JP3196071B2 - Short-circuit inspection method for alkaline secondary batteries - Google Patents

Short-circuit inspection method for alkaline secondary batteries

Info

Publication number
JP3196071B2
JP3196071B2 JP20983097A JP20983097A JP3196071B2 JP 3196071 B2 JP3196071 B2 JP 3196071B2 JP 20983097 A JP20983097 A JP 20983097A JP 20983097 A JP20983097 A JP 20983097A JP 3196071 B2 JP3196071 B2 JP 3196071B2
Authority
JP
Japan
Prior art keywords
short
circuit
battery
power supply
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP20983097A
Other languages
Japanese (ja)
Other versions
JPH1140210A (en
Inventor
秀樹 鈴木
浩一 葉坂
木下  勇
浩明 古河
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Battery Co Ltd
Original Assignee
Furukawa Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Battery Co Ltd filed Critical Furukawa Battery Co Ltd
Priority to JP20983097A priority Critical patent/JP3196071B2/en
Publication of JPH1140210A publication Critical patent/JPH1140210A/en
Application granted granted Critical
Publication of JP3196071B2 publication Critical patent/JP3196071B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、アルカリ二次電池
の短絡検査方法に関し、更に詳しくは、すでに短絡して
いる電池および実使用時に短絡する可能性のある未短絡
部分を備えている電池を判別することができるアルカリ
二次電池の短絡検査方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for inspecting a short circuit of an alkaline secondary battery, and more particularly, to a method of detecting a short-circuited battery and a battery having an unshorted portion that may be short-circuited in actual use. The present invention relates to an alkaline secondary battery short-circuit inspection method that can be determined.

【0002】[0002]

【従来の技術】アルカリ二次電池の製造においては、短
絡検査工程を設け、内部短絡が生じている電池を検出す
ることにより、不良品の出荷を極力抑えている。前記短
絡検査は、例えば、極板群が外装缶内に収容され、当該
外装缶に電解液が注入される前の半完成状態の電池(以
下、電池前駆体という)に対して行われる場合と、極板
群を収容した外装缶内に電解液を注入したのち封口して
組立てられた完成状態の電池に対して行われる場合とが
ある。
2. Description of the Related Art In the manufacture of an alkaline secondary battery, a short-circuit inspection step is provided to detect a battery in which an internal short circuit has occurred, thereby minimizing shipment of defective products. The short-circuit test is performed, for example, on a semi-finished battery (hereinafter, referred to as a battery precursor) in which an electrode group is accommodated in an outer can and an electrolyte is not injected into the outer can. This may be performed on a battery in a completed state assembled by injecting an electrolytic solution into an outer can containing a group of electrode plates and then closing the battery.

【0003】前者の短絡検査は、例えば、以下に示す手
順で行われる。すなわち、電解液が浸潤していない状態
の極板群に対し、絶縁抵抗器を用いて正極と負極との間
の絶縁抵抗値を測定し、当該絶縁抵抗値がある値よりも
低いものを短絡が生じている電池(電池前駆体)として
判別する。一方、後者の短絡検査は、例えば、以下の手
順で行われる。
The former short-circuit test is performed, for example, in the following procedure. That is, the insulation resistance between the positive electrode and the negative electrode is measured using an insulation resistor for the electrode group in a state where the electrolyte is not infiltrated, and the insulation resistance lower than a certain value is short-circuited. Is determined as a battery (battery precursor) in which is generated. On the other hand, the latter short-circuit inspection is performed, for example, in the following procedure.

【0004】すなわち、組立後の当該電池の内部抵抗を
測定し、この内部抵抗値がある値より低い場合に、内部
短絡が生じているものとして、短絡電池を判別すること
が行われている。
That is, the internal resistance of the battery after assembly is measured, and when the internal resistance is lower than a certain value, it is determined that an internal short circuit has occurred, and a short-circuited battery is determined.

【0005】[0005]

【発明が解決しようとする課題】ところで、電池前駆体
に対する短絡検査は、電池を完全に組み立てる前に短絡
の有無が判別できる。したがって、短絡を起こしている
半完成品に対しては、例えば、極板群のみを取り替えて
あらためて短絡の無い良品電池を製造することができる
ので、短絡に関与していない他の電池構成部材の無駄を
省くことができる。このため、電池製造における全体の
歩留まり向上に貢献する。
By the way, in the short-circuit test for the battery precursor, the presence or absence of a short-circuit can be determined before the battery is completely assembled. Therefore, for a semi-finished product having a short circuit, for example, a non-defective battery having no short circuit can be manufactured by replacing only the electrode plate group, so that other battery components not involved in the short circuit can be manufactured. Waste can be eliminated. For this reason, it contributes to improvement of the overall yield in battery manufacturing.

【0006】しかしながら、その反面、電池前駆体に対
する短絡検査には、以下のような不都合がある。すなわ
ち、電池前駆体に対する短絡検査方法は、上述のように
正負極間の絶縁抵抗値を測定するものであるが、この絶
縁抵抗値は、湿度の影響により、変動することがある。
このため、絶縁抵抗を測定する当該検査方法は、検査時
における雰囲気(湿度)の影響を受けやすく、短絡検査
の精度が低くなる。
However, on the other hand, the short circuit inspection for the battery precursor has the following disadvantages. That is, the short-circuit inspection method for the battery precursor measures the insulation resistance between the positive electrode and the negative electrode as described above, but the insulation resistance value may fluctuate due to the influence of humidity.
Therefore, the inspection method for measuring the insulation resistance is easily affected by the atmosphere (humidity) at the time of the inspection, and the accuracy of the short-circuit inspection is reduced.

【0007】それに対し、完成状態での短絡検査の場合
は、完全に組み立てた後の電池に対して内部抵抗を測定
するので、湿度の影響を受けることは殆どなく、精度良
く短絡電池の判別ができる。このため、完成状態での短
絡検査方法は、半完成状態での短絡検査方法に比べ、検
査精度の面で優れているといえる。しかしながら、完成
状態での短絡検査は、電池が完全に組み立てられた後で
なければ短絡電池の判別ができないので、出荷に際し、
短絡が判明した完成電池は廃棄せざるを得ない。したが
って、短絡に関与していない他の電池構成部材も一緒に
廃棄処分となるので、電池製造における全体の歩留まり
を向上させることに関する貢献度は低い。
On the other hand, in the case of a short-circuit test in a completed state, since the internal resistance of the battery after complete assembly is measured, it is hardly affected by humidity, and the short-circuit battery can be accurately determined. it can. Therefore, it can be said that the short-circuit inspection method in the completed state is superior in the inspection accuracy in comparison with the short-circuit inspection method in the semi-completed state. However, the short-circuit inspection in the completed state can not be identified as a short-circuited battery only after the battery is completely assembled.
Completed batteries with short circuits must be discarded. Therefore, other battery components not involved in the short circuit are also disposed of together, and the contribution to improving the overall yield in battery manufacturing is low.

【0008】以上のように、前記2つの短絡検査方法に
おいては、歩留まり向上への貢献、および、高い検査精
度は並立することなく、どちらか一方が欠けているとい
う不都合があった。また、実際の電池においては、組立
途中や使用する前の状態では短絡していないが、実使用
してから短絡が起こる場合がある。このような短絡は、
一般に、軽短絡とよばれている。
As described above, the two short-circuit inspection methods have the disadvantages of contributing to an improvement in the yield and of lacking high inspection accuracy, but lacking one of them. In an actual battery, no short circuit occurs during assembly or before use, but a short circuit may occur after actual use. Such a short circuit
Generally, it is called a light short circuit.

【0009】ここで、軽短絡の発生の過程について具体
的に以下に説明する。打ち抜きや切断などの極板の加工
工程において、加工面にバリが生じた極板を用いて極板
群を組み立てると、前記バリは、セパレータにくい込
み、対極に対し、数μmの距離まで接近した状態とな
る。このような極板群を組み込んだ電池は、実使用時に
おける充放電を反復すると、極板群が膨張収縮し、それ
にともなって、前記バリがセパレータを突き破り、対極
と接触する場合がある。
Here, the process of the occurrence of the light short-circuit will be specifically described below. In the processing of the electrode plate such as punching and cutting, when assembling the electrode group using an electrode plate with a burr generated on the processing surface, the burr was inserted into the separator, and approached a distance of several μm to the counter electrode. State. When a battery incorporating such an electrode group is repeatedly charged and discharged in actual use, the electrode group expands and contracts, and accordingly, the burrs may break through the separator and come into contact with the counter electrode.

【0010】また、バリが存在する極板群を組み込んだ
電池に対して、ある程度充放電を反復していくと、前記
バリからデンドライトが成長していくことがあり、それ
にともなって、当該デンドライトの先端がセパレータを
突き破り、対極と接触することがある。デンドライトが
対極に接触すると、微小電流が流れ、電池は自己放電
し、容量低下を引き起こす。このとき、デンドライトの
先端は崩落しやすいので、短絡状態はすぐに断絶される
が、再度、デンドライトが成長し、デンドライトの先端
が対極と接触する。このようなデンドライトの崩落と再
成長の反復により、電池の自己放電が進行し、最終的に
電池電圧が0Vになるという不具合が生じることがあ
る。
When charging and discharging are repeated to some extent in a battery incorporating an electrode group having burrs, dendrites may grow from the burrs, and accordingly, the dendrites of the dendrites may be grown. The tip may break through the separator and come into contact with the counter electrode. When the dendrite contacts the opposite electrode, a small current flows, and the battery self-discharges, causing a capacity reduction. At this time, since the tip of the dendrite is likely to collapse, the short-circuit state is immediately cut off, but the dendrite grows again and the tip of the dendrite comes into contact with the counter electrode. Such repetition of dendrite collapse and regrowth may cause self-discharge of the battery, which may eventually cause a problem that the battery voltage becomes 0V.

【0011】以上のように、軽短絡は、バリのように正
負極板間の間隔が狭くなった部分(以下、未短絡部分と
いう)で発生する可能性が高い。しかしながら、組み立
て直後の電池において前記未短絡部分は、セパレータに
より絶縁されており、短絡は起こしていない。このた
め、軽短絡は、前記2つの短絡検査方法では判別できな
い。
As described above, a light short-circuit is highly likely to occur in a portion where the distance between the positive and negative electrodes is narrow, such as a burr (hereinafter, referred to as a non-short-circuit portion). However, in the battery immediately after assembly, the unshorted portion is insulated by the separator, and no short circuit occurs. Therefore, a light short circuit cannot be determined by the two short circuit inspection methods.

【0012】電池の短絡検査工程においては、このよう
な未短絡部分も、実使用にともない短絡する可能性が高
いので、不良品電池の出荷を防止する観点から、軽短絡
も判別することが望まれている。本発明は、上記した従
来の短絡検査方法における問題を解決し、電解液注入前
の電池前駆体に対して、精度良く短絡の検出を行えると
ともに、軽短絡を起こす可能性が高い未短絡部分も判別
することができるアルカリ二次電池の短絡検査方法の提
供を目的とする。
In the battery short-circuit inspection step, such an unshort-circuited portion is also likely to be short-circuited due to actual use. Therefore, from the viewpoint of preventing shipment of defective batteries, it is desired to determine a light short-circuit. It is rare. The present invention solves the above-mentioned problems in the conventional short-circuit inspection method, and can accurately detect a short-circuit with respect to a battery precursor before injecting an electrolytic solution, and also includes a non-short-circuit portion having a high possibility of causing a light short-circuit. An object of the present invention is to provide a method for detecting a short circuit of an alkaline secondary battery, which can be determined.

【0013】[0013]

【課題を解決するための手段】上記した目的を達成する
ために、本発明においては、正極と負極との間に電気絶
縁性のセパレータを介在させて形成した極板群を、負極
端子を兼ねる有底の外装缶に収容して電池前駆体を形成
したのち、前記電池前駆体の正極および負極へ外部電源
を接続して回路を構成し、その際、次式、I<V/Z
(ただし、Iは外部電源の電源電流容量、Vは印加電
圧、Zは外部電源と電池前駆体とを接続することにより
構成された回路の合成抵抗を表す。)の関係を満足する
状態で、前記外部電源により前記電池前駆体の正極と負
極との間に100〜500Vの電圧を印加し、そのとき
の前記外部電源の電圧値を電圧監視手段により監視し当
該外部電源の電圧降下を検出することを特徴とするアル
カリ二次電池の短絡検査方法が提供される。
In order to achieve the above-mentioned object, in the present invention, an electrode plate formed by interposing an electrically insulating separator between a positive electrode and a negative electrode also serves as a negative electrode terminal. After being housed in a bottomed outer can to form a battery precursor, an external power supply is connected to a positive electrode and a negative electrode of the battery precursor to form a circuit, wherein the following formula: I <V / Z
(Where I is the power supply current capacity of the external power supply, V is the applied voltage, and Z is the combined resistance of the circuit formed by connecting the external power supply and the battery precursor). A voltage of 100 to 500 V is applied between the positive electrode and the negative electrode of the battery precursor by the external power supply, and the voltage value of the external power supply at that time is monitored by voltage monitoring means to detect a voltage drop of the external power supply. A method for inspecting a short circuit of an alkaline secondary battery is provided.

【0014】本発明のアルカリ二次電池の短絡検査方法
は、電解液を注入する前の電池前駆体に対し、正極と負
極との間に100〜500Vの高電圧を印加することを
特徴としている。このように、正極と負極との間に高電
圧を印加すると、軽短絡を発生させる可能性の高い未短
絡部分を含んでいる電池前駆体においては、この未短絡
部分において火花放電が起こり、回路に短絡電流が流れ
る。このとき、外部電源を、I<V/Z(ただし、Iは
外部電源の電源電流容量、Vは印加電圧、Zは外部電源
と電池前駆体とを接続することにより構成された回路の
合成抵抗を表す。)の関係を満足する状態に設定してお
くと、短絡電流が流れることにともない電圧降下が起こ
るので、この電圧降下を検出することにより軽短絡を起
こす可能性の高い電池を判別することができる。また、
すでに正極と負極とが接触し、短絡している場合におい
ても、火花放電の場合と同様に短絡電流が流れるので、
電源の電圧降下が生じる。よって、本発明の短絡検査方
法は、この電圧降下を検出することにより、通常の短絡
も検出することができる。
The short-circuit inspection method for an alkaline secondary battery according to the present invention is characterized in that a high voltage of 100 to 500 V is applied between a positive electrode and a negative electrode to a battery precursor before injecting an electrolytic solution. . As described above, when a high voltage is applied between the positive electrode and the negative electrode, in a battery precursor including an unshorted portion that is likely to cause a light short circuit, a spark discharge occurs in the unshorted portion, and a circuit discharge occurs. Short-circuit current flows through the At this time, the external power supply is defined as I <V / Z (where I is the power supply current capacity of the external power supply, V is the applied voltage, and Z is the combined resistance of a circuit formed by connecting the external power supply and the battery precursor. If the condition is satisfied, a voltage drop occurs due to the flow of the short-circuit current. By detecting this voltage drop, a battery having a high possibility of causing a light short-circuit is determined. be able to. Also,
Even when the positive electrode and the negative electrode are already in contact and short-circuited, a short-circuit current flows as in the case of spark discharge.
A power supply voltage drop occurs. Therefore, the short-circuit inspection method of the present invention can detect a normal short-circuit by detecting this voltage drop.

【0015】[0015]

【発明の実施の形態】本発明のアルカリ二次電池の短絡
検査方法は、常法により製造された極板群を負極端子を
兼ねる有底の外装缶に収容して形成した電池前駆体、す
なわち、電解液が注入される前の半完成状態の電池に対
して行われる。本発明の短絡検査方法においては、ま
ず、外部電源3に電池前駆体1を接続する。具体的に
は、図1に示すように、外部電源3の出力端に、極板群
10の正極11に予め取付けられた正極タブ11aと、
負極端子(外装缶)14とを導線6を用いて接続し、短
絡検査システム回路を形成する。このとき、導線6の中
間にはスイッチ5が取付けられている。そして、電圧監
視手段4が外部電源3に対し並列に接続されている。
尚、正極タブは、極板群の正極に接続されているので、
正極と等電位であり、負極端子(外装缶)は、その内周
部で極板群の負極と接触しているので、負極と等電位で
ある。したがって、正極タブと負極端子との間に所定電
圧を印加すれば、正極と負極との間に所定電圧を印加し
たことになる。また、図1中の61,62は導線6の線
抵抗、63,64は接点における接触抵抗を表してい
る。
BEST MODE FOR CARRYING OUT THE INVENTION A short-circuit inspection method for an alkaline secondary battery according to the present invention comprises a battery precursor formed by accommodating a group of electrode plates manufactured by a conventional method in a bottomed outer can also serving as a negative electrode terminal, This is performed on the battery in a semi-finished state before the electrolyte is injected. In the short-circuit inspection method of the present invention, first, the battery precursor 1 is connected to the external power supply 3. Specifically, as shown in FIG. 1, at the output end of the external power supply 3, a positive electrode tab 11a previously attached to the positive electrode 11 of the electrode plate group 10,
The negative electrode terminal (outer can) 14 is connected with the conductive wire 6 to form a short-circuit inspection system circuit. At this time, the switch 5 is mounted in the middle of the conductor 6. The voltage monitoring means 4 is connected in parallel to the external power supply 3.
In addition, since the positive electrode tab is connected to the positive electrode of the electrode plate group,
Since the negative electrode terminal (outer can) is in contact with the negative electrode of the electrode plate group at the inner periphery thereof, it has the same potential as the negative electrode. Therefore, if a predetermined voltage is applied between the positive electrode tab and the negative electrode terminal, a predetermined voltage is applied between the positive electrode and the negative electrode. Also, 61 and 62 in FIG. 1 represent the line resistance of the conductor 6, and 63 and 64 represent the contact resistance at the contact.

【0016】ここで、外部電源3は、電池前駆体1に対
し、電圧を印加する電圧印加手段であり、このときの印
加電圧の値を任意に設定することができる。本発明にお
いては、この外部電源3により設定される電圧を印加電
圧Vとする。また、この外部電源3は、電流制御回路を
有しており、前記印加電圧Vをある値に設定した状態
で、前記短絡検査システム回路に流せる電流を任意に設
定することができる。このとき、外部電源3により前記
短絡検査システム回路に流すことができる最大電流を電
源電流容量Iとする。
Here, the external power supply 3 is voltage applying means for applying a voltage to the battery precursor 1, and the value of the applied voltage at this time can be set arbitrarily. In the present invention, the voltage set by the external power supply 3 is referred to as an applied voltage V. Further, the external power supply 3 has a current control circuit, and it is possible to arbitrarily set a current that can flow through the short-circuit inspection system circuit in a state where the applied voltage V is set to a certain value. At this time, the maximum current that can be passed to the short-circuit inspection system circuit by the external power supply 3 is defined as a power supply current capacity I.

【0017】また、前記短絡検査システム回路において
は、火花放電が起こる、あるいは、すでにどこかが短絡
しているなどして回路全体が導通した状態となった場
合、この回路の全体の抵抗は、導線の線抵抗、接点にお
ける接触抵抗、電池内抵抗および未知の抵抗など回路に
存在する抵抗の総和で表される。このとき、回路の全体
の抵抗を短絡検査システム回路の合成抵抗Zとする。
In the short-circuit inspection system circuit, when a spark discharge occurs, or when the entire circuit is brought into a conductive state due to, for example, a short circuit already occurring, the overall resistance of the circuit becomes: It is represented by the sum of the resistances existing in the circuit, such as the wire resistance of the conductor, the contact resistance at the contact, the resistance in the battery, and the unknown resistance. At this time, the overall resistance of the circuit is defined as a combined resistance Z of the short-circuit inspection system circuit.

【0018】このシステム回路において、外部電源3か
ら電圧Vを印加したときに、仮に前記未短絡部分での火
花放電が起こったとすると、当該回路に、V/Z(V:
印加電圧、Z:合成抵抗)で表される短絡電流Is が流
れる。また、電池前駆体において、すでに正極と負極と
が短絡している場合においても、火花放電の場合と同様
に前記回路に短絡電流Is が流れる。このとき、本発明
者は、外部電源3の印加電圧をVに設定したときに、当
該外部電源3が流せる設定最大電流値である電源電流容
量Iを前記した短絡電流Is より大きく設定すると外部
電源3の電圧は変化せず、しかし、電源電流容量Iを短
絡電流Is より小さく設定すると外部電源3の電圧が降
下するという事実を見出した。本発明は、このような知
見に基づいて開発されたものであって、上述した外部電
源3において、V/Zで表される短絡電流Is よりも電
源電流容量Iを小さく設定する、つまり、次式の条件、 I<V/Z…(1) を満足するように電源電流容量Iの設定を行い、このよ
うな条件の下で外部電源3から前記電池前駆体に対し所
定の電圧を印加することを特徴とする。このとき、当該
回路に短絡電流が流れると、電源の電圧値が降下するの
で、電圧監視手段により、電源の電圧降下を検出するこ
とにより軽短絡および通常の短絡を検出することができ
る。
In this system circuit, if a spark discharge occurs in the non-short-circuited portion when a voltage V is applied from the external power supply 3, V / Z (V:
A short-circuit current Is expressed by an applied voltage (Z: combined resistance) flows. Even in the case where the positive electrode and the negative electrode have already been short-circuited in the battery precursor, the short-circuit current Is flows through the circuit in the same manner as in the case of spark discharge. At this time, when the applied voltage of the external power supply 3 is set to V, the inventor sets the power supply current capacity I, which is the set maximum current value that the external power supply 3 can flow, larger than the short-circuit current Is. 3, the voltage of the external power supply 3 drops when the power supply current capacity I is set smaller than the short-circuit current Is. The present invention has been developed based on such knowledge, and in the above-described external power supply 3, the power supply current capacity I is set to be smaller than the short-circuit current Is represented by V / Z. The power supply current capacity I is set so as to satisfy the following condition: I <V / Z (1), and a predetermined voltage is applied from the external power supply 3 to the battery precursor under such conditions. It is characterized by the following. At this time, if a short-circuit current flows through the circuit, the voltage value of the power supply drops. Therefore, by detecting the voltage drop of the power supply by the voltage monitoring means, it is possible to detect a light short-circuit and a normal short-circuit.

【0019】ここで、外部電源3を(1)式の条件を満
足するように設定する手順を以下に説明する。まず、電
池前駆体に印加する印加電圧Vが選択される。このと
き、通常の電池製造ラインで組み立てられた極板群にお
いて、その中に未短絡部分(バリ)が存在している場
合、外部電源から印加する電圧値が100V未満では火
花放電は発生しない。このため、火花放電にともなう短
絡電流が流れないので未短絡部分の有無の検出ができな
い。逆に前記電圧値が500Vを超えると、未短絡部分
(バリ)以外の個所でも火花放電が発生し、未短絡部分
の有無の正確な検出ができない。よって、本発明におい
ては、正極と負極との間に印加する印加電圧Vは100
〜500(V)の範囲のある電圧値として選択される。
より好ましくは、200〜300(V)のある電圧値で
ある。
The procedure for setting the external power supply 3 so as to satisfy the condition of the equation (1) will be described below. First, an applied voltage V to be applied to the battery precursor is selected. At this time, in a group of electrode plates assembled in a normal battery manufacturing line, when a non-short-circuited portion (burr) exists therein, spark discharge does not occur if the voltage value applied from an external power supply is less than 100V. For this reason, the short circuit current accompanying the spark discharge does not flow, and it is not possible to detect the presence or absence of an unshortened portion. Conversely, when the voltage value exceeds 500 V, spark discharge occurs even at a portion other than the non-short-circuited portion (burr), and accurate detection of the presence or absence of the non-short-circuited portion cannot be performed. Therefore, in the present invention, the applied voltage V applied between the positive electrode and the negative electrode is 100
It is selected as a certain voltage value in a range of up to 500 (V).
More preferably, it is a certain voltage value of 200 to 300 (V).

【0020】次に、以上のようにして選択した印加電圧
Vと、短絡検査システム回路の合成抵抗Zから、当該回
路が短絡したことを仮定した場合の短絡電流Is を求め
る(V/Z=Is )。このとき、合成抵抗は、検査を行
う電池の品種やその接続の状態で変化するものなので、
正確に把握することが難しい。このため、合成抵抗Z
は、電池製造における過去の経験から求められた適当な
値に仮定される。例えば、密閉型ニッケル−水素二次電
池を短絡検査システム回路にセットした場合、電池型式
によっても異なるが、通常、合成抵抗Zは1〜10(k
Ω)に仮定すればよい。
Next, from the applied voltage V selected as described above and the combined resistance Z of the short-circuit inspection system circuit, a short-circuit current Is assuming that the circuit is short-circuited is obtained (V / Z = Is). ). At this time, the combined resistance changes depending on the type of battery to be inspected and the state of its connection.
It is difficult to grasp accurately. Therefore, the combined resistance Z
Is assumed to be an appropriate value determined from past experience in battery manufacturing. For example, when a sealed nickel-hydrogen secondary battery is set in the short-circuit inspection system circuit, the combined resistance Z is usually 1 to 10 (k), although it differs depending on the battery type.
Ω).

【0021】そして、電源電流容量Iを、以上のように
印加電圧Vと合成抵抗Zから求めた短絡電流Is の値よ
りも小さい値に設定する。ここで、例えば、印加電圧V
を200(V)、合成抵抗Zを1(kΩ)に仮定した場
合、短絡電流Is は、 Is =V/Z=200/1000=0.2(A) となる。この結果から、外部電源3における電源電流容
量Iは、0.2(A)より小さい値に設定する。
Then, the power supply current capacity I is set to a value smaller than the value of the short-circuit current Is obtained from the applied voltage V and the combined resistance Z as described above. Here, for example, the applied voltage V
Is assumed to be 200 (V), and the combined resistance Z is assumed to be 1 (kΩ), the short-circuit current Is becomes Is = V / Z = 200/1000 = 0.2 (A). From this result, the power supply current capacity I in the external power supply 3 is set to a value smaller than 0.2 (A).

【0022】次に、本発明の短絡検査方法における具体
的な手順としては、上述のように条件設定した外部電源
3を接続した短絡検査システム回路において、スイッチ
5を開状態で外部電源3を起動させ、所定電圧(印加電
圧V)を発生させたのち、スイッチ5を閉状態とし、正
極タブ11aと、負極端子(外装缶)14との間に所定
電圧を印加する。このとき、スイッチ5を開状態から閉
状態にするまでの間、電圧監視手段4により、外部電源
3の電圧の変化を監視しておく。
Next, as a specific procedure in the short-circuit inspection method according to the present invention, in the short-circuit inspection system circuit to which the external power supply 3 set as described above is connected, the external power supply 3 is started with the switch 5 opened. After a predetermined voltage (applied voltage V) is generated, the switch 5 is closed and a predetermined voltage is applied between the positive electrode tab 11a and the negative electrode terminal (outer can) 14. At this time, a change in the voltage of the external power supply 3 is monitored by the voltage monitoring means 4 until the switch 5 is changed from the open state to the closed state.

【0023】ここで、極板群10においては、正極11
と負極12とがセパレータ13により完全に絶縁されて
いる場合と、極板のバリがセパレータにくい込み、軽短
絡が発生する可能性が高くなっている場合と、完全に正
極と負極とが接触し、絶縁が破壊されている場合とがあ
る。それぞれの場合における外部電源の電圧の変化につ
いて、以下に説明する。
Here, in the electrode plate group 10, the positive electrode 11
And the negative electrode 12 are completely insulated by the separator 13, the burr of the electrode plate is hardly inserted into the separator, and the possibility of a light short circuit is high. In some cases, the insulation is broken. The change of the voltage of the external power supply in each case will be described below.

【0024】まず、完全に絶縁されている場合、外部電
源3を起動し、所定の電圧を発生させた状態でスイッチ
5を閉状態にしても、回路に電流は流れない。このた
め、外部電源3の電圧は降下しない。よって、電池前駆
体に対し、所定電圧を印加したときに、外部電源の電圧
値が変化しない場合は、絶縁が保たれていることを表し
ており、当該電池(電池前駆体)は短絡の発生していな
い良品であると判定できる。
First, when completely insulated, even if the external power supply 3 is started and the switch 5 is closed with a predetermined voltage generated, no current flows through the circuit. Therefore, the voltage of the external power supply 3 does not drop. Therefore, when the voltage value of the external power supply does not change when a predetermined voltage is applied to the battery precursor, it indicates that insulation is maintained, and the battery (battery precursor) has a short circuit. It can be determined that it is a non-defective product.

【0025】次に、軽短絡が発生する可能性が高くなっ
ている場合、例えば、正極に生じたバリがセパレータに
くい込んでいる場合、このバリは、負極に対し数μmの
距離まで極めて接近した状態となっている。このような
状態のとき、外部電源3を起動し、所定の電圧を発生さ
せた状態でスイッチ5を閉状態にすると、正極と負極と
の間に所定電圧が印加され、距離の最も短い部分すなわ
ちバリの部分で火花放電が生じる。このように、火花放
電が生じると回路に短絡電流が流れ、それにともない外
部電源の電圧が降下する。よって、電池前駆体に対し、
所定電圧を印加したときに、外部電源の電圧値が降下し
た場合は、火花放電が発生したことを表しており、当該
電池(電池前駆体)は、軽短絡を起こす可能性が高い不
良品であると判定できる。
Next, when there is a high possibility that a light short circuit will occur, for example, when burrs formed on the positive electrode enter the separator, the burrs are extremely close to the negative electrode up to a distance of several μm. It is in a state. In such a state, when the external power supply 3 is activated and the switch 5 is closed in a state where a predetermined voltage is generated, a predetermined voltage is applied between the positive electrode and the negative electrode, and the shortest portion of the distance, that is, Spark discharge occurs at the burrs. As described above, when a spark discharge occurs, a short-circuit current flows in the circuit, and the voltage of the external power supply drops accordingly. Therefore, for the battery precursor,
If the voltage value of the external power supply drops when a predetermined voltage is applied, it indicates that spark discharge has occurred, and the battery (battery precursor) is a defective product having a high possibility of causing a light short circuit. It can be determined that there is.

【0026】次に、完全に正極と負極とが接触し、絶縁
が破壊されている場合、前記回路は、電池前駆体内で導
通した状態となっている。このような状態のとき、外部
電源3を起動し、所定の電圧を発生させた状態でスイッ
チ5を閉状態にすると、火花放電が生じたときと同じよ
うに回路に短絡電流が流れ、それにともない外部電源の
電圧が降下する。よって、スイッチ5を閉状態とし、電
池前駆体に対して所定電圧を印加したと同時に外部電源
の電圧値が降下した場合は、短絡が生じていることを表
している。このことから、当該電池(電池前駆体)は不
良品であると判定できる。
Next, when the positive electrode and the negative electrode are completely in contact with each other and the insulation is broken, the circuit is in a conductive state in the battery precursor. In such a state, when the external power supply 3 is started and the switch 5 is closed in a state where a predetermined voltage is generated, a short-circuit current flows through the circuit in the same manner as when a spark discharge occurs. The voltage of the external power supply drops. Therefore, when the switch 5 is closed and the voltage value of the external power supply drops at the same time when a predetermined voltage is applied to the battery precursor, it indicates that a short circuit has occurred. From this, it can be determined that the battery (battery precursor) is defective.

【0027】尚、本発明の短絡検査方法においては、外
部電源として、直流,交流のどちらを用いても構わな
い。ただし、交流を採用する場合、少なくとも数サイク
ル時間以上、電池前駆体に電圧を印加しておく必要があ
る。このため、量産工程のように、生産効率を向上させ
るために短絡検査に振り分けられる時間が数分の1から
数十分の1秒程度しか確保できない場合は、電圧印加時
間が少なくてすむ直流電源を採用することが好ましい。
In the short-circuit inspection method of the present invention, any of a direct current and an alternating current may be used as the external power supply. However, when employing an alternating current, it is necessary to apply a voltage to the battery precursor for at least several cycle times. For this reason, when only one-several to several tenths of a second can be secured for short-circuit inspection in order to improve production efficiency as in a mass production process, a DC power supply requiring a short voltage application time is required. It is preferable to employ

【0028】また、本発明のアルカリ二次電池の短絡検
査方法は、極板群を捲回して製造する円筒型電池および
極板を積層して製造する角形電池のどちらにも採用する
ことができる。
The short-circuit inspection method for an alkaline secondary battery of the present invention can be applied to both a cylindrical battery manufactured by winding an electrode group and a prismatic battery manufactured by stacking electrode plates. .

【0029】[0029]

【実施例】【Example】

実施例1、2 比較例1、2 Co:1.0重量%およびZn:5重量%を固溶するNi
(OH)2 粉末95重量部とCoO粉末5重量部とを混
合し、ここに、1%カルボキシメチルセルロース水溶液
35重量部を投入したのち混練して正極活物質ペースト
を調製した。そして、このペーストを発泡ニッケル板に
充填し、乾燥,圧延,裁断を順次行って、ペースト式ニ
ッケル極にした。
Examples 1 and 2 Comparative Examples 1 and 2 Ni in which 1.0% by weight of Co and 5% by weight of Zn are dissolved.
95 parts by weight of (OH) 2 powder and 5 parts by weight of CoO powder were mixed, and 35 parts by weight of a 1% carboxymethylcellulose aqueous solution was added thereto, followed by kneading to prepare a positive electrode active material paste. Then, this paste was filled into a foamed nickel plate, and dried, rolled, and cut in that order to obtain a paste-type nickel electrode.

【0030】一方、MmNi5 (Mmはミッシュメタ
ル)のNiの一部をCo,Mn,Alなどで置換したM
mNi5 系水素吸蔵合金を用いて常法により水素吸蔵合
金電極を製造し、前記ペースト式ニッケル極を正極と
し、前記水素吸蔵合金電極を負極にしてこれらの間に親
水化ポリオレフィン不織布から成るセパレータを介在さ
せた円筒状の極板群を形成した。
On the other hand, MmNi 5 (Mm is a misch metal) is obtained by substituting a part of Ni with Co, Mn, Al or the like.
A hydrogen storage alloy electrode is manufactured by a conventional method using an mNi 5 type hydrogen storage alloy, and the paste-type nickel electrode is used as a positive electrode, and the hydrogen storage alloy electrode is used as a negative electrode. A group of cylindrical electrodes interposed was formed.

【0031】そして、前記極板群を負極端子を兼ねる外
装缶に収容し、電池前駆体を形成した。次に、図1に示
すように、前記電池前駆体の正極タブ11aと、負極端
子(外装缶)14とを導線6を介してそれぞれ外部電源
3に接続し、短絡検査システムの回路を形成した。尚、
導線6の中間にはスイッチ5が設けられている。また、
外部電源3に対し並列に電圧監視装置4が接続されてい
る。
Then, the electrode group was accommodated in an outer can also serving as a negative electrode terminal, to form a battery precursor. Next, as shown in FIG. 1, the positive electrode tab 11a of the battery precursor and the negative electrode terminal (outer can) 14 were connected to the external power supply 3 via the conductive wire 6, respectively, to form a circuit of the short-circuit inspection system. . still,
The switch 5 is provided in the middle of the conducting wire 6. Also,
A voltage monitoring device 4 is connected in parallel with the external power supply 3.

【0032】ここで、外部電源3は、可変直流定電圧・
定電流電源(株式会社高砂製作所製TM0650−0
1)であり、回路に印加することができる印加電圧Vを
任意に変化させることができるとともに、電流制御回路
を備えているので回路に流せる最大電流(電源電流容量
I)も任意にかえることができる。また、前記回路にお
ける導線6の線抵抗や接点部の接触抵抗等の総和である
合成抵抗Zは1(kΩ)と仮定した。更に、前記電圧監
視装置4は、外部電源3の電圧を監視するものであり、
電源電圧が所定値以下に降下した際に、警告を発し、短
絡が起こっている、あるいは、軽短絡が起こる可能性が
高い電池(電池前駆体)を判定する。
Here, the external power supply 3 has a variable DC constant voltage
Constant current power supply (TM0650-0 manufactured by Takasago Machinery Co., Ltd.
1), the applied voltage V that can be applied to the circuit can be arbitrarily changed, and the maximum current (power supply current capacity I) that can be passed through the circuit can be arbitrarily changed because the current control circuit is provided. it can. The combined resistance Z, which is the sum of the line resistance of the conductor 6 and the contact resistance of the contact portion in the circuit, is assumed to be 1 (kΩ). Further, the voltage monitoring device 4 monitors the voltage of the external power supply 3,
When the power supply voltage drops below a predetermined value, a warning is issued, and a battery (battery precursor) that is likely to be short-circuited or lightly short-circuited is determined.

【0033】以上のように、電池前駆体をセットしたの
ち、外部電源3を起動し、電圧監視装置4により外部電
源3の電圧値を監視しながら、スイッチ5を閉状態と
し、電池前駆体に電圧を印加し、その際、電圧降下の有
無を確認する短絡検査を行った。このとき、電源の印加
電圧Vは200(V)一定とし、電源電流容量Iは、表
1に示すように変化させた。
As described above, after the battery precursor is set, the external power supply 3 is started, and while the voltage value of the external power supply 3 is monitored by the voltage monitoring device 4, the switch 5 is closed, and the battery precursor is set. A voltage was applied, and at that time, a short-circuit test was performed to confirm the presence or absence of a voltage drop. At this time, the applied voltage V of the power supply was kept constant at 200 (V), and the power supply current capacity I was changed as shown in Table 1.

【0034】以上のような短絡検査は、各電源電流容量
毎に、前述のように製造した電池前駆体10000個に
対し行い、電圧降下が確認された際の電池前駆体を不良
品として除外し、その不良品の数を計数した。そして、
10000個に対する不良品の数の割合を求め、その結
果を電池前駆体の不良率として表1に示した。次に、不
良品を除外した後の残りの良品電池前駆体に対し、比重
1.30のKOHを主体とする電解液を注入し、常法によ
りAAサイズ,定格容量1100mAhの密閉型ニッケル
−水素二次電池を組み立てた。
The above short-circuit inspection is performed on 10,000 battery precursors manufactured as described above for each power supply current capacity, and the battery precursor when a voltage drop is confirmed is excluded as a defective product. The number of the defective products was counted. And
The ratio of the number of defective products to 10,000 was determined, and the result is shown in Table 1 as the defective ratio of the battery precursor. Next, the specific gravity of the remaining non-defective battery precursor
An electrolyte mainly containing KOH of 1.30 was injected, and a sealed nickel-hydrogen secondary battery having an AA size and a rated capacity of 1100 mAh was assembled by a conventional method.

【0035】組立後、当該電池に対し、初期活性化のた
めの充放電を行い、その後、温度25℃において、11
00mAで1.5時間の充電,1100mAで電池電圧が
1.0Vの放電状態になるまでの放電,休止1時間を1
サイクルとするサイクル試験を1000サイクル行っ
た。1000サイクルのサイクル試験が終了した電池に
対し、内部抵抗を測定して短絡の有無を検出する従来の
短絡検査方法を採用して短絡検査を行った。すなわち、
電池の内部抵抗を測定し、測定値がある値よりも低い電
池を短絡が発生している不良品として、除外し、不良品
の数を計数した。そして、良品の電池前駆体の数に対す
る不良品電池の数の割合を求め、その結果をサイクル試
験後の電池の短絡発生率として表1に併記した。
After assembling, the battery is charged and discharged for initial activation.
Charge for 1.5 hours at 00 mA, discharge until battery voltage becomes 1.0 V at 1100 mA, and pause for 1 hour for 1 hour
A cycle test was performed for 1,000 cycles. A short-circuit test was performed on the battery after the completion of the cycle test of 1000 cycles by using a conventional short-circuit test method in which the internal resistance was measured to detect the presence or absence of a short circuit. That is,
The internal resistance of the battery was measured, and a battery having a measured value lower than a certain value was excluded as a defective product having a short circuit, and the number of defective products was counted. Then, the ratio of the number of defective batteries to the number of non-defective battery precursors was determined, and the results are also shown in Table 1 as the short-circuit occurrence rate of the batteries after the cycle test.

【0036】尚、上記短絡検査は、温度21〜25℃の
室温域において、湿度50%の雰囲気中で行った。
The short-circuit inspection was performed in a room temperature range of 21 to 25 ° C. in an atmosphere with a humidity of 50%.

【0037】[0037]

【表1】 [Table 1]

【0038】表1の結果から明らかなように、電源電流
容量Iの値が、印加電圧V(200(V))および合成
抵抗Z(1(kΩ))より求められる短絡電流Is の値
(0.20A)よりも大きくなると、サイクル試験後の
電池の短絡発生率が高くなっていることがわかる。すな
わち、実施例1、2では、電源電流容量Iが0.20
(A)(短絡電流Is )より低いので、電圧降下が起こ
り、電池前駆体の状態で短絡を良好に判別することがで
きているのに対し、比較例1、2では、電源電流容量I
が0.20(A)(短絡電流Is )より高いので、電圧
降下が起こらず、軽短絡品等の不良品も良品と判別して
しまっている。このため、比較例1、2では、完成電池
となった後の短絡発生率が高くなっている。
As is clear from the results in Table 1, the value of the power supply current capacity I is equal to the value (0) of the short-circuit current Is obtained from the applied voltage V (200 (V)) and the combined resistance Z (1 (kΩ)). .20A), the short-circuit occurrence rate of the battery after the cycle test is high. That is, in the first and second embodiments, the power supply current capacity I is 0.20
(A) Since it is lower than (short-circuit current Is), a voltage drop occurs, and short-circuiting can be satisfactorily determined in the state of the battery precursor, whereas in Comparative Examples 1 and 2, the power supply current capacity I
Is higher than 0.20 (A) (short-circuit current Is), no voltage drop occurs, and defective products such as lightly short-circuited products are also determined to be good products. Therefore, in Comparative Examples 1 and 2, the short-circuit occurrence rate after the completed batteries are high.

【0039】このように、本発明の短絡検査方法におい
ては、(1)式の関係が満足されなければ短絡検査の精
度が低くなることを表しており、電源電流容量IをV/
Z(短絡電流Is )より小さくすることが必須である。 実施例3〜7、比較例3〜5 電源電流容量Iを0.04(A)一定とし、(1)式の
関係を満足した状態で印加電圧を表2に示すように変化
させたことを除いては、実施例1と同様にして電池を製
造し、実施例1と同様にして電池前駆体の不良率および
サイクル試験後の電池の短絡発生率を求めた。その結果
を表2に併記した。
As described above, in the short-circuit inspection method of the present invention, if the relationship of the expression (1) is not satisfied, it indicates that the accuracy of the short-circuit inspection is reduced.
It is essential to make it smaller than Z (short circuit current Is). Examples 3 to 7 and Comparative Examples 3 to 5 The power supply current capacity I was fixed at 0.04 (A), and the applied voltage was changed as shown in Table 2 while satisfying the relationship of equation (1). Except for the above, a battery was manufactured in the same manner as in Example 1, and the defect rate of the battery precursor and the short-circuit occurrence rate of the battery after the cycle test were determined in the same manner as in Example 1. The results are shown in Table 2.

【0040】比較例6 電池前駆体の短絡検査として従来の絶縁抵抗を測定する
ことにより短絡の有無を判別したことを除いては、実施
例1と同様にして電池を製造し、実施例1と同様にして
電池前駆体の不良率およびサイクル試験後の電池の短絡
発生率を求めた。その結果を表2に併記した。
Comparative Example 6 A battery was manufactured in the same manner as in Example 1 except that the presence or absence of a short circuit was determined by measuring a conventional insulation resistance as a short circuit test of the battery precursor. Similarly, the failure rate of the battery precursor and the short-circuit occurrence rate of the battery after the cycle test were determined. The results are shown in Table 2.

【0041】[0041]

【表2】 [Table 2]

【0042】表2から明らかなように、印加電圧が80
Vの比較例4では、電池前駆体の状態での不良率は0.
03%であった。そして、電池前駆体の不良品を除外し
た状態で行ったサイクル試験後の短絡検査でも不良品
(短絡)が検出された(短絡発生率0.01%)。これ
は、印加電圧80Vでの短絡検査だけでは、実使用時に
生じる軽短絡は検出できないことを表している。印加電
圧が50Vである比較例3でも同じことがいえる。
As is clear from Table 2, the applied voltage is 80
In Comparative Example 4 of Comparative Example V, the failure rate in the state of the battery precursor was 0.1%.
03%. Then, a defective product (short circuit) was also detected (short circuit occurrence rate: 0.01%) in a short circuit inspection after the cycle test performed with the defective battery precursor excluded. This means that a light short-circuit occurring during actual use cannot be detected only by a short-circuit inspection at an applied voltage of 80 V. The same can be said for Comparative Example 3 in which the applied voltage is 50V.

【0043】印加電圧が100〜500Vである実施例
3〜7では、電池前駆体の状態での不良率は0.04〜
0.05%であった。そして、電池前駆体の不良品を除
外して製造した電池に対し行ったサイクル試験後の短絡
検査では短絡発生率が0%であり、軽短絡が発生してい
ないことを表している。つまり、電池前駆体の状態での
短絡検査だけで軽短絡まで含めて不良品を検出できてい
ることを示している。
In Examples 3 to 7 in which the applied voltage was 100 to 500 V, the defective rate in the state of the battery precursor was 0.04 to
It was 0.05%. Then, in the short-circuit inspection after the cycle test performed on the battery manufactured by excluding the defective battery precursor, the short-circuit occurrence rate was 0%, indicating that no light short-circuit occurred. In other words, it indicates that defective products including light short-circuits can be detected only by the short-circuit test in the state of the battery precursor.

【0044】印加電圧が600Vである比較例5では、
電池前駆体の状態での不良率が0.08%であった。こ
れは、印加電圧が異なるだけで他は全く同条件である実
施例3〜7に比べ約2倍の不良率となっている。これ
は、印加電圧が高くなりすぎ、バリ以外の部分でも火花
放電がおこり、本来良品となるべき電池前駆体も不良品
と判別されてしまったためである。印加電圧が600V
以上となると、この傾向が更に顕著になる。
In Comparative Example 5 in which the applied voltage is 600 V,
The failure rate in the state of the battery precursor was 0.08%. This is about twice as high as that of Examples 3 to 7, which are the same conditions except that the applied voltage is different. This is because the applied voltage was too high, spark discharge occurred in portions other than burrs, and battery precursors that should originally be good were determined to be defective. Applied voltage is 600V
As described above, this tendency becomes more remarkable.

【0045】また、電池前駆体の短絡検査を従来の絶縁
抵抗を測定することにより行った比較例6では、電池前
駆体の状態での不良率は0.02%であった。そして、
電池前駆体の不良品を除外した状態で行ったサイクル試
験後も短絡が発生していた(短絡発生率0.02%)。
これは、絶縁抵抗測定では、実使用時に生じる軽短絡は
検出できないことを表している。
Further, in Comparative Example 6 in which the short-circuit test of the battery precursor was performed by measuring the conventional insulation resistance, the failure rate in the state of the battery precursor was 0.02%. And
Even after the cycle test performed with the defective battery precursor removed, a short circuit occurred (short circuit occurrence rate 0.02%).
This indicates that light insulation short-circuiting that occurs during actual use cannot be detected by insulation resistance measurement.

【0046】実施例8〜10 検査雰囲気の湿度を表3に示すように変化させたことを
除いては、実施例2と同様にして電池を製造し、実施例
2と同様にして電池前駆体の不良率およびサイクル試験
後の電池の短絡発生率を求めた。その結果を表3に示し
た。尚、実施例2の結果も併記した。
Examples 8 to 10 A battery was manufactured in the same manner as in Example 2 except that the humidity of the inspection atmosphere was changed as shown in Table 3, and a battery precursor was manufactured in the same manner as in Example 2. And the short-circuit occurrence rate of the battery after the cycle test were determined. Table 3 shows the results. In addition, the result of Example 2 was also described.

【0047】比較例7〜9 検査雰囲気の湿度を表3に示すように変化させたことを
除いては、比較例6と同様にして電池を製造し、比較例
6と同様にして電池前駆体の不良率およびサイクル試験
後の電池の短絡発生率を求めた。その結果を表3に示し
た。尚、比較例6の結果も併記した。
Comparative Examples 7 to 9 A battery was manufactured in the same manner as in Comparative Example 6 except that the humidity of the inspection atmosphere was changed as shown in Table 3, and a battery precursor was manufactured in the same manner as in Comparative Example 6. And the short-circuit occurrence rate of the battery after the cycle test were determined. Table 3 shows the results. The results of Comparative Example 6 are also shown.

【0048】[0048]

【表3】 [Table 3]

【0049】表3から明らかなように、絶縁抵抗測定に
よる短絡検査方法を採用している比較例6〜9は、雰囲
気の湿度が変化することにより不良率の値がばらついて
いる。これは、絶縁抵抗値が湿度の影響を受け、短絡検
査の精度が低くなっていることを表している。それに対
し、本発明の短絡検査方法を採用している実施例2、8
〜10は、雰囲気の湿度が変化しても、検査結果すなわ
ち不良率の値に変動はない。これは、本発明の短絡検査
方法は、湿度の影響を受けず、精度よく短絡検査ができ
ることを示している。
As is evident from Table 3, in Comparative Examples 6 to 9, which employ the short-circuit inspection method by measuring the insulation resistance, the value of the defective rate varies due to a change in the humidity of the atmosphere. This indicates that the insulation resistance value is affected by the humidity and the accuracy of the short-circuit inspection is low. In contrast, Embodiments 2 and 8 employing the short-circuit inspection method of the present invention
In Nos. To 10, the inspection result, that is, the value of the defect rate does not change even when the humidity of the atmosphere changes. This indicates that the short-circuit inspection method of the present invention can accurately perform a short-circuit inspection without being affected by humidity.

【0050】[0050]

【発明の効果】以上の説明で明らかなように、本発明方
法によれば、実使用時に発生する可能性がある軽短絡も
含めて、短絡の検出ができ、不良品の出荷を極力抑える
ことができる。しかも、本発明方法は、電解液注入前の
半完成状態の電池(電池前駆体)に対して行われ、この
時点で短絡している、あるいは軽短絡を起こす可能性の
ある極板群を判別することができる。このため、不良極
板群のみを交換すれば良品電池を製造することが可能で
あり、極板群以外の電池構成部材の無駄を少なくするこ
とができ、歩留まり向上に寄与する。
As is apparent from the above description, according to the method of the present invention, short-circuits including light short-circuits that may occur during actual use can be detected, and shipment of defective products can be minimized. Can be. In addition, the method of the present invention is performed on a semi-finished battery (battery precursor) before injecting the electrolyte, and at this time, a group of electrodes that are short-circuited or that may cause a light short-circuit is determined. can do. Therefore, if only the defective electrode group is replaced, a non-defective battery can be manufactured, and waste of battery components other than the electrode group can be reduced, which contributes to an improvement in yield.

【0051】また、本発明方法は、外部電源の電圧降下
を検出して短絡の有無を判別するものであり、湿度など
の雰囲気の影響を受けることが少なく、精度良く短絡検
査が行える。
The method of the present invention detects the short-circuit by detecting the voltage drop of the external power supply. The method is less affected by the atmosphere such as humidity and the short-circuit test can be performed with high accuracy.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明における短絡検査システムの構成図であ
る。
FIG. 1 is a configuration diagram of a short-circuit inspection system according to the present invention.

【符号の説明】[Explanation of symbols]

1 電池前駆体 3 外部電源 4 電圧監視装置 5 スイッチ 6 導線 10 極板群 11 正極 11a 正極タブ 12 負極 13 セパレータ 14 外装缶 61,62 線抵抗 63,64 接触抵抗 DESCRIPTION OF SYMBOLS 1 Battery precursor 3 External power supply 4 Voltage monitor 5 Switch 6 Conductor 10 Electrode group 11 Positive electrode 11a Positive electrode tab 12 Negative electrode 13 Separator 14 Outer can 61,62 Wire resistance 63,64 Contact resistance

───────────────────────────────────────────────────── フロントページの続き 審査官 三宅 正之 (56)参考文献 特開 平5−290896(JP,A) 特開 平8−222212(JP,A) 特開 平7−333303(JP,A) 特開 平9−92346(JP,A) 特公 昭50−12090(JP,B1) (58)調査した分野(Int.Cl.7,DB名) H01M 10/42 - 10/48 H01M 10/24 - 10/32 ────────────────────────────────────────────────── ─── Continuation of the front page Examiner Masayuki Miyake (56) References JP-A-5-290896 (JP, A) JP-A 8-222212 (JP, A) JP-A 7-333303 (JP, A) Kaihei 9-92346 (JP, A) JP50-12090 (JP, B1) (58) Fields investigated (Int. Cl. 7 , DB name) H01M 10/42-10/48 H01M 10/24- 10/32

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 正極と負極との間に電気絶縁性のセパレ
ータを介在させて形成した極板群を、負極端子を兼ねる
有底の外装缶に収容して電池前駆体を形成したのち、前
記電池前駆体の正極および負極へ外部電源を接続して回
路を構成し、その際、次式、 I<V/Z (ただし、Iは外部電源の電源電流容量、Vは印加電
圧、Zは外部電源と電池前駆体とを接続することにより
構成された回路の合成抵抗を表す。)の関係を満足する
状態で、前記外部電源により前記電池前駆体の正極と負
極との間に100〜500Vの電圧を印加し、そのとき
の前記外部電源の電圧値を電圧監視手段により監視し当
該外部電源の電圧降下を検出することを特徴とするアル
カリ二次電池の短絡検査方法。
An electrode group formed by interposing an electrically insulating separator between a positive electrode and a negative electrode is housed in a bottomed outer can also serving as a negative electrode terminal to form a battery precursor. A circuit is constructed by connecting an external power supply to the positive and negative electrodes of the battery precursor, where I <V / Z (where I is the power supply current capacity of the external power supply, V is the applied voltage, and Z is the external power supply). The external power supply satisfies a relationship of 100 to 500 V between the positive electrode and the negative electrode of the battery precursor in a state satisfying the relationship of: connecting a power supply and a battery precursor to each other. A short-circuit inspection method for an alkaline secondary battery, comprising applying a voltage, monitoring a voltage value of the external power supply at that time by voltage monitoring means, and detecting a voltage drop of the external power supply.
JP20983097A 1997-07-18 1997-07-18 Short-circuit inspection method for alkaline secondary batteries Expired - Fee Related JP3196071B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20983097A JP3196071B2 (en) 1997-07-18 1997-07-18 Short-circuit inspection method for alkaline secondary batteries

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20983097A JP3196071B2 (en) 1997-07-18 1997-07-18 Short-circuit inspection method for alkaline secondary batteries

Publications (2)

Publication Number Publication Date
JPH1140210A JPH1140210A (en) 1999-02-12
JP3196071B2 true JP3196071B2 (en) 2001-08-06

Family

ID=16579329

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20983097A Expired - Fee Related JP3196071B2 (en) 1997-07-18 1997-07-18 Short-circuit inspection method for alkaline secondary batteries

Country Status (1)

Country Link
JP (1) JP3196071B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100465654C (en) * 2006-09-15 2009-03-04 天津力神电池股份有限公司 Method for detecting short circuit of non-aqueous electrolyte secondary batteries
EP3812778A1 (en) * 2019-10-22 2021-04-28 Samsung Electronics Co., Ltd. Method and apparatus with battery state estimation

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000238936A (en) 1999-02-18 2000-09-05 Riso Kagaku Corp Core pipe and holder for stencil base paper roll
JP4666712B2 (en) 2000-02-22 2011-04-06 パナソニック株式会社 Battery short-circuit inspection method
JP4557829B2 (en) * 2005-07-22 2010-10-06 古河電池株式会社 Inspection method of lead acid battery
DE102014017902A1 (en) * 2014-12-04 2016-06-09 Li-Tec Battery Gmbh Method for checking the function of an individual electrical cell
JP7218684B2 (en) * 2019-07-11 2023-02-07 トヨタ自動車株式会社 Electric storage device inspection method and manufacturing method
KR20210077512A (en) 2019-12-17 2021-06-25 주식회사 엘지에너지솔루션 Battery cell for internal short circuit evaluation and internal short circuit evaluation method of the battery cell

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100465654C (en) * 2006-09-15 2009-03-04 天津力神电池股份有限公司 Method for detecting short circuit of non-aqueous electrolyte secondary batteries
EP3812778A1 (en) * 2019-10-22 2021-04-28 Samsung Electronics Co., Ltd. Method and apparatus with battery state estimation
US11293988B2 (en) 2019-10-22 2022-04-05 Samsung Electronics Co., Ltd. Method and apparatus with battery state estimation
US11982714B2 (en) 2019-10-22 2024-05-14 Samsung Electronics Co., Ltd. Method and apparatus with battery state estimation

Also Published As

Publication number Publication date
JPH1140210A (en) 1999-02-12

Similar Documents

Publication Publication Date Title
JP7111235B2 (en) Lithium-ion battery evaluation method, lithium-ion battery manufacturing method, and test system
JP5050999B2 (en) Test method for battery and electrode
KR100405873B1 (en) Laser Sealed Battery
US20050277021A1 (en) Electrochemical element
JP2012084346A (en) Method for producing lithium ion secondary battery
JP2012138192A (en) Method of manufacturing battery module and battery module
JP2009145137A (en) Inspection method of secondary battery
JP2009252459A (en) Alkali storage battery inspecting method
US7239147B2 (en) Method and device for inspecting secondary battery precursor and method for manufacturing secondary battery using the inspection method
JP3196071B2 (en) Short-circuit inspection method for alkaline secondary batteries
JP3915151B2 (en) Battery pack manufacturing method
JP4887581B2 (en) Battery inspection method and inspection apparatus
JP4233073B2 (en) Non-aqueous electrolyte battery defect sorting method
JP2004132776A (en) Inspection method of battery
JP4313625B2 (en) Secondary battery manufacturing method and secondary battery precursor inspection apparatus
JPH11297367A (en) Short-circuit inspecting method and short-circuit inspecting device for electrode group of battery
JP2000195565A (en) Inspection method of secondary battery
JP3183139B2 (en) Short-circuit detection method for cylindrical batteries
JP3704656B2 (en) Method for reducing the short-circuit failure rate of alkaline storage batteries
Brodd On the Internal Resistance of Dry Cells: A New Pulse Method
CN220961726U (en) Capacitor dv/dt test circuit based on gas discharge tube
JP3875129B2 (en) Secondary battery charging method and apparatus
CN110518299B (en) Battery management system
JP3033153B2 (en) Battery charging control method
JP2004234896A (en) Inspection method of secondary battery

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090608

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100608

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100608

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110608

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120608

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120608

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130608

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees