JPH09204911A - Manufacture of positive electrode plate - Google Patents

Manufacture of positive electrode plate

Info

Publication number
JPH09204911A
JPH09204911A JP8012091A JP1209196A JPH09204911A JP H09204911 A JPH09204911 A JP H09204911A JP 8012091 A JP8012091 A JP 8012091A JP 1209196 A JP1209196 A JP 1209196A JP H09204911 A JPH09204911 A JP H09204911A
Authority
JP
Japan
Prior art keywords
positive electrode
tab
electrode plate
nickel
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8012091A
Other languages
Japanese (ja)
Inventor
Yuji Shioda
裕治 塩田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Battery Co Ltd
Original Assignee
Furukawa Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Battery Co Ltd filed Critical Furukawa Battery Co Ltd
Priority to JP8012091A priority Critical patent/JPH09204911A/en
Publication of JPH09204911A publication Critical patent/JPH09204911A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/536Electrode connections inside a battery casing characterised by the method of fixing the leads to the electrodes, e.g. by welding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/534Electrode connections inside a battery casing characterised by the material of the leads or tabs
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To minimize the occurrence of a welding failure by the residual nonconductive active material by compressing a prescribed position of a current collector to provide a tab mounting position, and continuously patting the tab mounting position after filling an active material paste. SOLUTION: A nickel porous sheet is pressed in the thickness direction by use of a press machine to form a recessed part 2, and a tab 2a is mounted thereon. A paste-like active material mix is applied onto the sheet followed by drying, and the whole sheet is rolled to regulate the thickness, and then cut into a prescribed dimension to form a positive electrode plate precursor 1a. The tab 2b of the precursor 1a is subjected to nickel hydroxide removing work. This removing work is performed by continuously patting the tab mounting position by an impact imparting means 4. As the imparting means 4, a member formed of a bundle of a plurality of needles 4a is used, and the nickel hydroxide exposed to the surface of the mounting position 2a is scraped to the needle tips, and the nickel hydroxide is peeled off from the communicating holes within the mounting position 2a.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、アルカリ二次電池
のニッケル正極板の製造方法に関し、更に詳しくは、3
次元網状構造の集電体に活物質合剤を担持させてなる正
極板に、タブを安定した状態でスポット溶接する正極板
の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a nickel positive electrode plate for an alkaline secondary battery.
The present invention relates to a method for producing a positive electrode plate in which a tab is spot-welded in a stable state to a positive electrode plate in which a current collector having a three-dimensional network structure carries an active material mixture.

【0002】[0002]

【従来の技術】ニッケル・カドミウム電池やニッケル・
水素電池の正極として組み込まれるニッケル正極板は、
集電体に正極活物質合剤が担持されていて、その一部に
集電用のタブがスポット溶接された構造になっている。
ニッケル正極板に用いられる集電体としては、例えば、
発泡状のニッケル多孔体のような3次元網状構造をした
ものが一般的である。
2. Description of the Related Art Nickel / cadmium batteries and nickel /
The nickel positive electrode plate incorporated as the positive electrode of the hydrogen battery is
The positive electrode active material mixture is carried on the current collector, and a tab for current collection is spot welded to a part of the positive electrode active material mixture.
As the current collector used for the nickel positive electrode plate, for example,
A foamed nickel porous body having a three-dimensional network structure is generally used.

【0003】また、前記ニッケル多孔体に担持される正
極活物質合剤としては、水酸化ニッケルが主成分をな
し、必要に応じて酸化コバルトのようなコバルト化合物
の粉末などを混合した混合粉末が用いられる。ここで、
活物質合剤を構成する粉末の粒径は、通常、1〜100
μm程度である。前記ニッケル多孔体に取り付けられる
集電用のタブとしては、ニッケル箔などからなるシート
が一般的に用いられている。
Further, as the positive electrode active material mixture supported on the nickel porous body, a mixed powder containing nickel hydroxide as a main component and, if necessary, powder of a cobalt compound such as cobalt oxide is mixed. Used. here,
The particle size of the powder constituting the active material mixture is usually 1 to 100.
It is about μm. A sheet made of nickel foil or the like is generally used as the current collecting tab attached to the nickel porous body.

【0004】上述したような構造のニッケル正極板は、
通常以下のようにして製造されている。すなわち、ま
ず、前記正極活物質の混合粉末にカルボキシメチルセル
ロースやメチルセルロースなどを溶解して成る増粘剤水
溶液を添加して全体を撹拌することにより、粘稠なペー
スト状活物質合剤にする。ついで、シート状のニッケル
多孔体に前記ペースト状活物質合剤を充填塗布したの
ち、乾燥する。尚、図1で示したように、シート状ニッ
ケル多孔体1は、その所定位置の所定範囲が厚み方向に
押しつぶされ、凹部2が予め形成されている。この凹部
2は後述するタブ取り付け個所となる。
The nickel positive electrode plate having the above structure is
Usually, it is manufactured as follows. That is, first, an aqueous solution of a thickener prepared by dissolving carboxymethyl cellulose or methyl cellulose is added to the mixed powder of the positive electrode active material, and the whole is stirred to obtain a viscous paste-like active material mixture. Then, the sheet-like nickel porous body is filled and coated with the paste-like active material mixture, and then dried. As shown in FIG. 1, in the sheet-shaped nickel porous body 1, a recess 2 is formed in advance by crushing a predetermined range of a predetermined position in the thickness direction. The concave portion 2 will be a tab attachment point described later.

【0005】その後、前記シート状ニッケル多孔体の全
体をロール圧延して、厚みの調整を行い、図1中の二点
鎖線で示した所定個所をカッターで切断し、図2に示す
ように、所定位置にタブの取り付け個所2aを備えた短
冊状のニッケル正極板の前駆体1aを得る。尚、このタ
ブの取り付け個所2aは、他の部分よりも高密度になっ
ており、後段で行われるスポット溶接時に良好なナゲッ
ト部が形成できるようになっている。
Thereafter, the entire sheet-shaped nickel porous body is rolled to adjust the thickness, and a predetermined portion indicated by a chain double-dashed line in FIG. 1 is cut by a cutter, and as shown in FIG. A strip-shaped nickel positive electrode plate precursor 1a having tab attachment points 2a at predetermined positions is obtained. The tab attachment portion 2a has a higher density than the other portions, so that a good nugget portion can be formed at the time of spot welding performed in the subsequent stage.

【0006】そして最後に、前記短冊状前駆体1aのタ
ブの取り付け個所2aにタブ用のシートの端部を重ね合
わせて溶接部を形成したのち、当該溶接部をスポット溶
接機の上電極と下電極で加圧しながら通電し、前駆体に
タブ3をスポット溶接することにより図3に示すような
ニッケル正極板1Aを形成する。このようにして製造さ
れたニッケル正極板は、負極板、セパレータ、電解液等
とともに電池の外装缶内に組み込まれることにより電池
が形成される。
Finally, after the tab sheet ends of the strip precursor 1a are overlapped with the tab sheet ends to form a welded portion, the welded portion is attached to the upper electrode of the spot welding machine and the lower electrode. Electric current is applied while applying pressure to the electrode, and the tab 3 is spot-welded to the precursor to form a nickel positive electrode plate 1A as shown in FIG. The nickel positive electrode plate manufactured in this manner is incorporated into a battery outer can together with a negative electrode plate, a separator, an electrolytic solution and the like to form a battery.

【0007】[0007]

【発明が解決しよとする課題】ところで、正極活物質と
して用いられる水酸化ニッケルは、非導電性であるの
で、前記した溶接部に当該水酸化ニッケルが存在する
と、スポット溶接の際、通電が阻害され良好な溶接状態
が得られない場合がある。つまり、ニッケル正極板にお
いては、タブの溶接部以外では、電池の高容量化のため
に水酸化ニッケルの充填量を極力多くすることが望まれ
るが、タブの取り付け個所では、溶接不良をなくすため
に、水酸化ニッケルが当該取り付け個所に存在すること
を極力避けることが望まれる。
By the way, since nickel hydroxide used as the positive electrode active material is non-conductive, if the nickel hydroxide is present in the above-mentioned welded portion, energization will occur during spot welding. It may be hindered and good welding condition may not be obtained. In other words, in the nickel positive electrode plate, it is desirable to maximize the filling amount of nickel hydroxide in order to increase the capacity of the battery except for the welded portion of the tab, but at the tab attachment location, to eliminate welding defects. In addition, it is desirable to avoid the presence of nickel hydroxide at the mounting location as much as possible.

【0008】そのため、通常は、タブの取り付け個所の
表面から活物質を掻き取り、表層部の水酸化ニッケルを
除去したのちスポット溶接を行っている。しかしなが
ら、タブの取り付け個所においては、表層部の水酸化ニ
ッケルを除去しても、その内部には依然として水酸化ニ
ッケルが残留しているので、スポット溶接の際、当該水
酸化ニッケルが存在することに起因する通電不良により
スパークが生じやすく溶接不良を起こす場合がある。
Therefore, usually, the active material is scraped off from the surface of the mounting portion of the tab to remove the nickel hydroxide on the surface layer, and then spot welding is performed. However, at the tab attachment location, even if the nickel hydroxide on the surface layer is removed, the nickel hydroxide still remains inside, so during the spot welding, the nickel hydroxide exists. Sparking is likely to occur due to poor electrical conduction resulting in poor welding.

【0009】このような、ニッケル多孔体内部の水酸化
ニッケルを除去するために、超音波振動を利用すること
が試みられているが、その場合、超音波振動は振動のエ
ネルギーが高く、そのため、極板自体を破損するおそれ
があり、ニッケル多孔体内の水酸化ニッケルの除去手段
としては好ましくない。本発明は、アルカリ二次電池の
ニッケル正極板における上記した問題を解決し、タブの
取り付け個所において非導電性の活物質が残留すること
に起因する溶接不良の発生を少なくすることができる正
極板の製造方法の提供を目的とする。
It has been attempted to utilize ultrasonic vibration in order to remove such nickel hydroxide inside the nickel porous body, but in that case, ultrasonic vibration has high vibration energy, and therefore, It may damage the electrode plate itself and is not preferable as a means for removing nickel hydroxide in the porous nickel body. The present invention solves the above-mentioned problems in the nickel positive electrode plate of the alkaline secondary battery, and can reduce the occurrence of welding defects due to the non-conductive active material remaining at the tab attachment point. An object of the present invention is to provide a manufacturing method of.

【0010】[0010]

【課題を解決するための手段】上記目的を達成するため
に、本発明では、水酸化ニッケルを主体とする活物質合
剤が担持されている3次元網状構造の集電体にタブをス
ポット溶接する際に、前記集電体の所定個所を圧縮して
タブ取り付け個所を設け、ついで当該集電体に活物質ペ
ーストを充填したのち乾燥し、当該タブ取り付け個所を
複数の針を束ねた衝撃付与手段で連続的に叩くことを特
徴とする正極板の製造方法が提供される。
In order to achieve the above object, in the present invention, a tab is spot-welded to a current collector having a three-dimensional network structure carrying an active material mixture mainly composed of nickel hydroxide. In this case, a predetermined part of the current collector is compressed to provide a tab attachment part, and then the current collector is filled with an active material paste and then dried, and the tab attachment part is given an impact by bundling a plurality of needles. A method for manufacturing a positive electrode plate is provided, which comprises continuously hitting with a means.

【0011】本発明の正極板の製造方法においては、前
記針の植設密度が400本/cm2以上である衝撃付与
手段により、0.8〜2.4kgfの力で、1秒間に6
〜18回の割合でタブ取り付け個所を連続的に叩くこと
が好ましい。本発明による正極板の製造方法は、複数の
針を束ねた衝撃付与手段で、タブの取り付け個所を連続
的に叩くことにより、当該個所に衝撃を与え、この衝撃
で、集電体の内部にまで充填されている活物質、すなわ
ち水酸化ニッケルを除去する。
In the method for producing a positive electrode plate of the present invention, the impact density of the needles is 400 needles / cm 2 or more, and a force of 0.8 to 2.4 kgf is applied to the positive electrode plate at a rate of 6 per second.
It is preferable to continuously tap the tab attachment portion at a rate of -18 times. The method for manufacturing a positive electrode plate according to the present invention is an impact imparting means in which a plurality of needles are bundled, and by continuously striking the tab attachment point, the impact is applied to the point, and this impact causes the inside of the current collector to be damaged. The active material that has been filled up to the end, namely nickel hydroxide, is removed.

【0012】[0012]

【発明の実施の形態】本発明の正極板の製造方法におい
ては、正極板の前駆体を製造する工程(以下、工程Aと
いう)とその前駆体のタブ取り付け個所に存在する水酸
化ニッケルを除去する工程(以下、工程Bという)とを
必須の工程として含んでいる。上記した工程Aと工程B
が順次行われることによって、本発明においては、集電
体に充填された活物質のうち、タブの取り付け個所に存
在する活物質が除去される。その結果、タブ取り付け個
所におけるスポット溶接性は向上する。
BEST MODE FOR CARRYING OUT THE INVENTION In the method for producing a positive electrode plate according to the present invention, the step of producing a precursor for a positive electrode plate (hereinafter referred to as step A) and the nickel hydroxide present at the tab attachment portion of the precursor are removed. The process (hereinafter, referred to as process B) is included as an essential process. Process A and process B described above
In the present invention, the active material existing in the tab attachment portion is removed from the active material filled in the current collector by sequentially performing the above. As a result, spot weldability at the tab attachment point is improved.

【0013】まず、工程Aにおいては、3次元網状構造
の集電体が用意される。ここで、本発明で用いられる3
次元網状構造の集電体は、従来から用いられているもの
であれば何であってもよく格別限定されるものではない
が、ペースト状活物質合剤の充填量を多くすることがで
きるという点で、例えば、多孔度94〜97%で孔径5
0〜500μmの連通孔を有する発泡状ニッケル多孔体
のシートを好適なものとしてあげることができる。
First, in step A, a current collector having a three-dimensional network structure is prepared. Here, 3 used in the present invention
The current collector having a three-dimensional network structure is not particularly limited as long as it is a conventionally used one, but it is possible to increase the filling amount of the paste-like active material mixture. And, for example, a porosity of 94 to 97% and a pore size of 5
A sheet of a foamed nickel porous body having a communication hole of 0 to 500 μm can be mentioned as a preferable example.

【0014】そして、当該ニッケル多孔体シート1に対
して、例えばプレス機を用いることにより、所定個所が
厚さ方向に押しつぶされて高密度化され、凹部2が形成
される。ここで、前記ニッケル多孔体シート1において
プレス成形により凹部2を設ける場合、ニッケル多孔体
シートを押しつぶすことにより高密度化がなされ、後段
で行われるスポット溶接における溶接性の向上が図られ
る。しかしながら、プレス成形時の圧下率が91%を超
えると、スポンジ状ニッケルシートは非常に緻密にな
り、溶接性は向上するが、他方では、金属の脆化がおこ
り機械的強度が低下してしまう。逆に圧下率が83%未
満になると、水酸化ニッケルの除去作業は比較的容易に
なるが、ニッケルシートが高密度化されず、スポット溶
接性が阻害されてしまう。そのため、タブ取り付け個所
を形成するときの圧下率は、83%以上,91%以下の
範囲に設定することが好ましい。
Then, by using, for example, a pressing machine, the nickel porous sheet 1 is crushed at a predetermined position in the thickness direction to be densified and the recess 2 is formed. Here, when the concave portion 2 is provided in the nickel porous body sheet 1 by press molding, the nickel porous body sheet is crushed to increase the density, and the weldability in the spot welding performed in the subsequent stage is improved. However, if the rolling reduction during press molding exceeds 91%, the sponge-like nickel sheet becomes very dense and the weldability is improved, but on the other hand, the metal becomes brittle and the mechanical strength decreases. . On the other hand, if the rolling reduction is less than 83%, the work of removing nickel hydroxide becomes relatively easy, but the nickel sheet is not densified and spot weldability is impaired. Therefore, it is preferable to set the reduction rate when forming the tab attachment portion in the range of 83% or more and 91% or less.

【0015】ついで、従来から行われているような所定
の方法で調製したペースト状活物質合剤を前記ニッケル
多孔体シートに充填塗布したのち、乾燥する。次に、前
記ニッケル多孔体シートの全体をロール圧延して厚さの
調整を行い、その後、図1中の二点鎖線で示すように、
前記ニッケルシートを所定寸法で切断し、短冊状の正極
板前駆体1a(図2参照)とする。
Then, the paste-like active material mixture prepared by a predetermined method as conventionally used is filled and applied to the nickel porous body sheet, and then dried. Next, the whole of the nickel porous body sheet is roll-rolled to adjust the thickness, and thereafter, as shown by a chain double-dashed line in FIG.
The nickel sheet is cut into a predetermined size to obtain a strip-shaped positive electrode plate precursor 1a (see FIG. 2).

【0016】以上の工程Aが終了したのち、工程Bで
は、図2に示すような正極板前駆体1aのタブ取り付け
個所2aに対し、水酸化ニッケルの除去作業が行われ
る。この除去作業は、後述する衝撃付与手段により、タ
ブ取り付け個所を連続的に叩いて衝撃を与え、その衝撃
で、タブ取り付け個所の表面及び内部の水酸化ニッケル
を除去するものである。
After the above step A is completed, in step B, the work of removing nickel hydroxide is performed on the tab attachment portion 2a of the positive electrode plate precursor 1a as shown in FIG. In this removing operation, the tab attaching portion is continuously hit by an impact applying means to be described later to give an impact, and the nickel hydroxide on the surface and the inside of the tab attaching portion is removed by the impact.

【0017】このとき、衝撃付与手段としては、図2に
示すように、複数の針4aが束ねられた所謂剣山状の部
材が用いられる。この剣山状部材4の主要な働きは、タ
ブ取り付け個所2aの表面に露出している水酸化ニッケ
ルを針先で掻き出すとともに、タブ取り付け個所2aの
内部にまで衝撃を与えることにより、内部の連通孔から
水酸化ニッケルを剥落させることである。ここで、スポ
ンジ状ニッケルシートの連通孔の孔径は通常50〜50
0μm程度であり、その連通孔から水酸化ニッケルを掻
き出すことを考えると、前記針4aの針先の直径は、
0.01〜0.05mm程度であることが好ましい。ま
た、針先の形状としては、尖鋭であっても構わないが、
タブの取り付け個所2a表面を極力損傷させないため
に、針先を球状にすることが好ましい。
At this time, a so-called sword-shaped member in which a plurality of needles 4a are bundled is used as the impact applying means, as shown in FIG. The main function of the sword-shaped member 4 is to scrape out the nickel hydroxide exposed on the surface of the tab mounting portion 2a with a needle tip and to give an impact to the inside of the tab mounting portion 2a, thereby communicating holes inside. Is to strip nickel hydroxide from. Here, the diameter of the communication hole of the sponge-like nickel sheet is usually 50 to 50.
The diameter of the needle tip of the needle 4a is about 0 μm, and considering that nickel hydroxide is scratched out from the communication hole,
It is preferably about 0.01 to 0.05 mm. The shape of the needle tip may be sharp,
The tip of the needle is preferably spherical so as not to damage the surface of the tab mounting portion 2a as much as possible.

【0018】また、複数の針4aを束ねる際、単位面積
当たりの針4aの植設本数、すなわち植設密度が低すぎ
ると、水酸化ニッケルを除去する作業効率が低くなると
共に、針の本数が少ないため、針先に応力が集中しすぎ
てしまい、ニッケル多孔体シートを叩く際の圧力が局部
的に高くなり、ニッケル多孔体シートを損傷するおそれ
がある。よって、針の植設密度は、400本/cm2
上に設定されることが好ましい。
Further, when bundling a plurality of needles 4a, if the number of needles 4a to be planted per unit area, that is, the density of implantation is too low, the work efficiency of removing nickel hydroxide is lowered and the number of needles is also reduced. Since the stress is too small, the stress is excessively concentrated on the tip of the needle, and the pressure at the time of hitting the nickel porous body sheet is locally increased, which may damage the nickel porous body sheet. Therefore, the needle implantation density is preferably set to 400 needles / cm 2 or more.

【0019】尚、剣山状部材4の形状は、格別限定され
るものではないが、図2で示したような立方体状の台4
bの底面に複数の針を植設したものの他、円柱形状の台
の底面に針を植設したものを用いても構わない。このと
き、針の植設密度は前記範囲内にするとともに、複数の
針の先端で形成されるタブ取り付け個所との当接部の断
面積は、タブ取り付け個所2aの面積とほぼ同じかそれ
よりも小さくする。
The shape of the sword-shaped member 4 is not particularly limited, but is a cubical base 4 as shown in FIG.
In addition to implanting a plurality of needles on the bottom surface of b, a needle having the needles implanted on the bottom surface of a cylindrical base may be used. At this time, the implantation density of the needles is within the above range, and the cross-sectional area of the contact portion with the tab attachment portion formed by the tips of the plurality of needles is substantially the same as or larger than the area of the tab attachment portion 2a. Also make it smaller.

【0020】更に、タブ取り付け個所2aを叩くときの
力が小さすぎたり、単位時間当たりに叩く回数が少なす
ぎたりすると、水酸化ニッケルに対する除去効果は減退
してしまう。逆に、タブ取り付け個所2aを叩くときの
力が大きすぎたり、単位時間当たりに叩く回数が多すぎ
たりすると、タブ取り付け個所2aに印加される衝撃が
強くなりすぎてしまい、タブの取り付け個所以外の部分
の水酸化ニッケルを脱落させてしまったり、極板自体を
破損させるおそれがある。よって、衝撃付与手段である
剣山状部材でタブ取り付け個所2aを叩く力は、0.8
〜2.4kgfの範囲であることが好ましく、連続的に
叩く際の単位時間当たりにタブ取り付け個所2aを叩く
回数は、1秒間に6〜18回(6〜18Hz)に設定さ
れることが好ましく、上記条件で所要時間だけ衝撃付与
が行われ、水酸化ニッケルの除去作業が行われる。
Further, if the force for hitting the tab mounting portion 2a is too small, or if the number of hits per unit time is too small, the effect of removing nickel hydroxide decreases. On the contrary, if the force for hitting the tab attaching portion 2a is too large, or the number of hits per unit time is too large, the impact applied to the tab attaching portion 2a becomes too strong, and it is not the tab attaching portion. There is a risk that the nickel hydroxide in the part will drop off or the electrode plate itself will be damaged. Therefore, the force of hitting the tab attaching portion 2a with the sword-shaped member which is the impact applying means is 0.8.
It is preferable to be in the range of up to 2.4 kgf, and it is preferable to set the number of times to hit the tab attaching portion 2a per unit time when continuously hitting to 6 to 18 times (6 to 18 Hz) per second. Under the above conditions, the impact is applied for the required time, and the work of removing nickel hydroxide is performed.

【0021】尚、以上の説明では、ニッケル多孔体シー
トを短冊状に切断した後にタブ取り付け個所の水酸化ニ
ッケルの除去作業が行われているが、図1に示すような
連続シートの状態の時に、凹部2を衝撃付与手段で叩き
水酸化ニッケルの除去作業を行っても構わない。以上の
ように、工程A及び工程Bが終了した後、正極板前駆体
のタブ取り付け個所にタブ用シートの端部を重ね合わせ
て溶接部を形成し、前記溶接部をスポット溶接機の上電
極と下電極で加圧保持しながら通電してタブの端部を前
記正極板の前駆体にスポット溶接し、正極板を形成す
る。
In the above description, the nickel porous sheet is cut into strips and then the nickel hydroxide is removed from the tab-attached portions. However, in the continuous sheet state as shown in FIG. Alternatively, the recess 2 may be hit with an impact applying means to remove nickel hydroxide. As described above, after the steps A and B are completed, the ends of the tab sheet are superposed on the tab attachment portions of the positive electrode plate precursor to form a welded portion, and the welded portion is used as the upper electrode of the spot welding machine. While maintaining pressure under the lower electrode, electricity is applied to spot-weld the end portion of the tab to the precursor of the positive electrode plate to form a positive electrode plate.

【0022】[0022]

【実施例】【Example】

実施例1〜5 孔径が470〜500μm,多孔度96〜97%で、厚
さ1.1mm,幅80mmのスポンジ状ニッケル多孔体
の連続シートを用意した。そして、長辺寸法18mm,
短辺寸法8mmの長方形状の型を前記ニッケルシートの
幅方向の中心線上において、シートの長手方向と型の長
辺とが平行になるようにして、80mm間隔で押しつけ
て、図1に示すように当該シートの所定個所を圧縮し、
長方形状の凹部2を複数形成した。このときの圧下率は
83%とした。
Examples 1 to 5 A continuous sheet of sponge-like nickel porous body having a pore diameter of 470 to 500 μm, a porosity of 96 to 97%, a thickness of 1.1 mm and a width of 80 mm was prepared. And the long side dimension 18 mm,
A rectangular die having a short side dimension of 8 mm is pressed at 80 mm intervals so that the longitudinal direction of the sheet and the long side of the die are parallel to each other on the center line in the width direction of the nickel sheet, as shown in FIG. Compress the specified part of the sheet to
A plurality of rectangular recesses 2 were formed. The rolling reduction at this time was 83%.

【0023】次に、球状水酸化ニッケル粉末70重量
部、CoO粉末5重量部、カルボキシメチルセルロース
の1%水溶液25重量部を混合してペースト状正極活物
質合剤を調製した。そして、前記ニッケル多孔体シート
に、当該ペースト状正極活物質合剤を真空含浸法で充填
し、その後、80℃で1時間乾燥した。その後、前記ニ
ッケル多孔体シートの厚さを0.6mmに調整するため
に、当該シートの全体に対して圧下率45%でロール圧
延を行った。
Next, 70 parts by weight of spherical nickel hydroxide powder, 5 parts by weight of CoO powder, and 25 parts by weight of a 1% aqueous solution of carboxymethyl cellulose were mixed to prepare a paste-like positive electrode active material mixture. Then, the nickel porous sheet was filled with the paste-like positive electrode active material mixture by a vacuum impregnation method, and then dried at 80 ° C. for 1 hour. Then, in order to adjust the thickness of the nickel porous body sheet to 0.6 mm, roll rolling was performed on the entire sheet at a reduction rate of 45%.

【0024】次に、以上のように厚さ調整が終了したニ
ッケル多孔体シートを端部より40mm間隔で切断して
いく。このとき切断個所としては、図1に示したよう
に、長方形の凹部2の長辺の中間が必ず含まれるように
設定する。このようにして、図2に示すように、タブの
取り付け個所2aを備えた短冊状の正極板の前駆体が形
成される。
Next, the nickel porous body sheet whose thickness has been adjusted as described above is cut from the end portion at intervals of 40 mm. At this time, as shown in FIG. 1, the cutting point is set so as to always include the middle of the long sides of the rectangular concave portion 2. In this way, as shown in FIG. 2, a strip-shaped positive electrode plate precursor having tab attachment points 2a is formed.

【0025】ついで、図2に示すように、長辺寸法9m
m,短辺寸法8mm,高さ8mmの金属製の台4bの底
面に、先端形状が球状であり、当該先端部の直径が0.
05mm,根本部の直径が0.4mm,長さが5mmの
ステンレス鋼製の針4aを植設密度600本/cm2
植設した剣山状衝撃付与手段4を衝撃付与装置(図示せ
ず)に装着し、正極板前駆体1aの前記タブの取り付け
個所2aに対し衝撃を加え、水酸化ニッケルの除去作業
を行った。このとき、当該除去作業は、1秒間当たりに
タブ取り付け個所2aを叩く回数を10回とし、表1に
示した力(kgf)で前記タブ取り付け個所2aを前記
剣山状部材で連続的に叩くことにより行った。尚、この
ときの一回の作業時間は1分間一定とした。また、当該
除去作業はタブ取付け個所2aの表裏両面について行っ
た。
Next, as shown in FIG. 2, the long side dimension is 9 m.
m, a short side dimension of 8 mm, and a height of 8 mm, the bottom surface of the metal base 4b has a spherical tip shape and the tip has a diameter of 0.
An impact imparting device (not shown) is provided with a blade-like impact imparting means 4 in which stainless steel needles 4a having a diameter of 05 mm, a root diameter of 0.4 mm, and a length of 5 mm are implanted at an implantation density of 600 needles / cm 2. Then, the positive electrode plate precursor 1a was attached to the tab mounting portion 2a with an impact to remove nickel hydroxide. At this time, in the removing work, the number of times the tab attachment portion 2a is hit per second is 10 times, and the tab attachment portion 2a is continuously hit by the sword-shaped member with the force (kgf) shown in Table 1. Went by. The working time at this time was constant for 1 minute. The removal work was performed on both the front and back surfaces of the tab attachment portion 2a.

【0026】以上のようにして得られた正極板前駆体に
対し、表面観察を行い、破損の有無を検査した。この結
果を表1に併記した。ついで、上記した各条件により製
造した正極板前駆体にタブ用のニッケルシートをスポッ
ト溶接し、各条件毎に2000枚ずつ正極板を製造し
た。得られた正極板に対し、溶接不良率の算出を行っ
た。得られた結果を表1に併記した。尚、溶接不良率は
以下のようにして求めた。
The surface of the positive electrode plate precursor thus obtained was observed and inspected for damage. The results are shown in Table 1. Then, a nickel sheet for a tab was spot-welded to the positive electrode plate precursor manufactured under the above-mentioned conditions, and 2000 positive electrode plates were manufactured under each condition. The defective welding rate was calculated for the obtained positive electrode plate. The obtained results are also shown in Table 1. The welding defect rate was determined as follows.

【0027】すなわち、まず、溶接個所を目視により観
察し、スパークによる穴あき、破損、欠損等があるもの
を溶接不良品として計数した。そして、製造した正極板
の総数(2000枚)に対する前記溶接不良品の数の割
合を溶接不良率(%)として求めた。次に、上記した手
順と同様にして正極板を製造し、当該正極板を、公知の
セパレータ,水素吸蔵合金電極,アルカリ電解液と組み
合わせて、定格容量1100mAhのAAサイズニッケ
ル・水素電池を各条件毎にそれぞれ100個ずつ組み立
てた。
That is, first, the welded portions were visually observed, and those having holes due to sparks, damage, defects, etc. were counted as defective welding products. Then, the ratio of the number of defective welding products to the total number of manufactured positive electrode plates (2000 sheets) was determined as a defective welding ratio (%). Next, a positive electrode plate was manufactured in the same manner as the above procedure, and the positive electrode plate was combined with a known separator, a hydrogen storage alloy electrode, and an alkaline electrolyte to obtain an AA size nickel-hydrogen battery with a rated capacity of 1100 mAh under each condition. 100 pieces were assembled for each.

【0028】これらの電池につき、初期活性化処理を行
ったのち、温度20℃において0.2Cで充放電を反復
し、7サイクル後の放電容量を測定し、その平均値を表
1に併記した。実施例1〜5の結果から明らかなよう
に、実施例3のようにタブ取り付け個所を叩く力を1.
6kgfとすると、溶接不良率が低く、良好な正極板が
得られることがわかる。
After performing initial activation treatment on these batteries, charging / discharging was repeated at a temperature of 20 ° C. and 0.2 C, the discharge capacity after 7 cycles was measured, and the average value thereof is also shown in Table 1. . As is clear from the results of Examples 1 to 5, the force for hitting the tab attachment portion as in Example 3 was 1.
It can be seen that when the weight is 6 kgf, the defective welding rate is low and a good positive electrode plate can be obtained.

【0029】実施例6〜8 タブ取り付け個所を叩く力を1.6kgf一定とし、剣
山状部材の針の植設密度を表1に示したように変化させ
たことを除いては、実施例1と同様にして正極板を製造
し、当該正極板を用いて実施例1と同様にして電池を製
造した。尚、タブ取り付け個所を1秒間当たりに叩く回
数は10回一定である。
Examples 6 to 8 Example 1 was repeated except that the force for hitting the tab mounting portion was kept constant at 1.6 kgf, and the needle densities of the sword-like members were changed as shown in Table 1. A positive electrode plate was manufactured in the same manner as in, and a battery was manufactured in the same manner as in Example 1 using the positive electrode plate. Incidentally, the number of times the tab attachment part is hit per second is constant.

【0030】当該正極板およびそれを組み込んだ電池に
対して、実施例1と同様にして破損の有無、溶接不良
率、放電容量を測定し、その結果を表1に併記した。実
施例6〜8の結果から明らかなように、実施例8のよう
に植設密度を800本/cm2 とすると、溶接不良率が
低く、良好な正極板が得られることがわかる。
With respect to the positive electrode plate and the battery incorporating the same, the presence / absence of breakage, welding failure rate and discharge capacity were measured in the same manner as in Example 1, and the results are also shown in Table 1. As is clear from the results of Examples 6 to 8, when the implantation density is 800 lines / cm 2 as in Example 8, the defective welding rate is low and a good positive electrode plate can be obtained.

【0031】実施例9〜13 剣山状部材の針の植設密度を800本/cm2 一定、タ
ブ取り付け個所を叩く力を1.6kgf一定とし、タブ
取り付け個所を1秒間当たりに叩く回数を表1に示した
ように変化させたことを除いては、実施例1と同様にし
て正極板を製造し、当該正極板を用いて実施例1と同様
にして電池を製造した。
Examples 9 to 13 The densities of the needles of the sword-shaped member were fixed at 800 needles / cm 2 and the force for hitting the tab attachment point was constant at 1.6 kgf, and the number of times the tab attachment point was tapped per second was shown. A positive electrode plate was manufactured in the same manner as in Example 1 except that the changes were made as shown in Example 1, and a battery was manufactured in the same manner as in Example 1 using the positive electrode plate.

【0032】当該正極板およびそれを組み込んだ電池に
対して、実施例1と同様にして破損の有無、溶接不良
率、放電容量を測定し、その結果を表1に併記した。実
施例9〜13の結果から明らかなように、実施例11の
ようにタブ取り付け個所を1秒間当たりに叩く回数を1
2回とすると、溶接不良率が低く、良好な正極板が得ら
れることがわかる。
With respect to the positive electrode plate and the battery incorporating the same, the presence / absence of damage, the defective welding rate and the discharge capacity were measured in the same manner as in Example 1, and the results are also shown in Table 1. As is clear from the results of Examples 9 to 13, as in Example 11, the number of times the tab attachment point was hit per second was 1.
It can be seen that when the number of times is two, the defective welding rate is low and a good positive electrode plate can be obtained.

【0033】比較例1 水酸化ニッケルの除去作業を行わなかったことを除いて
は、実施例1と同様にして正極板を製造し、当該正極板
を用いて実施例1と同様にして電池を製造した。
Comparative Example 1 A positive electrode plate was produced in the same manner as in Example 1 except that nickel hydroxide was not removed, and a battery was prepared in the same manner as in Example 1 using the positive electrode plate. Manufactured.

【0034】この正極板およびそれを組み込んだ電池に
対して、実施例1と同様にして破損の有無、溶接不良
率、放電容量を測定し、その結果を表1に併記した。
With respect to this positive electrode plate and the battery incorporating the same, the presence or absence of damage, the defective welding rate and the discharge capacity were measured in the same manner as in Example 1, and the results are also shown in Table 1.

【0035】[0035]

【表1】 [Table 1]

【0036】表1の結果から明らかなように、本発明方
法により製造した正極板は、比較例1の正極板に比べ、
溶接不良率が低い。これは、実施例の場合は、タブ取り
付け個所を複数の針を束ねた衝撃付与手段で連続的に叩
いて水酸化ニッケルの除去作業を行い、比較例1の場合
は、従来通りに、タブ取り付け個所における水酸化ニッ
ケルの除去作業を行わなかったことがもたらす結果であ
る。すなわち、比較例1の場合は、当該個所に水酸化ニ
ッケルが残留してしまい、それに起因する導電不良によ
るスパークが生じ、良好なスポット溶接がなされなかっ
たため、溶接不良率が2.1%と高くなっているのであ
る。
As is clear from the results shown in Table 1, the positive electrode plate produced by the method of the present invention is
Low welding defect rate. In the case of the embodiment, the tab attaching portion is continuously hit by the impact applying means in which a plurality of needles are bundled to remove nickel hydroxide, and in the case of the comparative example 1, the tab attaching is performed as usual. This is the result of not performing the work of removing nickel hydroxide at the location. That is, in the case of Comparative Example 1, nickel hydroxide remained at the relevant portion, sparks were generated due to poor conductivity due to it, and good spot welding was not performed, so the welding defect rate was as high as 2.1%. It has become.

【0037】特に、実施例2〜4、7、8、10〜12
の正極板は、破損は全くなく、溶接不良率も0.3%以
下と低い。また、これらの正極板を組込んだ電池は、い
ずれも、放電容量は定格容量以上になっている。これ
は、剣山状部材の針の植設密度、タブ取り付け個所を叩
く力および1秒間当たりのタブ取り付け個所を叩く回数
のいずれも、前記した好適な値に規定したためである。
In particular, Examples 2 to 4, 7, 8, 10 to 12
The positive electrode plate of No. 1 was not damaged at all and had a poor welding defect rate of 0.3% or less. Further, the discharge capacity of each of the batteries incorporating these positive electrode plates is not less than the rated capacity. This is because the density of implanting the needles of the sword-shaped member, the force for hitting the tab attachment portion, and the number of times the tab attachment portion is tapped per second are all set to the above-mentioned preferable values.

【0038】尚、実施例1の場合は、溶接不良率が高く
なっている。これは、実施例2〜4の正極板に比べ、タ
ブ取り付け個所を叩く際の力が0.6kgfと弱いた
め、タブ取り付け個所の水酸化ニッケルが充分に除去さ
れなかったことに起因しているものと考えられる。ま
た、実施例5の場合は、正極板のタブ取り付け個所では
破損の発生が認められるとともに、得られた電池の放電
容量が定格容量より低くなっている。これは、タブ取り
付け個所を叩く際の力が2.8kgfと強いために、当
該個所への衝撃が強くなりすぎ、その結果、破損が生ず
るとともに、タブ取り付け個所以外の部分の正極活物質
も除去されてしまい、所要の正極活物質の充填量を確保
できなかったためであると考えられる。
In the case of Example 1, the defective welding rate is high. This is because the force at the time of hitting the tab attachment portion was weaker than 0.6 kgf as compared with the positive electrode plates of Examples 2 to 4, and nickel hydroxide at the tab attachment portion was not sufficiently removed. It is considered to be a thing. In addition, in the case of Example 5, breakage was observed at the tab attachment portion of the positive electrode plate, and the discharge capacity of the obtained battery was lower than the rated capacity. This is because the force when hitting the tab attachment point is as strong as 2.8 kgf, so the impact on the point is too strong, resulting in damage and removal of the positive electrode active material from the portion other than the tab attachment point. It is considered that this is because the required filling amount of the positive electrode active material could not be secured.

【0039】また、実施例6の場合は、正極板の破損が
認められる。これは、剣山状部材の針の植設密度が低い
ため、少ない針の先端に圧力が集中してしまい、正極板
を破損したためであると考えられる。また、実施例9の
場合は、溶接不良率が高くなっている。これは、タブ取
り付け個所を叩く1秒間当たりの回数が少ないため、衝
撃が弱くなり、実施例10〜12の正極板の場合に比
べ、タブ取り付け個所の水酸化ニッケルが充分に除去さ
れなかったからであると考えられる。
Further, in the case of Example 6, breakage of the positive electrode plate is recognized. It is considered that this is because the density of the needles of the sword-shaped member was low, so that the pressure was concentrated on the tips of the few needles and the positive electrode plate was damaged. Further, in the case of Example 9, the defective welding rate is high. This is because the number of hits per second at the tab attachment point was small, so the impact was weakened and nickel hydroxide at the tab attachment point was not sufficiently removed as compared with the positive electrode plates of Examples 10 to 12. It is believed that there is.

【0040】また、実施例13の場合は、正極板の破損
が認められるとともに、実施例9の場合と同じように得
られた電池の放電容量が定格容量より低くなっている。
これは、タブ取り付け個所を叩く1秒間当たりの回数が
多いために、衝撃が強くなりすぎ、その結果、正極板の
破損が起こり、しかも、タブ取り付け個所以外の部分の
正極活物質も除去されてしまい、所要の正極活物質の充
填量を確保できなかったためであると考えられる。
In the case of Example 13, the positive electrode plate was found to be damaged, and the discharge capacity of the battery obtained in the same manner as in Example 9 was lower than the rated capacity.
This is because the impact is too strong because the number of hits at the tab attachment point is large per second, and as a result, the positive electrode plate is damaged, and the positive electrode active material in the portion other than the tab attachment point is also removed. This is probably because the required filling amount of the positive electrode active material could not be secured.

【0041】[0041]

【発明の効果】以上の説明で明らかなように、本発明に
おける正極板の製造方法は、複数の針を束ねた衝撃付与
手段で、正極板前駆体のタブ取り付け個所を連続的に叩
くことにより、当該個所に衝撃を与え、この衝撃で、ニ
ッケル多孔体内部の水酸化ニッケルを除去する。このた
め、タブを当該タブ取り付け個所にスポット溶接する
際、非導電性の水酸化ニッケルが存在することに起因す
る導電不良が抑制され、良好な溶接が行えるものであ
る。よって、本発明における正極板の製造方法を採用す
ると正極板の溶接不良率が下がり、電池製造における歩
留まりが向上する。
As is apparent from the above description, the method of manufacturing a positive electrode plate according to the present invention comprises continuously striking the tab attachment points of the positive electrode plate precursor with an impact applying means in which a plurality of needles are bundled. A shock is applied to the relevant part, and the nickel hydroxide inside the nickel porous body is removed by this shock. Therefore, when the tab is spot-welded to the tab-attached portion, conductive failure due to the presence of non-conductive nickel hydroxide is suppressed, and good welding can be performed. Therefore, when the method for manufacturing a positive electrode plate according to the present invention is adopted, the defective welding rate of the positive electrode plate is reduced, and the yield in battery manufacturing is improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】連続シート状の集電体の構造を示す斜視図であ
る。
FIG. 1 is a perspective view showing a structure of a continuous sheet-shaped current collector.

【図2】正極板の前駆体の構造を示す斜視図である。FIG. 2 is a perspective view showing a structure of a precursor of a positive electrode plate.

【図3】正極板の構造を示す斜視図である。FIG. 3 is a perspective view showing a structure of a positive electrode plate.

【符号の説明】[Explanation of symbols]

1 集電体の連続シート 1a 短冊状の正極板前駆体 2a タブ取り付け個所 3 タブ 4 衝撃付与手段(剣山状部材) 4a 針 1 Continuous sheet of current collector 1a Strip-shaped positive electrode plate precursor 2a Tab attachment point 3 Tab 4 Impact imparting means (Kenyama member) 4a Needle

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 水酸化ニッケルを主体とする活物質合剤
が担持されている3次元網状構造の集電体にタブをスポ
ット溶接する際に、前記集電体の所定個所を圧縮してタ
ブ取り付け個所を設け、ついで当該集電体に活物質ペー
ストを充填したのち乾燥し、当該タブ取り付け個所を複
数の針を束ねた衝撃付与手段で連続的に叩くことを特徴
とする正極板の製造方法。
1. When spot welding a tab to a current collector having a three-dimensional network structure carrying an active material mixture mainly composed of nickel hydroxide, the tab is formed by compressing a predetermined portion of the current collector. A method of manufacturing a positive electrode plate, characterized in that a mounting portion is provided, and then the current collector is filled with an active material paste and then dried, and the tab mounting portion is continuously beaten by an impact applying means in which a plurality of needles are bundled. .
【請求項2】 前記針の植設密度が400本/cm2
上である衝撃付与手段により、0.8〜2.4kgfの
力で、1秒間に6〜18回の割合でタブ取り付け個所を
連続的に叩く請求項1の正極板の製造方法。
2. The tab attaching portion is applied at a rate of 6 to 18 times per second with a force of 0.8 to 2.4 kgf by an impact imparting means having an implantation density of the needles of 400 needles / cm 2 or more. The method for producing a positive electrode plate according to claim 1, wherein the positive electrode plate is continuously hit.
JP8012091A 1996-01-26 1996-01-26 Manufacture of positive electrode plate Pending JPH09204911A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8012091A JPH09204911A (en) 1996-01-26 1996-01-26 Manufacture of positive electrode plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8012091A JPH09204911A (en) 1996-01-26 1996-01-26 Manufacture of positive electrode plate

Publications (1)

Publication Number Publication Date
JPH09204911A true JPH09204911A (en) 1997-08-05

Family

ID=11795910

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8012091A Pending JPH09204911A (en) 1996-01-26 1996-01-26 Manufacture of positive electrode plate

Country Status (1)

Country Link
JP (1) JPH09204911A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014502017A (en) * 2010-11-29 2014-01-23 ツェントルム フュア ゾンネンエネルギー ウント ヴァッサーシュトッフ フォルシュング バーデンヴュルテンベルク ゲマインニュッツィゲ シュティフトゥング Battery electrode and battery electrode manufacturing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014502017A (en) * 2010-11-29 2014-01-23 ツェントルム フュア ゾンネンエネルギー ウント ヴァッサーシュトッフ フォルシュング バーデンヴュルテンベルク ゲマインニュッツィゲ シュティフトゥング Battery electrode and battery electrode manufacturing method
US10062897B2 (en) 2010-11-29 2018-08-28 Zentrum Fuer Sonnenenergie- Und Wasserstoff-Forschung Baden-Wuerttemberg Gemeinnuetzige Stiftung Battery electrode and a method for producing same

Similar Documents

Publication Publication Date Title
JP3819570B2 (en) Cylindrical alkaline storage battery using non-sintered electrodes
WO2002019447A1 (en) Method and device for manufacturing electrode plate for cell, and cell using the electrode plate
JP4342160B2 (en) Storage battery and manufacturing method thereof
JP5096745B2 (en) Method for producing negative electrode for nickel metal hydride storage battery
JPH09204911A (en) Manufacture of positive electrode plate
JP3649909B2 (en) battery
JP4016214B2 (en) Battery electrode manufacturing method
JP2006066246A (en) Positive electrode plate for alkaline storage battery, and its manufacturing method
JP2002175833A (en) Alkali secondary battery
JP2708123B2 (en) Manufacturing method of paste electrode
JP3849478B2 (en) Alkaline storage battery and method of manufacturing the same
JP2000106169A (en) Electrode manufacturing method and battery
JP2002246032A (en) Collector substrate for electrode for alkaline secondary battery, electrode using the same, and alkaline secondary battery with electrode assembled therein
JP2984816B2 (en) How to attach tab to positive plate
JP3893856B2 (en) Square alkaline storage battery
JP2007305396A (en) Electrode for secondary battery and its manufacturing method
JPH09199137A (en) Electrode for storage battery
JPH1064533A (en) Electrode for secondary battery and manufacture thereof
JP3704656B2 (en) Method for reducing the short-circuit failure rate of alkaline storage batteries
JPH09129223A (en) Electrode for winding type battery
JPH11162447A (en) Cylindrical battery with spiral electrode body and its manufacture
JPH11307078A (en) Battery
JP5093275B2 (en) Method for manufacturing electrode for secondary battery
JPH09259873A (en) Secondary battery electrode, its manufacture, and applying device of fluorine resin used for this manufacture
JP2000195511A (en) Electrode, manufacture of electrode, and battery

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees