrodes, and individual elements. Al, Ni, Cr, Cu, Pd, Au, etc. are used as the electrode metal,
Generally, the electrode preferably has a laminated structure of these metals. Further, the pellets are individually made by a dicing process, these pellets are fixed to a lead frame by a die bonder or the like, the electrodes of the pellet and the lead frame are connected by a wire bonder or the like, and a magnetoelectric conversion element is made by a molding process or the like.

【0013】[0013]

【発明の実施の形態】次に、実施例により本発明をさら
に詳細に説明する。
Now, the present invention will be described in further detail with reference to Examples.

【0014】[0014]

【実施例1】セリウム塊をアルゴン気流中で表面洗浄処
理したのち、蒸着機のタングステン製ボートに載せ、単
結晶シリコンを所定の位置においた。まず蒸着機内を1
-7Torrの真空度にし、その後酸素を導入して10
-3Torrの真空度にした。この操作を3回繰り返した
のち、5×10-5Torrの真空状態にし、セリウムを
蒸着した。厚みは5,000Åとした。
Example 1 A surface of a cerium mass was cleaned in an argon stream, and then placed on a tungsten boat of a vapor deposition machine, and single crystal silicon was placed at a predetermined position. First, inside the vapor deposition machine 1
A vacuum of 0 -7 Torr is applied, and then oxygen is introduced to bring the pressure to 10
A vacuum of -3 Torr was applied. After repeating this operation three times, a vacuum state of 5 × 10 −5 Torr was established and cerium was vapor-deposited. The thickness was 5,000Å.

【0015】酸化セリウム層の形成されたシリコン基板
上にInSbを次のようにして形成した。まずInとS
bによりIn過剰の複合結晶薄膜を形成した。真空度を
7×10-6Torrにし、基板温度を420℃に設定し
て、トータル蒸着時間は17分間とし、最終温度を51
5℃にした。この間の基板温度上昇速度を、蒸着開始後
0〜6分、6〜14分、14〜17分で各々0℃/分、
12.5℃/分、0℃/分に設定した。InとSbのボ
ートにかける電力を開始から15分間一定にし、その後
Sbのボートにかける電力をゼロにした。InとSbの
飛び量を2.6gと3.5gとしたが、最終段階でIn
が過剰になり、結晶成長が進むことが目視でも確認でき
た。
InSb was formed on the silicon substrate on which the cerium oxide layer was formed as follows. First In and S
A complex crystal thin film containing excess In was formed by b. The degree of vacuum is set to 7 × 10 −6 Torr, the substrate temperature is set to 420 ° C., the total deposition time is set to 17 minutes, and the final temperature is set to 51 ° C.
The temperature was 5 ° C. During this period, the substrate temperature rising rate was 0 ° C./min for 0 to 6 minutes, 6 to 14 minutes, and 14 to 17 minutes after the start of vapor deposition, respectively.
It was set to 12.5 ° C / min and 0 ° C / min. The power applied to the In and Sb boats was kept constant for 15 minutes from the start, and then the power applied to the Sb boat was set to zero. The flying amounts of In and Sb were set to 2.6 g and 3.5 g.
It was confirmed visually that the crystal growth became excessive and the crystal growth proceeded.

【0016】引き続いて、Inのボートの電力をゼロに
し、Sbを載せて置いた第3のボートに電力をかけ、5
25℃に基板温度を上げ3分間でSbを蒸着した。この
ようにして得られたInSb薄膜をファン・デル・パウ
法で移動度を測定したところ、45,000cm2/V
/secであった。このウェハーを用いて、半導体磁気
抵抗素子を作製した。素子パターンを形成するのに、フ
ォトリソグラフィーの手法を用いた。
Subsequently, the power of the In boat is set to zero, and the power of the third boat on which Sb is placed is applied, and
The substrate temperature was raised to 25 ° C. and Sb was vapor-deposited in 3 minutes. The mobility of the thus obtained InSb thin film was measured by the Van der Pau method to be 45,000 cm 2 / V.
/ Sec. A semiconductor magnetoresistive element was produced using this wafer. A photolithography technique was used to form the device pattern.

【0017】図3〜図5には、パターニング後の半導体
磁気抵抗素子の構造を示す。図3はその平面図、図4は
図3のA−A線断面図、図5は図3のBーB線断面図で
ある。InSb薄膜層3の感磁部以外の部分には、オー
ミックコンタクトしたCuなどの導体層9が短冊状に形
成されており、ラスタ電極と呼ばれる電界を短絡する部
分が構成されている。ラスタ電極の幅Wを200μm、
ラスタ電極間のInSbの間隔Lを30μmで形成し
た。
3 to 5 show the structure of the semiconductor magnetoresistive element after patterning. 3 is a plan view thereof, FIG. 4 is a sectional view taken along line AA of FIG. 3, and FIG. 5 is a sectional view taken along line BB of FIG. A conductor layer 9 of ohmic contact Cu or the like is formed in a strip shape on a portion of the InSb thin film layer 3 other than the magnetic sensitive portion, and constitutes a portion called a raster electrode for short-circuiting an electric field. The width W of the raster electrode is 200 μm,
The interval L of InSb between the raster electrodes was 30 μm.

【0018】更に外部の回路と接続するための電極層1
0を半田で形成し、0.03mm厚みのリン青銅箔でで
きたリード端子を半田付けした。その上に、0.15m
m厚の保護ガラスをシリコーン樹脂で貼り付け、2つの
半導体磁気抵抗体をブリッジ回路になるように配置され
たポテンショメータ用半導体磁気抵抗素子を作製した。
Further, an electrode layer 1 for connecting to an external circuit
0 was formed by soldering, and lead terminals made of phosphor bronze foil with a thickness of 0.03 mm were soldered. On top of that, 0.15m
A m-thick protective glass was attached with a silicone resin, and a semiconductor magnetoresistive element for a potentiometer was produced in which two semiconductor magnetoresistive elements were arranged so as to form a bridge circuit.

【0019】これらの素子の中から100ヶ抜き取っ
て、特性を調べた。その結果、磁束密度0.4Tでの磁
気抵抗変化率は平均で3.4倍で、温度サイクルテスト
でも劣化は認められなかった。
100 pieces were taken out from these elements and the characteristics were examined. As a result, the magnetic resistance change rate at a magnetic flux density of 0.4 T was 3.4 times on average, and no deterioration was observed in the temperature cycle test.

【0020】[0020]

【実施例2】実施例1で得られたシリコン単結晶、酸化
セリウム層、InSb薄膜層よりなる積層体の裏面を研
磨して薄くし、フェライトとポリイミド樹脂を介して張
り合わせた。このウェハーよりホール素子パターンを形
成するのに、フォトリソグラフィーの手法を用いた。図
6はその平面図、図7はC−C線断面図である。InS
b薄膜層3の中央の感磁部3a以外の部分には、オーミ
ックコンタクトしたCuなどの導体層11が形成されて
おり、更にその上に、ボンディングのための電極層とし
てNi層12、およびAu層13が積層されている。ペ
レットの大きさは0.8mm角であった。
Example 2 The back surface of the laminated body composed of the silicon single crystal, the cerium oxide layer and the InSb thin film layer obtained in Example 1 was polished and thinned, and laminated with ferrite and a polyimide resin. A photolithography method was used to form a Hall element pattern from this wafer. 6 is a plan view thereof, and FIG. 7 is a sectional view taken along the line CC. InS
b In the central portion of the thin film layer 3 other than the magnetic sensitive portion 3a, a conductor layer 11 of ohmic contact such as Cu is formed, and on top of that, a Ni layer 12 and an Au layer serving as an electrode layer for bonding. Layers 13 are stacked. The size of the pellet was 0.8 mm square.

【0021】このウェハーの各感磁部に特公昭7−13
987号公報に記載の方法により磁気集束用磁性体チッ
プを載せた。次いで、ダイシングして個々の素子に分割
し、これらのペレットをリードフレーム上のアイランド
部にダイボンドし、さらにリードとペレットの電極部と
をワイヤボンディングによりAu線でつないで電気的接
続をした。さらに、トランスファーモールド、電気検査
等の工程を経てホール素子を作成した。
In each magnetic sensing part of this wafer, Japanese Patent Publication No. 7-13
A magnetic focusing magnetic chip was mounted by the method described in Japanese Patent Publication No. 987. Next, dicing was performed to divide into individual elements, these pellets were die-bonded to the island portion on the lead frame, and the leads and the electrode portions of the pellets were connected by Au wires by wire bonding for electrical connection. Further, a Hall element was created through steps such as transfer molding and electrical inspection.

【0022】これらの素子は1V500Gでの平均感度
が330mVに達した。300℃の半田槽に浸漬試験を
行ったが、5%以上特性変動を示すことはなかった。
The average sensitivity of these devices at 1 V and 500 G reached 330 mV. An immersion test was conducted in a solder bath at 300 ° C., but no characteristic change of 5% or more was shown.

【0023】[0023]

【発明の効果】本発明により、感度が高く耐熱性に優れ
た磁電変換素子を得ることができる。
According to the present invention, it is possible to obtain a magnetoelectric conversion element having high sensitivity and excellent heat resistance.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の磁電変換素子の一例の構造図である。FIG. 1 is a structural diagram of an example of a magnetoelectric conversion element of the present invention.

【図2】本発明の磁電変換素子の他の例の構造図であ
る。
FIG. 2 is a structural diagram of another example of the magnetoelectric conversion element of the present invention.

【図3】本発明の実施例1の半導体磁気抵抗素子の平面
図である。
FIG. 3 is a plan view of a semiconductor magnetoresistive element according to Example 1 of the present invention.

【図4】図3のA−A線断面図である。FIG. 4 is a sectional view taken along line AA of FIG. 3;

【図5】図3のB−B線断面図である。FIG. 5 is a sectional view taken along line BB of FIG. 3;

【図6】本発明の実施例2のホール素子の平面図であ
る。
FIG. 6 is a plan view of a Hall element according to Example 2 of the present invention.

【図7】図6のC−C線断面図である。FIG. 7 is a sectional view taken along line CC of FIG. 6;

【符号の説明】[Explanation of symbols]

1 シリコン単結晶基板 2 希土類酸化物層 3 InSb1-X AsX 層 4 樹脂層 5 磁気集束用磁性体チップ 6 樹脂層 7 強磁性体 9 ラスタ電極層 10 リード端子半田付け用電極層 11 導電層 13 ボンディング用電極層1 Silicon Single Crystal Substrate 2 Rare Earth Oxide Layer 3 InSb 1-X As X Layer 4 Resin Layer 5 Magnetic Focusing Magnetic Chip 6 Resin Layer 7 Ferromagnetic Material 9 Raster Electrode Layer 10 Lead Terminal Soldering Electrode Layer 11 Conductive Layer 13 Bonding electrode layer

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 シリコン単結晶基板と、該シリコン基板
上に形成された結晶性でかつ厚みが3,000〜30,
000Åの希土類酸化物層、更にその上に形成された一
般式InSb1-X AsX (但し、Xは0〜1である)で
表される化学量論的組成でかつ厚みが0.5〜2μmの
インジウムアンチモン砒素系化合物半導体薄膜、との積
層体を感磁部とすることを特徴とする磁電変換素子。
1. A silicon single crystal substrate, and a crystalline and formed layer having a thickness of 3,000 to 30, formed on the silicon substrate.
A rare earth oxide layer of 000 Å and a stoichiometric composition represented by the general formula InSb 1-X As X (where X is 0 to 1) and a thickness of 0.5 to A magnetoelectric conversion element comprising a laminated body of a 2 μm indium antimony arsenide-based compound semiconductor thin film as a magnetic sensing part.
【請求項2】 樹脂層を介して強磁性体がシリコン基板
に張り付けられ、化合物半導体薄膜の感磁部上に磁気集
束用磁性体チップが樹脂層を介して張り付けられた構造
であることを特徴とする請求項1記載の磁電変換素子。
2. A structure in which a ferromagnetic material is attached to a silicon substrate via a resin layer, and a magnetic focusing magnetic chip is attached to the magnetic sensing portion of the compound semiconductor thin film via the resin layer. The magnetoelectric conversion element according to claim 1.
JP8019883A 1996-02-06 1996-02-06 Magnetoelectric transducer Withdrawn JPH09214019A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8019883A JPH09214019A (en) 1996-02-06 1996-02-06 Magnetoelectric transducer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8019883A JPH09214019A (en) 1996-02-06 1996-02-06 Magnetoelectric transducer

Publications (1)

Publication Number Publication Date
JPH09214019A true JPH09214019A (en) 1997-08-15

Family

ID=12011614

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8019883A Withdrawn JPH09214019A (en) 1996-02-06 1996-02-06 Magnetoelectric transducer

Country Status (1)

Country Link
JP (1) JPH09214019A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013187286A (en) * 2012-03-07 2013-09-19 Asahi Kasei Electronics Co Ltd Magnetic resistance element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013187286A (en) * 2012-03-07 2013-09-19 Asahi Kasei Electronics Co Ltd Magnetic resistance element

Similar Documents

Publication Publication Date Title
US4908685A (en) Magnetoelectric transducer
US7193288B2 (en) Magnetoelectric transducer and its manufacturing method
JP2004055932A (en) Magnetoelectric conversion element and manufacturing method
JPS6410112B2 (en)
JP2005123383A (en) Electromagnetic transducer element
JP4480318B2 (en) Composite semiconductor device and manufacturing method thereof
JPH09214019A (en) Magnetoelectric transducer
JPH11121830A (en) Thin-type highly sensitive hall element and its manufacture
JP4410320B2 (en) Magnetoelectric conversion element and manufacturing method thereof
JP4846955B2 (en) Magnetoelectric transducer
JP4573368B2 (en) Manufacturing method of small magnetoelectric transducer for face-down connection
JP3155670B2 (en) Manufacturing method of magnetoelectric conversion element
JP3968384B2 (en) Manufacturing method of small magnetoelectric transducer
JP2610083B2 (en) Ferromagnetic magnetoresistive element
JPS6120378A (en) Magnetoelectric conversion element
JP4807928B2 (en) Surface-mount vertical magnetoelectric transducer
JP2556802B2 (en) Magnetoelectric conversion element
JPH0671105B2 (en) Method for manufacturing magnetoelectric conversion element
JPH09331088A (en) Hole element
JPH11330584A (en) Magnetoelectric transducer, magnetic sensor using the transducer, and manufacture of the magnetoelectric transducer
JP3161610B2 (en) Manufacturing method of Hall element
JP4467090B2 (en) Small magnetoelectric transducer and manufacturing method thereof
JPH0462474B2 (en)
JPH09191140A (en) Hall element
JPH09148652A (en) Magnetoelectric conversion element and its manufacture

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040617

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040622

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20040804