JP2014154441A - Method for inspecting nonaqueous electrolyte secondary battery - Google Patents

Method for inspecting nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
JP2014154441A
JP2014154441A JP2013024736A JP2013024736A JP2014154441A JP 2014154441 A JP2014154441 A JP 2014154441A JP 2013024736 A JP2013024736 A JP 2013024736A JP 2013024736 A JP2013024736 A JP 2013024736A JP 2014154441 A JP2014154441 A JP 2014154441A
Authority
JP
Japan
Prior art keywords
secondary battery
electrolyte secondary
nonaqueous electrolyte
self
discharge amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013024736A
Other languages
Japanese (ja)
Other versions
JP6032485B2 (en
Inventor
Takayuki Nakayama
孝之 中山
Akio Mizuguchi
暁夫 水口
Yasuaki Otsuki
康明 大槻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2013024736A priority Critical patent/JP6032485B2/en
Publication of JP2014154441A publication Critical patent/JP2014154441A/en
Application granted granted Critical
Publication of JP6032485B2 publication Critical patent/JP6032485B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To provide a method for inspecting nonaqueous electrolyte secondary batteries, in which the time required for inspecting presence/absence of a fine short-circuit can be shortened by further achieving optimization of classification conditions of lots to be inspected.SOLUTION: A method for inspecting nonaqueous electrolyte secondary batteries includes a step of measuring characteristic values (battery voltages V1, V2 and cell temperatures T1, T2) of nonaqueous electrolyte secondary batteries, before and after a normal temperature aging step (STEP-3). The nonaqueous electrolyte secondary batteries are grouped on the basis of the measured characteristic values (on the basis of a self discharge amount ΔV calculated from the battery voltages V1, V2 and the cell temperatures T1, T2) to form lots to be inspected, and presence/absence of an internal short-circuit in each nonaqueous electrolyte secondary battery is inspected for each lot to be inspected on the basis of the self discharge amount ΔV.

Description

本発明は、非水電解質二次電池の検査方法の技術に関し、より詳しくは、電池内部における微小短絡等の不具合を精度よく検査するための技術に関する。   The present invention relates to a technique for an inspection method for a nonaqueous electrolyte secondary battery, and more particularly to a technique for accurately inspecting a defect such as a micro short circuit inside the battery.

従来、非水電解質二次電池において、電池内部における微小短絡の有無を検査するための技術が種々検討されており、例えば、以下に示す特許文献1にその技術が開示され公知となっている。   Conventionally, various techniques for inspecting the presence or absence of a micro short-circuit in a non-aqueous electrolyte secondary battery have been studied. For example, the technique is disclosed in Patent Document 1 shown below and is publicly known.

特許文献1に開示されている従来技術では、検査対象たる複数の非水電解質二次電池における、製造ロットが同じものをまとめて検査対象ロットを形成し、検査対象ロットごとに自己放電量(電圧降下量とも呼ぶ)のバラツキを検査することによって、検査精度の向上を図っている。   In the prior art disclosed in Patent Document 1, a plurality of non-aqueous electrolyte secondary batteries to be inspected together have the same production lot to form an inspection target lot, and the self-discharge amount (voltage) for each inspection target lot. Inspection accuracy is improved by inspecting variation in the amount of descent).

特開2011−18482号公報JP 2011-18482 A

しかしながら、特許文献1に開示されている従来技術のように、製造ロットで検査対象ロットのグルーピングを行うだけでは、電池特性の共通する非水電解質二次電池を括りきれていないと考えられ、検査精度を向上するためには依然として多くの自己放電時間を要し、内部短絡の有無の検査に要する時間の更なる短縮を図る余地が残されている状況であった。   However, as in the prior art disclosed in Patent Document 1, it is considered that non-aqueous electrolyte secondary batteries having common battery characteristics cannot be bundled simply by grouping inspection target lots in production lots. In order to improve the accuracy, a lot of self-discharge time is still required, and there is still room for further shortening of the time required for the inspection for the presence of internal short circuit.

本発明は、斯かる現状の課題を鑑みてなされたものであり、検査対象ロットの層別条件の更なる最適化を図って、検査精度を向上しつつ内部短絡の有無の検査に要する時間の短縮を可能にする非水電解質二次電池の検査方法を提供することを目的としている。   The present invention has been made in view of such a current problem, and further optimizes the stratification conditions of the lot to be inspected to improve the inspection accuracy and reduce the time required for inspection for the presence of internal short circuits. It aims at providing the inspection method of the nonaqueous electrolyte secondary battery which enables shortening.

本発明の解決しようとする課題は以上の如くであり、次にこの課題を解決するための手段を説明する。   The problem to be solved by the present invention is as described above. Next, means for solving the problem will be described.

即ち、請求項1においては、非水電解質二次電池を所定の温度で所定の時間放置するエージング工程の前後において、前記非水電解質二次電池の電池電圧を測定して、前記エージング工程における前記非水電解質二次電池の自己放電量を算出し、前記自己放電量に基づいて前記非水電解質二次電池における内部短絡の有無を検査する非水電解質二次電池の検査方法であって、前記エージング工程の前後において、前記非水電解質二次電池の特性値を測定する工程を備え、測定した前記特性値に基づき前記非水電解質二次電池をグルーピングして検査対象ロットを生成し、前記検査対象ロットごとに、前記自己放電量に基づいて前記非水電解質二次電池における内部短絡の有無を検査するものである。   That is, in claim 1, before and after the aging step of leaving the nonaqueous electrolyte secondary battery at a predetermined temperature for a predetermined time, the battery voltage of the nonaqueous electrolyte secondary battery is measured, and the aging step in the aging step is performed. A non-aqueous electrolyte secondary battery inspection method for calculating a self-discharge amount of a non-aqueous electrolyte secondary battery and inspecting the presence or absence of an internal short circuit in the non-aqueous electrolyte secondary battery based on the self-discharge amount, Before and after the aging process, comprising a step of measuring the characteristic value of the non-aqueous electrolyte secondary battery, grouping the non-aqueous electrolyte secondary battery based on the measured characteristic value to generate a lot to be inspected, and the inspection For each target lot, the presence or absence of an internal short circuit in the nonaqueous electrolyte secondary battery is inspected based on the self-discharge amount.

請求項2においては、前記特性値は、前記非水電解質二次電池のセル温度とするものである。   In the present invention, the characteristic value is a cell temperature of the non-aqueous electrolyte secondary battery.

請求項3においては、前記特性値は、前記非水電解質二次電池の電池電圧とするものである。   In the present invention, the characteristic value is a battery voltage of the non-aqueous electrolyte secondary battery.

本発明の効果として、以下に示すような効果を奏する。   As effects of the present invention, the following effects can be obtained.

請求項1から請求項3においては、内部短絡の有無を判定するための比較要素となる自己放電量のバラツキを従来に比して小さく抑えることが可能になり、検査精度を向上しつつ内部短絡の有無の判定に要する時間を短縮することができる。   According to the first to third aspects, it is possible to suppress the variation of the self-discharge amount as a comparison factor for determining the presence or absence of the internal short circuit as compared with the conventional case, and the internal short circuit while improving the inspection accuracy. It is possible to reduce the time required to determine whether or not there is any.

本発明に係る検査方法の適用対象たる非水電解質二次電池を示す図、(a)非水電解質二次電池を構成するセルを示す斜視模式図、(b)非水電解質二次電池の斜視模式図。The figure which shows the nonaqueous electrolyte secondary battery which is the application object of the test | inspection method which concerns on this invention, (a) The perspective schematic diagram which shows the cell which comprises a nonaqueous electrolyte secondary battery, (b) The perspective view of a nonaqueous electrolyte secondary battery Pattern diagram. 非水電解質二次電池の製造工程の流れの概略を示すフロー図。The flowchart which shows the outline of the flow of the manufacturing process of a nonaqueous electrolyte secondary battery. 本発明の第一の実施形態に係る非水電解質二次電池の検査方法の流れを示すフロー図。The flowchart which shows the flow of the test | inspection method of the nonaqueous electrolyte secondary battery which concerns on 1st embodiment of this invention. 本発明の第一の実施形態に係る非水電解質二次電池の検査方法における内部短絡の有無の判断に要する時間の説明図。Explanatory drawing of the time required for the judgment of the presence or absence of the internal short circuit in the test | inspection method of the nonaqueous electrolyte secondary battery which concerns on 1st embodiment of this invention. 本発明の第二の実施形態に係る非水電解質二次電池の検査方法の流れを示すフロー図。The flowchart which shows the flow of the test | inspection method of the nonaqueous electrolyte secondary battery which concerns on 2nd embodiment of this invention. 本発明の第二の実施形態に係る非水電解質二次電池の検査方法の説明図、(a)層別条件の説明図、(b)内部短絡の有無の判断に要する時間の説明図。Explanatory drawing of the test | inspection method of the nonaqueous electrolyte secondary battery which concerns on 2nd embodiment of this invention, (a) Explanatory drawing of conditions according to a layer, (b) Explanatory drawing of the time required for judgment of the presence or absence of an internal short circuit. 従来の非水電解質二次電池の検査方法の流れを示すフロー図。The flowchart which shows the flow of the test | inspection method of the conventional nonaqueous electrolyte secondary battery. 従来の非水電解質二次電池の検査方法における内部短絡の有無の判断に要する時間の説明図。Explanatory drawing of the time required for judgment of the presence or absence of the internal short circuit in the test | inspection method of the conventional nonaqueous electrolyte secondary battery.

次に、発明の実施の形態を説明する。
まず始めに、本発明の一実施形態に係る検査方法の適用態様たる非水電解質二次電池の全体構成について、図1を用いて説明をする。
尚、以下の説明では、非水電解質二次電池のことを、単に二次電池と呼ぶものとする。
Next, embodiments of the invention will be described.
First, an overall configuration of a nonaqueous electrolyte secondary battery, which is an application mode of an inspection method according to an embodiment of the present invention, will be described with reference to FIG.
In the following description, the nonaqueous electrolyte secondary battery is simply referred to as a secondary battery.

図1に示す如く、本発明に係る検査方法の適用対象となる二次電池10を構成するセル1は、一面(上面)が開口した有底角筒形状のケース本体21と、平板状に形成されケース本体21の開口部を閉塞する蓋体22とで構成される電池ケース2に、電解液とともに電極体3を収容して構成されている。   As shown in FIG. 1, a cell 1 constituting a secondary battery 10 to which an inspection method according to the present invention is applied includes a bottomed rectangular tube-shaped case body 21 having one surface (upper surface) opened, and a flat plate shape. In addition, the battery case 2 including the lid body 22 that closes the opening of the case main body 21 is configured to accommodate the electrode body 3 together with the electrolytic solution.

電池ケース2は、一面(上面)が開口した直方体状の有底角筒形状に形成されるケース本体21の開口部を、平板状の蓋体22にて閉塞した角型ケースに構成されている。
蓋体22の長手方向一端部(図1における左端部)には正極端子4aが設けられ、蓋体22の長手方向他端部(図1における右端部)には負極端子4bが設けられている。
The battery case 2 is configured as a rectangular case in which an opening of a case body 21 formed in a rectangular parallelepiped bottomed rectangular tube shape with one surface (upper surface) opened is closed with a flat lid body 22. .
A positive electrode terminal 4a is provided at one end in the longitudinal direction of the lid 22 (left end in FIG. 1), and a negative electrode terminal 4b is provided at the other longitudinal end of the lid 22 (right end in FIG. 1). .

電極体3は、正極31、負極32、およびセパレータ33を、正極31と負極32との間にセパレータ33が介在するように積層し、積層した正極31、負極32、およびセパレータ33を巻回して扁平させることにより構成されている。   The electrode body 3 is formed by laminating a positive electrode 31, a negative electrode 32, and a separator 33 such that the separator 33 is interposed between the positive electrode 31 and the negative electrode 32, and winding the laminated positive electrode 31, negative electrode 32, and separator 33. It is configured by flattening.

電池ケース2に電極体3および電解液を収容してセル1を構成する際には、まず電極体3の正極31および負極32に、それぞれ蓋体22の正極端子4aおよび負極端子4bを接続して、電極体3を蓋体22に組み付けて、蓋体サブアッシーを形成する。
その後、電極体3および電解液をケース本体21内に収容するとともに、ケース本体21の開口部に蓋体22を嵌合して、蓋体22とケース本体21とを溶接により密封する(即ち、封口する)ことにより、セル1を構成する。
When the cell body 1 is configured by accommodating the electrode body 3 and the electrolyte in the battery case 2, first, the positive electrode terminal 4 a and the negative electrode terminal 4 b of the lid body 22 are respectively connected to the positive electrode 31 and the negative electrode 32 of the electrode body 3. Then, the electrode body 3 is assembled to the lid body 22 to form a lid body sub-assembly.
Thereafter, the electrode body 3 and the electrolytic solution are accommodated in the case body 21, the lid body 22 is fitted into the opening of the case body 21, and the lid body 22 and the case body 21 are sealed by welding (ie, The cell 1 is configured by sealing).

そして、本発明の一実施形態に係る検査方法の適用態様たる二次電池10は、複数のセル1・1・・・を厚さ方向に積層するとともに、バスバー(図示せず)によって、各セル1・1・・・を、電気的に直列接続することによって構成される。   And the secondary battery 10 which is the application aspect of the test | inspection method which concerns on one Embodiment of this invention laminates | stacks several cell 1 * ... in a thickness direction, and each cell by a bus bar (not shown). 1 ···· are electrically connected in series.

次に、二次電池の初充電から出荷までの概略手順について、図1および図2を用いて説明をする。
電極体3を収容した電池ケース2に電解液を注入し、封口した状態のセル1・1・・・からなる二次電池10(図1(a)(b)参照)に対して、図2に示すように、まず初充電(コンデショニング)を行う(STEP−1)。
次に、初充電が行われた後の時点における二次電池10の電圧V1を測定する(STEP−2)。
尚、電圧V1の測定を行う前に、初充電後の二次電池10を所定の高温雰囲気中に一定期間放置する(所謂高温エージングを行う)構成であってもよい。
Next, a schematic procedure from the initial charge to the shipment of the secondary battery will be described with reference to FIGS.
In contrast to the secondary battery 10 (see FIGS. 1A and 1B) in which the electrolyte is injected into the battery case 2 containing the electrode body 3 and sealed, the cells 1. As shown in FIG. 1, first, charging (conditioning) is performed (STEP-1).
Next, the voltage V1 of the secondary battery 10 at the time after the initial charging is performed is measured (STEP-2).
Note that the secondary battery 10 after the initial charge may be left in a predetermined high temperature atmosphere for a certain period (so-called high temperature aging) before measuring the voltage V1.

次に、二次電池10を常温で一定期間放置することによって、常温エージングを行う(STEP−3)。
尚、ここでいう「常温」とは、25℃程度の温度である。
Next, room temperature aging is performed by leaving the secondary battery 10 at room temperature for a certain period (STEP-3).
Here, “normal temperature” is a temperature of about 25 ° C.

次に、常温エージングが完了した時点における二次電池10の電圧V2を測定する(STEP−4)。
そして二次電池10は、内部短絡の有無の確認(STEP−5)、電気容量の確認(STEP−6)、内部抵抗値の確認(STEP−7)等を行った後に、出荷される。
Next, the voltage V2 of the secondary battery 10 at the time when normal temperature aging is completed is measured (STEP-4).
The secondary battery 10 is shipped after confirmation of the presence or absence of internal short circuit (STEP-5), confirmation of electric capacity (STEP-6), confirmation of internal resistance value (STEP-7), and the like.

本発明の一実施形態に係る二次電池10の検査方法では、内部短絡の有無の確認(STEP−5)における良品・不良品の判定は、電圧V1と電圧V2との電圧差(=V1−V2)である自己放電量ΔVに基づいて判定を行う構成としている。
そして、本発明の一実施形態に係る検査方法では、自己放電量ΔVに基づいて判定を行うための検査ロットを形成するために用いる層別条件に特徴を有している。
In the inspection method for the secondary battery 10 according to the embodiment of the present invention, the non-defective product / defective product determination in the confirmation of the presence or absence of the internal short circuit (STEP-5) is the voltage difference between the voltage V1 and the voltage V2 (= V1− The determination is made based on the self-discharge amount ΔV which is V2).
The inspection method according to an embodiment of the present invention is characterized by stratification conditions used for forming an inspection lot for making a determination based on the self-discharge amount ΔV.

次に、本発明の一実施形態に係る二次電池の検査方法について、図3〜図8を用いて説明をする。   Next, a method for inspecting a secondary battery according to an embodiment of the present invention will be described with reference to FIGS.

ここではまず、本発明の第一の実施形態に係る二次電池の検査方法について説明をする。
図7に示す如く、従来の二次電池の検査方法では、微小短絡の有無の判定(STEP−5)における検査対象ロットを生成するための層別条件として、二次電池の製造ロットを採用する構成としている(STEP−5−31)。
そして、製造ロットを層別条件として生成した検査対象ロットごとに、微小短絡の有無を判定する構成としている(STEP−5−32)。
First, the secondary battery inspection method according to the first embodiment of the present invention will be described.
As shown in FIG. 7, in the conventional secondary battery inspection method, the secondary battery production lot is adopted as the stratification condition for generating the inspection target lot in the determination of the presence or absence of micro short-circuit (STEP-5). It is configured (STEP-5-31).
And it is set as the structure which determines the presence or absence of a micro short circuit for every inspection object lot which produced | generated the production lot as the stratification condition (STEP-5-32).

一方、図3に示す如く、本発明の第一の実施形態に係る二次電池の検査方法では、微小短絡の有無の判定(STEP−5)を行うための検査対象ロットを生成するための層別条件として、二次電池の自己放電量ΔVを採用する構成としている(STEP−5−11)。   On the other hand, as shown in FIG. 3, in the secondary battery inspection method according to the first embodiment of the present invention, a layer for generating a lot to be inspected for determining whether or not there is a micro short circuit (STEP-5). As another condition, the self-discharge amount ΔV of the secondary battery is adopted (STEP-5-11).

尚、二次電池は複数のセルからなるものであり、二次電池が複数の拘束治具を備えている場合には、その拘束治具単位で自己放電量ΔVを算出する構成とする。   Note that the secondary battery is composed of a plurality of cells, and when the secondary battery includes a plurality of restraining jigs, the self-discharge amount ΔV is calculated in units of the restraining jigs.

そして、二次電池の自己放電量ΔVを層別条件として生成した検査対象ロットごとに、微小短絡の有無を判定する構成としている(STEP−5−12)。   And it is set as the structure which determines the presence or absence of a micro short circuit for every inspection object lot produced | generated as the stratification conditions by the self-discharge amount (DELTA) V of a secondary battery (STEP-5-12).

また、本発明の第一の実施形態に係る二次電池の検査方法では、常温エージング(STEP−3)において、二次電池のセル温度を基準温度±3℃の範囲内に維持する構成としている。   Moreover, in the inspection method of the secondary battery which concerns on 1st embodiment of this invention, it is set as the structure which maintains the cell temperature of a secondary battery in the range of standard temperature +/- 3 degreeC in normal temperature aging (STEP-3). .

ここで、二次電池の自己放電量ΔVを層別条件とした検査対象ロットの生成例について、説明をする。
まず、検査対象たる各二次電池の自己放電量ΔVの平均値、および自己放電量ΔVの正規分布における標準偏差σを算出する。
そして、各二次電池の自己放電量ΔVの平均値に対して、±3σの範囲に収まっている各二次電池によって、検査対象ロットを算出する構成としている。
尚、本実施形態では、複数の二次電池の自己放電量ΔVの平均値に対する、正規分布における±3σの範囲内のもので括って、検査対象ロットを生成する構成を例示しているが、複数の二次電池の自己放電量ΔVのメジアンからの離れ度合いが所定の範囲内であるもので括って、検査対象ロットを生成する構成としてもよい。
Here, an example of generating a lot to be inspected using the self-discharge amount ΔV of the secondary battery as the stratification condition will be described.
First, the average value of the self-discharge amount ΔV of each secondary battery to be inspected and the standard deviation σ in the normal distribution of the self-discharge amount ΔV are calculated.
And it is set as the structure which calculates inspection object lot with each secondary battery which has settled in the range of +/- 3 (sigma) with respect to the average value of self-discharge amount (DELTA) V of each secondary battery.
In the present embodiment, the configuration in which the inspection target lot is generated by wrapping the average value of the self-discharge amount ΔV of the plurality of secondary batteries within the range of ± 3σ in the normal distribution is illustrated. A configuration may be adopted in which a lot to be inspected is generated by enclosing the self-discharge amount ΔV of the plurality of secondary batteries from the median within a predetermined range.

そして、自己放電量ΔVの平均値に対して、正規分布における±3σの範囲内に収まっているもので括って、二次電池の検査対象ロットを生成し、検査対象ロットごとに自己放電量ΔVを比較することによって、微小短絡の有無を判定する構成としている。   Then, the inspection target lot of the secondary battery is generated by enclosing the average value of the self discharge amount ΔV within the range of ± 3σ in the normal distribution, and the self discharge amount ΔV for each inspection target lot. Are compared to determine the presence or absence of a micro short circuit.

ここで、二次電池の自己放電量ΔVに基づいて検査対象ロットを生成した場合の微小短絡の有無の判定状況について、図4および図8を用いて説明をする。
図8に示す如く、良品の二次電池を自己放電させた場合の自己放電結果(図8において矢印Y1で示す一群)と、内部短絡がある不良品の二次電池を自己放電させた場合の自己放電結果(図8において矢印X1で示すもの)とを比較すると、内部短絡のある二次電池の方が、自己放電量ΔVが大きくなる傾向があることが判る。
Here, with reference to FIG. 4 and FIG. 8, a description will be given of the determination status of the presence or absence of a short-circuit when the inspection target lot is generated based on the self-discharge amount ΔV of the secondary battery.
As shown in FIG. 8, a self-discharge result (a group indicated by an arrow Y1 in FIG. 8) when a non-defective secondary battery is self-discharged, and a defective secondary battery with an internal short circuit is self-discharged Comparing the self-discharge results (indicated by arrow X1 in FIG. 8), it can be seen that the secondary battery having an internal short circuit tends to have a larger self-discharge amount ΔV.

自己放電量ΔVの測定結果にはバラツキがあるため、良品における自己放電量ΔVのバラツキ(図8において矢印X2で示すもの)と不良品における自己放電量ΔVのバラツキ(図8において矢印Y2で示すもの)の乖離量を見定めるためには、二次電池の製造ロットから検査対象ロットを生成した場合には、自己放電日数が17日程度必要であった。   Since the measurement results of the self-discharge amount ΔV vary, the non-defective product self-discharge amount ΔV (shown by the arrow X2 in FIG. 8) and the non-defective product self-discharge amount ΔV (shown by the arrow Y2 in FIG. 8). In order to ascertain the amount of deviation, the self-discharge days are required to be about 17 days when the inspection target lot is generated from the manufacturing lot of the secondary battery.

一方、図4に示す如く、二次電池の自己放電量ΔVに基づいて検査対象ロットを生成した場合には、自己放電量ΔVの測定結果(図4において矢印X1、Y1で示すもの)のバラツキを抑制することができる。
そして、例えば、自己放電量ΔVの平均値に対して、正規分布における±3σの範囲にあるもので括って二次電池の検査対象ロットを生成した場合には、良品における自己放電量ΔVのバラツキ(図4において矢印X2で示すもの)と不良品における自己放電量ΔVのバラツキ(図4において矢印Y2で示すもの)の乖離量を見定めるのに必要な自己放電日数が、3日程度で済むことが確認できた。
On the other hand, as shown in FIG. 4, when the inspection target lot is generated based on the self-discharge amount ΔV of the secondary battery, the measurement results of the self-discharge amount ΔV (indicated by arrows X1 and Y1 in FIG. 4) vary. Can be suppressed.
For example, when a lot to be inspected for a secondary battery is generated by enclosing the average value of the self-discharge amount ΔV within the range of ± 3σ in the normal distribution, the variation in the self-discharge amount ΔV in the non-defective product is generated. The number of days of self-discharge required to determine the amount of deviation between what is indicated by arrow X2 in FIG. 4 and the variation in self-discharge amount ΔV (indicated by arrow Y2 in FIG. 4) between defective products is about 3 days. Was confirmed.

即ち、本発明の第一の実施形態に係る二次電池の検査方法のように、検査対象ロットを生成する層別条件を自己放電量ΔVの測定結果に基づいて定めることにより、二次電池における内部短絡の有無の検査に要する時間を、従来に比して大幅に短縮することが可能になる。   That is, as in the secondary battery inspection method according to the first embodiment of the present invention, by determining the stratification condition for generating the inspection target lot based on the measurement result of the self-discharge amount ΔV, The time required for the inspection for the presence of an internal short circuit can be greatly reduced as compared with the conventional case.

また、本発明の第一の実施形態に係る二次電池の検査方法のように、検査対象ロットを生成する層別条件を自己放電量ΔVの測定結果に基づいて定めると、自己放電量ΔV(即ち、電池電圧V1・V2)は、もともと測定している特性値であるから、測定工程を増やすことなく、検査対象ロットを生成することが可能になるため、好都合である。   Further, as in the secondary battery inspection method according to the first embodiment of the present invention, when the stratification condition for generating the inspection target lot is determined based on the measurement result of the self-discharge amount ΔV, the self-discharge amount ΔV ( That is, since the battery voltages V1 and V2) are characteristic values that are originally measured, it is possible to generate a lot to be inspected without increasing the number of measurement steps, which is advantageous.

尚、本発明の第一の実施形態に係る二次電池の検査方法のように、検査対象ロットを生成する層別条件を自己放電量ΔVの測定結果に基づいて定めるとともに、さらに層別条件として、二次電池の製造ロットを加味することによって、さらに、自己放電量ΔVのバラツキを抑制することができ、更なる検査時間の短縮が可能になる。   As in the secondary battery inspection method according to the first embodiment of the present invention, the stratification condition for generating the inspection target lot is determined based on the measurement result of the self-discharge amount ΔV, and the stratification condition is further defined. By taking into account the production lot of the secondary battery, the variation in the self-discharge amount ΔV can be further suppressed, and the inspection time can be further shortened.

即ち、本発明の第一の実施形態に係る非水電解質二次電池の検査方法は、常温エージング工程(STEP−3)の前後において、非水電解質二次電池の電池電圧V1・V2を測定して、常温エージング工程(STEP−3)における非水電解質二次電池の自己放電量ΔVを算出し、自己放電量ΔVに基づいて非水電解質二次電池における内部短絡の有無を検査するものであって、常温エージング工程(STEP−3)の前後において、非水電解質二次電池の特性値(本実施形態では、電池電圧V1・V2)を測定する工程(本実施形態では(STEP−2)および(STEP−4))を備え、測定した特性値に基づき(本実施形態では、測定した電池電圧V1・V2により算出した自己放電量ΔVに基づき)非水電解質二次電池をグルーピングして検査対象ロットを生成し、検査対象ロットごとに、自己放電量ΔVに基づいて非水電解質二次電池における内部短絡の有無を検査するものである。   That is, the inspection method of the nonaqueous electrolyte secondary battery according to the first embodiment of the present invention measures the battery voltages V1 and V2 of the nonaqueous electrolyte secondary battery before and after the room temperature aging process (STEP-3). Then, the self-discharge amount ΔV of the nonaqueous electrolyte secondary battery in the normal temperature aging process (STEP-3) is calculated, and the presence or absence of an internal short circuit in the nonaqueous electrolyte secondary battery is inspected based on the self-discharge amount ΔV. Before and after the room temperature aging step (STEP-3), the step of measuring the characteristic value of the nonaqueous electrolyte secondary battery (in this embodiment, the battery voltage V1 · V2) (in this embodiment (STEP-2)) and (STEP-4)) and grouping the nonaqueous electrolyte secondary batteries based on the measured characteristic values (in this embodiment, based on the self-discharge amount ΔV calculated by the measured battery voltages V1 and V2). An inspection target lot generated Te, for each inspection target lot is for inspecting the presence or absence of internal short circuit in the nonaqueous electrolyte secondary battery based on the self-discharge quantity [Delta] V.

また、本発明の第一の実施形態に係る非水電解質二次電池の検査方法においては、前記特性値を、非水電解質二次電池の電池電圧V1・V2とするものである。   In the inspection method for a nonaqueous electrolyte secondary battery according to the first embodiment of the present invention, the characteristic value is set to battery voltages V1 and V2 of the nonaqueous electrolyte secondary battery.

このような構成により、内部短絡の有無を判定するための比較要素となる自己放電量ΔVのバラツキを従来に比して小さく抑えることが可能になり、検査精度を向上しつつ内部短絡の有無の判定に要する時間を短縮することができる。   With such a configuration, it is possible to suppress the variation of the self-discharge amount ΔV, which is a comparison factor for determining the presence or absence of an internal short circuit, as compared with the conventional case, and the presence or absence of the internal short circuit is improved while improving the inspection accuracy. The time required for determination can be shortened.

次に、本発明の第二の実施形態に係る二次電池の検査方法について説明をする。
図5に示す如く、本発明の第二の実施形態に係る二次電池の検査方法では、微小短絡の有無の判定(STEP−5)における検査対象ロットを生成するための層別条件として、セル温度T1・T2を採用する構成としている(STEP−5−23)。
そして、セル温度T1・T2を層別条件として生成した検査対象ロットに基づいて、微小短絡の有無を判定する構成としている(STEP−5−24)。
Next, a secondary battery inspection method according to the second embodiment of the present invention will be described.
As shown in FIG. 5, in the secondary battery inspection method according to the second embodiment of the present invention, as a stratification condition for generating a lot to be inspected in the determination of the presence or absence of a micro short circuit (STEP-5), the cell It is set as the structure which employ | adopts temperature T1 * T2 (STEP-5-23).
And it is set as the structure which determines the presence or absence of a micro short circuit based on the inspection object lot produced | generated using cell temperature T1 * T2 as a stratification condition (STEP-5-24).

また、本発明の第二の実施形態に係る二次電池の検査方法では、検査対象ロットを生成するための層別条件であるセル温度T1・T2を知得するために、常温エージング(STEP−3)より前の電圧V1の測定時(STEP−2)においてセル温度T1を測定する工程(STEP−5−21)と、常温エージング(STEP−3)より後で、電圧V2の測定時(STEP−4)においてセル温度T2を測定する工程(STEP−5−22)と、を備える構成としている。   Moreover, in the secondary battery inspection method according to the second embodiment of the present invention, in order to know the cell temperatures T1 and T2 which are the stratified conditions for generating the inspection target lot, normal temperature aging (STEP-3) ) Before the measurement of the voltage V1 (STEP-2), the step of measuring the cell temperature T1 (STEP-5-21), and after the normal temperature aging (STEP-3), the measurement of the voltage V2 (STEP-) 4) measuring the cell temperature T2 (STEP-5-22).

また、本発明の第二の実施形態に係る二次電池の検査方法では、常温エージング(STEP−3)において、二次電池のセル温度を±3℃の範囲内に維持する構成としている。   Moreover, in the inspection method of the secondary battery which concerns on 2nd embodiment of this invention, it is set as the structure which maintains the cell temperature of a secondary battery in the range of +/- 3 degreeC in normal temperature aging (STEP-3).

ここで、セル温度T1・T2を層別条件とした検査対象ロットの生成例について、図4を用いて説明をする。
検査対象たる各二次電池のセル温度T1・T2の測定結果を、横軸をT1、縦軸をT2としてグラフ上に表すと、図6(a)のように表すことができる。
そして、セル温度T1・T2の値が予め定めておいた所定の範囲に該当している各電池ロットをまとめて、一つの検査対象ロットを生成する構成としている。
尚、各二次電池のセル温度T1・T2は、それぞれ各二次電池が備える複数のセルの温度の平均値を算出することにより求められる。
Here, an example of generating an inspection target lot using the cell temperatures T1 and T2 as stratification conditions will be described with reference to FIG.
If the measurement results of the cell temperatures T1 and T2 of each secondary battery to be inspected are represented on the graph with the horizontal axis as T1 and the vertical axis as T2, it can be expressed as shown in FIG.
The battery lots in which the values of the cell temperatures T1 and T2 fall within a predetermined range set in advance are collected to generate one inspection target lot.
In addition, cell temperature T1 * T2 of each secondary battery is calculated | required by calculating the average value of the temperature of the some cell with which each secondary battery is each provided.

例えば、図6(a)では、20個の二次電池に対して、セル温度T1・T2が、それぞれ±1℃の範囲内にある電池ロットを1つに括って、合計4つの検査対象ロット(検査ロット1〜4)を生成する場合を例示している。
そして、最終的にセル温度T1・T2に基づき生成した検査対象ロットごとに自己放電量ΔVを比較することによって、微小短絡の有無を判定する構成としている。
For example, in FIG. 6A, for 20 secondary batteries, a total of four lots to be inspected, with one battery lot having cell temperatures T1 and T2 in the range of ± 1 ° C. The case where (inspection lots 1 to 4) are generated is illustrated.
And it is set as the structure which determines the presence or absence of a micro short circuit by comparing self discharge amount (DELTA) V for every lot to be examined finally produced | generated based on cell temperature T1 * T2.

ここで、セル温度T1・T2に基づいて検査対象ロットを生成した場合の微小短絡の有無の判定状況について、図6(b)および図8を用いて説明をする。
図8に示す如く、従来のように、二次電池の製造ロットから検査対象ロットを生成した場合には、良品における自己放電量ΔVのバラツキ(図8において矢印Y1で示す一群)と不良品における自己放電量ΔVのバラツキ(図8において矢印X1で示すもの)の乖離量を見定めるためには、自己放電日数が17日程度必要であった。
Here, with reference to FIG. 6B and FIG. 8, description will be given of the determination status of the presence or absence of a micro short-circuit when the inspection target lot is generated based on the cell temperatures T1 and T2.
As shown in FIG. 8, when the inspection target lot is generated from the production lot of the secondary battery as in the prior art, the variation in the self-discharge amount ΔV in the non-defective product (a group indicated by the arrow Y1 in FIG. 8) and the defective product In order to determine the deviation amount of the self-discharge amount ΔV (indicated by the arrow X1 in FIG. 8), the self-discharge days are required to be about 17 days.

一方、図6(b)に示す如く、セル温度T1・T2に基づいて検査対象ロットを生成した場合には、自己放電量ΔVの測定結果(図6(b)において矢印X1、Y1で示すもの)のバラツキを抑制することができる。
そして、例えば、セル温度T1・T2が±1℃の範囲内である二次電池を括って検査対象ロットを生成した場合には、良品における自己放電量ΔVのバラツキ(図6(b)において矢印Y2で示すもの)と不良品における自己放電量ΔVのバラツキ(図6(b)において矢印X2で示すもの)の乖離量を見定めるために必要な自己放電日数が7日程度で済むことが確認できた。
On the other hand, as shown in FIG. 6B, when a lot to be inspected is generated based on the cell temperatures T1 and T2, the measurement result of the self-discharge amount ΔV (indicated by arrows X1 and Y1 in FIG. 6B) ) Can be suppressed.
For example, when a lot to be inspected is generated by covering secondary batteries whose cell temperatures T1 and T2 are within a range of ± 1 ° C., variations in the self-discharge amount ΔV among the non-defective products (arrows in FIG. 6B) It can be confirmed that the number of days of self-discharge required to determine the amount of deviation between the difference in self-discharge amount ΔV in the defective product (indicated by arrow X2 in FIG. 6B) is about 7 days. It was.

即ち、本発明の第二の実施形態に係る二次電池の検査方法のように、検査対象ロットを生成する層別条件をセル温度T1・T2の測定結果に基づいて定めることにより、二次電池における内部短絡の有無の検査に要する時間を、従来に比して大幅に短縮することが可能になる。   That is, as in the secondary battery inspection method according to the second embodiment of the present invention, the secondary battery is determined by determining the stratification conditions for generating the inspection target lot based on the measurement results of the cell temperatures T1 and T2. It is possible to significantly reduce the time required for the inspection for the presence or absence of an internal short circuit as compared with the prior art.

また、本発明の第二の実施形態に係る二次電池の検査方法では、セル温度T1・T2の測定結果に基づいて層別条件を定めているが、例えば、常温エージング中のセルの平均温度の算出値を層別条件としてもよく、算出した平均温度が所定の範囲内(例えば、±1℃以内)に収まっている各二次電池で検査対象ロットを生成する構成としてもよい。   Further, in the secondary battery inspection method according to the second embodiment of the present invention, the stratification condition is determined based on the measurement results of the cell temperatures T1 and T2. For example, the average temperature of the cells during normal temperature aging The calculated value may be used as the stratification condition, and the inspection target lot may be generated with each secondary battery whose calculated average temperature is within a predetermined range (for example, within ± 1 ° C.).

尚、本発明の第二の実施形態に係る二次電池の検査方法のように、検査対象ロットを生成する層別条件をセル温度T1・T2の測定結果に基づいて定めるとともに、さらに層別条件として、二次電池の製造ロットを加味することによって、さらに、自己放電量ΔVのバラツキを抑制することができ、更なる検査時間の短縮が可能になる。   As in the secondary battery inspection method according to the second embodiment of the present invention, the stratification condition for generating the inspection target lot is determined based on the measurement results of the cell temperatures T1 and T2, and the stratification condition is further determined. As a result, by taking into account the production lot of the secondary battery, the variation in the self-discharge amount ΔV can be further suppressed, and the inspection time can be further shortened.

即ち、本発明の第二の実施形態に係る非水電解質二次電池の検査方法は、常温エージング工程(STEP−3)の前後において、非水電解質二次電池の電池電圧V1・V2を測定して、常温エージング工程(STEP−3)における非水電解質二次電池の自己放電量ΔVを算出し、自己放電量ΔVに基づいて非水電解質二次電池における内部短絡の有無を検査するものであって、常温エージング工程(STEP−3)の前後に、非水電解質二次電池の特性値(本実施形態では、セル温度T1・T2)を測定する工程((STEP−5−21)および(STEP−5−22))を備え、測定したセル温度T1・T2に基づき非水電解質二次電池をグルーピングして検査対象ロットを生成し、検査対象ロットごとに、自己放電量ΔVに基づいて非水電解質二次電池における内部短絡の有無を検査するものである。   That is, the nonaqueous electrolyte secondary battery inspection method according to the second embodiment of the present invention measures the battery voltages V1 and V2 of the nonaqueous electrolyte secondary battery before and after the room temperature aging process (STEP-3). Then, the self-discharge amount ΔV of the nonaqueous electrolyte secondary battery in the normal temperature aging process (STEP-3) is calculated, and the presence or absence of an internal short circuit in the nonaqueous electrolyte secondary battery is inspected based on the self-discharge amount ΔV. Then, before and after the room temperature aging step (STEP-3), steps ((STEP-5-21) and (STEP-5-21) for measuring characteristic values of the non-aqueous electrolyte secondary battery (in this embodiment, cell temperatures T1 and T2) -5-22)), grouping the non-aqueous electrolyte secondary batteries based on the measured cell temperatures T1 and T2, and generating a lot to be inspected. For each lot to be inspected, non-water based on the self-discharge amount ΔV It is intended to inspect the presence or absence of internal short circuit in the solution electrolyte secondary battery.

また、本発明の第二の実施形態に係る非水電解質二次電池の検査方法においては、前記特性値を、非水電解質二次電池のセル温度T1・T2とするものである。   In the inspection method for a non-aqueous electrolyte secondary battery according to the second embodiment of the present invention, the characteristic value is set to the cell temperatures T1 and T2 of the non-aqueous electrolyte secondary battery.

このような構成により、内部短絡の有無を判定するための比較要素となる自己放電量ΔVのバラツキを従来に比して小さく抑えることが可能になり、検査精度を向上しつつ内部短絡の有無の判定に要する時間を短縮することができる。   With such a configuration, it is possible to suppress the variation of the self-discharge amount ΔV, which is a comparison factor for determining the presence or absence of an internal short circuit, as compared with the conventional case, and the presence or absence of the internal short circuit is improved while improving the inspection accuracy. The time required for determination can be shortened.

1 セル
10 二次電池(非水電解質二次電池)
V1 電池電圧(常温エージング前)
V2 電池電圧(常温エージング後)
ΔV 自己放電量
T1 セル温度(常温エージング前)
T2 セル温度(常温エージング後)
1 cell 10 secondary battery (non-aqueous electrolyte secondary battery)
V1 battery voltage (before room temperature aging)
V2 battery voltage (after normal temperature aging)
ΔV Self-discharge amount T1 Cell temperature (before normal temperature aging)
T2 cell temperature (after normal temperature aging)

Claims (3)

非水電解質二次電池を所定の温度で所定の時間放置するエージング工程の前後において、前記非水電解質二次電池の電池電圧を測定して、前記エージング工程における前記非水電解質二次電池の自己放電量を算出し、前記自己放電量に基づいて前記非水電解質二次電池における内部短絡の有無を検査する非水電解質二次電池の検査方法であって、
前記エージング工程の前後において、前記非水電解質二次電池の特性値を測定する工程を備え、
測定した前記特性値に基づき前記非水電解質二次電池をグルーピングして検査対象ロットを生成し、前記検査対象ロットごとに、前記自己放電量に基づいて前記非水電解質二次電池における内部短絡の有無を検査する、
ことを特徴とする非水電解質二次電池の検査方法。
Before and after the aging process in which the nonaqueous electrolyte secondary battery is left at a predetermined temperature for a predetermined time, the battery voltage of the nonaqueous electrolyte secondary battery is measured, and the self-charge of the nonaqueous electrolyte secondary battery in the aging process is measured. A method for inspecting a non-aqueous electrolyte secondary battery that calculates a discharge amount and inspects for the presence or absence of an internal short circuit in the non-aqueous electrolyte secondary battery based on the self-discharge amount,
Before and after the aging step, comprising measuring a characteristic value of the non-aqueous electrolyte secondary battery,
Based on the measured characteristic value, the non-aqueous electrolyte secondary batteries are grouped to generate a lot to be inspected, and for each lot to be inspected, an internal short circuit in the non-aqueous electrolyte secondary battery is based on the self-discharge amount. Check for presence,
An inspection method for a nonaqueous electrolyte secondary battery.
前記特性値は、
前記非水電解質二次電池のセル温度とする、
ことを特徴とする請求項1に記載の非水電解質二次電池の検査方法。
The characteristic value is
The cell temperature of the non-aqueous electrolyte secondary battery,
The inspection method for a nonaqueous electrolyte secondary battery according to claim 1.
前記特性値は、
前記非水電解質二次電池の電池電圧とする、
ことを特徴とする請求項1に記載の非水電解質二次電池の検査方法。
The characteristic value is
The battery voltage of the non-aqueous electrolyte secondary battery,
The inspection method for a nonaqueous electrolyte secondary battery according to claim 1.
JP2013024736A 2013-02-12 2013-02-12 Non-aqueous electrolyte secondary battery inspection method Active JP6032485B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013024736A JP6032485B2 (en) 2013-02-12 2013-02-12 Non-aqueous electrolyte secondary battery inspection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013024736A JP6032485B2 (en) 2013-02-12 2013-02-12 Non-aqueous electrolyte secondary battery inspection method

Publications (2)

Publication Number Publication Date
JP2014154441A true JP2014154441A (en) 2014-08-25
JP6032485B2 JP6032485B2 (en) 2016-11-30

Family

ID=51576097

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013024736A Active JP6032485B2 (en) 2013-02-12 2013-02-12 Non-aqueous electrolyte secondary battery inspection method

Country Status (1)

Country Link
JP (1) JP6032485B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016192278A (en) * 2015-03-31 2016-11-10 トヨタ自動車株式会社 Inspection method of secondary battery
JP2018181670A (en) * 2017-04-17 2018-11-15 トヨタ自動車株式会社 Inspection method of secondary battery
JP2022048704A (en) * 2020-09-15 2022-03-28 プライムプラネットエナジー&ソリューションズ株式会社 Inspection method of secondary battery

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220039452A (en) * 2020-09-22 2022-03-29 주식회사 엘지에너지솔루션 Method for detecting a low voltage defective battery cell

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000048966A (en) * 1998-07-27 2000-02-18 Idemitsu Kosan Co Ltd Organic electroluminescent element
JP2004132776A (en) * 2002-10-09 2004-04-30 Matsushita Electric Ind Co Ltd Inspection method of battery
JP2004288515A (en) * 2003-03-24 2004-10-14 Matsushita Electric Ind Co Ltd Inspection method of cylinder-shaped battery
JP2008055443A (en) * 2006-08-29 2008-03-13 Kobe Steel Ltd Method for analyzing material quality of metallic material and method for stabilizing material quality
JP2009004389A (en) * 2008-10-02 2009-01-08 Panasonic Corp Inspection method of battery
JP2009145137A (en) * 2007-12-12 2009-07-02 Panasonic Corp Inspection method of secondary battery
JP2011018482A (en) * 2009-07-07 2011-01-27 Toyota Motor Corp Inspection method of battery
JP2012138211A (en) * 2010-12-24 2012-07-19 Toyota Motor Corp Secondary battery

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000048966A (en) * 1998-07-27 2000-02-18 Idemitsu Kosan Co Ltd Organic electroluminescent element
JP2004132776A (en) * 2002-10-09 2004-04-30 Matsushita Electric Ind Co Ltd Inspection method of battery
JP2004288515A (en) * 2003-03-24 2004-10-14 Matsushita Electric Ind Co Ltd Inspection method of cylinder-shaped battery
JP2008055443A (en) * 2006-08-29 2008-03-13 Kobe Steel Ltd Method for analyzing material quality of metallic material and method for stabilizing material quality
JP2009145137A (en) * 2007-12-12 2009-07-02 Panasonic Corp Inspection method of secondary battery
JP2009004389A (en) * 2008-10-02 2009-01-08 Panasonic Corp Inspection method of battery
JP2011018482A (en) * 2009-07-07 2011-01-27 Toyota Motor Corp Inspection method of battery
JP2012138211A (en) * 2010-12-24 2012-07-19 Toyota Motor Corp Secondary battery

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016192278A (en) * 2015-03-31 2016-11-10 トヨタ自動車株式会社 Inspection method of secondary battery
JP2018181670A (en) * 2017-04-17 2018-11-15 トヨタ自動車株式会社 Inspection method of secondary battery
JP2022048704A (en) * 2020-09-15 2022-03-28 プライムプラネットエナジー&ソリューションズ株式会社 Inspection method of secondary battery
JP7441765B2 (en) 2020-09-15 2024-03-01 プライムプラネットエナジー&ソリューションズ株式会社 How to test secondary batteries

Also Published As

Publication number Publication date
JP6032485B2 (en) 2016-11-30

Similar Documents

Publication Publication Date Title
KR102106949B1 (en) Method of inspecting electric power storage device for short circuit and method of manufacturing electric power storage device
US9091733B2 (en) Method of inspecting secondary battery
JP5172579B2 (en) Cylindrical battery inspection method
CN105589040A (en) Battery regulation and control method based on aging adjustment battery operation interval
JP6202032B2 (en) Secondary battery inspection method
US10847849B2 (en) Inspection method of electrical storage device and manufacturing method thereof
JP6032485B2 (en) Non-aqueous electrolyte secondary battery inspection method
JP5754392B2 (en) Battery inspection method
JP4529364B2 (en) Cylindrical battery inspection method
JP4720221B2 (en) Manufacturing method of secondary battery
JP5668663B2 (en) Secondary battery inspection method and secondary battery manufacturing method
CN105911477A (en) Screening method of self discharging of power lithium ion battery
JP5985280B2 (en) Inspection method for lithium ion secondary battery
CN115380221A (en) Secondary battery diagnosis apparatus and method
JP7163810B2 (en) Battery inspection method
KR20210150106A (en) Thickness measuring device for sealing portion of secondaty battery and method for measuring thickness using the same
JP2013254653A (en) Method for inspecting secondary battery
JP6176487B2 (en) Manufacturing method of secondary battery
JP6374193B2 (en) Self-discharge inspection method for non-aqueous electrolyte secondary battery
JP2018067498A (en) Method of manufacturing battery
JP2017126539A (en) Method for manufacturing secondary battery
JP5880972B2 (en) Secondary battery inspection method
JP2018055878A (en) Manufacturing method of battery
JP2964745B2 (en) Inspection methods for sealed lead-acid batteries
JP2014082063A (en) Method for manufacturing secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150305

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20151203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160218

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160414

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160804

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160906

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160929

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161012

R151 Written notification of patent or utility model registration

Ref document number: 6032485

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151