JP3704656B2 - Method for reducing the short-circuit failure rate of alkaline storage batteries - Google Patents

Method for reducing the short-circuit failure rate of alkaline storage batteries Download PDF

Info

Publication number
JP3704656B2
JP3704656B2 JP29884597A JP29884597A JP3704656B2 JP 3704656 B2 JP3704656 B2 JP 3704656B2 JP 29884597 A JP29884597 A JP 29884597A JP 29884597 A JP29884597 A JP 29884597A JP 3704656 B2 JP3704656 B2 JP 3704656B2
Authority
JP
Japan
Prior art keywords
short
electrode
battery
failure rate
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP29884597A
Other languages
Japanese (ja)
Other versions
JPH11135145A (en
Inventor
智規 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Twicell Co Ltd
Original Assignee
Toshiba Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Battery Co Ltd filed Critical Toshiba Battery Co Ltd
Priority to JP29884597A priority Critical patent/JP3704656B2/en
Publication of JPH11135145A publication Critical patent/JPH11135145A/en
Application granted granted Critical
Publication of JP3704656B2 publication Critical patent/JP3704656B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ニッケル・カドミウム電池やニッケル・水素電池などのアルカリ蓄電池の製造時に発生する正極と負極の短絡に基づく不良率(以後、短絡不良率という)を低減する方法に関し、更に詳しくは、アルカリ電解液の注入工程の前段で、正極と負極間に既に現出している短絡状態と、今後起こり得る短絡状態の要因を解消して全体の製造工程における良品率の向上を可能とするアルカリ蓄電池の短絡不良率低減化方法に関する。
【0002】
【従来の技術】
各種のコードレス機器の電源としてニッケル・カドミウム電池やニッケル・水素電池などのアルカリ蓄電池が大量に使用されているが、最近では、高容量化の要請に応えるものとしてニッケル・水素電池の需要が増大している。
そして、ニッケル・水素電池の高容量化を実現するために、正極であるニッケル極としては、活物質である水酸化ニッケルを、3次元網状構造をしたニッケル発泡体の集電基板に充填したものが一般に使用されている。このような集電基板を用いると、活物質の充填量を増加させることができるからである。
【0003】
ところで、ニッケル・水素電池は、概ね、次のようにして製造される。それを、円筒形の電池で、集電基板がニッケル発泡体である場合について説明する。
まず、活物質である水酸化ニッケル粉末とカルボキシメチルセルロースのような増粘剤と必要に応じては酸化コバルトのような導電材と水とを混練して正極用の合剤ペーストを調製する。そして、この合剤ペーストの所定量をニッケル発泡体基板に充填したのち、乾燥,圧延して活物質を担持させる。その後、その基板に例えば切抜き加工や裁断加工を行って、所定の寸法形状の正極(ニッケル極)にする。
【0004】
一方、負極の場合は、通常、水素吸蔵合金粉末とテフロンのような結着材とカーボン粉末のような導電材と水とを所定の割合で混練して負極用の合剤ペーストを調製し、この合剤ペーストを、例えばパンチングニッケル板に塗布したのち、乾燥,圧延を順次行い、最後に、打抜き加工や裁断加工を行って所定の寸法形状の負極(水素吸蔵合金電極)にする。
【0005】
ついで、上記した正極に集電端子を取り付け、その正極と負極とを例えばポリオレフィン系不織布のような電気絶縁性でかつ保液性を有するセパレータを介して重ね合わせて積層シートにしたのち全体を圧着した状態で渦巻状に巻回して円柱形状をした電極群を製造する。
ついで、この電池群を負極端子も兼ねる電池缶の中に挿入する。そして、アルカリ電解液の注入に先立ち、挿入した電極群の正極と負極の間が短絡していないかどうかを検査する。具体的には、正極と負極の間に250〜500Vの電圧を印加し、両極間の絶縁抵抗を測定し、その測定値が例えば10MΩ以上のものは短絡を起こしていない良品として次の工程に移送される。
【0006】
移送されてきた良品には、次に所定のアルカリ電解液を注入したのち、封口板を介して正極端子も兼ねる蓋で電池缶を封じることにより電池の組立を完了する。
ところで、上記した一連の製造工程において、正極と負極を製造するときの打抜きまたは裁断時に、その加工端面には先端が鋭利なバリの発生することがある。また、正極とセパレータと負極を重ね合わせた積層シートを渦巻状に巻回して電極群を製造するときには、例えば正極の場合、ニッケル発泡体の集電基板が細かく折損してそこに繊維状の突起が生じたり、また正極,負極のいずれかにおいても、担持されている硬質な乾燥合剤ペーストが折損してそれが先端鋭利なバリとなることがある。
【0007】
このようなバリや突起が発生している正極または負極を用いて製造した電極群の場合、上記したバリなどがセパレータを突き破り、それが対極に接触していることがある。
したがって、このような状態にある電極群の場合は、前記した絶縁抵抗の測定検査時に短絡不良品となり、この時点で、その不良品は製造工程から除外される。
【0008】
また、セパレータを突き破った前記バリなどが対極に接触していない電極群の場合であっても、バリの先端と対極との間隔が非常に狭い場合には、組み立てられた電池は両極が短絡していない良品となって出荷されていくが、しかし電池の実働時、すなわち充放電時に反復して発生する電極の膨張・収縮の過程で当該バリが対極と接触して両極の短絡することがある。すなわち、検査時には良品であっても、その電池は実働時に電池機能を喪失してしまう。
【0009】
【発明が解決しようとする課題】
ところで、電極群における前記したバリや突起などの発生箇所は不規則であり、しかも予測不能である。とくに、前記積層シートの巻回時に発生するバリなどは全く予測不能である。
しかし、実際の製造工程では、実質的に短絡不良品である電極群も電池缶に組み込まれて電池が製造されている。そして、前記した検査時に電極群が短絡不良品と判定された組立途中の電池は他の構成部品が良品であったとしても全体として廃棄せざるを得ない。
【0010】
また、両極の短絡は起こっていないが、実働時に短絡を起こすような電池を、事前に把握することは困難である。
本発明は、アルカリ蓄電池における上記したような問題を解決し、電池の組立完了の前段工程で、既に短絡を起こしている電極群の短絡状態を解消し、また実働時における短絡の要因をも除去することにより、アルカリ蓄電池の短絡不良率を低減する方法の提供を目的とする。
【0011】
【課題を解決するための手段】
上記した目的を達成するために、本発明においては、セパレータを介して正極と負極が積層されて成る電極群を電池缶に挿入した状態で、前記正極と前記負極の間で、放電電圧100〜1000V、放電電流1〜20A、かつパルス幅50〜500μsの条件下で1〜10回以内の回数でパルス放電を行うことを特徴とするアルカリ蓄電池の短絡不良率低減化方法が提供される。
【0012】
【発明の実施の形態】
本発明においては、まず、従来と同じように、正極および負極を製造し、それら両極をセパレータを介して重ね合わせて積層シートとしたのち、例えばそれをきつく渦巻状に巻回して電極群が製造される。
したがって、この電極群においては、正極と負極がセパレータを挟んで圧接した状態になっており、両極が短絡状態にないもの(良品)や、一方の電極のバリなどがセパレータを突き破って対極と接触することにより短絡しているもの(短絡不良品)や、また、バリなどは対極と接触していないが対極との間隔が極めて狭く短絡寸前の状態にあるもの(電池実働時に短絡するもの)などになっている。
【0013】
そして、これらの電極群が所定寸法の電池缶に挿入される。このとき、電極群の最外側、すなわち負極の最外側は電池缶の内壁と密着して接触する。
通常は、次に電池缶の中に所定のアルカリ電解液の所定量を注入しているが、本発明においては、この電解液の注入操作を行うことなく、電池缶に電極群を挿入した状態のまま、電極群の正極と負極の間でパルス放電を行う。
【0014】
具体的には、パルス電圧制御装置とパルス電流制御装置とパルス幅制御装置とを備えているパルス発生回路1に、図1で示したように、電極群が挿入されている電池缶を負荷2として接続し、前記パルス発生回路1を作動させることにより、電極群の正極と負極の間にパルス放電を発生させる。なお、電極群の正極はプラス極に、電池缶、すなわち負極はマイナス極に接続されることはいうまでもない。
【0015】
このパルス放電により、電極群に存在していたバリなどが熱溶断する。すなわち、セパレータを突き破って対極と接触していたバリなどは熱溶断して接触状態を解消し、また接触はしていないが対極と非常に狭い間隔を置いて突起していたバリなども熱溶断して両極間の間隔は広くなる。
前者の場合は、電極群における短絡状態の解消であって、当該電極群が不良品から良品に転化したことであり、また後者の場合は、両極間の距離が広がって、その電極群における両極間の耐電圧が高くなったことを意味する。
【0016】
いずれにしても、パルス放電を行うことにより、短絡不良品や実働時に短絡を起こすような電極群におけるバリなどは熱溶断して、顕在的にも潜在的にも短絡していない良品の電極群になる。すなわち、短絡不良率の低減が実現する。
このパルス放電は、放電電圧100〜1000V,放電電流1〜20A,パルス幅50〜500μsの条件下で行うことが好ましい。それぞれの条件因子が上記した値よりも小さい場合は、前記したバリなどの熱溶断は不充分な状態となり、短絡不良率の低減効果が充分に発揮されない。また各条件因子が上記した値よりも大きい場合は、バリの熱溶断は充分に実現するものの、他方では、セパレータも熱溶融してそこに必要以上に大きな穴が発生してしまうため、電池実働時における電極の膨張・収縮により、両極がこの穴を介して接触して短絡することが起こりはじめる。
【0017】
更に、このパルス放電の実施回数は1回でもよいが、複数回行うと、複数箇所に多数散在しているバリなどを確実に除去でき、また同一箇所で比較的大きなバリであっても確実に除去できるので有効である。しかし、パルス放電の実施回数を過度に多くすると、セパレータの穴も大きくなりすぎて電池実働時の短絡を引き起こすようになるので、実施回数は10回を限度とすることが好ましい。
【0018】
【実施例】
1.電極群の製造
水酸化ニッケル粉末100重量部に対し、酸化コバルト粉末10重量部,カルボキシメチルセルロース0.3重量部,水40重量部を混練して正極用の合剤ペーストを調製した。この合剤ペーストを、多孔率98%のニッケル発泡体基板に充填し、乾燥,圧延,打抜きを順次行って、AAサイズニッケル・水素蓄電池用の正極(厚み0.66mm)を製造した。
【0019】
一方、MmNi4.0Mn0.3Al0.3Co0.4(Mm:ミッシュメタル)の粉末100重量部に対し、カーボンブラック1重量部,60%PTFEディスパージョン1.5重量部,カルボキシメチルセルロース0.2重量部を混練して負極用の合剤ペーストを調製した。この合剤ペーストを、開口率60%のパンチングニッケルシートに塗布したのち、乾燥,圧延,打抜きを順次行って、AAサイズニッケル・水素蓄電池用の負極(厚み0.35mm)を製造した。
【0020】
正極と負極の間にポリオレフィン系不織布(厚み0.17mm)を配置して積層シートとし、これをきつく渦巻状に巻回して電極群(直径13mm)を製造した。
2.短絡不良率の測定
上記電極群をステンレス鋼製の電池缶(内径13.3mm)の中に挿入し、これに図1で示したパルス発生回路を接続した。
【0021】
ついで、正極と負極間で下記する条件のパルス放電を行い、その後、印加電圧500Vで正極と負極間の絶縁抵抗を測定した。測定抵抗値が10MΩより低いものを短絡を起こしている不良品とした。測定は電池50個について行い、上記不良品の個数から短絡不良率を算出した。
(1)パルス放電の条件(I)
放電電流は7A,パルス幅は200μsと一定にし、放電電圧を変化させた。そのときの放電電圧と短絡不良率の関係を図2に示した。
【0022】
(2)パルス放電の条件(II)
放電電圧は500V,パルス幅は200μsと一定にし、放電電流を変化させた。そのときの放電電流と短絡不良率の関係を図3に示した。
(3)パルス放電の条件(III)
放電電圧は500V,放電電流は7Aと一定にし、パルス幅を変化させた。そのときのパルス幅と短絡不良率の関係を図4に示した。
【0023】
図2,図3および図4から明らかなように、放電電圧を100〜1000V,放電電流を1〜20A,パルス幅を20〜500μsの条件でパルス放電を行うと、短絡不良率を2〜3%程度にまで低減できることがわかる。
(4)パルス放電回数の影響
放電電圧を500V,放電電流を7A,かつパルス幅を200μsと一定に制御した状態で1回の測定時におけるパルス放電の回数を変化させた。その結果を図5に示した。
【0024】
図5から明らかなように、パルス放電回数を多くすると短絡不良率が低減している。しかし、パルス放電を11回行うと短絡不良率が大幅に増大するので、パルス放電の回数は10回までとすることが好ましい。
【0025】
【発明の効果】
以上の説明で明らかなように、本発明によれば、電池缶に挿入する電池群における正極と負極間の短絡を引き起こすバリなどを熱溶断して除去することができるので、既に短絡状態にある不良品の電池群を良品化することができ、また、電池の実働時に短絡を起こすような状態にある電極群も確実に良品として機能させることができるので、使用する電池の信頼性は高くなる。
【0026】
更に、パルス放電でバリ状の突起が熱溶断してその高さは低くなるので、正極と負極の対向間隔は狭くなり、容量低下を引き起こすことなく全体として電極群を小型化することもできる。
【図面の簡単な説明】
【図1】本発明を実施するための回路を示す模式図である。
【図2】パルス放電電圧と短絡不良率の関係を示すグラフである。
【図3】パルス放電電流と短絡不良率の関係を示すグラフである。
【図4】パルス幅と短絡不良率の関係を示すグラフである。
【図5】パルス放電回数と短絡不良率の関係を示すグラフである。
【符号の説明】
1 パルス発生回路
2 負荷(電池缶に電極群を挿入したもの)
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for reducing a defect rate (hereinafter referred to as a short-circuit defect rate) due to a short circuit between a positive electrode and a negative electrode, which occurs during the manufacture of an alkaline storage battery such as a nickel / cadmium battery or a nickel / hydrogen battery. An alkaline storage battery that improves the yield rate in the entire manufacturing process by eliminating the cause of the short-circuit condition that has already appeared between the positive and negative electrodes and the short-circuit condition that may occur in the future, before the electrolyte injection process. The present invention relates to a method for reducing the short-circuit failure rate.
[0002]
[Prior art]
Alkaline storage batteries, such as nickel / cadmium batteries and nickel / hydrogen batteries, are used in large quantities as the power source for various cordless devices. Recently, however, demand for nickel / hydrogen batteries has increased as a response to the demand for higher capacity. ing.
In order to increase the capacity of the nickel-hydrogen battery, the nickel electrode as the positive electrode is filled with nickel hydroxide as an active material in a nickel foam current collector substrate having a three-dimensional network structure. Is commonly used. This is because when such a current collector substrate is used, the filling amount of the active material can be increased.
[0003]
Incidentally, nickel-hydrogen batteries are generally manufactured as follows. This will be described in the case of a cylindrical battery and the current collecting substrate is a nickel foam.
First, a mixture paste for a positive electrode is prepared by kneading a nickel hydroxide powder, which is an active material, a thickener such as carboxymethyl cellulose, and, if necessary, a conductive material such as cobalt oxide and water. And after filling the nickel foam substrate with a predetermined amount of this mixture paste, it is dried and rolled to carry the active material. Thereafter, the substrate is subjected to, for example, a cutting process or a cutting process to form a positive electrode (nickel electrode) having a predetermined size and shape.
[0004]
On the other hand, in the case of a negative electrode, a mixture paste for a negative electrode is usually prepared by kneading a hydrogen storage alloy powder, a binder such as Teflon, a conductive material such as carbon powder, and water at a predetermined ratio, This mixture paste is applied to, for example, a punching nickel plate, dried and rolled sequentially, and finally subjected to punching and cutting to form a negative electrode (hydrogen storage alloy electrode) having a predetermined size and shape.
[0005]
Next, a current collecting terminal is attached to the above-described positive electrode, and the positive electrode and the negative electrode are overlapped through an electrically insulating and liquid-retaining separator such as a polyolefin-based nonwoven fabric to form a laminated sheet, and then the whole is crimped In this state, the electrode group having a cylindrical shape is manufactured by spirally winding.
Next, this battery group is inserted into a battery can that also serves as a negative electrode terminal. Then, prior to the injection of the alkaline electrolyte, it is inspected whether there is a short circuit between the positive electrode and the negative electrode of the inserted electrode group. Specifically, a voltage of 250 to 500 V is applied between the positive electrode and the negative electrode, and the insulation resistance between the two electrodes is measured. Be transported.
[0006]
Next, a predetermined alkaline electrolyte is injected into the transferred non-defective product, and then the battery assembly is completed by sealing the battery can with a lid that also serves as the positive electrode terminal through the sealing plate.
By the way, in the above-described series of manufacturing processes, burrs having a sharp tip may occur on the processed end face during punching or cutting when manufacturing the positive electrode and the negative electrode. In addition, when manufacturing an electrode group by winding a laminated sheet in which a positive electrode, a separator, and a negative electrode are wound in a spiral shape, for example, in the case of a positive electrode, a nickel foam current collector substrate is broken finely into a fibrous protrusion. In addition, in either the positive electrode or the negative electrode, the carried hard dry mixture paste may break and become a sharp burr.
[0007]
In the case of an electrode group manufactured using a positive electrode or a negative electrode in which such burrs and protrusions are generated, the above-described burrs may break through the separator and may be in contact with the counter electrode.
Therefore, in the case of the electrode group in such a state, it becomes a short circuit defective product at the time of the above-described measurement and inspection of the insulation resistance, and at this time, the defective product is excluded from the manufacturing process.
[0008]
Even if the burrs that break through the separator are not in contact with the counter electrode, if the gap between the tip of the burr and the counter electrode is very narrow, the assembled battery will short-circuit both electrodes. It will be shipped as a non-defective product, but the burr may come into contact with the counter electrode and short-circuit the two electrodes during the actual operation of the battery, that is, during the process of electrode expansion and contraction that occurs repeatedly during charging and discharging. . That is, even if it is a non-defective product during inspection, the battery loses its battery function during actual operation.
[0009]
[Problems to be solved by the invention]
By the way, the generation | occurrence | production location of the above-mentioned burr | flash, protrusion, etc. in an electrode group is irregular, and is also unpredictable. In particular, burrs and the like generated when the laminated sheet is wound are completely unpredictable.
However, in an actual manufacturing process, an electrode group that is substantially a short circuit defect is also incorporated into a battery can to manufacture a battery. A battery in the middle of assembly in which the electrode group is determined to be a short circuit defective product at the time of the above inspection must be discarded as a whole even if other components are good products.
[0010]
Moreover, although the short circuit of both poles has not occurred, it is difficult to grasp in advance a battery that causes a short circuit during actual operation.
The present invention solves the above-mentioned problems in the alkaline storage battery, eliminates the short-circuit state of the electrode group that has already short-circuited, and eliminates the cause of the short-circuit during actual operation in the previous stage of battery assembly completion. It aims at provision of the method of reducing the short circuit defect rate of an alkaline storage battery by doing.
[0011]
[Means for Solving the Problems]
In order to achieve the above-described object, in the present invention, a discharge voltage of 100 to between the positive electrode and the negative electrode is inserted in a battery can with an electrode group in which a positive electrode and a negative electrode are stacked via a separator. There is provided a method for reducing the short-circuit failure rate of an alkaline storage battery, characterized in that pulse discharge is performed at a frequency of 1 to 10 times under the conditions of 1000 V, a discharge current of 1 to 20 A, and a pulse width of 50 to 500 μs.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, first, a positive electrode and a negative electrode are manufactured in the same manner as in the prior art, and both electrodes are overlapped via a separator to form a laminated sheet, and then, for example, the electrode group is manufactured by winding it in a tight spiral shape. Is done.
Therefore, in this electrode group, the positive electrode and the negative electrode are in pressure contact with the separator in between, and both electrodes are not short-circuited (non-defective product), or the burr of one electrode breaks through the separator and contacts the counter electrode. Are short-circuited due to failure (short-circuit defective products), and burrs are not in contact with the counter electrode, but the distance to the counter electrode is very narrow and is in the state of short-circuiting (those that are short-circuited during battery operation), etc. It has become.
[0013]
And these electrode groups are inserted in the battery can of a predetermined dimension. At this time, the outermost side of the electrode group, that is, the outermost side of the negative electrode is in close contact with the inner wall of the battery can.
Usually, a predetermined amount of a predetermined alkaline electrolyte is injected into the battery can, but in the present invention, the electrode group is inserted into the battery can without performing the injection operation of the electrolyte. The pulse discharge is performed between the positive electrode and the negative electrode of the electrode group.
[0014]
Specifically, as shown in FIG. 1, a battery can in which an electrode group is inserted is loaded into a load 2 as shown in FIG. 1 in a pulse generation circuit 1 having a pulse voltage control device, a pulse current control device, and a pulse width control device. And the pulse generation circuit 1 is operated to generate a pulse discharge between the positive electrode and the negative electrode of the electrode group. Needless to say, the positive electrode of the electrode group is connected to the positive electrode, and the battery can, that is, the negative electrode is connected to the negative electrode.
[0015]
Due to this pulse discharge, burrs or the like existing in the electrode group are thermally melted. In other words, burrs etc. that were in contact with the counter electrode through the separator are thermally melted to eliminate the contact state, and burrs that are not in contact but are protruding at a very narrow distance from the counter electrode are also thermally fused. As a result, the distance between the two poles increases.
In the former case, the short-circuit state in the electrode group is eliminated, and the electrode group has been changed from a defective product to a non-defective product. In the latter case, the distance between the two electrodes increases, and This means that the withstand voltage between them has increased.
[0016]
Anyway, by performing pulse discharge, burrs etc. in the electrode group that causes a short circuit failure or a short circuit during actual operation are thermally fused, and a good electrode group that is not clearly or potentially short-circuited become. That is, a reduction in the short-circuit failure rate is realized.
This pulse discharge is preferably performed under the conditions of a discharge voltage of 100 to 1000 V, a discharge current of 1 to 20 A, and a pulse width of 50 to 500 μs. When each condition factor is smaller than the above-mentioned value, the above-mentioned thermal fusing such as burrs is in an insufficient state, and the effect of reducing the short-circuit failure rate is not sufficiently exhibited. When each condition factor is larger than the above values, the burr can be sufficiently melted. On the other hand, the separator is also melted by heat, resulting in a larger hole than necessary. Due to the expansion and contraction of the electrode at the time, both poles begin to contact and short-circuit through this hole.
[0017]
Furthermore, the number of times this pulse discharge may be performed may be one, but if it is performed a plurality of times, it is possible to reliably remove burrs scattered at a plurality of locations, and even a relatively large burr at the same location. Effective because it can be removed. However, if the number of times of pulse discharge is excessively increased, the hole of the separator becomes too large to cause a short circuit during battery operation, so the number of times of execution is preferably limited to 10 times.
[0018]
【Example】
1. Production of Electrode Group 10 parts by weight of cobalt oxide powder, 0.3 part by weight of carboxymethyl cellulose, and 40 parts by weight of water were kneaded with 100 parts by weight of nickel hydroxide powder to prepare a mixture paste for positive electrode. The mixture paste was filled in a nickel foam substrate having a porosity of 98%, followed by drying, rolling, and punching in order to produce a positive electrode (0.66 mm thickness) for an AA size nickel-hydrogen storage battery.
[0019]
On the other hand, 100 parts by weight of MmNi 4.0 Mn 0.3 Al 0.3 Co 0.4 (Mm: Misch metal) powder was mixed with 1 part by weight of carbon black, 1.5 parts by weight of 60% PTFE dispersion, and 0.2 parts by weight of carboxymethyl cellulose. Thus, a mixture paste for a negative electrode was prepared. This mixture paste was applied to a punching nickel sheet having an aperture ratio of 60%, followed by drying, rolling, and punching in order to produce a negative electrode (thickness 0.35 mm) for an AA size nickel / hydrogen storage battery.
[0020]
A polyolefin-based non-woven fabric (thickness 0.17 mm) was placed between the positive electrode and the negative electrode to form a laminated sheet, which was wound in a spiral shape to produce an electrode group (diameter 13 mm).
2. Measurement of short-circuit failure rate The above electrode group was inserted into a stainless steel battery can (inner diameter 13.3 mm), and the pulse generation circuit shown in FIG. 1 was connected thereto.
[0021]
Subsequently, pulse discharge under the following conditions was performed between the positive electrode and the negative electrode, and then the insulation resistance between the positive electrode and the negative electrode was measured at an applied voltage of 500V. A product having a measured resistance value lower than 10 MΩ was defined as a defective product causing a short circuit. The measurement was performed for 50 batteries, and the short-circuit failure rate was calculated from the number of defective products.
(1) Pulse discharge conditions (I)
The discharge current was fixed at 7 A, the pulse width was fixed at 200 μs, and the discharge voltage was changed. The relationship between the discharge voltage and the short-circuit failure rate at that time is shown in FIG.
[0022]
(2) Conditions for pulse discharge (II)
The discharge voltage was fixed at 500 V and the pulse width was fixed at 200 μs, and the discharge current was changed. The relationship between the discharge current and the short-circuit failure rate at that time is shown in FIG.
(3) Conditions for pulse discharge (III)
The discharge voltage was 500 V, the discharge current was constant at 7 A, and the pulse width was changed. The relationship between the pulse width and the short-circuit failure rate at that time is shown in FIG.
[0023]
As is apparent from FIGS. 2, 3 and 4, when pulse discharge is performed under the conditions of a discharge voltage of 100 to 1000 V, a discharge current of 1 to 20 A, and a pulse width of 20 to 500 μs, the short-circuit failure rate becomes 2 to 3 It can be seen that it can be reduced to about%.
(4) Influence of the number of pulse discharges The number of pulse discharges in one measurement was changed while the discharge voltage was controlled to 500 V, the discharge current to 7 A, and the pulse width to 200 μs. The results are shown in FIG.
[0024]
As is apparent from FIG. 5, the short-circuit failure rate is reduced when the number of pulse discharges is increased. However, if the pulse discharge is performed 11 times, the short-circuit failure rate is greatly increased, so the number of pulse discharges is preferably up to 10.
[0025]
【The invention's effect】
As is apparent from the above description, according to the present invention, burrs that cause a short circuit between the positive electrode and the negative electrode in the battery group to be inserted into the battery can can be removed by thermal fusing, so that they are already in a short circuit state. A defective battery group can be made good, and an electrode group that causes a short circuit during battery operation can also function as a non-defective product, which increases the reliability of the battery used. .
[0026]
Further, since the burr-like projections are thermally melted by pulse discharge and the height thereof is reduced, the facing distance between the positive electrode and the negative electrode is narrowed, and the entire electrode group can be reduced in size without causing a reduction in capacity.
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing a circuit for carrying out the present invention.
FIG. 2 is a graph showing a relationship between a pulse discharge voltage and a short-circuit failure rate.
FIG. 3 is a graph showing a relationship between a pulse discharge current and a short-circuit failure rate.
FIG. 4 is a graph showing a relationship between a pulse width and a short-circuit failure rate.
FIG. 5 is a graph showing the relationship between the number of pulse discharges and the short-circuit failure rate.
[Explanation of symbols]
1 Pulse generation circuit 2 Load (Battery can with electrode group inserted)

Claims (1)

セパレータを介して正極と負極が積層されて成る電極群を電池缶に挿入した状態で、前記正極と前記負極の間で、放電電圧100〜1000V、放電電流1〜20A、かつパルス幅50〜500μsの条件下で1〜10回以内の回数でパルス放電を行うことを特徴とするアルカリ蓄電池の短絡不良率低減化方法。In a state where an electrode group in which a positive electrode and a negative electrode are laminated via a separator is inserted into a battery can, a discharge voltage of 100 to 1000 V, a discharge current of 1 to 20 A, and a pulse width of 50 to 500 μs are inserted between the positive electrode and the negative electrode. A method for reducing the short-circuit failure rate of an alkaline storage battery , wherein pulse discharge is performed within 1 to 10 times under the above conditions.
JP29884597A 1997-10-30 1997-10-30 Method for reducing the short-circuit failure rate of alkaline storage batteries Expired - Fee Related JP3704656B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29884597A JP3704656B2 (en) 1997-10-30 1997-10-30 Method for reducing the short-circuit failure rate of alkaline storage batteries

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29884597A JP3704656B2 (en) 1997-10-30 1997-10-30 Method for reducing the short-circuit failure rate of alkaline storage batteries

Publications (2)

Publication Number Publication Date
JPH11135145A JPH11135145A (en) 1999-05-21
JP3704656B2 true JP3704656B2 (en) 2005-10-12

Family

ID=17864961

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29884597A Expired - Fee Related JP3704656B2 (en) 1997-10-30 1997-10-30 Method for reducing the short-circuit failure rate of alkaline storage batteries

Country Status (1)

Country Link
JP (1) JP3704656B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4557829B2 (en) * 2005-07-22 2010-10-06 古河電池株式会社 Inspection method of lead acid battery
JP5476641B2 (en) * 2009-09-03 2014-04-23 株式会社日本マイクロニクス Battery short-circuit removal device and method, and battery short-circuit removal voltage determination device and method
CN105811031A (en) * 2016-05-13 2016-07-27 合肥国轩高科动力能源有限公司 Repairing method for battery with slightly-damaged diaphragm

Also Published As

Publication number Publication date
JPH11135145A (en) 1999-05-21

Similar Documents

Publication Publication Date Title
KR100405873B1 (en) Laser Sealed Battery
JP3819570B2 (en) Cylindrical alkaline storage battery using non-sintered electrodes
JP4359100B2 (en) Cylindrical alkaline storage battery
JP2008192495A (en) Internal short circuit evaluation method and internal short circuit evaluation device for battery as well as battery, battery pack and their manufacturing method
JP4179528B2 (en) Secondary battery inspection method
JP4868809B2 (en) Cylindrical alkaline storage battery
JP3260972B2 (en) Hydrogen storage alloy electrode and sealed nickel-hydrogen storage battery using the same
US6132898A (en) Battery with a conductive plate
JP3704656B2 (en) Method for reducing the short-circuit failure rate of alkaline storage batteries
JP3196071B2 (en) Short-circuit inspection method for alkaline secondary batteries
JP3183139B2 (en) Short-circuit detection method for cylindrical batteries
JP3695978B2 (en) Alkaline storage battery with spiral electrode body
JP2002260628A (en) Positive electrode for alkaline secondary battery, manufacturing method of positive electrode for the alkaline secondary battery, and the alkaline secondary battery
JP3515286B2 (en) Electrodes for secondary batteries
JP2000100416A (en) Set battery and its manufacture
JP2000090965A (en) Cylindrical alkaline secondary battery
JPH10172523A (en) Nonaqueous cylindrical battery
JPH09259873A (en) Secondary battery electrode, its manufacture, and applying device of fluorine resin used for this manufacture
JP2009245771A (en) Alkaline storage battery and method of manufacturing the same
JPS59111261A (en) Manufacture of plate for alkaline storage battery
JPH11162447A (en) Cylindrical battery with spiral electrode body and its manufacture
JPH11191410A (en) Sealed alkaline storage battery
JPH09306545A (en) Secondary battery
JPH1167264A (en) Manufacture of nickel-hydrogen storage battery
JPH1064533A (en) Electrode for secondary battery and manufacture thereof

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040414

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040608

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050713

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20050714

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050714

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080805

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090805

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees