JP2004132776A - Inspection method of battery - Google Patents

Inspection method of battery Download PDF

Info

Publication number
JP2004132776A
JP2004132776A JP2002296238A JP2002296238A JP2004132776A JP 2004132776 A JP2004132776 A JP 2004132776A JP 2002296238 A JP2002296238 A JP 2002296238A JP 2002296238 A JP2002296238 A JP 2002296238A JP 2004132776 A JP2004132776 A JP 2004132776A
Authority
JP
Japan
Prior art keywords
battery
terminal voltage
aging
defective
inspection method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002296238A
Other languages
Japanese (ja)
Other versions
JP4048905B2 (en
Inventor
Takashi Yokoyama
横山 敬士
Yasuhiro Saito
斉藤 康博
Yasushi Kigoshi
木越 康司
Taro Izumitani
泉谷 太朗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2002296238A priority Critical patent/JP4048905B2/en
Publication of JP2004132776A publication Critical patent/JP2004132776A/en
Application granted granted Critical
Publication of JP4048905B2 publication Critical patent/JP4048905B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/52Testing for short-circuits, leakage current or ground faults

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Tests Of Electric Status Of Batteries (AREA)
  • Secondary Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an inspection method of a battery capable of discriminating and accurately ejecting a defective products caused by a micro-short-circuit, concerning the inspection method of the battery for determining the quality by a terminal voltage difference ▵V between a terminal voltage V1 before aging of the battery and a terminal voltage V2 after aging. <P>SOLUTION: In this inspection method, a reference value ΔVB determined by assuming the terminal voltage drop quantity of a defective battery having an internal micro-short-circuit is set relative to the mean value ΔVA of the terminal voltage difference ΔV, and a battery having smaller ΔV than the value of ΔVA-ΔVB is determined to be a defective product. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、電池の検査方法に関し、特に二次電池の微小短絡に起因する不良を判定して排出する電池の検査方法に関する。
【0002】
【従来の技術】
近年、携帯電話、携帯情報端末等の携帯電子機器の性能は、搭載される半導体素子、電子回路だけでなく、充放電可能な二次電池の性能に大きく依存しており、搭載される二次電池の容量アップと共に、軽量・コンパクト化も同時に実現することが望まれている。これらの要望に応える二次電池として、ニッケルカドミウム蓄電池の約2倍のエネルギー密度を有するニッケル水素蓄電池が開発され、次いで、これを上回るリチウムイオン電池が開発され、使用機器の用途に応じて使い分けされている。
【0003】
これらの電池は、正極板と負極板とをセパレータを介して渦巻状に巻回や積層した極板群を電池缶に収容し、電解液を注液し、かしめ封口やレーザー封口することによって作製されている。
【0004】
このようにして作製した電池の中に混在する不良電池を識別して排出するための検査方法としては、所定のエージング時間を経過した後、一定の母数から抜き取った電池の開回路電圧、閉回路電圧、内部抵抗などの電気特性を測定して、その電気特性分布から統計的手法を用い、平均値と標準偏差値σを算出し、前記電池特性分布から外れている電池を不良電池と識別して排出する方法を採用していた。
【0005】
したがって、検査する電池の中に不良電池が混在しないように、平均値と標準偏差値から算出される検査基準を厳しくしたり、エージング時間を長くしたりして精度を高める必要があった。
【0006】
また、電池は放電状態でエージングした場合の方が充電状態でエージングした場合より、エージング前後における電気特性値の差が大きくなるので、放電状態でエージングしていた。
【0007】
しかしながら、このような方法では、統計的に合理性を十分持っているが、生産ロットの大きさやロット間バラツキなどから、不良電池を良品電池の中に混入させないように平均値と標準偏差値σから計算される検査基準を厳しくすると、不良品と識別して排出した電池中には多くの良品電池が含まれていることになる。
【0008】
また、エージング期間を長くすると、電池をエージングする設備の確保や仕掛り在庫を持つことになり好ましくない。
【0009】
そして、放電状態でエージングすると、特に負極に炭素材料を用いたリチウム二次電池の場合、充電時に負極が膨張して正負極間の極間距離が狭くなり、微小短絡していても、放電状態や充電深度が低い場合には微小短絡が解消されているため、このような本来不良であるべき電池を排出することができない。逆に、充電最大電圧よりも高い充電状態でエージングする方法が開示されており(例えば、特許文献1)、検査精度は向上するが、安全機構が誤動作して電池を不良品にしてしまう危険性があり好ましくない。
【0010】
そこで、電池のエージング前後の端子電圧を2回測定し、その端子電圧差から良否判定する検査方法として、エージング前後の端子電圧の変化量を全数測定し、変化量がある一定基準以上の電池を不良と判定する検査方法や平均値と標準偏差値σを算出して検査精度を高め、電池の良否判定を行う検査方法が開示されている(例えば、特許文献2〜4参照)。
【0011】
しかしながら、これらの方法は端子電圧測定時の環境温度による誤差や電池材料・工程等のロット間変動による誤差が大きく、特に充電状態では放電状態と比較して端子電圧の変化量が小さいため、検査精度が低く、排出中に良品が含まれたり、良品中に不良品が含まれる為、信頼性が十分ではなかった。
【0012】
そして、平均値と標準偏差値σから検査基準を設定する方法の場合、例えば平均値±3σで検査すると約0.3%が不良品と識別されて排出され、良品電池が含まれていることに変わりない。
【0013】
【特許文献1】
特開平5−343101号公報
【特許文献2】
特開平11−250929号公報
【特許文献3】
特開2001−228224号公報
【特許文献4】
特開2001−266956号公報
【0014】
【発明が解決しようとする課題】
本発明はこのような電池の検査方法の課題を解決し、環境温度等の影響を受けず微小短絡に起因する不良を識別して精度良く排出する電池の検査方法を提供することを目的とする。
【0015】
【課題を解決するための手段】
上記の目的を達成するための本発明の電池の検査方法は、電池のエージング前の端子電圧V1とエージング後の端子電圧V2との端子電圧差ΔVにより良否判定を行う電池の検査方法において、ΔVの平均値ΔVAに対して、微小内部短絡した不良電池の短絡による端子電圧降下量を想定した基準値ΔVBを設定し、ΔVA−ΔVBの値より小さいΔVの電池を不良品と判定することを特徴とする電池の検査方法であり、前記エージング前の充電深度が70%〜100%であることが好ましく、前記端子電圧差は充電設備単位毎に求めた端子電圧差であることが好ましい。
【0016】
【発明の実施の形態】
本発明は、正極板と負極板とをセパレータを介して渦巻状に巻回や積層した極板群を電池缶に収容し、電解液を注液し、かしめ封口やレーザー封口することによって作製した電池を初期充電した後、図1に示す本発明の電池の検査方法の流れを示す図に基づいて行う。
【0017】
まず、検査する電池のロット単位毎に、エージング前端子電圧V1を測定して記録する。次に、所定の時間エージングした後に、エージング後端子電圧V2を測定し、エージング前後における端子電圧差ΔV(V2−V1)を算出して記録し、全数について実施する。全数の端子電圧差ΔVの平均値ΔVAを算出して記録する。さらに、不良電池を想定した基準値ΔVBを設定し、ΔVA−ΔVBの値より小さいΔVの電池を不良品と識別して排出する電池の検査方法である。
【0018】
ΔVAは良品電池の端子電圧変化量を想定しており、端子電圧測定時の環境温度や各種ロット間バラツキにより変動する。ΔVBは微小内部短絡した電池の端子電圧降下量を想定しており、これは測定時の環境温度の影響を受けない一定の基準値である。
【0019】
この不良電池を想定した基準値ΔVBとしては、良品電池と微小内部短絡した不良電池のそれぞれのエージング前の端子電圧、エージング後の時間経過毎の端子電圧から、(不良電池のΔV)−(良品電池のΔV)により微小短絡の降下量を算出しておき、前記基準値ΔVBとする。端子電圧のΔVB値は常に負の値であり、上記ΔVA−ΔVBの計算式においては、絶対値として用いる。
【0020】
前記検査方法は、特に充電時に極板が膨張して正負極間の極間距離が狭くなり、微小短絡に至る場合が想定される負極に炭素材料を用いたリチウム二次電池の場合に有効な検査方法であり、エージング前の充電深度が70%〜100%になるように充電する。充電深度が70%未満の場合には、極板の膨張がほどんどなく、微小短絡が解消されているため本来不良であるべき電池を排出することができない。逆に充電深度が100%を超える場合には、正負極間の極間距離が狭くなり、検査精度は向上するが、安全機構が誤動作して電池を不良品にしてしまう危険性があり好ましくない。
【0021】
ところで、充電深度を70%〜100%になるまで充電するときの電流値としては0.02ItA〜0.2ItAの範囲が好ましく、多段階的に電流値を下げることにより充電深度の精度をより高めることができる。電流値が大きすぎると、ロット内のV1値のばらつきが無視できなくなり、電流値が小さすぎると充電時間が長くなり好ましくない。
【0022】
検査をするロット単位としては、通常その日の生産数量である数千個から数十万個単位であるが、充放電設備の置かれている環境、検査するまでの時間差によって端子電圧が微妙に異なり、充電深度70%〜100%にてエージングした場合のエージングの前後における端子電圧差に無視できない影響を与えるので、充放電設備単位のロットで検査することが好ましく、この場合約100個〜200個単位となる。
【0023】
端子電圧差ΔVの平均値ΔVAとしては、測定したロットの全数の中央値を用いるか、上下一定数をカットして残数の平均値を算出して用いることができる。
【0024】
エージングの温度と期間としては、特に限定されず、一定温度で行っても良いが、電池特性を安定させるための第1エージングと端子電圧V1、V2を測定する第2エージングから構成するのがより好ましい。
【0025】
第1エージングの温度が低い場合や時間が短い場合には、電池特性を安定化させる効果が少なく、温度が高い場合や期間が長い場合には電池が劣化するので好ましくない。したがって、第1エージングの条件としては、45℃〜60℃の温度で、2日〜1週間の期間が好ましい。
【0026】
また、第2エージングの期間が短い場合には端子電圧差ΔVが小さくなり検査精度が悪く、期間が長い場合には電池をエージングする設備の確保や仕掛り在庫を持つことになり、温度が高い場合にはΔVのバラツキが大きくなるので好ましくない。したがって、第2エージングの条件としては、15℃〜30℃の温度で、2日〜2週間の期間が好ましい。
【0027】
【実施例】
以下、実施例および比較例を用いて詳細に説明するが、これらは、本発明を具現化した一例であって、本発明の技術的範囲を限定するものではない。
【0028】
(実施例1)
正極活物質としてコバルト酸リチウムを用いた正極板と負極活物質としてリチウムを吸蔵、放出可能な鱗片状黒鉛を用いた負極板とを微多孔性ポリエチレン樹脂の両側に微多孔性ポリプロピレン樹脂からなる三層セパレータを介して絶縁した状態で渦巻状に巻回した極板群を電池ケースに収容し、非水電解液を所定量注入した後、封口板をかしめ封口することによって、電池の直径18.0mm、総高65.0mmで電池容量2000mAhの円筒形リチウムイオン二次電池を作製し、個々の電池を識別できるように電池の種類、作製日、充放電設備番号、シリアル番号をインクジェットにて電池の側面に印刷した。
【0029】
このようにして得られた電池を充放電設備番号1の充放電設備に100個セットし、端子電圧が3.97Vに達するまで電池容量の0.1ItA(200mA)の定電流で充電することにより、充電深度70%の電池を得た後、60±3℃の環境下で2日間第1エージングを行った。
【0030】
次に、図1に示す電池の検査方法を用いて検査を行った。すなわち、20±5℃の環境下で、第2エージング前の端子電圧V1を測定して記録し、2日間の第2エージングを行った後の端子電圧V2を測定して記録した。100個の第2エージング前後の端子電圧差ΔV(V2−V1)を算出し、その中央値を平均値ΔVAとした。
【0031】
同様にして、充放電設備番号2〜10の充放電設備に100個づつセットした端子電圧差ΔVの平均値ΔVAを算出した。
【0032】
不良電池を想定した基準値(ΔVB)は、あらかじめ算出しておいた2日間エージングした場合の端子電圧の降下量を基準値(ΔVB)とした。
【0033】
このようにして得られたΔVA、ΔVBを用いて、(ΔVA)−(ΔVB)により算出される値より小さいΔVの電池を不良品と判定する検査を行ったときの母数1000個当たりの排出率、排出中に含まれる良品率、良品中に含まれる不良率の結果を表1に示す。
【0034】
なお、排出中に含まれる良品率は、さらに20±5℃で3週間エージングしたときに、有意差検定により良品と有意差がないものとし、良品中に含まれる不良率は、同様にさらに20±5℃で3週間エージングしたときに、有意差検定により良品と有意差があるものとした。
【0035】
【表1】

Figure 2004132776
【0036】
(実施例2)
実施例1と同様にして得られた電池を充放電設備番号1の充放電設備に100個セットし、充電電流が電池容量の0.2ItA(400mA)の最大電流で端子電圧が4.20Vに達するまで充電した後、0.05ItA(100mA)に減衰するまで4.20V定電圧充電することにより、充電深度100%の電池を得た。
【0037】
次に、第1エージングを行わずに、15℃〜20℃の環境下で、端子電圧V1を測定して記録し、15℃〜30℃の環境下で2週間の第2エージングを行った後、25℃〜30℃の環境下で端子電圧V2を測定して記録した。100個の第2エージング前後の端子電圧差ΔV(V2−V1)を算出し、上下10個をカットし、残り80個の平均値を平均値ΔVAとした。
【0038】
同様にして、充放電設備番号2〜10の充放電設備に100個づつセットした端子電圧差ΔVの平均値ΔVAを算出した以外は、実施例1と同様にして検査を行ったときの排出率、排出中に含まれる良品率、良品中に含まれる不良率の結果を表1に示す。
【0039】
(実施例3)
実施例1と同様にして得られた電池を充放電設備番号1〜10の充放電設備にそれぞれ100個づつセットし、端子電圧が3.97Vに達するまで電池容量の0.1ItA(200mA)の定電流で充電することにより、充電深度70%の電池を得た後、45±3℃の環境下で7日間第1エージングを行った。
【0040】
次に、20±5℃の環境下で、第2エージング前の端子電圧V1を測定して記録し、5日間のエージングを行った後の端子電圧V2を測定して記録した。
【0041】
充放電設備番号1〜10にセットした合計1000個の第2エージング前後の端子電圧差ΔV(V2−V1)を算出し、その中央値を平均値ΔVAとした以外は、実施例1と同様にして検査を行ったときの排出率、排出中に含まれる良品率、良品中に含まれる不良率の結果を表1に示す。
【0042】
(実施例4)
実施例2と同様にして、充電深度100%の電池を得た後、45±3℃の環境下で3日間第1エージングを行った。
【0043】
次に、20±5℃の環境下で、V1測定、5日間の第2エージング、V2測定を行った以外は実施例2と同様にして、電池の検査を行ったときの排出率、排出中に含まれる良品率、良品中に含まれる不良率の結果を表1に示す。
【0044】
(実施例5)
端子電圧が3.90Vに達するまで電池容量の0.02ItA(40mA)の定電流で充電することにより、充電深度60%の電池を得た以外は、実施例4と同様にして、電池の検査を行ったときの排出率、排出中に含まれる良品率、良品中に含まれる不良率の結果を表1に示す。
【0045】
(比較例1)
実施例1と同様にして得られた電池を充放電設備番号1〜10の充放電設備にそれぞれ100個づつセットし、端子電圧が3.97Vに達するまで電池容量の0.1ItA(200mA)の定電流で充電することにより、充電深度70%の電池を得た後、45±3℃の環境下で7日間第1エージングを行った。
【0046】
次に、図2に示す電池の検査方法を用いて検査を行った。すなわち、20±3℃の環境下で、第2エージング前の端子電圧V1を測定して記録し、5日間の第2エージングを行った後の端子電圧V2を測定して記録した。充放電設備番号1〜10にセットした合計1000個の第2エージング前後の端子電圧差ΔV(V2−V1)を算出し、その平均値ΔVAと標準偏差σを算出し、ΔVA±3σの検査基準にて検査を行った以外は、実施例1と同様にして検査を行ったときの排出率、排出中に含まれる良品率、良品中に含まれる不良率の結果を表1に示す。
【0047】
(比較例2)
実施例2と同様にして得られた電池を充放電設備番号1〜10の充放電設備にそれぞれ100個づつセットし、充電深度100%の電池を得た後、45±3℃の環境下で7日間第1エージングを行い、20±3℃の環境下で、V1測定、5日間の第2エージング、V2測定を行った以外は比較例1と同様にして、端子電圧差ΔVの平均値ΔVAと標準偏差σを算出し、ΔVA±3σの検査基準にて検査を行ったときの排出率、排出中に含まれる良品率、良品中に含まれる不良率の結果を表1に示す。
【0048】
(比較例3)
比較例1と同様にして得られた電池を充放電設備番号1〜10の充放電設備にそれぞれ100個づつセットし、端子電圧が3.90Vに達するまで電池容量の0.1ItA(200mA)の定電流で充電することにより、充電深度60%の電池を得た以外は、比較例1と同様に第1エージング、V1測定、第2エージング、V2測定を行って、端子電圧差ΔVの平均値ΔVAと標準偏差σを算出し、ΔVA±3σの検査基準にて検査を行ったときの排出率、排出中に含まれる良品率、良品中に含まれる不良率の結果を表1に示す。
【0049】
(比較例4)
比較例1と同様にして得られた電池を充放電設備番号1〜10の充放電設備にそれぞれ100個づつセットし、端子電圧が4.35Vに達するまで電池容量の0.2ItA(400mA)の最大電流で充電することにより、充電深度115%の電池を得た以外は、比較例1と同様に第1エージング、V1測定、第2エージング、V2測定を行って、端子電圧差ΔVの平均値ΔVAと標準偏差σを算出し、ΔVA±3σの検査基準にて検査を行ったときの排出率、排出中に含まれる良品率、良品中に含まれる不良率の結果を表1に示す。
【0050】
(比較例5)
比較例1と同様にして得られた電池を充放電設備番号1〜10の充放電設備にそれぞれ100個づつセットし、充電深度70%の電池を得た後、45±3℃の環境下で7日間第1エージングを行った後、図3に示す電池の検査方法を用いて検査を行った。
【0051】
すなわち、20±5℃の環境下で、第2エージング前の端子電圧V1を測定して記録し、5日間のエージングを行った後の端子電圧V2を測定して記録し、充放電設備番号1〜10にセットした合計1000個の第2エージング前後の端子電圧差ΔV(V2−V1)を算出する方法は比較例1と同様であるが、端子電圧差ΔVの平均値ΔVAを算出する方法ではなく、良品電池と不良電池の電圧降下を加味してあらかじめ算出した基準値ΔVCを−1.14mVに設定し、ΔVがこのΔVCより小さい電池を不良として識別した以外は比較例1と同様にして検査を行ったときの排出率、排出中に含まれる良品率、良品中に含まれる不良率の結果を表1に示す。
【0052】
表1から明らかなように、実施例1〜実施例5と比較例1〜比較例5の比較から、電池のエージング前の端子電圧V1とエージング後の端子電圧V2との端子電圧差ΔVの平均値ΔVAに対して、不良電池を想定した基準値ΔVBを設定し、ΔVA−ΔVBの値より小さいΔVの電池を不良品と判定する本発明の検査方法は、従来の平均値ΔVAと標準偏差σを用いた検査方法や平均値ΔVAを算出する方法でなくΔVの降下量が一定基準以上の電池を不良として識別する検査方法と比較して、不良品として排出した電池中に含まれる良品率を大幅に低減でき、精度良く微小短絡に起因する不良を排出できる電池の検査方法であることがわかった。
【0053】
尚、実施例2の場合、ΔVAがプラスの値になったのは、V1、V2測定時の環境温度の影響を受けた為である。
【0054】
また、比較例5の誤排出率が高い理由は、端子電圧測定時の環境温度影響を受けない本実施例と異なり、V1,V2測定時の温度差による測定誤差のためと推測できる。温度差が全くない環境下(例えば20±0℃)であれば改善されると考えられるが、現実的ではない。温度補正する方法もあるが、この場合、補正の誤差が生じるので、検査精度が低く、信頼性が低いことがわかった。
【0055】
また、エージング前の充電深度を70%〜100%に設定し、極板を膨張させた状態でエージングすることにより、極板の膨張が少なく本来不良であるべき電池を排出できないといった課題や極板が膨張しすぎて安全機構が誤動作して電池を不良品にしてしまう危険性がなく、より精度良く微小短絡に起因する不良を排出できることもわかった。
【0056】
そして、実施例1と実施例3の比較から充放電設備後毎に検査することにより、さらに微小短絡に起因する不良を識別して精度良く排出できることもわかった。
【0057】
【発明の効果】
以上のように、本発明の電池の検査方法によれば微小短絡に起因する不良を識別して精度良く排出できる。
【図面の簡単な説明】
【図1】本発明の電池の検査方法の流れを示す図
【図2】従来の電池の検査方法の流れを示す図
【図3】別の従来の電池の検査方法の流れを示す図[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a battery inspection method, and more particularly, to a battery inspection method for determining and discharging a defect caused by a minute short circuit of a secondary battery.
[0002]
[Prior art]
In recent years, the performance of portable electronic devices such as mobile phones and personal digital assistants largely depends on the performance of rechargeable rechargeable batteries as well as the semiconductor elements and electronic circuits to be mounted. It is desired that the battery be light and compact at the same time as the capacity of the battery is increased. As a secondary battery that meets these demands, a nickel-metal hydride storage battery with approximately twice the energy density of a nickel-cadmium storage battery has been developed, and then a lithium-ion battery that exceeds this has been developed, and can be used according to the application of the equipment used. ing.
[0003]
These batteries are manufactured by storing a group of electrode plates, in which a positive electrode plate and a negative electrode plate are spirally wound or laminated via a separator, in a battery can, injecting electrolyte, and swaging and laser sealing. Have been.
[0004]
As an inspection method for identifying and discharging defective batteries mixed in the batteries manufactured in this way, after a predetermined aging time has elapsed, the open circuit voltage of the batteries extracted from a certain parameter, the closed Measures electrical characteristics such as circuit voltage and internal resistance, calculates the average value and standard deviation σ from the electrical characteristic distribution using a statistical method, and identifies a battery that is out of the battery characteristic distribution as a defective battery. And then discharge it.
[0005]
Therefore, in order to prevent defective batteries from being mixed in the batteries to be inspected, it is necessary to increase the accuracy by strictly increasing the inspection standard calculated from the average value and the standard deviation value and by lengthening the aging time.
[0006]
Further, the difference in electrical characteristic values before and after aging is larger in the battery when aged in the discharged state than in the charged state, and therefore the battery was aged in the discharged state.
[0007]
However, with such a method, although reasonably statistically sufficient, the average value and the standard deviation σ are set so that defective batteries are not mixed into non-defective batteries due to the size of production lots and variations between lots. If the inspection standard calculated from the above is made strict, a large number of non-defective batteries are included in the batteries that are discriminated as defective and discharged.
[0008]
Further, if the aging period is lengthened, it is not preferable because the equipment for aging the batteries is secured and the in-process stock is held.
[0009]
When the battery is aged in the discharge state, especially in the case of a lithium secondary battery using a carbon material for the negative electrode, the negative electrode expands during charging and the distance between the positive and negative electrodes becomes narrower. When the charging depth is low, the minute short circuit is eliminated, and thus the battery which should be originally defective cannot be discharged. Conversely, a method is disclosed in which aging is performed in a state of charge higher than the maximum charge voltage (for example, Patent Document 1), which improves the inspection accuracy, but may cause a malfunction of the safety mechanism to make the battery defective. Is not preferred.
[0010]
Therefore, the terminal voltage before and after aging of the battery is measured twice, and as a test method for judging pass / fail from the terminal voltage difference, the amount of change in the terminal voltage before and after aging is completely measured, and a battery having a change amount exceeding a certain reference is measured. An inspection method for judging a failure and an inspection method for calculating an average value and a standard deviation value σ to increase the inspection accuracy and determine the quality of a battery are disclosed (for example, see Patent Documents 2 to 4).
[0011]
However, these methods have large errors due to environmental temperature when measuring terminal voltage and variations due to lot-to-lot fluctuations in battery materials and processes, and particularly, the amount of change in terminal voltage in the charged state is smaller than that in the discharged state. The reliability was not sufficient because the accuracy was low and non-defective products were included in the discharged products or defective products were included in the non-defective products.
[0012]
In the case of a method of setting an inspection standard from the average value and the standard deviation value σ, for example, when the inspection is performed at an average value of ± 3σ, about 0.3% is identified as a defective product and discharged, and a non-defective battery is included. Does not change to
[0013]
[Patent Document 1]
JP-A-5-343101 [Patent Document 2]
JP-A-11-250929 [Patent Document 3]
JP 2001-228224 A [Patent Document 4]
JP 2001-266956 A
[Problems to be solved by the invention]
An object of the present invention is to solve the problem of such a battery inspection method, and to provide a battery inspection method that accurately identifies and discharges a defect caused by a minute short circuit without being affected by environmental temperature or the like. .
[0015]
[Means for Solving the Problems]
In order to achieve the above object, the battery inspection method of the present invention is a battery inspection method for making a pass / fail judgment based on a terminal voltage difference ΔV between a terminal voltage V1 before aging of a battery and a terminal voltage V2 after aging. The average value ΔVA is set to a reference value ΔVB assuming an amount of terminal voltage drop due to a short-circuit of a defective battery short-circuited internally, and a battery having a ΔV smaller than the value of ΔVA−ΔVB is determined as a defective product. It is preferable that the depth of charge before the aging is 70% to 100%, and the terminal voltage difference is a terminal voltage difference obtained for each charging facility unit.
[0016]
BEST MODE FOR CARRYING OUT THE INVENTION
The present invention was manufactured by accommodating a group of electrode plates obtained by spirally winding or laminating a positive electrode plate and a negative electrode plate via a separator in a battery can, injecting an electrolytic solution, and caulking or laser sealing. After the battery is initially charged, the procedure is carried out based on the diagram showing the flow of the battery inspection method of the present invention shown in FIG.
[0017]
First, the terminal voltage V1 before aging is measured and recorded for each lot of the battery to be inspected. Next, after aging for a predetermined time, the terminal voltage V2 after aging is measured, and the terminal voltage difference ΔV (V2−V1) before and after aging is calculated and recorded, and the operation is performed for all the terminals. The average value ΔVA of all the terminal voltage differences ΔV is calculated and recorded. Further, this is a battery inspection method in which a reference value ΔVB assuming a defective battery is set, and a battery having a ΔV smaller than the value of ΔVA−ΔVB is identified as a defective product and discharged.
[0018]
ΔVA is assumed to be the amount of change in terminal voltage of a non-defective battery, and fluctuates depending on the environmental temperature at the time of measuring the terminal voltage and variations among various lots. ΔVB is assumed to be a terminal voltage drop amount of the battery having a minute internal short circuit, and is a constant reference value which is not affected by the environmental temperature at the time of measurement.
[0019]
The reference value ΔVB assuming this defective battery is obtained from the terminal voltage before aging of the non-defective battery and the defective battery having a micro-internal short-circuit, and the terminal voltage at each passage of time after aging. The drop amount of the minute short circuit is calculated based on (ΔV) of the battery, and is set as the reference value ΔVB. The ΔVB value of the terminal voltage is always a negative value, and is used as an absolute value in the above-described equation of ΔVA−ΔVB.
[0020]
The inspection method is particularly effective in the case of a lithium secondary battery using a carbon material for the negative electrode, in which the electrode plate expands during charging, the distance between the positive electrode and the negative electrode is reduced, and a short circuit is expected to occur. This is an inspection method, and charging is performed so that the charging depth before aging becomes 70% to 100%. When the charge depth is less than 70%, the electrode plate does not expand substantially, and the minute short circuit is eliminated, so that the battery which should be defective cannot be discharged. On the other hand, when the charging depth exceeds 100%, the distance between the positive and negative electrodes is reduced, and the inspection accuracy is improved. However, there is a risk that the safety mechanism may malfunction and the battery may be defective, which is not preferable. .
[0021]
By the way, the current value when charging until the charging depth reaches 70% to 100% is preferably in the range of 0.02 ItA to 0.2 ItA, and the accuracy of the charging depth is further improved by decreasing the current value in multiple steps. be able to. If the current value is too large, the variation in the V1 value within a lot cannot be ignored, and if the current value is too small, the charging time is undesirably long.
[0022]
Inspection lot units are usually thousands to hundreds of thousands of units, which is the production quantity of the day, but the terminal voltage slightly varies depending on the environment where the charge / discharge equipment is placed and the time difference until inspection. In the case of aging at a charging depth of 70% to 100%, the terminal voltage difference before and after aging is not negligibly affected. Therefore, it is preferable to perform inspection in lots of charge / discharge equipment units, and in this case, about 100 to 200 pieces Unit.
[0023]
As the average value ΔVA of the terminal voltage difference ΔV, the median value of all the measured lots can be used, or the average value of the remaining number can be calculated by cutting a certain number of upper and lower portions.
[0024]
The aging temperature and period are not particularly limited, and the aging may be performed at a constant temperature. However, it is preferable that the aging is performed by first aging for stabilizing battery characteristics and second aging for measuring terminal voltages V1 and V2. preferable.
[0025]
If the first aging temperature is low or the time is short, the effect of stabilizing the battery characteristics is small, and if the temperature is high or the period is long, the battery deteriorates, which is not preferable. Therefore, the first aging condition is preferably a temperature of 45C to 60C and a period of 2 days to 1 week.
[0026]
If the period of the second aging is short, the terminal voltage difference ΔV becomes small and the inspection accuracy is poor. If the period is long, the equipment for aging the batteries and the in-process inventory are required, and the temperature is high. In this case, the variation of ΔV is undesirably large. Therefore, as the second aging condition, a period of 2 days to 2 weeks at a temperature of 15 ° C to 30 ° C is preferable.
[0027]
【Example】
Hereinafter, the present invention will be described in detail with reference to Examples and Comparative Examples, but these are merely examples embodying the present invention, and do not limit the technical scope of the present invention.
[0028]
(Example 1)
A positive electrode plate using lithium cobalt oxide as a positive electrode active material and a negative electrode plate using flaky graphite capable of occluding and releasing lithium as a negative electrode active material are formed of a microporous polyethylene resin on both sides of a microporous polyethylene resin. The electrode plate group spirally wound in a state of being insulated through the layer separator is housed in a battery case, a predetermined amount of a non-aqueous electrolyte is injected, and a sealing plate is swaged to seal the battery. A cylindrical lithium ion secondary battery with a battery capacity of 2000 mAh and a total height of 65.0 mm and a height of 65.0 mm was prepared. Printed on the side.
[0029]
100 batteries thus obtained were set in the charging / discharging facility of charging / discharging facility number 1, and charged at a constant current of 0.1 ItA (200 mA) of the battery capacity until the terminal voltage reached 3.97 V. After a battery having a 70% charge depth was obtained, the first aging was performed in an environment of 60 ± 3 ° C. for 2 days.
[0030]
Next, an inspection was performed using the battery inspection method shown in FIG. That is, the terminal voltage V1 before the second aging was measured and recorded in an environment of 20 ± 5 ° C., and the terminal voltage V2 after the second aging was performed for two days was measured and recorded. The terminal voltage differences ΔV (V2−V1) before and after the 100 second aging were calculated, and the median value was defined as the average value ΔVA.
[0031]
Similarly, the average value ΔVA of the terminal voltage difference ΔV set for each of the 100 charge / discharge facilities of the charge / discharge facility numbers 2 to 10 was calculated.
[0032]
As the reference value (ΔVB) assuming a defective battery, the amount of decrease in terminal voltage after aging for two days calculated in advance was set as the reference value (ΔVB).
[0033]
Using ΔVA and ΔVB obtained in this way, the discharge per 1,000 parameters when a battery with ΔV smaller than the value calculated by (ΔVA) − (ΔVB) is inspected as defective. Table 1 shows the results of the percentage, the percentage of non-defective products contained in the discharge, and the percentage of defective products contained in non-defective products.
[0034]
The non-defective rate contained in the discharge was determined to be no significant difference from the non-defective item by a significant difference test when further aged at 20 ± 5 ° C. for 3 weeks. When aged at ± 5 ° C. for 3 weeks, it was determined that there was a significant difference from a good product by a significant difference test.
[0035]
[Table 1]
Figure 2004132776
[0036]
(Example 2)
100 batteries obtained in the same manner as in Example 1 were set in the charging / discharging facility of charging / discharging facility number 1, and the charging current was the maximum current of 0.2 ItA (400 mA) of the battery capacity, and the terminal voltage was 4.20 V. After the battery was charged until the battery reached a low voltage, the battery was charged at a constant voltage of 4.20 V until the battery voltage attenuated to 0.05 ItA (100 mA), thereby obtaining a battery having a 100% charge depth.
[0037]
Next, without performing the first aging, the terminal voltage V1 is measured and recorded in an environment of 15 ° C. to 20 ° C., and the second aging is performed in an environment of 15 ° C. to 30 ° C. for 2 weeks. The terminal voltage V2 was measured and recorded in an environment of 25 ° C to 30 ° C. The terminal voltage difference ΔV (V2−V1) before and after the 100 second aging was calculated, the upper and lower 10 were cut, and the average value of the remaining 80 was set as the average value ΔVA.
[0038]
Similarly, the discharge rate when the inspection was performed in the same manner as in Example 1 except that the average value ΔVA of the terminal voltage difference ΔV set for each of the charge and discharge facilities of charge and discharge facility numbers 2 to 10 was calculated. Table 1 shows the results of the non-defective rate included in the discharge and the defective rate included in the non-defective article.
[0039]
(Example 3)
100 batteries each obtained in the same manner as in Example 1 were set in each of the charge / discharge facilities of charge / discharge facility numbers 1 to 10, and the battery capacity was 0.1 ItA (200 mA) until the terminal voltage reached 3.97 V. After charging at a constant current to obtain a battery having a charge depth of 70%, the first aging was performed for 7 days in an environment of 45 ± 3 ° C.
[0040]
Next, in an environment of 20 ± 5 ° C., the terminal voltage V1 before the second aging was measured and recorded, and the terminal voltage V2 after aging for 5 days was measured and recorded.
[0041]
In the same manner as in Example 1 except that a total of 1000 terminal voltage differences ΔV (V2−V1) before and after the second aging set in the charge / discharge facility numbers 1 to 10 were calculated and the median value was set to an average value ΔVA. Table 1 shows the results of the discharge rate, the non-defective rate included in the discharge, and the defective rate included in the non-defective test when the inspection was performed.
[0042]
(Example 4)
In the same manner as in Example 2, after a battery having a charge depth of 100% was obtained, first aging was performed for 3 days in an environment of 45 ± 3 ° C.
[0043]
Next, in the same manner as in Example 2 except that the V1 measurement, the second aging for 5 days, and the V2 measurement were performed in an environment of 20 ± 5 ° C., the discharge rate when the battery was inspected, Table 1 shows the results of the non-defective rate included in the non-defective product and the defective rate included in the non-defective product.
[0044]
(Example 5)
Inspection of the battery was performed in the same manner as in Example 4, except that the battery was charged at a constant current of 0.02 ItA (40 mA) of the battery capacity until the terminal voltage reached 3.90 V, thereby obtaining a battery having a charge depth of 60%. Table 1 shows the results of the discharge rate, the non-defective rate included in the discharge, and the defective rate included in the non-defective product.
[0045]
(Comparative Example 1)
100 batteries each obtained in the same manner as in Example 1 were set in each of the charge / discharge facilities of charge / discharge facility numbers 1 to 10, and the battery capacity was 0.1 ItA (200 mA) until the terminal voltage reached 3.97 V. After charging at a constant current to obtain a battery having a charge depth of 70%, the first aging was performed for 7 days in an environment of 45 ± 3 ° C.
[0046]
Next, an inspection was performed using the battery inspection method shown in FIG. That is, the terminal voltage V1 before the second aging was measured and recorded in an environment of 20 ± 3 ° C., and the terminal voltage V2 after the second aging was performed for 5 days was measured and recorded. A total of 1000 terminal voltage differences ΔV (V2−V1) before and after the second aging set in the charge / discharge facility numbers 1 to 10 are calculated, an average value ΔVA and a standard deviation σ are calculated, and an inspection standard of ΔVA ± 3σ is calculated. Table 1 shows the results of the discharge rate, the percentage of non-defective products included in the discharge, and the defective rate included in the non-defective products when the inspection was performed in the same manner as in Example 1 except that the inspection was performed.
[0047]
(Comparative Example 2)
100 batteries each obtained in the same manner as in Example 2 were set in each of the charge / discharge facilities of charge / discharge facility numbers 1 to 10 to obtain a battery having a charge depth of 100%, and then under an environment of 45 ± 3 ° C. The average value ΔVA of the terminal voltage difference ΔV was performed in the same manner as in Comparative Example 1 except that the first aging was performed for 7 days, the V1 measurement was performed in an environment of 20 ± 3 ° C., the second aging was performed for 5 days, and the V2 measurement was performed. Table 1 shows the results of the discharge rate, the rate of non-defective products included in the discharge, and the defective rate included in the non-defective products when the inspection is performed according to the inspection standard of ΔVA ± 3σ.
[0048]
(Comparative Example 3)
100 batteries each obtained in the same manner as in Comparative Example 1 were set in each of the charge / discharge facilities of charge / discharge facility numbers 1 to 10, and the battery capacity was 0.1 ItA (200 mA) until the terminal voltage reached 3.90 V. The first aging, the V1 measurement, the second aging, and the V2 measurement were performed in the same manner as in Comparative Example 1 except that a battery having a charge depth of 60% was obtained by charging at a constant current, and the average value of the terminal voltage difference ΔV was obtained. Table 1 shows the results of the discharge rate, the non-defective rate included in the discharge, and the defective rate included in the non-defective product when ΔVA and the standard deviation σ were calculated and the inspection was performed according to the inspection standard of ΔVA ± 3σ.
[0049]
(Comparative Example 4)
100 batteries each obtained in the same manner as in Comparative Example 1 were set in each of the charge / discharge facilities of charge / discharge facility numbers 1 to 10, and the battery capacity was 0.2 ItA (400 mA) until the terminal voltage reached 4.35 V. The first aging, the V1 measurement, the second aging, and the V2 measurement were performed in the same manner as in Comparative Example 1 except that a battery having a charge depth of 115% was obtained by charging at the maximum current, and the average value of the terminal voltage difference ΔV was obtained. Table 1 shows the results of the discharge rate, the non-defective rate included in the discharge, and the defective rate included in the non-defective product when ΔVA and the standard deviation σ were calculated and the inspection was performed according to the inspection standard of ΔVA ± 3σ.
[0050]
(Comparative Example 5)
100 batteries each obtained in the same manner as in Comparative Example 1 were set in each of the charge / discharge facilities of charge / discharge facility numbers 1 to 10 to obtain a battery having a charge depth of 70%. After the first aging for 7 days, the battery was inspected using the battery inspection method shown in FIG.
[0051]
That is, in an environment of 20 ± 5 ° C., the terminal voltage V1 before the second aging is measured and recorded, and the terminal voltage V2 after aging for 5 days is measured and recorded. The method for calculating a total of 1000 terminal voltage differences ΔV (V2−V1) before and after the second aging set to 10 to 10 is the same as in Comparative Example 1, but the method for calculating the average value ΔVA of the terminal voltage differences ΔV is In the same manner as in Comparative Example 1, except that the reference value ΔVC calculated in advance in consideration of the voltage drop between the non-defective battery and the defective battery was set to −1.14 mV, and a battery having ΔV smaller than ΔVC was identified as defective. Table 1 shows the results of the discharge rate, the non-defective rate included in the discharge, and the defective rate included in the non-defective test.
[0052]
As is clear from Table 1, from the comparison between Examples 1 to 5 and Comparative Examples 1 to 5, the average of the terminal voltage difference ΔV between the terminal voltage V1 before aging of the battery and the terminal voltage V2 after aging of the battery. For the value ΔVA, a reference value ΔVB assuming a defective battery is set, and the battery of ΔV smaller than the value of ΔVA−ΔVB is determined to be defective. The inspection method of the present invention employs the conventional average value ΔVA and standard deviation σ Is not a method of calculating the average value ΔVA or a method of calculating the average value ΔVA, but comparing the inspection method of identifying a battery in which the amount of decrease of ΔV is equal to or more than a certain reference as a defect, and calculating a non-defective rate included in the battery discharged as a defective product. It has been found that this is a battery inspection method that can greatly reduce the defect caused by a minute short circuit with high accuracy.
[0053]
In the case of the second embodiment, the reason why ΔVA takes a positive value is that it is affected by the environmental temperature at the time of measuring V1 and V2.
[0054]
The reason why the erroneous discharge rate of Comparative Example 5 is high can be presumed to be due to a measurement error due to a temperature difference between V1 and V2 measurements, unlike the present embodiment which is not affected by the environmental temperature when measuring the terminal voltage. In an environment where there is no temperature difference (for example, 20 ± 0 ° C.), it is considered to be improved, but it is not realistic. There is also a method of correcting the temperature, but in this case, since a correction error occurs, it has been found that the inspection accuracy is low and the reliability is low.
[0055]
Further, by setting the depth of charge before aging to 70% to 100% and performing aging while the electrode plate is expanded, there is a problem that the electrode plate is less expanded and a battery that should be defective cannot be discharged. It was also found that there was no danger that the battery would become defective due to the safety mechanism malfunctioning due to excessive expansion of the battery.
[0056]
From a comparison between Example 1 and Example 3, it was also found that by performing an inspection after each charge / discharge facility, a defect caused by a minute short circuit could be further identified and discharged accurately.
[0057]
【The invention's effect】
As described above, according to the battery inspection method of the present invention, a defect caused by a minute short circuit can be identified and discharged accurately.
[Brief description of the drawings]
FIG. 1 is a diagram showing a flow of a battery inspection method of the present invention; FIG. 2 is a diagram showing a flow of a conventional battery inspection method; FIG. 3 is a diagram showing a flow of another conventional battery inspection method;

Claims (3)

電池のエージング前の端子電圧V1とエージング後の端子電圧V2との端子電圧差ΔVにより良否判定を行う電池の検査方法において、検査のロット単位毎に変動するΔVの平均値ΔVAに対して、微小内部短絡した不良電池の端子電圧降下量を想定した基準値ΔVBを絶対値として設定し、ΔVA−ΔVBの値より小さいΔVの電池を不良品と判定することを特徴とする電池の検査方法。In a battery inspection method in which a pass / fail judgment is made based on a terminal voltage difference ΔV between a terminal voltage V1 before aging of a battery and a terminal voltage V2 after aging, an average value ΔVA of ΔV that fluctuates for each inspection lot unit is small. A battery inspection method, wherein a reference value ΔVB assuming a terminal voltage drop amount of a defective battery having an internal short circuit is set as an absolute value, and a battery having a ΔV smaller than a value of ΔVA−ΔVB is determined as a defective product. 前記エージング前の充電深度が70%〜100%であることを特徴とする請求項1に記載の電池の検査方法。The battery inspection method according to claim 1, wherein the charge depth before the aging is 70% to 100%. 前記検査のロット単位が充電設備単位毎であることを特徴とする請求項1に記載の電池の検査方法。2. The battery inspection method according to claim 1, wherein a lot unit of the inspection is a charging facility unit.
JP2002296238A 2002-10-09 2002-10-09 Battery inspection method Expired - Fee Related JP4048905B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002296238A JP4048905B2 (en) 2002-10-09 2002-10-09 Battery inspection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002296238A JP4048905B2 (en) 2002-10-09 2002-10-09 Battery inspection method

Publications (2)

Publication Number Publication Date
JP2004132776A true JP2004132776A (en) 2004-04-30
JP4048905B2 JP4048905B2 (en) 2008-02-20

Family

ID=32286271

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002296238A Expired - Fee Related JP4048905B2 (en) 2002-10-09 2002-10-09 Battery inspection method

Country Status (1)

Country Link
JP (1) JP4048905B2 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004288515A (en) * 2003-03-24 2004-10-14 Matsushita Electric Ind Co Ltd Inspection method of cylinder-shaped battery
JP2009004389A (en) * 2008-10-02 2009-01-08 Panasonic Corp Inspection method of battery
KR100974765B1 (en) * 2008-08-05 2010-08-06 현대자동차주식회사 Method of detecting defective battery cell for HEV
JP2011018482A (en) * 2009-07-07 2011-01-27 Toyota Motor Corp Inspection method of battery
JP2013190292A (en) * 2012-03-13 2013-09-26 Toyota Motor Corp Device and method for inspecting batteries
JP2014143164A (en) * 2012-12-27 2014-08-07 Automotive Energy Supply Corp Method and device for checking secondary battery
JP2014154441A (en) * 2013-02-12 2014-08-25 Toyota Motor Corp Method for inspecting nonaqueous electrolyte secondary battery
JP2014216134A (en) * 2013-04-24 2014-11-17 トヨタ自動車株式会社 Method of measuring battery
JP2015087372A (en) * 2013-09-27 2015-05-07 トヨタ自動車株式会社 Secondary battery inspection method and secondary battery inspection device
JP2015088311A (en) * 2013-10-30 2015-05-07 トヨタ自動車株式会社 Manufacturing method for secondary battery
US9157964B2 (en) 2009-09-24 2015-10-13 Toyota Jidosha Kabushiki Kaisha Method for producing secondary battery
JP2016021301A (en) * 2014-07-14 2016-02-04 トヨタ自動車株式会社 Method for manufacturing nonaqueous secondary battery
JP2016192278A (en) * 2015-03-31 2016-11-10 トヨタ自動車株式会社 Inspection method of secondary battery
KR101779245B1 (en) 2014-06-17 2017-09-26 주식회사 엘지화학 System for checking a fail in a secondary battery and method thereof
KR101802002B1 (en) 2013-10-30 2017-11-27 주식회사 엘지화학 System for early checking a fail rate by low voltage in a secondary battery and method thereof
US10473725B2 (en) 2018-04-03 2019-11-12 Lg Chem, Ltd. Method and system for calculating low voltage expression level of a secondary battery
CN112014739A (en) * 2020-07-14 2020-12-01 安徽汉马锂电科技有限公司 Detection device for series lithium battery pack

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5961785A (en) * 1982-09-02 1984-04-09 ポラロイド・コ−ポレ−シヨン Method and device for inspecting and sorting battery of pro-duction lot
JPS6171378A (en) * 1984-09-17 1986-04-12 Toshiba Corp Quality judging and inspection of article in process of continuous production
JPH11102729A (en) * 1997-09-26 1999-04-13 Toray Ind Inc Manufacture of nonaqueous solvent type secondary battery
JPH11250929A (en) * 1998-03-03 1999-09-17 Fuji Photo Film Co Ltd Manufacture of lithium secondary battery
JP2001228224A (en) * 2000-02-17 2001-08-24 Nec Mobile Energy Kk Inferiority selection method of non-aqueous electrolyte battery
JP2001266956A (en) * 2000-03-17 2001-09-28 Matsushita Electric Ind Co Ltd Delivery test method of battery

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5961785A (en) * 1982-09-02 1984-04-09 ポラロイド・コ−ポレ−シヨン Method and device for inspecting and sorting battery of pro-duction lot
JPS6171378A (en) * 1984-09-17 1986-04-12 Toshiba Corp Quality judging and inspection of article in process of continuous production
JPH11102729A (en) * 1997-09-26 1999-04-13 Toray Ind Inc Manufacture of nonaqueous solvent type secondary battery
JPH11250929A (en) * 1998-03-03 1999-09-17 Fuji Photo Film Co Ltd Manufacture of lithium secondary battery
JP2001228224A (en) * 2000-02-17 2001-08-24 Nec Mobile Energy Kk Inferiority selection method of non-aqueous electrolyte battery
JP2001266956A (en) * 2000-03-17 2001-09-28 Matsushita Electric Ind Co Ltd Delivery test method of battery

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4529364B2 (en) * 2003-03-24 2010-08-25 パナソニック株式会社 Cylindrical battery inspection method
JP2004288515A (en) * 2003-03-24 2004-10-14 Matsushita Electric Ind Co Ltd Inspection method of cylinder-shaped battery
KR100974765B1 (en) * 2008-08-05 2010-08-06 현대자동차주식회사 Method of detecting defective battery cell for HEV
JP2009004389A (en) * 2008-10-02 2009-01-08 Panasonic Corp Inspection method of battery
JP2011018482A (en) * 2009-07-07 2011-01-27 Toyota Motor Corp Inspection method of battery
US9157964B2 (en) 2009-09-24 2015-10-13 Toyota Jidosha Kabushiki Kaisha Method for producing secondary battery
JP2013190292A (en) * 2012-03-13 2013-09-26 Toyota Motor Corp Device and method for inspecting batteries
JP2014143164A (en) * 2012-12-27 2014-08-07 Automotive Energy Supply Corp Method and device for checking secondary battery
JP2014154441A (en) * 2013-02-12 2014-08-25 Toyota Motor Corp Method for inspecting nonaqueous electrolyte secondary battery
JP2014216134A (en) * 2013-04-24 2014-11-17 トヨタ自動車株式会社 Method of measuring battery
JP2015087372A (en) * 2013-09-27 2015-05-07 トヨタ自動車株式会社 Secondary battery inspection method and secondary battery inspection device
JP2015088311A (en) * 2013-10-30 2015-05-07 トヨタ自動車株式会社 Manufacturing method for secondary battery
KR101802002B1 (en) 2013-10-30 2017-11-27 주식회사 엘지화학 System for early checking a fail rate by low voltage in a secondary battery and method thereof
KR101779245B1 (en) 2014-06-17 2017-09-26 주식회사 엘지화학 System for checking a fail in a secondary battery and method thereof
JP2016021301A (en) * 2014-07-14 2016-02-04 トヨタ自動車株式会社 Method for manufacturing nonaqueous secondary battery
JP2016192278A (en) * 2015-03-31 2016-11-10 トヨタ自動車株式会社 Inspection method of secondary battery
US10473725B2 (en) 2018-04-03 2019-11-12 Lg Chem, Ltd. Method and system for calculating low voltage expression level of a secondary battery
CN112014739A (en) * 2020-07-14 2020-12-01 安徽汉马锂电科技有限公司 Detection device for series lithium battery pack

Also Published As

Publication number Publication date
JP4048905B2 (en) 2008-02-20

Similar Documents

Publication Publication Date Title
JP5172579B2 (en) Cylindrical battery inspection method
JP4529364B2 (en) Cylindrical battery inspection method
JP4048905B2 (en) Battery inspection method
CN108160531B (en) Battery self-discharge sorting method
CN102590623B (en) Secondary battery tester, secondary battery testing method, and manufacturing method of secondary battery
CN107768761B (en) Method for manufacturing battery pack
US20210208208A1 (en) Method and system for detecting internal short-circuit (isc) in batteries and battery cells implementing such isc detection method
US7239147B2 (en) Method and device for inspecting secondary battery precursor and method for manufacturing secondary battery using the inspection method
JP2018156759A (en) State determination method of secondary cell and state determination device of secondary cell
JP4233073B2 (en) Non-aqueous electrolyte battery defect sorting method
Williard et al. Reliability and failure analysis of Lithium Ion batteries for electronic systems
WO2019034869A1 (en) Maturation processes for electric batteries
JP7074731B2 (en) Inspection method of power storage device and manufacturing method of power storage device
CN113447838A (en) Lithium battery self-discharge detection method and device
KR102029230B1 (en) Apparatus and methof for determining of battery health
US20230402666A1 (en) Abnormality detection method, abnormality detection device, energy storage apparatus, and computer program
JP2005251538A (en) Inspection method and device of secondary cell
US20180031637A1 (en) Battery testing device and method thereof
JP2964745B2 (en) Inspection methods for sealed lead-acid batteries
JPH1140210A (en) Method for inspecting short-circuit of alkaline secondary battery
JP2017126539A (en) Method for manufacturing secondary battery
CN117406112B (en) Battery self-discharge screening method
US20240103096A1 (en) Method for inspecting a power storage device, method for manufacturing a power storage device, and method for manufacturing a device stack
US20240103095A1 (en) Method for inspecting a power storage device for short circuit, method for manufacturing the power storate device, and method for manufacturing a connected restrained-device module
US11480627B2 (en) Method for determining micro short circuit of lithium ion secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051005

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20051114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070705

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070710

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070831

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071119

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101207

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101207

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111207

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111207

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121207

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121207

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131207

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131207

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141207

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees