JPH09213300A - Tab mounting method for positive electrode plate - Google Patents

Tab mounting method for positive electrode plate

Info

Publication number
JPH09213300A
JPH09213300A JP8014485A JP1448596A JPH09213300A JP H09213300 A JPH09213300 A JP H09213300A JP 8014485 A JP8014485 A JP 8014485A JP 1448596 A JP1448596 A JP 1448596A JP H09213300 A JPH09213300 A JP H09213300A
Authority
JP
Japan
Prior art keywords
positive electrode
tab
electrode plate
current collector
continuous sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8014485A
Other languages
Japanese (ja)
Other versions
JP2984816B2 (en
Inventor
Tatsuya Shirato
達也 白土
Takeshi Saito
健 斉藤
Hideyo Takahashi
英世 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Battery Co Ltd
Original Assignee
Furukawa Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Battery Co Ltd filed Critical Furukawa Battery Co Ltd
Priority to JP8014485A priority Critical patent/JP2984816B2/en
Publication of JPH09213300A publication Critical patent/JPH09213300A/en
Application granted granted Critical
Publication of JP2984816B2 publication Critical patent/JP2984816B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Connection Of Batteries Or Terminals (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To lessen the occurrence of faulty welding caused by weaviness developed at a tab mounting spot. SOLUTION: A tab mounting spot is provided by compressing the specified spot of a current collector continuous sheet in a three dimensional reticulate structure, concurrently pasty active material mix is filled in the current collector continuous sheet, and the sheet is dried thereafter, subsequently the current collector continuous sheet is rolled, the current collector continuous sheet is curt off in a strip shape at the end part of which the tab mounting stop 2a is located, so as to be formed into a positive electrode plate precursor 1a thereafter, the tab mounting spot 1a of the positive electrode plate is then molded flat under pressure, and a tab is spot welded to the tab mounting spot 2a thereafter.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、アルカリ二次電池
のニッケル正極板の製造方法に関し、更に詳しくは、3
次元網状構造の集電体に活物質合剤を担持させてなる正
極板を製造する際に、正極板にタブを安定した状態でス
ポット溶接することができる正極板へのタブ取付け方法
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a nickel positive electrode plate for an alkaline secondary battery.
The present invention relates to a method of attaching a tab to a positive electrode plate, which enables stable spot welding of the tab to the positive electrode plate when producing a positive electrode plate in which a current collector having a three-dimensional network structure carries an active material mixture.

【0002】[0002]

【従来の技術】ニッケル・カドミウム電池やニッケル・
水素電池の正極として組み込まれるニッケル正極板は、
集電体に正極活物質合剤が担持されていて、その一部に
集電用のタブがスポット溶接された構造になっている。
ニッケル正極板に用いられる集電体としては、例えば、
発泡状のニッケル多孔体のような3次元網状構造をした
ものが広く用いられている。
2. Description of the Related Art Nickel / cadmium batteries and nickel /
The nickel positive electrode plate incorporated as the positive electrode of the hydrogen battery is
The positive electrode active material mixture is carried on the current collector, and a tab for current collection is spot welded to a part of the positive electrode active material mixture.
As the current collector used for the nickel positive electrode plate, for example,
Those having a three-dimensional network structure such as a foamed nickel porous body are widely used.

【0003】また、前記ニッケル多孔体に担持される正
極活物質合剤としては、水酸化ニッケルが主成分をな
し、必要に応じて酸化コバルトのようなコバルト化合物
の粉末などを混合した混合粉末が用いられる。ここで、
活物質合剤を構成する粉末の粒径は、通常、1〜100
μm程度である。前記ニッケル多孔体に取付けられる集
電用のタブとしては、ニッケル箔などからなるシートが
一般的に用いられている。
Further, as the positive electrode active material mixture supported on the nickel porous body, a mixed powder containing nickel hydroxide as a main component and, if necessary, powder of a cobalt compound such as cobalt oxide is mixed. Used. here,
The particle size of the powder constituting the active material mixture is usually 1 to 100.
It is about μm. A sheet made of nickel foil or the like is generally used as the current collecting tab attached to the nickel porous body.

【0004】上述したような構造のニッケル正極板は、
通常以下のようにして製造されている。すなわち、ま
ず、シート状ニッケル多孔体を用意し、当該シート状ニ
ッケル多孔体1の所定位置の所定範囲を厚み方向に押し
つぶして凹部2を形成する(図1参照)。尚、この凹部
2は後述するタブ取付け箇所となる。ここで、前記シー
ト状ニッケル多孔体1において、凹部2以外の平面部分
を、本発明では、極板平面部11という。
The nickel positive electrode plate having the above structure is
Usually, it is manufactured as follows. That is, first, a sheet-shaped nickel porous body is prepared, and a predetermined range of a predetermined position of the sheet-shaped nickel porous body 1 is crushed in the thickness direction to form the recess 2 (see FIG. 1). The concave portion 2 will be a tab attachment point described later. Here, in the sheet-shaped nickel porous body 1, the flat surface portion other than the concave portion 2 is referred to as an electrode plate flat surface portion 11 in the present invention.

【0005】ついで、前記正極活物質の混合粉末にカル
ボキシメチルセルロースやメチルセルロースなどを溶解
して成る増粘剤水溶液を添加して全体を撹拌することに
より、粘稠なペースト状活物質合剤にする。そして、当
該ペースト状活物質合剤を前記シート状ニッケル多孔体
に充填塗布したのち、乾燥する。その後、前記シート状
ニッケル多孔体の全体をロール圧延して、厚みの調整を
行い、図1中の二点鎖線で示した所定箇所をカッターで
切断し、図2に示すように、端部の所定位置にタブ取付
け箇所2aを備えた短冊状のニッケル正極板の前駆体1
aを得る。尚、このタブ取付け箇所2aは、他の部分よ
りも高密度になっており、後段で行われるスポット溶接
時に良好なナゲット部が形成できるようになっている。
Then, a viscous paste-like active material mixture is prepared by adding an aqueous solution of a thickener prepared by dissolving carboxymethyl cellulose or methyl cellulose to the mixed powder of the positive electrode active material and stirring the whole. Then, the paste-like active material mixture is filled and applied to the sheet-like nickel porous body, and then dried. After that, the entire sheet-shaped nickel porous body is roll-rolled to adjust the thickness, and a predetermined portion indicated by a chain double-dashed line in FIG. 1 is cut with a cutter, and as shown in FIG. Precursor 1 of a strip-shaped nickel positive electrode plate having tab attachment points 2a at predetermined positions
Obtain a. The tab attachment portion 2a has a higher density than the other portions, so that a good nugget portion can be formed at the time of spot welding performed in the subsequent stage.

【0006】そして最後に、前記短冊状前駆体1aのタ
ブ取付け箇所2aにタブ用のシートの端部を重ね合わせ
て溶接部を形成したのち、当該溶接部をスポット溶接機
の上電極と下電極で加圧しながら通電し、タブ取付け箇
所2aにタブ3をスポット溶接することにより図3に示
すようなニッケル正極板1Aを形成する。このようにし
て製造されたニッケル正極板は、負極板、セパレータ、
電解液等とともに電池の外装缶内に組み込まれ、電池が
形成される。
Finally, after the ends of the tab sheet are superposed on the tab attachment points 2a of the strip-shaped precursor 1a to form welds, the welds are connected to the upper electrode and the lower electrode of the spot welding machine. While pressurizing, the electric current is applied, and the tab 3 is spot-welded to the tab mounting portion 2a to form the nickel positive electrode plate 1A as shown in FIG. The nickel positive electrode plate manufactured in this manner is a negative electrode plate, a separator,
The battery is formed by incorporating it into an outer can of the battery together with the electrolytic solution and the like.

【0007】[0007]

【発明が解決しよとする課題】ところで、ニッケル多孔
体シートの厚さの調整で行われるロール圧延の際、当該
シートは、その厚み方向が圧縮され、その分、厚み方向
と直行する方向に二次元的に展延する。このとき、図4
に示すように、極板平面部11の外縁部11aは、厚み
方向と直行する外側方向(矢印A方向)へ展延し、凹部
2に接する極板平面部の端部11bは、凹部の内側方向
(矢印B方向)に延伸してくる。ここで、凹部2におい
て、極板平面部の端部11bが延伸してくると、凹部2
の平面部にも厚さ方向と直行する方向に圧縮力がはたら
く。しかしながら、当該凹部2は、高密度化された状態
であり、極板平面部とは延伸する度合いが異なっている
とともに、四方への平面的な変形が制限される状態にな
っている。そのため、極板平面部の端部11bが内側に
延伸してくると、前記凹部2にはゆがみが生じてしま
う。このような状態にある連続シート1を切断し、短冊
状の正極板前駆体1aとすると、タブ取付け箇所2aの
断面形状は、図5に示すように、うねった状態となるた
め、このタブ取付け箇所にタブのスポット溶接を行う
と、タブとタブ取付け箇所は密着した状態で全面接触せ
ず、結果として、良好なスポット溶接がなされない場合
がある。
By the way, at the time of roll rolling performed by adjusting the thickness of the nickel porous body sheet, the sheet is compressed in its thickness direction, and by that amount, in the direction orthogonal to the thickness direction. Spread two-dimensionally. At this time, FIG.
As shown in, the outer edge portion 11a of the electrode plate flat surface portion 11a extends in the outer direction (direction of arrow A) orthogonal to the thickness direction, and the end portion 11b of the electrode plate flat surface portion which is in contact with the concave portion 2 is inside the concave portion. It extends in the direction (arrow B direction). Here, in the concave portion 2, when the end portion 11b of the electrode plate flat portion extends, the concave portion 2
The compressive force also acts on the flat part of the plate in the direction perpendicular to the thickness direction. However, the concave portion 2 is in a highly densified state, has a different degree of extension from the electrode plate flat portion, and is in a state in which planar deformation in four directions is limited. Therefore, when the end portion 11b of the electrode plate flat portion extends inward, the concave portion 2 is distorted. When the continuous sheet 1 in such a state is cut into a strip-shaped positive electrode plate precursor 1a, the tab attachment portion 2a has a wavy state as shown in FIG. When the spot welding of the tab is performed at the location, the tab and the tab attachment location are not in close contact with each other over the entire surface, and as a result, good spot welding may not be performed.

【0008】以上のように、タブ取付け箇所とタブとの
間で溶接不良が起こると、タブ取付け箇所とタブとの全
面で均等に電流は流れず、不均一にばらつく接触箇所だ
けに電流が流れるため、結果として、その接触箇所に大
きな電流が流れ、そこが抵抗発熱して当該正極板を組み
込んだ電池は発熱するおそれがある。また、電池の使用
途中でタブが正極板からはずれると、通電不能となった
り、正極板からはずれた前記タブが負極側の部材と接触
し短絡を起こしたりする不都合が生じる可能性がある。
As described above, when welding failure occurs between the tab attachment point and the tab, the current does not flow evenly across the entire surface of the tab attachment point and the tab, and the current flows only at the contact points that are unevenly distributed. Therefore, as a result, a large current may flow in the contact portion, and the contact portion may generate heat by resistance to generate heat in the battery incorporating the positive electrode plate. Further, if the tab comes off from the positive electrode plate during use of the battery, there is a possibility that electricity may not be supplied or that the tab removed from the positive electrode plate may come into contact with a member on the negative electrode side to cause a short circuit.

【0009】本発明は、アルカリ二次電池のニッケル正
極板における上記した問題を解決し、タブ取付け箇所に
生じたうねりに起因する溶接不良の発生を少なくするこ
とができる正極板へのタブ取付け方法の提供を目的とす
る。
The present invention solves the above-mentioned problems in the nickel positive electrode plate of the alkaline secondary battery, and can reduce the occurrence of welding defects due to the undulation generated at the tab mounting position. For the purpose of providing.

【0010】[0010]

【課題を解決するための手段】上記目的を達成するため
に、本発明では、3次元網状構造の集電体連続シートの
所定箇所を圧縮してタブ取付け箇所を設けると共に、当
該集電体連続シートにペースト状活物質合剤を充填した
のち乾燥し、ついで当該集電体連続シートをロール圧延
し、その後、前記集電体連続シートを、端部にタブ取付
け箇所が位置する短冊状に切断して正極板前駆体とし、
当該正極板前駆体のタブ取付け箇所を加圧成形して平坦
にしたのち、当該タブ取付け箇所にタブをスポット溶接
して取付けることを特徴とする正極板へのタブ取付け方
法が提供される。
In order to achieve the above object, in the present invention, a predetermined position of a current collector continuous sheet having a three-dimensional network structure is compressed to provide a tab attachment position, and the current collector connection is continuous. The sheet is filled with the paste-like active material mixture and then dried, and then the current collector continuous sheet is roll-rolled, and then the current collector continuous sheet is cut into strips having tab attachment points at the ends. As a positive electrode plate precursor,
There is provided a method of attaching a tab to a positive electrode plate, which comprises press-molding a tab attachment portion of the positive electrode plate precursor to make it flat and then spot welding the tab to the tab attachment portion.

【0011】本発明の正極板へのタブ取付け方法におい
て、正極板前駆体のタブ取付け箇所を加圧成形する際の
圧力は、200〜250kgf/cm2 とすることが好
ましい。本発明による正極板へのタブ取付け方法は、ロ
ール圧延後、短冊状に切断した正極板前駆体のタブ取付
け箇所に対し加圧成形を行うと、厚さの調整で行われた
ロール圧延により生じたタブ取付け箇所のうねりが矯正
され、当該箇所が平坦化される。
In the method of attaching a tab to a positive electrode plate of the present invention, it is preferable that the pressure at the time of press forming the tab attachment portion of the positive electrode plate precursor is 200 to 250 kgf / cm 2 . The method for attaching a tab to a positive electrode plate according to the present invention is such that, after roll rolling, when pressure forming is performed on the tab attachment portion of the positive electrode plate precursor cut into strips, it occurs due to roll rolling performed by adjusting the thickness. The waviness of the tab attachment point is corrected and the point is flattened.

【0012】[0012]

【発明の実施の形態】本発明の正極板へのタブ取付け方
法においては、正極板の前駆体を製造する工程(以下、
工程Aという)とその前駆体のタブ取付け箇所を加圧成
形する工程(以下、工程Bという)とを必須の工程とし
て含んでいる。上記した工程Aと工程Bが順次行われる
ことによって、本発明においては、正極板前駆体のタブ
取付け箇所のうねりが矯正され、平坦なタブ取付け箇所
が得られる。その結果、タブとタブ取付け箇所とが密着
した状態で接触するようになりタブ取付け箇所における
スポット溶接性は向上する。
BEST MODE FOR CARRYING OUT THE INVENTION In the method of attaching a tab to a positive electrode plate of the present invention, a step of producing a precursor of the positive electrode plate (hereinafter, referred to as
An essential step includes a step A) and a step of press-molding the tab attachment portion of the precursor thereof (hereinafter referred to as step B). In the present invention, the undulation of the tab attachment portion of the positive electrode plate precursor is corrected and the flat tab attachment portion is obtained by sequentially performing the above-described step A and step B. As a result, the tabs come into contact with each other in a state where the tabs and the tab attachment points are in close contact with each other, and the spot weldability at the tab attachment points is improved.

【0013】まず、工程Aにおいては、3次元網状構造
の集電体連続シートが用意される。ここで、本発明で用
いられる3次元網状構造の集電体は、従来から用いられ
ているものであれば何であってもよく、格別限定される
ものではないが、ペースト状活物質合剤の充填量を多く
することができるという点で、例えば、多孔度94〜9
7%で孔径50〜500μmの連通孔を有する発泡状ニ
ッケル多孔体の連続シートを好適なものとしてあげるこ
とができる。
First, in step A, a current collector continuous sheet having a three-dimensional network structure is prepared. Here, the current collector having a three-dimensional network structure used in the present invention may be any one that has been conventionally used, and is not particularly limited, and may be a paste-like active material mixture. In terms of being able to increase the filling amount, for example, a porosity of 94-9
A preferable example is a continuous sheet of a foamed nickel porous body having 7% and continuous pores having a pore size of 50 to 500 μm.

【0014】ついで、前記ニッケル多孔体シート1の所
定位置を、例えばプレス機を用いることにより、所定面
積の広さで厚さ方向に押しつぶしてその箇所を高密度化
し、凹部2を形成する(図1参照)。ここで、前記ニッ
ケル多孔体シート1に対しプレス成形により凹部2を設
ける場合、ニッケル多孔体シートを押しつぶすことによ
り高密度化がなされ、後段で行われるスポット溶接にお
ける溶接性の向上が図られる。
Then, a predetermined position of the nickel porous body sheet 1 is crushed in the thickness direction with a predetermined area by using, for example, a pressing machine to densify the position to form a recess 2 (FIG. 1). Here, when the recessed portion 2 is provided in the nickel porous body sheet 1 by press molding, the nickel porous body sheet is crushed to increase the density, and the weldability in the spot welding performed in the subsequent stage is improved.

【0015】次に、従来から行われているような所定の
方法で調製したペースト状活物質合剤を前記ニッケル多
孔体シートに充填塗布したのち、乾燥する。その後、前
記ニッケル多孔体シートの全体をロール圧延して厚さの
調整を行ったのち、図1中の二点鎖線で示すように、前
記ニッケル多孔体シートを所定寸法で切断し、短冊状の
正極板前駆体1a(図2参照)とする。
Next, the paste-like active material mixture prepared by a predetermined method as conventionally used is filled and applied to the nickel porous body sheet, and then dried. After that, the entire thickness of the nickel porous body sheet was roll-rolled to adjust the thickness, and then the nickel porous body sheet was cut into a predetermined size as shown by a chain double-dashed line in FIG. The positive electrode plate precursor 1a (see FIG. 2) is used.

【0016】以上の工程Aが終了したのち、工程Bで
は、正極板前駆体に対し、図2に示すように工程Aのロ
ール圧延により生じたうねりのあるタブ取付け箇所2a
を加圧成形し、平坦な面に矯正することが行われる。こ
の矯正作業では、例えば、タブ取付け箇所の上下面を、
平坦な面を有する上型4と下型5とで上下から挟み込
み、加圧成形する方法が採用される。
After the above step A is completed, in step B, as shown in FIG. 2, the tab attachment portion 2a having the waviness caused by the roll rolling in step A is attached to the positive electrode plate precursor.
Is pressure-molded and straightened to a flat surface. In this correction work, for example,
A method of sandwiching the upper mold 4 having a flat surface and the lower mold 5 from above and below and performing pressure molding is adopted.

【0017】前記上型4及び下型5の面4a,5aは、
タブ取付け箇所2aと相似形状をしており、タブ取付け
箇所と同程度かそれよりも小さい面積を有している。こ
のとき、タブ取付け箇所を加圧する際の圧力が200k
gf/cm2 未満であると当該箇所のうねりを矯正して
平坦な面を形成することが困難であり、逆に、当該圧力
が250kgf/cm2 を超えると、うねりを矯正する
能力は向上するが当該箇所を破損するおそれがある。よ
って、タブ取付け箇所を加圧成形する際の圧力は、20
0〜250kgf/cm2 に設定することが好ましい。
尚、前記圧力のより好ましい範囲は220〜230kg
f/cm2 であり、特に225kgf/cm2 の圧力で
加圧成形すると、タブ取付け箇所を破損することなく、
充分に平坦化できるので好適である。
The surfaces 4a, 5a of the upper die 4 and the lower die 5 are
It has a shape similar to that of the tab attachment portion 2a and has an area that is approximately the same as or smaller than the tab attachment portion. At this time, the pressure when pressurizing the tab mounting location is 200k.
If it is less than gf / cm 2 , it is difficult to correct the waviness at the location to form a flat surface, and conversely, if the pressure exceeds 250 kgf / cm 2 , the ability to correct the waviness is improved. May damage the location. Therefore, the pressure at the time of press forming the tab attachment location is 20
It is preferably set to 0 to 250 kgf / cm 2 .
The more preferable range of the pressure is 220 to 230 kg.
f / cm 2 , especially when pressure molding is performed at a pressure of 225 kgf / cm 2 , without damaging the tab mounting location,
It is preferable because it can be sufficiently flattened.

【0018】以上のように、工程A及び工程Bが終了し
た後、正極板前駆体のタブ取付け箇所にタブ用シートの
端部を重ね合わせて溶接部を形成し、前記溶接部をスポ
ット溶接機の上電極と下電極で加圧保持しながら通電し
てタブの端部を前記正極板前駆体のタブ取付け箇所にス
ポット溶接し、正極板を形成する。
After the steps A and B are completed as described above, the ends of the tab sheet are overlapped with the tab attachment points of the positive electrode plate precursor to form a welded portion, and the welded portion is spot welded. While maintaining pressure, the upper electrode and the lower electrode are energized to carry out spot welding of the end portions of the tabs to the tab attachment points of the positive electrode plate precursor to form a positive electrode plate.

【0019】[0019]

【実施例】【Example】

実施例1〜7 孔径が100〜500μm,多孔度85〜95%で、厚
さ1.1mm,幅20mmのスポンジ状ニッケル多孔体
の連続シートを用意した。ついで、長辺寸法20mm,
短辺寸法5mmの長方形状の型を前記ニッケル多孔体シ
ートの幅方向の中心線上において、当該シートの長手方
向と型の長辺とが平行になるようにして、90mm間隔
で押しつけ、図1に示すように当該シートの所定位置を
圧縮し、長方形状の凹部2を複数形成した。このときの
圧下率は80%とした。
Examples 1 to 7 A continuous sheet of sponge-like nickel porous body having a pore diameter of 100 to 500 μm, a porosity of 85 to 95%, a thickness of 1.1 mm and a width of 20 mm was prepared. Then, the long side dimension is 20 mm,
A rectangular die having a short side dimension of 5 mm was pressed at 90 mm intervals so that the longitudinal direction of the sheet and the long side of the die were parallel to each other on the center line in the width direction of the nickel porous body sheet, as shown in FIG. As shown, the sheet was compressed at a predetermined position to form a plurality of rectangular recesses 2. The reduction rate at this time was 80%.

【0020】次に、球状水酸化ニッケル粉末70重量
部、CoO粉末10重量部、カルボキシメチルセルロー
スの1%水溶液20重量部を混合してペースト状正極活
物質合剤を調製した。そして、当該ペースト状正極活物
質合剤を前記ニッケル多孔体シートに真空含浸法で充填
し、その後、100℃で0.5時間乾燥した。その後、
当該シート1の全体に対して圧下率50%でロール圧延
を行って、前記ニッケル多孔体シート1の厚さを0.5
mmに調整した。
Next, 70 parts by weight of spherical nickel hydroxide powder, 10 parts by weight of CoO powder, and 20 parts by weight of a 1% aqueous solution of carboxymethyl cellulose were mixed to prepare a paste-like positive electrode active material mixture. Then, the paste-like positive electrode active material mixture was filled in the nickel porous body sheet by a vacuum impregnation method, and then dried at 100 ° C. for 0.5 hour. afterwards,
Rolling is performed on the entire sheet 1 at a rolling reduction of 50% to reduce the thickness of the nickel porous body sheet 1 to 0.5.
mm.

【0021】次に、以上のように厚さ調整が終了したニ
ッケル多孔体シート1に対し、凹部2の活物質を除去し
たのち、当該ニッケル多孔体シート1を端部より50m
m間隔で切断して、図2に示すように、タブ取付け箇所
2aを備えた短冊状の正極板の前駆体1aを形成した。
このとき、当該タブ取付け箇所2aの断面形状は、図5
のようにうねりが生じた状態になっていた。尚、前記ニ
ッケル多孔体シート1の切断箇所としては、例えば、図
1に示したように、長方形の凹部2の長辺の中央が含ま
れるように設定した。
Next, after the active material in the recesses 2 is removed from the nickel porous body sheet 1 whose thickness has been adjusted as described above, the nickel porous body sheet 1 is 50 m from the end.
By cutting at m intervals, as shown in FIG. 2, a strip-shaped positive electrode plate precursor 1a having tab attachment points 2a was formed.
At this time, the cross-sectional shape of the tab attachment portion 2a is as shown in FIG.
It was in a state where swells occurred like. The cutting location of the nickel porous body sheet 1 was set so as to include, for example, the center of the long side of the rectangular recess 2 as shown in FIG.

【0022】ついで、前記正極板前駆体1aをそれぞれ
表1に示した枚数だけ用意した。そして、図2に示すよ
うに、面4a,5aが縦10mm,横5mmの長方形を
なす上型4と下型5とを有するプレス機により、当該正
極板前駆体1aのタブ取付け箇所2aに対し表1に示し
た圧力で加圧成形を行った。以上のようにして得られた
正極板の前駆体に対し、表面観察を行い、破損の有無を
検査し、破損していた正極板前駆体の枚数を表1に併記
した。更に、製造した全ての正極板前駆体の枚数に対す
る加圧成形時に破損した正極板前駆体の枚数の割合を求
め、この割合を加圧成形時における良品率(%)とし
て、表1に併記した。尚、破損した正極板前駆体はこの
時点で除去し、後段のタブのスポット溶接の工程には送
らないようにした。
Next, the positive electrode plate precursors 1a were prepared in the numbers shown in Table 1, respectively. Then, as shown in FIG. 2, with a pressing machine having an upper mold 4 and a lower mold 5 each having a rectangular surface 4a, 5a having a length of 10 mm and a width of 5 mm, the positive electrode plate precursor 1a is attached to the tab attachment location 2a. Pressure molding was performed at the pressures shown in Table 1. The surface of the positive electrode plate precursor thus obtained was observed and inspected for damage, and the number of damaged positive electrode plate precursors is also shown in Table 1. Further, the ratio of the number of positive electrode plate precursors damaged during pressure molding to the number of all manufactured positive electrode plate precursors was determined, and this ratio is also shown in Table 1 as the non-defective rate (%) during pressure molding. . The damaged positive electrode plate precursor was removed at this point and was not sent to the subsequent tab spot welding step.

【0023】ついで、タブ取付け箇所の加圧成形が終了
し、破損していない前記前駆体1aに対してタブ用のニ
ッケルシートをスポット溶接し、図3に示すような正極
板1Aを製造した。得られた正極板1Aに対し、溶接不
良を起こしているか否かを判定し、溶接不良を起こして
いる正極板の枚数を計数した。そして、タブ溶接を行っ
た正極板の枚数に対する溶接不良を起こした正極板の枚
数の割合を求め、この割合を溶接不良率(%)として、
得られた結果を表1に併記した。
Then, the pressure forming of the tab mounting portion was completed, and a nickel sheet for a tab was spot-welded to the precursor 1a which was not damaged to manufacture a positive electrode plate 1A as shown in FIG. With respect to the obtained positive electrode plate 1A, it was determined whether or not welding failure occurred, and the number of positive electrode plates having welding failure was counted. Then, the ratio of the number of positive electrode plates having welding defects to the number of positive electrode plates subjected to tab welding is obtained, and this ratio is taken as the welding defect rate (%),
The obtained results are also shown in Table 1.

【0024】ここで、溶接不良は以下のようにして判定
した。まず、剥離試験機の上下のチャックに、正極板1
Aの極板部分とタブとをそれぞれ取付け、正極板の長手
方向に沿って、引張り力が1kgfになるまで引張っ
た。そして、引張り力が1kgf未満でタブが剥離した
ものを溶接不良品と判定し、剥離しなかったものを良品
とした。
Here, the welding failure was judged as follows. First, the positive electrode plate 1 is attached to the upper and lower chucks of the peeling tester.
The electrode plate portion of A and the tab were attached, respectively, and pulled along the longitudinal direction of the positive electrode plate until the pulling force became 1 kgf. Then, when the pulling force was less than 1 kgf and the tab was peeled off, it was determined as a defective welding product, and when it was not peeled off, it was determined as a good product.

【0025】次に、得られた正極板1Aを、公知のセパ
レータ,水素吸蔵合金電極,アルカリ電解液と組み合わ
せて、定格容量500mAhのニッケル・水素電池を組
み立てた。尚、電池1個当たりに正極板は3枚組み込ま
れている。得られた電池に対して、短絡の発生率を求め
た。その結果を表1に併記した。ここで、短絡の発生率
は、以下のようにして求めた。
Next, the obtained positive electrode plate 1A was combined with a known separator, a hydrogen storage alloy electrode, and an alkaline electrolyte to assemble a nickel-hydrogen battery having a rated capacity of 500 mAh. It should be noted that three positive electrode plates are incorporated for each battery. The occurrence rate of short circuits was determined for the obtained batteries. The results are shown in Table 1. Here, the occurrence rate of the short circuit was determined as follows.

【0026】まず、得られた電池に対して、充電,放
電,エージングを行い、当該電池を活性化させた後、個
々の電池について開路電圧を求め、その電圧値が規格電
圧以下である電池を抜き出した。ついで、抜き出した電
池を解体し、正極タブの状態を観察し、当該正極タブが
正極板からはずれ、負極側の部材と接触しているものを
短絡が発生した電池として計数した。そして、製造した
電池の総数に対する短絡が発生した電池の個数の割合を
求め、この割合を短絡の発生率(%)として表1に併記
した。
First, after charging, discharging and aging the obtained battery to activate the battery, the open circuit voltage is obtained for each battery, and the battery whose voltage value is below the standard voltage is determined. I pulled it out. Then, the extracted battery was disassembled, the state of the positive electrode tab was observed, and the battery in which the positive electrode tab came off the positive electrode plate and was in contact with the member on the negative electrode side was counted as a battery in which a short circuit occurred. Then, the ratio of the number of short-circuited batteries to the total number of manufactured batteries was determined, and this ratio is also shown in Table 1 as the short-circuit occurrence rate (%).

【0027】また、製造した全ての正極板前駆体の枚数
に対する、破損,溶接不良を生じておらず、短絡発生電
池に組み込まれていない良品正極板の枚数の割合を求
め、この割合を正極板製造における正極板全体の良品率
(%)として表1に併記した。 比較例1 タブ取付け箇所の加圧成形を行わなかったことを除いて
は、実施例1と同様にして正極板を製造し、当該正極板
を用いて実施例1と同様にして電池を製造した。
The ratio of the number of non-defective positive electrode plates which did not cause damage or welding defects and were not incorporated in the short circuit battery to the total number of manufactured positive electrode plate precursors was determined, and this ratio was calculated. The yield rate (%) of the whole positive electrode plate in the production is also shown in Table 1. Comparative Example 1 A positive electrode plate was manufactured in the same manner as in Example 1 except that the tab attachment location was not pressure-molded, and a battery was manufactured in the same manner as in Example 1 using the positive electrode plate. .

【0028】この正極板およびそれを組み込んだ電池に
対して、実施例1と同様にして加圧成形時の良品率、溶
接不良率、短絡の発生率、正極板全体の良品率を求め、
その結果を表1に併記した。
For this positive electrode plate and the battery incorporating the same, the good product rate at the time of pressure molding, the defective welding rate, the occurrence rate of short circuit, and the good product rate of the whole positive electrode plate were obtained in the same manner as in Example 1.
The results are shown in Table 1.

【0029】[0029]

【表1】 [Table 1]

【0030】表1の結果から次のことが明らかとなる。
すなわち、タブ取付け箇所を加圧成形してからタブを取
付けると比較例1と比べて明らかなように、溶接不良率
は著しく低くなり、ほぼ100%を正極板として電池に
組み込むことができる。そして、その正極板を組み込ん
だ電池では、短絡事故が起こったとしても、その発生率
は高々1.2%(実施例1)程度である。しかし、加圧
成形時の圧力を高くするとタブ取付け箇所が破損するこ
とがある(実施例7)。
From the results shown in Table 1, the following is clear.
That is, when the tab mounting portion is pressure-molded and then the tab is mounted, as is apparent from Comparative Example 1, the welding defect rate is significantly reduced, and almost 100% can be incorporated into the battery as a positive electrode plate. Further, in the battery incorporating the positive electrode plate, the occurrence rate of the short circuit accident is about 1.2% at the maximum (Example 1). However, if the pressure at the time of pressure molding is increased, the tab attachment location may be damaged (Example 7).

【0031】特に、加圧成形時の圧力を200〜250
kgf/cm2 の範囲に設定した実施例2〜6の正極板
は、加圧成形時に破損は発生せず、溶接不良率は0.2
%以下と低い。そして、当該正極板を組み込んだ電池の
短絡発生率は0%であり、正極板全体での良品率は9
9.8%以上と高いことがわかる。これは、厚さ調整の
ために行われたロール圧延の際にうねりが生じてしまっ
たタブ取付け箇所を、本発明で規定した前記範囲内の圧
力で加圧成形すると、極板が破損することなくうねりが
矯正され、タブ取付け箇所が平坦になり、その結果、タ
ブのスポット溶接において、良好な溶接がなされるため
である。
Particularly, the pressure at the time of pressure molding is 200 to 250.
The positive electrode plates of Examples 2 to 6 set in the range of kgf / cm 2 did not cause damage during pressure forming, and had a defective welding rate of 0.2.
% Or less. The short-circuit occurrence rate of the battery incorporating the positive electrode plate was 0%, and the good product rate of the whole positive electrode plate was 9%.
It turns out that it is as high as 9.8% or more. This is because the electrode plate is damaged when the tab attachment location where undulation occurs during roll rolling performed for thickness adjustment is pressure-molded at a pressure within the range specified in the present invention. This is because the undulations are eliminated and the tab attachment points are flattened, and as a result, good welding is performed in spot welding of tabs.

【0032】比較例1は、溶接不良率が40.4%,短
絡の発生率が2.5%と高くなっていることがわかる。
これは、従来通りに、タブ取付け箇所の加圧成形を行わ
なかったので、当該箇所にうねりが残留してしまい、そ
れにより、タブとタブ取付け箇所との均一接触がなされ
ず、良好なスポット溶接が行われなかったためである。
このため、当該正極板を組み込んだ電池においては、タ
ブが正極板からはずれ、短絡するものがあり、短絡発生
率が高くなっており、それにより正極板全体の良品率は
低下している。
It can be seen that in Comparative Example 1, the defective welding rate was 40.4% and the short circuit occurrence rate was 2.5%.
This is because, as in the past, pressure forming was not performed at the tab attachment location, so undulations remain at that location, which prevents uniform contact between the tab and the tab attachment location, and good spot welding. Because it was not done.
For this reason, in the battery in which the positive electrode plate is incorporated, the tab may be disengaged from the positive electrode plate to cause a short circuit, and the occurrence rate of the short circuit is high, which reduces the non-defective rate of the entire positive electrode plate.

【0033】[0033]

【発明の効果】以上の説明で明らかなように、本発明に
おける正極板へのタブ取付け方法によれば、正極板前駆
体のタブ取付け箇所を加圧成形することにより、当該箇
所のうねりを矯正し、平坦化し得る。このため、タブを
当該タブ取付け箇所にスポット溶接する際、タブとタブ
取付け箇所とが密着して全面接触し、良好なスポット溶
接が行えるものである。よって、本発明における正極板
へのタブ取付け方法を採用すると正極板へタブを溶接す
る際、溶接不良の発生が少なくなり、電池製造における
歩留まりが向上する。
As is apparent from the above description, according to the method of attaching a tab to a positive electrode plate of the present invention, the tab attachment portion of the positive electrode plate precursor is pressure-molded to correct the undulation at that portion. Can be flattened. For this reason, when the tab is spot-welded to the tab mounting portion, the tab and the tab mounting portion are in close contact with each other and are in full contact with each other, so that good spot welding can be performed. Therefore, when the method of attaching the tab to the positive electrode plate according to the present invention is adopted, when welding the tab to the positive electrode plate, the occurrence of welding defects is reduced, and the yield in battery production is improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】連続シート状の集電体(ニッケル多孔体シー
ト)の構造を示す斜視図である。
FIG. 1 is a perspective view showing a structure of a continuous sheet-shaped current collector (nickel porous sheet).

【図2】正極板の前駆体の構造を示す斜視図である。FIG. 2 is a perspective view showing a structure of a precursor of a positive electrode plate.

【図3】正極板の構造を示す斜視図である。FIG. 3 is a perspective view showing a structure of a positive electrode plate.

【図4】連続シート状の集電体(ニッケル多孔体シー
ト)の上視平面図である。
FIG. 4 is a top plan view of a continuous sheet-shaped current collector (nickel porous sheet).

【図5】図2のV−V線に沿う断面図である。5 is a cross-sectional view taken along the line VV of FIG.

【符号の説明】[Explanation of symbols]

1 集電体の連続シート(ニッケ
ル多孔体シート) 1a 短冊状の正極板前駆体 2a タブ取付け箇所 3 タブ 4 上型 5 下型
1 Continuous sheet of current collector (nickel porous sheet) 1a Strip-shaped positive electrode plate precursor 2a Tab attachment point 3 Tab 4 Upper mold 5 Lower mold

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 3次元網状構造の集電体連続シートの所
定箇所を圧縮してタブ取付け箇所を設けると共に、当該
集電体連続シートにペースト状活物質合剤を充填したの
ち乾燥し、ついで当該集電体連続シートをロール圧延
し、その後、前記集電体連続シートを、端部にタブ取付
け箇所が位置する短冊状に切断して正極板前駆体とし、
当該正極板前駆体のタブ取付け箇所を加圧成形して平坦
にしたのち、当該タブ取付け箇所にタブをスポット溶接
して取付けることを特徴とする正極板へのタブ取付け方
法。
1. A current collector continuous sheet having a three-dimensional network structure is compressed at predetermined locations to provide tab attachment locations, and the current collector continuous sheet is filled with a paste-like active material mixture and then dried, and The current collector continuous sheet is rolled, then, the current collector continuous sheet is cut into a strip shape in which the tab attachment location is located at the end, as a positive electrode plate precursor,
A method of attaching a tab to a positive electrode plate, which comprises press-molding and flattening a tab attaching portion of the positive electrode plate precursor, and then spot welding the tab to the tab attaching portion.
【請求項2】 前記加圧成形時の圧力が200〜250
kgf/cm2 である請求項1の正極板へのタブ取付け
方法。
2. The pressure during the pressure molding is 200 to 250.
The method for attaching a tab to a positive electrode plate according to claim 1, wherein the tab is kgf / cm 2 .
JP8014485A 1996-01-30 1996-01-30 How to attach tab to positive plate Expired - Lifetime JP2984816B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8014485A JP2984816B2 (en) 1996-01-30 1996-01-30 How to attach tab to positive plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8014485A JP2984816B2 (en) 1996-01-30 1996-01-30 How to attach tab to positive plate

Publications (2)

Publication Number Publication Date
JPH09213300A true JPH09213300A (en) 1997-08-15
JP2984816B2 JP2984816B2 (en) 1999-11-29

Family

ID=11862363

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8014485A Expired - Lifetime JP2984816B2 (en) 1996-01-30 1996-01-30 How to attach tab to positive plate

Country Status (1)

Country Link
JP (1) JP2984816B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016035928A1 (en) * 2014-09-03 2016-03-10 (주) 루트제이드 Lead tab of fibrous secondary battery
JP2022109676A (en) * 2021-01-15 2022-07-28 本田技研工業株式会社 Collector structure and secondary battery using the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016035928A1 (en) * 2014-09-03 2016-03-10 (주) 루트제이드 Lead tab of fibrous secondary battery
KR20160028289A (en) * 2014-09-03 2016-03-11 주식회사 루트제이드 Lead tab structure of flexible battery
JP2022109676A (en) * 2021-01-15 2022-07-28 本田技研工業株式会社 Collector structure and secondary battery using the same

Also Published As

Publication number Publication date
JP2984816B2 (en) 1999-11-29

Similar Documents

Publication Publication Date Title
US7909068B2 (en) Method for producing positive electrode plate for alkaline storage battery
EP0917221A1 (en) Cylindrical alkaline storage battery and manufacturing method of the same
JP4342160B2 (en) Storage battery and manufacturing method thereof
JP4527844B2 (en) Manufacturing method of battery electrode plate
CN111375882A (en) Tab welding method and battery prepared by using same
JPH09213300A (en) Tab mounting method for positive electrode plate
JP3649909B2 (en) battery
JP2004342591A (en) Alkaline storage battery and its manufacturing method
JPH10125332A (en) Manufacture of battery electrode
JP5096745B2 (en) Method for producing negative electrode for nickel metal hydride storage battery
JP4857548B2 (en) Secondary battery electrode paste coating method and secondary battery electrode paste coating and drying apparatus
JP3893856B2 (en) Square alkaline storage battery
JP2002246032A (en) Collector substrate for electrode for alkaline secondary battery, electrode using the same, and alkaline secondary battery with electrode assembled therein
JPH09199117A (en) Positive plate and its manufacture
JP2708123B2 (en) Manufacturing method of paste electrode
JP3913395B2 (en) Method for producing alkaline storage battery
JP2002175833A (en) Alkali secondary battery
US20030068554A1 (en) Alkaline storage battery and process for producing the same
JP3350359B2 (en) Manufacturing method of positive electrode plate for alkaline storage battery
JP3412437B2 (en) Alkaline storage battery
JP4168578B2 (en) Square alkaline storage battery and manufacturing method thereof
JPH1064533A (en) Electrode for secondary battery and manufacture thereof
JPH09204911A (en) Manufacture of positive electrode plate
JPH09259873A (en) Secondary battery electrode, its manufacture, and applying device of fluorine resin used for this manufacture
JPH11307078A (en) Battery