JP2015087372A - Secondary battery inspection method and secondary battery inspection device - Google Patents

Secondary battery inspection method and secondary battery inspection device Download PDF

Info

Publication number
JP2015087372A
JP2015087372A JP2014010357A JP2014010357A JP2015087372A JP 2015087372 A JP2015087372 A JP 2015087372A JP 2014010357 A JP2014010357 A JP 2014010357A JP 2014010357 A JP2014010357 A JP 2014010357A JP 2015087372 A JP2015087372 A JP 2015087372A
Authority
JP
Japan
Prior art keywords
secondary battery
magnetic field
field strength
magnetic
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014010357A
Other languages
Japanese (ja)
Other versions
JP6167917B2 (en
Inventor
雄三 三浦
Yuzo Miura
雄三 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2014010357A priority Critical patent/JP6167917B2/en
Publication of JP2015087372A publication Critical patent/JP2015087372A/en
Application granted granted Critical
Publication of JP6167917B2 publication Critical patent/JP6167917B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To provide a secondary battery inspection method and a secondary battery inspection device capable of promptly inspecting whether a fine short-circuit occurs to a secondary battery.SOLUTION: A secondary battery inspection method of the present invention includes: measuring a magnetic field intensity of a secondary battery 701 in a state of opening a cathode and an anode of the secondary battery 701; detecting a magnetic field 703 generated by a current flowing in the secondary battery 701 on the basis of the measured magnetic field intensity of the secondary battery 701; and determining that a short-circuit occurs in the secondary battery 701 if the magnetic field 703 generated by the current is detected. Furthermore, a secondary battery inspection device 100 of the present invention includes: a magnetic sensor 101 measuring the magnetic field intensity of the secondary battery 701; a magnetic field detection unit 102 detecting the magnetic field 703 generated by a current flowing in the secondary battery 701 on the basis of the magnetic field intensity measured by the magnetic sensor 101; and a short-circuit determination unit 103 determining that a short-circuit occurs in the secondary battery 701 if the magnetic field detection unit 102 detects the magnetic field 703 generated by the current.

Description

本発明は、二次電池の検査方法及び検査装置に関する。   The present invention relates to a secondary battery inspection method and inspection apparatus.

二次電池の内部に導電性の異物が混入すると、電池内部で導電性物質がセパレータを貫いたりして、正極と負極との短絡が発生する場合がある。正極と負極との短絡が発生すると、二次電池の起電力を短絡部の内部抵抗で除した値の電流が、二次電池内に流れる。このような、短絡による電流が流れると、二次電池の電圧が低下する。
短絡に起因する二次電池の電圧低下を出荷前に検査する方法として、特許文献1には、二次電池にエージングを行い、端子電圧のエージング前後の電圧降下量を閾値と比較することにより、短絡の有無を判定する二次電池の検査方法が開示されている。
When a conductive foreign substance is mixed in the secondary battery, the conductive substance may penetrate through the separator inside the battery, which may cause a short circuit between the positive electrode and the negative electrode. When a short circuit occurs between the positive electrode and the negative electrode, a current having a value obtained by dividing the electromotive force of the secondary battery by the internal resistance of the short circuit part flows in the secondary battery. When such a current due to a short circuit flows, the voltage of the secondary battery decreases.
As a method of inspecting the voltage drop of the secondary battery due to the short circuit before shipping, Patent Document 1 ages the secondary battery, and compares the voltage drop amount before and after the aging of the terminal voltage with a threshold value. A secondary battery inspection method for determining the presence or absence of a short circuit is disclosed.

特開2004−132776号公報Japanese Patent Laid-Open No. 2004-13276

特許文献1に開示された二次電池の検査方法では、数日間のエージングを行った後の電位降下量を測定している。微小な短絡による二次電池の電位降下量は非常に小さい。また、短絡のない良品の二次電池であっても、化学反応等による電位降下が生じる。図5に示すように、短絡による電位降下501は、時間に対して直線的に降下するのに対して、化学反応等による電位降下502は途中で飽和して、ある値で下げ止まる。   In the secondary battery inspection method disclosed in Patent Document 1, the amount of potential drop after aging for several days is measured. The amount of potential drop of the secondary battery due to a minute short circuit is very small. In addition, even a good secondary battery without a short circuit causes a potential drop due to a chemical reaction or the like. As shown in FIG. 5, the potential drop 501 due to a short circuit falls linearly with respect to time, whereas the potential drop 502 caused by a chemical reaction or the like saturates halfway and stops at a certain value.

短絡による電位降下501も、化学反応等による電位降下502も、非常にゆっくりと進むので、良品と不良品との差が生じるまでに数日はかかる。このため、図6に示すように、良品と不良品の電位降下量に明確な差が現れ、短絡による電位降下501と化学反応等による電位降下502との切り分けを行うのに時間がかかってしまう。
このように、二次電池の微小短絡の検査は、数日間のエージングを行う必要があるため、時間がかかるという問題があった。
Since the potential drop 501 due to a short circuit and the potential drop 502 due to a chemical reaction or the like proceed very slowly, it takes several days until the difference between a non-defective product and a defective product occurs. For this reason, as shown in FIG. 6, a clear difference appears in the amount of potential drop between the non-defective product and the defective product, and it takes time to separate the potential drop 501 due to a short circuit from the potential drop 502 due to a chemical reaction or the like. .
As described above, the inspection of the minute short circuit of the secondary battery has a problem that it takes time because it needs to be aged for several days.

本発明は、このような問題を解決するためになされたものであり、二次電池の微小短絡の有無を迅速に検査できる二次電池の検査方法及び検査装置を提供することを目的とする。   The present invention has been made to solve such a problem, and an object of the present invention is to provide a secondary battery inspection method and inspection apparatus capable of quickly inspecting the presence or absence of a micro short circuit in a secondary battery.

本発明の二次電池の検査方法は、
二次電池の正極および負極を開放した状態で、前記二次電池の磁場強度を測定し、
測定した前記二次電池の磁場強度に基づいて、前記二次電池内に流れる電流が作り出す磁場を検出し、
前記電流が作り出す磁場が検出された場合に、前記二次電池内に短絡があると判定する。
The inspection method of the secondary battery of the present invention is as follows:
With the positive and negative electrodes of the secondary battery open, measure the magnetic field strength of the secondary battery,
Based on the measured magnetic field strength of the secondary battery, detect the magnetic field created by the current flowing in the secondary battery,
When a magnetic field generated by the current is detected, it is determined that there is a short circuit in the secondary battery.

本発明の二次電池の検査装置は、
二次電池の磁場強度を測定する磁気センサと、
前記磁気センサにより測定した前記二次電池の磁場強度に基づいて、前記二次電池内に流れる電流が作り出す磁場を検出する磁場検出部と、
前記磁場検出部において、前記電流が作り出す磁場が検出された場合に短絡があると判定する良否判定部と、を備え、
前記磁気センサは、前記二次電池の正極および負極を開放した状態で前記二次電池の磁場強度を測定する
ことを特徴とする。
The inspection apparatus for a secondary battery of the present invention is
A magnetic sensor for measuring the magnetic field strength of the secondary battery;
Based on the magnetic field strength of the secondary battery measured by the magnetic sensor, a magnetic field detection unit that detects a magnetic field created by a current flowing in the secondary battery;
In the magnetic field detection unit, including a pass / fail determination unit that determines that there is a short circuit when a magnetic field generated by the current is detected,
The magnetic sensor measures the magnetic field strength of the secondary battery with the positive electrode and the negative electrode of the secondary battery open.

本発明にかかる二次電池の検査方法及び二次電池の検査装置では、二次電池で発生する磁場強度を測定することで二次電池の内部の短絡の有無を検査している。よって、二次電池の微小短絡の有無を迅速に検査できる二次電池の検査方法及び検査装置を提供することができる。   In the secondary battery inspection method and the secondary battery inspection apparatus according to the present invention, the presence or absence of a short circuit inside the secondary battery is inspected by measuring the magnetic field strength generated in the secondary battery. Therefore, it is possible to provide a secondary battery inspection method and inspection apparatus that can quickly inspect the presence or absence of a micro short circuit in the secondary battery.

上述の二次電池の検査方法は、
前記二次電池の電圧が第1の電圧のときに前記二次電池の第1の磁場強度を測定し、
前記二次電池の電圧を前記第1の電圧から第2の電圧に変更し、
前記二次電池の前記第2の電圧における第2の磁場強度を測定し、
前記第1の磁場強度と前記第2の磁場強度との差に基づいて、前記二次電池内に流れる電流が作り出す磁場を検出する
ことを特徴としてもよい。
The above secondary battery inspection method is
Measuring the first magnetic field strength of the secondary battery when the voltage of the secondary battery is the first voltage;
Changing the voltage of the secondary battery from the first voltage to the second voltage;
Measuring a second magnetic field strength at the second voltage of the secondary battery;
A magnetic field generated by a current flowing in the secondary battery may be detected based on a difference between the first magnetic field strength and the second magnetic field strength.

二次電池自体の残留磁場は、電圧を変化させても一定である。それに対して、短絡がある場合には、二次電池の電圧を変化させると、二次電池の磁場強度が変化する。本発明にかかる二次電池の検査方法では、二次電池の電圧を変更した前後で、測定される磁場強度に違いがあるかを判定することにより、二次電池の微小短絡の有無を迅速かつ精度よく検査することができる。   The residual magnetic field of the secondary battery itself is constant even when the voltage is changed. On the other hand, when there is a short circuit, changing the voltage of the secondary battery changes the magnetic field strength of the secondary battery. In the method for inspecting a secondary battery according to the present invention, the presence or absence of a micro short circuit in the secondary battery can be determined quickly by determining whether there is a difference in the measured magnetic field strength before and after changing the voltage of the secondary battery. Inspection can be performed with high accuracy.

上述の二次電池の検査方法は、
複数の電圧における前記二次電池の磁場強度をそれぞれ測定し、
前記複数の電圧と前記測定された磁場強度との関係から、前記複数の電圧に対しての前記磁場強度の傾きを算出し、
前記傾きに基づいて、前記二次電池の短絡の有無を判定する
ことを特徴としてもよい。
The above secondary battery inspection method is
Measure the magnetic field strength of the secondary battery at a plurality of voltages,
From the relationship between the plurality of voltages and the measured magnetic field strength, the inclination of the magnetic field strength with respect to the plurality of voltages is calculated,
The presence or absence of a short circuit of the secondary battery may be determined based on the inclination.

本発明にかかる二次電池の検査方法は、測定電圧を多くとることができるので、測定ばらつきによる誤差を低減することができる。測定ばらつきの影響を低減することにより、二次電池の良否判定の精度を向上することができる。   Since the secondary battery inspection method according to the present invention can take a large amount of measurement voltage, errors due to measurement variations can be reduced. By reducing the influence of measurement variations, it is possible to improve the accuracy of the quality determination of the secondary battery.

上述の二次電池の検査方法は、
短絡がない二次電池の磁場強度を測定し、前記短絡がない二次電池の磁場強度と、検査対象の二次電池の測定した磁場強度との差に基づいて、前記検査対象の二次電池内に流れる電流が作り出す磁場を検出する
ことを特徴としてもよい。
The above secondary battery inspection method is
Measuring the magnetic field strength of a secondary battery without a short circuit, and based on the difference between the magnetic field strength of the secondary battery without the short circuit and the measured magnetic field strength of the secondary battery to be inspected, the secondary battery to be inspected It may be characterized by detecting a magnetic field generated by an electric current flowing in the inside.

本発明にかかる二次電池の検査方法では、短絡がない二次電池の磁場強度と検査対象の二次電池の測定した磁場強度との差を算出する。これにより、検査対象の二次電池と良品サンプルとの違いに基づいて良否判定を行えるので、二次電池の良否判定の精度を向上することができる。   In the secondary battery inspection method according to the present invention, the difference between the magnetic field strength of the secondary battery without a short circuit and the measured magnetic field strength of the secondary battery to be inspected is calculated. Thereby, since the quality determination can be performed based on the difference between the secondary battery to be inspected and the non-defective sample, the accuracy of the quality determination of the secondary battery can be improved.

上述の二次電池の検査方法は、
磁気センサを用いて測定された前記二次電池の磁場強度が、前記磁気センサの測定可能範囲を超える場合は、測定される前記二次電池の磁場強度が前記測定可能範囲内に収まるように前記二次電池に磁場を印加する
ことを特徴としてもよい。
The above secondary battery inspection method is
When the magnetic field strength of the secondary battery measured using a magnetic sensor exceeds the measurable range of the magnetic sensor, the magnetic field strength of the secondary battery to be measured is within the measurable range. A magnetic field may be applied to the secondary battery.

本発明にかかる二次電池の検査方法によれば、二次電池の個体ごとに残留磁場の大きさが異なる場合でも、磁場強度のピークが磁気センサの測定可能範囲内に収まるようにすることができる。   According to the method for inspecting a secondary battery according to the present invention, even when the magnitude of the residual magnetic field differs for each individual secondary battery, the peak of the magnetic field strength can be within the measurable range of the magnetic sensor. it can.

上述の二次電池の検査方法は、
二次電池と磁気センサとの相対的な位置関係を変化させながら前記二次電池の磁場強度を測定し、
測定した前記二次電池の磁場強度に基づいて前記短絡の位置を特定する
ことを特徴としてもよい。
The above secondary battery inspection method is
Measure the magnetic field strength of the secondary battery while changing the relative positional relationship between the secondary battery and the magnetic sensor,
The position of the short circuit may be specified based on the measured magnetic field strength of the secondary battery.

本発明にかかる二次電池の検査方法では、二次電池と磁気センサの位置関係を変えて、複数の位置で磁場強度を測定する。これにより、二次電池内に流れる電流が作り出す磁場が検出される位置がわかるので、二次電池内の短絡部位を特定できる。   In the secondary battery inspection method according to the present invention, the magnetic field strength is measured at a plurality of positions by changing the positional relationship between the secondary battery and the magnetic sensor. Thereby, since the position where the magnetic field which the electric current which flows in a secondary battery produces is detected, the short circuit part in a secondary battery can be specified.

さらに、上述の二次電池の検査方法は、
前記二次電池を加圧した状態で検査を行う
ことを特徴としてもよい。
Furthermore, the inspection method of the secondary battery described above is
The inspection may be performed while the secondary battery is pressurized.

二次電池には、外部から圧力が印加されていない状態では短絡が発生しないが、外部から圧力が印加されると短絡が発生する、いわば準不良品といえる個体がある。二次電池の検査工程では、このような準不良品も適切に取り除く必要がある。
本発明にかかる二次電池の検査方法では、このように、二次電池を検査する際に、二次電池を拘束して加圧することで、準不良品も適切に取り除くことができる。
Some secondary batteries are short-circuited when no pressure is applied from the outside, but short-circuited when pressure is applied from the outside. In the inspection process of the secondary battery, it is necessary to appropriately remove such quasi-defective products.
In the secondary battery inspection method according to the present invention, when the secondary battery is inspected as described above, the secondary battery can be restrained and pressurized to appropriately remove the semi-defective product.

また、上述の二次電池の検査方法は、
環境磁場を遮断する磁気シールドボックス内において、前記二次電池の磁場強度を測定する
ことを特徴としてもよい。
Moreover, the inspection method of the above-mentioned secondary battery is as follows.
The magnetic field strength of the secondary battery may be measured in a magnetic shield box that blocks an environmental magnetic field.

本発明にかかる二次電池の検査方法では、磁気シールドボックス内で磁場強度の測定を行うことにより、環境磁場の影響を低減することができるので、二次電池の良否判定の精度を向上することができる。   In the inspection method of the secondary battery according to the present invention, the influence of the environmental magnetic field can be reduced by measuring the magnetic field strength in the magnetic shield box, so that the accuracy of the determination of the quality of the secondary battery is improved. Can do.

さらに、上述の二次電池の検査方法は、
二次元の格子状に配置された複数の磁気センサを用いて前記二次電池の磁場強度を測定する
ことを特徴としてもよい。
Furthermore, the inspection method of the secondary battery described above is
The magnetic field strength of the secondary battery may be measured using a plurality of magnetic sensors arranged in a two-dimensional grid.

本発明にかかる二次電池の検査方法では、二次電池の磁場強度を複数の部位について同時に測定できるので、二次電池の表面における磁場の分布を1回の測定で検出することができる。これにより、二次電池内の短絡部位を迅速に特定できる。また、複数の磁気センサを配置して、各磁気センサの測定磁場の差分を取ることにより、環境磁場の影響をキャンセルすることも可能である。   In the method for inspecting a secondary battery according to the present invention, the magnetic field strength of the secondary battery can be simultaneously measured for a plurality of parts, so that the magnetic field distribution on the surface of the secondary battery can be detected by a single measurement. Thereby, the short circuit site | part in a secondary battery can be identified rapidly. It is also possible to cancel the influence of the environmental magnetic field by arranging a plurality of magnetic sensors and taking the difference in the measured magnetic field of each magnetic sensor.

本発明によれば、二次電池の微小短絡の有無を迅速に検査できる二次電池の検査方法及び検査装置を提供できる。   ADVANTAGE OF THE INVENTION According to this invention, the inspection method and inspection apparatus of a secondary battery which can test | inspect rapidly the presence or absence of the micro short circuit of a secondary battery can be provided.

実施の形態1にかかる二次電池の検査装置の構成を示す図である。1 is a diagram illustrating a configuration of a secondary battery inspection device according to a first embodiment; 実施の形態1にかかる二次電池に短絡がない場合の内部の状態を示す図である。It is a figure which shows an internal state when the secondary battery concerning Embodiment 1 does not have a short circuit. 実施の形態1にかかる二次電池に短絡がある場合の内部の状態を示す図である。It is a figure which shows an internal state when the secondary battery concerning Embodiment 1 has a short circuit. 実施の形態1にかかる二次電池の検査方法の流れを示すフローチャートである。3 is a flowchart showing a flow of a secondary battery inspection method according to the first embodiment; 従来の二次電池の検査方法における電位降下の例を示す図である。It is a figure which shows the example of the electric potential drop in the test | inspection method of the conventional secondary battery. 従来の二次電池の検査方法における良品と不良品との電位降下の差を示す図である。It is a figure which shows the difference of the electrical potential drop of the quality goods and inferior goods in the inspection method of the conventional secondary battery. 実施の形態2にかかる二次電池の検査装置の構成を示す図である。FIG. 3 is a diagram illustrating a configuration of a secondary battery inspection device according to a second embodiment; 実施の形態2にかかる二次電池の検査方法の流れを示すフローチャートである。6 is a flowchart illustrating a flow of a secondary battery inspection method according to a second embodiment; 二次電池と磁気センサとの相対的な位置を変化させながら磁場強度を測定した結果の一例を示す図である。It is a figure which shows an example of the result of having measured the magnetic field intensity, changing the relative position of a secondary battery and a magnetic sensor. 実施の形態2にかかる二次電池の検査方法の変形例を示す図である。FIG. 10 is a diagram showing a modification of the secondary battery inspection method according to the second exemplary embodiment; 実施の形態3にかかる二次電池の検査方法の流れを示すフローチャートである。6 is a flowchart showing a flow of a secondary battery inspection method according to a third embodiment; 実施の形態3にかかる二次電池の検査方法において、二次電池の電圧と測定された磁場強度との関係の一例を示す図である。FIG. 9 is a diagram illustrating an example of a relationship between a voltage of a secondary battery and a measured magnetic field strength in the secondary battery inspection method according to the third embodiment. 実施の形態4にかかる二次電池の検査装置の構成を示す図である。FIG. 6 is a diagram illustrating a configuration of a secondary battery inspection device according to a fourth embodiment; 実施の形態4にかかる二次電池の検査方法の流れを示すフローチャートである。6 is a flowchart illustrating a flow of a secondary battery inspection method according to a fourth embodiment; 二次電池の残留磁場が大きい場合の、磁場強度の測定結果の一例を示す図である。It is a figure which shows an example of the measurement result of a magnetic field intensity in case the residual magnetic field of a secondary battery is large.

[実施の形態1]
以下、図面を参照して本発明の実施の形態について説明する。
図1に示すように、二次電池の検査装置100は、磁気センサ101と、磁場検出部102と、良否判定部103と、を備える。二次電池701は、二次電池の検査装置100の検査対象となる。二次電池の検査装置100は、二次電池701の内部の短絡の有無を検査する。二次電池701の内部への導電性異物702の混入や、電池内部での析出現象等により、正極と負極とが短絡している場合、短絡部位には電流が流れるため、二次電池701に電圧を印加しない状態で二次電池701には磁場703が生じる。二次電池の検査装置100は、この磁場703の強度(以降、磁場強度ともいう)を測定することで二次電池701の内部の短絡の有無を検査する。
[Embodiment 1]
Embodiments of the present invention will be described below with reference to the drawings.
As illustrated in FIG. 1, the secondary battery inspection device 100 includes a magnetic sensor 101, a magnetic field detection unit 102, and a pass / fail determination unit 103. The secondary battery 701 is an inspection target of the secondary battery inspection apparatus 100. The secondary battery inspection device 100 inspects the presence or absence of a short circuit inside the secondary battery 701. When the positive electrode and the negative electrode are short-circuited due to the inclusion of the conductive foreign matter 702 inside the secondary battery 701 or the precipitation phenomenon inside the battery, current flows through the short-circuited portion. A magnetic field 703 is generated in the secondary battery 701 without applying a voltage. The secondary battery inspection device 100 inspects the presence or absence of a short circuit inside the secondary battery 701 by measuring the strength of the magnetic field 703 (hereinafter also referred to as magnetic field strength).

検査対象である二次電池701は、例えばリチウムイオン二次電池、ニッケル水素二次電池等である。なお、本実施の形態にかかる二次電池の検査装置100の検査対象は、短絡時に磁場を発生する二次電池であればどのような二次電池であってもよい。   The secondary battery 701 to be inspected is, for example, a lithium ion secondary battery, a nickel hydride secondary battery, or the like. The secondary battery inspecting apparatus 100 according to the present embodiment may be any secondary battery as long as it is a secondary battery that generates a magnetic field when short-circuited.

例えば、リチウムイオン二次電池は、リチウムイオンを吸蔵・放出する正極および負極の間を、非水電解液中のリチウムイオンが移動することで充放電可能な二次電池である。リチウムイオン二次電池は、正極活物質を担持した正極材、負極活物質を担持した負極材、正極材および負極材の間に介在するセパレータ、並びに非水電解液を備える。リチウムイオン二次電池は、例えば帯状の正極材と帯状の負極材とを帯状のセパレータを介して捲回した捲回状の電極体を備えるものや、複数の正極材と複数の負極材とを、セパレータを介して交互に積層した積層状の電極体を備えるものなどが挙げられる。   For example, a lithium ion secondary battery is a secondary battery that can be charged and discharged by moving lithium ions in a non-aqueous electrolyte between a positive electrode and a negative electrode that occlude and release lithium ions. A lithium ion secondary battery includes a positive electrode material carrying a positive electrode active material, a negative electrode material carrying a negative electrode active material, a separator interposed between the positive electrode material and the negative electrode material, and a non-aqueous electrolyte. Lithium ion secondary batteries include, for example, those having a wound electrode body obtained by winding a strip-shaped positive electrode material and a strip-shaped negative electrode material through a strip-shaped separator, or a plurality of positive electrode materials and a plurality of negative electrode materials. And those having a laminated electrode body laminated alternately via separators.

磁気センサ101は、二次電池701で生じた磁場703を測定する。磁気センサ101としては、例えば、SQUID(Superconducting Quantum Interference Device:超伝導量子干渉素子)センサや、MI(Magneto-Impedance:磁気インピーダンス)センサを用いる。磁気センサ101の感度は、電流が発生している箇所(換言すると、磁場が発生している箇所)からの距離に依存する。よって、磁気センサ101は、二次電池701に近づけて配置することが好ましい。特に、二次電池701の表面に接するように磁気センサ101を配置することで、磁気センサ101の感度を向上させることができる。   The magnetic sensor 101 measures a magnetic field 703 generated by the secondary battery 701. As the magnetic sensor 101, for example, a SQUID (Superconducting Quantum Interference Device) sensor or an MI (Magneto-Impedance) sensor is used. The sensitivity of the magnetic sensor 101 depends on the distance from a location where a current is generated (in other words, a location where a magnetic field is generated). Therefore, it is preferable to dispose the magnetic sensor 101 close to the secondary battery 701. In particular, by arranging the magnetic sensor 101 so as to be in contact with the surface of the secondary battery 701, the sensitivity of the magnetic sensor 101 can be improved.

また、二次電池701の周囲に複数の磁気センサ101を配置することにより、測定精度の向上や、測定時間の短縮が可能となる。例えば、複数の磁気センサ101を二次元の格子状に配置し、二次電池701の上面の磁場分布を一度に測定できるようにしてもよい。また、二次電池701の周囲の各々の面に磁気センサ101を設けてもよい。例えば二次電池701の上面及び下面に磁気センサ101を設けてもよい。また、短絡が発生しやすい場所に重点的に磁気センサ101を設けてもよい。   In addition, by arranging a plurality of magnetic sensors 101 around the secondary battery 701, measurement accuracy can be improved and measurement time can be shortened. For example, a plurality of magnetic sensors 101 may be arranged in a two-dimensional lattice so that the magnetic field distribution on the upper surface of the secondary battery 701 can be measured at a time. Further, the magnetic sensor 101 may be provided on each surface around the secondary battery 701. For example, the magnetic sensor 101 may be provided on the upper and lower surfaces of the secondary battery 701. Moreover, you may provide the magnetic sensor 101 mainly in the place where a short circuit is easy to generate | occur | produce.

磁場検出部102は、磁気センサ101により測定した二次電池701の磁場強度に基づいて、二次電池701内部の短絡箇所に流れる電流(短絡電流)が作り出す磁場を検出する。図2は、二次電池701に短絡が存在しない状態を示す。図3は、二次電池701に短絡が存在する状態を示す。二次電池701の内部には、正極材201と、負極材202と、正極材201と負極材202とに挟まれたセパレータ203がある。二次電池701に短絡が存在しない場合には、図2に示すように、正極材201と負極材202との間はセパレータ203により絶縁されており、正極材201と負極材202との間には、電流は流れない。   Based on the magnetic field strength of the secondary battery 701 measured by the magnetic sensor 101, the magnetic field detection unit 102 detects a magnetic field generated by a current (short-circuit current) that flows through a short-circuit location inside the secondary battery 701. FIG. 2 shows a state where there is no short circuit in the secondary battery 701. FIG. 3 shows a state where a short circuit exists in the secondary battery 701. Inside the secondary battery 701, there are a positive electrode material 201, a negative electrode material 202, and a separator 203 sandwiched between the positive electrode material 201 and the negative electrode material 202. When there is no short circuit in the secondary battery 701, as shown in FIG. 2, the positive electrode material 201 and the negative electrode material 202 are insulated by the separator 203, and the positive electrode material 201 and the negative electrode material 202 are No current flows.

一方、図3に示すように、二次電池701の正極材201と負極材202との間に導電性異物702が混入した等で、正極と負極を短絡させている場合には、短絡部位に電流が流れる。この場合、二次電池701の持っている起電力Vと、短絡部位の持つ電気抵抗Rとにより、オームの法則に基づいて、I=V/Rで表される電流Iが流れる。リチウムイオン二次電池では、短絡の度合いによって流れる短絡電流量は変化し、例えば、数百μAの短絡電流が流れている場合には、短絡部から数cm離れた場所でも、10−12T程度の磁場が発生する事となる。なお、本実施の形態にかかる二次電池の検査装置100は、導電性異物702が混入して短絡を発生させた場合以外の短絡を検出することにも用いることができる。 On the other hand, as shown in FIG. 3, when the positive electrode and the negative electrode are short-circuited because the conductive foreign material 702 is mixed between the positive electrode material 201 and the negative electrode material 202 of the secondary battery 701, Current flows. In this case, a current I represented by I = V / R flows based on Ohm's law due to the electromotive force V of the secondary battery 701 and the electrical resistance R of the short circuit part. In a lithium ion secondary battery, the amount of short-circuit current that flows varies depending on the degree of short-circuit. For example, when a short-circuit current of several hundred μA is flowing, it is about 10 −12 T even at a location several cm away from the short-circuit portion. The magnetic field will be generated. Note that the secondary battery inspection apparatus 100 according to the present embodiment can also be used to detect a short circuit other than when the conductive foreign material 702 is mixed to cause a short circuit.

良否判定部103は、磁場検出部102において短絡電流が作り出す磁場が検出された場合に短絡があると判定する。一方、良否判定部103は、磁場検出部102において短絡電流が作り出す磁場が検出されない場合、短絡がないと判定する。二次電池701の正極材201と負極材202とは、セパレータ203により絶縁されているため、短絡がなければ、二次電池701内で電流は流れない。   The pass / fail determination unit 103 determines that there is a short circuit when the magnetic field detection unit 102 detects the magnetic field generated by the short circuit current. On the other hand, the pass / fail determination unit 103 determines that there is no short circuit when the magnetic field detection unit 102 does not detect the magnetic field generated by the short circuit current. Since the positive electrode material 201 and the negative electrode material 202 of the secondary battery 701 are insulated by the separator 203, no current flows in the secondary battery 701 unless there is a short circuit.

本実施の形態にかかる二次電池の検査装置100では、環境磁場を遮断する磁気シールドボックスを設け、磁気シールドボックス内において、二次電池701の磁場強度を測定してもよい。磁気シールドボックス内に二次電池701を入れるには、磁気シールドボックスに開口部を設ける必要がある。開口部は、常に開口している構造でもよいし、二次電池701を磁気シールドボックス内に入れた後に、開口部に蓋をして閉じられる構造でもよい。   In the secondary battery inspection apparatus 100 according to the present embodiment, a magnetic shield box that blocks an environmental magnetic field may be provided, and the magnetic field strength of the secondary battery 701 may be measured in the magnetic shield box. In order to put the secondary battery 701 in the magnetic shield box, it is necessary to provide an opening in the magnetic shield box. The opening may be a structure that is always open, or may be a structure in which the opening is covered with a lid after the secondary battery 701 is placed in the magnetic shield box.

また、磁気センサ101の出力を用いて、環境磁場の影響をキャンセルしてもよい。この場合は、磁気シールドボックスを設けなくてもよい。例えば、複数の磁気センサ101を配置して、各磁気センサ101の測定磁場の差分を取ることにより、環境磁場の影響をキャンセルすることも可能である。   Further, the influence of the environmental magnetic field may be canceled using the output of the magnetic sensor 101. In this case, it is not necessary to provide a magnetic shield box. For example, it is possible to cancel the influence of the environmental magnetic field by arranging a plurality of magnetic sensors 101 and taking the difference between the measured magnetic fields of the magnetic sensors 101.

複数の磁気センサ101を、二次電池701からの距離が各磁気センサ101で異なるように配置した場合について考える。この場合、二次電池701から近い磁気センサ101と二次電池701から遠い磁気センサ101とがある。二次電池701内の短絡電流が作り出す磁場は、二次電池701の近くで強く、二次電池701から離れると弱くなる。すなわち、各磁気センサ101で検出される短絡電流が作り出す磁場の強度は、二次電池701からの距離により異なる。   Consider a case where a plurality of magnetic sensors 101 are arranged such that the distance from the secondary battery 701 is different for each magnetic sensor 101. In this case, there are the magnetic sensor 101 close to the secondary battery 701 and the magnetic sensor 101 far from the secondary battery 701. The magnetic field created by the short-circuit current in the secondary battery 701 is strong near the secondary battery 701 and weakens when it is away from the secondary battery 701. That is, the strength of the magnetic field created by the short-circuit current detected by each magnetic sensor 101 varies depending on the distance from the secondary battery 701.

一方、短絡電流が作り出す磁場は環境磁場と比べて非常に微弱である。このため、環境磁場の影響が強い場合には、二次電池からの距離とは無関係に各磁気センサ101で、一様な環境磁場が検出される。このように、各磁気センサ101で検出される磁場を比較することにより、環境磁場の影響の有無を判断できる。また、このときの各磁気センサ101が測定した磁場強度の差をとることで、環境磁場の影響を打ち消すことができる。   On the other hand, the magnetic field generated by the short-circuit current is very weak compared to the environmental magnetic field. For this reason, when the influence of the environmental magnetic field is strong, a uniform environmental magnetic field is detected by each magnetic sensor 101 regardless of the distance from the secondary battery. Thus, by comparing the magnetic fields detected by the magnetic sensors 101, it is possible to determine whether or not there is an influence of the environmental magnetic field. Moreover, the influence of an environmental magnetic field can be negated by taking the difference of the magnetic field intensity which each magnetic sensor 101 measured at this time.

二次電池701には、外部から圧力が印加されていない状態では短絡が発生しないが、外部から圧力が印加されると短絡が発生する、いわば準不良品といえる個体がある。二次電池の検査工程では、このような準不良品も適切に取り除く必要がある。   In the secondary battery 701, there is an individual that can be said to be a semi-defective product, in which a short circuit does not occur when no pressure is applied from the outside, but a short circuit occurs when pressure is applied from the outside. In the inspection process of the secondary battery, it is necessary to appropriately remove such quasi-defective products.

本実施の形態では、二次電池を検査する際に、このような準不良品の二次電池701に短絡を発生させるために、二次電池701を拘束して加圧してもよい。例えば二次電池701を、拘束プレートを用いて拘束した状態で、ロードセル等で加圧する。これにより、正極材201と負極材202とに挟まれたセパレータ203が圧縮されて、短絡が起こりやすくすることができる。拘束プレートには磁場に影響を与えないもの、例えば、樹脂を用いる。磁気センサ101と測定対象物である二次電池701との距離が離れないように、拘束プレート内に磁気センサ101を埋め込むことも可能である。また、磁気センサ101の測定位置の付近のみ、拘束プレートの肉厚を薄くして、磁気センサ101と二次電池701との距離を短くすることも可能である。   In this embodiment, when inspecting a secondary battery, the secondary battery 701 may be restrained and pressurized in order to cause a short circuit in the secondary battery 701 of such a semi-defective product. For example, the secondary battery 701 is pressurized with a load cell or the like while being restrained using a restraining plate. Thereby, the separator 203 sandwiched between the positive electrode material 201 and the negative electrode material 202 is compressed, and a short circuit can easily occur. A restraining plate that does not affect the magnetic field, for example, resin is used. It is also possible to embed the magnetic sensor 101 in the constraining plate so that the distance between the magnetic sensor 101 and the secondary battery 701 that is the measurement object is not separated. In addition, it is possible to reduce the distance between the magnetic sensor 101 and the secondary battery 701 by reducing the thickness of the restraint plate only in the vicinity of the measurement position of the magnetic sensor 101.

このように、二次電池を検査する際に、二次電池を拘束して加圧することで、準不良品も適切に取り除くことができる。   As described above, when the secondary battery is inspected, the sub-defective product can be appropriately removed by restraining and pressurizing the secondary battery.

次に、本実施の形態にかかる二次電池の検査方法について説明する。図4は、二次電池701の検査方法の流れを示すフローチャートである。
まず、検査対象の二次電池701を、二次電池の検査装置100内に入れる(S401)。例えば、検査対象となる二次電池701がリチウムイオン二次電池である場合、所定のコンディショニング処理を行った後、所定の充電状態SOC(State of Charge)で充電されているリチウムイオン二次電池を検査対象としてもよい。リチウムイオン二次電池の正極材201と負極材202とが短絡した際に正極材201から負極材202に電流が流れるためには、リチウムイオン二次電池が所定のSOCで充電されている必要がある。
Next, a secondary battery inspection method according to the present embodiment will be described. FIG. 4 is a flowchart showing the flow of the inspection method for the secondary battery 701.
First, the secondary battery 701 to be inspected is placed in the secondary battery inspection apparatus 100 (S401). For example, when the secondary battery 701 to be inspected is a lithium ion secondary battery, a lithium ion secondary battery charged in a predetermined state of charge (SOC) after a predetermined conditioning process is performed. It is good also as inspection object. In order for a current to flow from the positive electrode material 201 to the negative electrode material 202 when the positive electrode material 201 and the negative electrode material 202 of the lithium ion secondary battery are short-circuited, the lithium ion secondary battery needs to be charged with a predetermined SOC. is there.

次に、二次電池701に電圧を印加しない状態で、磁気センサ101により二次電池701の磁場強度を測定する(S402)。ここで、電圧を印加しない状態とは、二次電池701の正極および負極を開放した状態をいう。磁場強度の測定中は、二次電池701の電圧値は一定である。   Next, the magnetic field intensity of the secondary battery 701 is measured by the magnetic sensor 101 in a state where no voltage is applied to the secondary battery 701 (S402). Here, the state where no voltage is applied refers to a state where the positive electrode and the negative electrode of the secondary battery 701 are opened. During the measurement of the magnetic field strength, the voltage value of the secondary battery 701 is constant.

次に、磁気センサ101により測定した検査対象の二次電池701の磁場強度と、短絡がない良品の二次電池の磁場強度との差に基づいて、磁場検出部102により、検査対象の二次電池701内部の短絡箇所を流れる短絡電流が作り出す磁場を検出する(S403)。例えば、検査対象の二次電池701の内部に短絡がある場合は、検査対象の二次電池701内で短絡電流が流れるため、磁場703が発生する。この場合、検査対象の二次電池701の磁場強度と、短絡がない良品の二次電池の磁場強度との差が大きくなる。磁場検出部102はこの磁場強度の差を検出することで、検査対象の二次電池701内に流れる電流を検出することができる。なお、比較対象となる、短絡がない良品の二次電池の磁場強度は事前に測定しておく。   Next, based on the difference between the magnetic field intensity of the secondary battery 701 to be inspected measured by the magnetic sensor 101 and the magnetic field intensity of a non-short secondary battery, the magnetic field detection unit 102 causes the secondary to be inspected. A magnetic field generated by a short-circuit current flowing through the short-circuited location inside the battery 701 is detected (S403). For example, when there is a short circuit inside the secondary battery 701 to be inspected, a short circuit current flows in the secondary battery 701 to be inspected, and thus a magnetic field 703 is generated. In this case, the difference between the magnetic field strength of the secondary battery 701 to be inspected and the magnetic field strength of a good secondary battery without a short circuit increases. The magnetic field detection unit 102 can detect the current flowing in the secondary battery 701 to be inspected by detecting the difference in magnetic field intensity. In addition, the magnetic field strength of a non-short secondary battery that is a comparison target is measured in advance.

次に、良否判定部103は、ステップS403において短絡電流が作り出す磁場を検出しなかった場合(S403 NO)、検査対象の二次電池701を良品と判定し、次工程へと送る(S404)。一方、良否判定部103は、ステップS403において短絡電流の発生する磁場を検出した場合(S403 YES)、検査対象の二次電池701を、二次電池701内に短絡がある不良品と判定する(S405)。   Next, when the magnetic field generated by the short-circuit current is not detected in step S403 (NO in S403), the pass / fail determination unit 103 determines that the secondary battery 701 to be inspected is a non-defective product and sends it to the next process (S404). On the other hand, when the pass / fail determination unit 103 detects a magnetic field in which a short-circuit current is generated in step S403 (YES in S403), the secondary battery 701 to be inspected is determined to be a defective product having a short circuit in the secondary battery 701 ( S405).

なお、本実施の形態にかかる二次電池の検査方法では、ステップS403において短絡電流が作り出す磁場を検出する際に、所定の閾値を設けてもよい。例えば、磁場検出部102は、検査対象の二次電池701の磁場強度と良品の二次電池の磁場強度との差が所定の閾値(磁場)よりも大きい場合に、検査対象の二次電池701内部で短絡電流が流れていると判定してもよい。   In the secondary battery inspection method according to the present embodiment, a predetermined threshold value may be provided when detecting the magnetic field generated by the short-circuit current in step S403. For example, when the difference between the magnetic field strength of the secondary battery 701 to be inspected and the magnetic field strength of a non-defective secondary battery is larger than a predetermined threshold (magnetic field), the magnetic field detection unit 102 checks the secondary battery 701 to be inspected. You may determine with the short circuit current flowing internally.

また、ステップS403において、磁場検出部102は、検査対象の二次電池701の磁場強度と良品の二次電池の磁場強度との差を用いて、検査対象の二次電池701内に流れる短絡電流量を求めてもよい。そして、ステップS403で求めた電流値が所定の閾値(電流値)よりも大きい場合に、検査対象の二次電池701内で電流(つまり、短絡していると判定できるレベルの電流)が流れていると判定してもよい。   In step S403, the magnetic field detection unit 102 uses the difference between the magnetic field intensity of the secondary battery 701 to be inspected and the magnetic field intensity of a non-defective secondary battery to cause a short circuit current to flow in the secondary battery 701 to be inspected. The amount may be determined. When the current value obtained in step S403 is larger than a predetermined threshold value (current value), a current (that is, a current that can be determined to be short-circuited) flows in the secondary battery 701 to be inspected. It may be determined that

また、二次電池の検査装置100に磁気シールドボックスを設け、二次電池701の残留磁場が小さい場合など、検査装置100が環境磁場や二次電池の個体差の影響を受けにくい場合は、比較対象である良品の二次電池の磁場強度を測定することなく、検査対象の二次電池701内に流れる短絡電流が作り出す磁場を検出してもよい。つまり、二次電池の検査装置100が環境磁場の影響を受けにくく、残留磁場の個体差が小さい場合には、検査対象の二次電池701で異常磁場が検出された場合に、検査対象の二次電池701内で短絡電流が流れていると判定することができる。例えば、磁場検出部102は、検査対象の二次電池701で発生している磁場強度が所定の閾値以上である場合に、検査対象の二次電池701内で短絡電流が流れていると判定してもよい。   If the inspection apparatus 100 is not easily affected by the environmental magnetic field or individual differences of the secondary batteries, such as when the secondary battery inspection apparatus 100 is provided with a magnetic shield box and the residual magnetic field of the secondary battery 701 is small, a comparison is made. The magnetic field generated by the short-circuit current flowing in the secondary battery 701 to be inspected may be detected without measuring the magnetic field strength of the non-defective secondary battery that is the target. That is, when the secondary battery inspection apparatus 100 is not easily influenced by the environmental magnetic field and the individual difference in the residual magnetic field is small, when the abnormal magnetic field is detected in the secondary battery 701 to be inspected, the inspection target 2 It can be determined that a short-circuit current is flowing in the secondary battery 701. For example, the magnetic field detection unit 102 determines that a short-circuit current is flowing in the secondary battery 701 to be inspected when the strength of the magnetic field generated in the secondary battery 701 to be inspected is equal to or greater than a predetermined threshold. May be.

このように本実施の形態にかかる発明では、二次電池で発生する磁場強度を測定することで二次電池の内部の短絡の有無を検査している。よって、二次電池の微小短絡の有無を迅速に検査できる二次電池の検査方法及び検査装置を提供することができる。   As described above, in the invention according to the present embodiment, the presence or absence of a short circuit inside the secondary battery is inspected by measuring the magnetic field strength generated in the secondary battery. Therefore, it is possible to provide a secondary battery inspection method and inspection apparatus that can quickly inspect the presence or absence of a micro short circuit in the secondary battery.

[実施の形態2]
図7を用いて、実施の形態2にかかる二次電池の検査装置300について説明する。検査対象である二次電池は、それ自身が残留磁場を発生している場合がある。この残留磁場の分布や強度は二次電池毎に異なるため、二次電池の微小短絡の有無を検査する際、この残留磁場の影響を考慮する必要がある。以下で説明する実施の形態2では、このような残留磁場の影響を低減できる二次電池の検査方法及び検査装置について説明する。
[Embodiment 2]
The secondary battery inspection apparatus 300 according to the second embodiment will be described with reference to FIG. The secondary battery to be inspected may itself generate a residual magnetic field. Since the distribution and strength of the residual magnetic field are different for each secondary battery, it is necessary to consider the influence of the residual magnetic field when inspecting the secondary battery for the presence of a micro short circuit. In the second embodiment described below, a secondary battery inspection method and inspection apparatus capable of reducing the influence of such a residual magnetic field will be described.

図7に示すように、二次電池の検査装置300は、磁気センサ101と、磁場検出部102と、良否判定部103と、記憶部304と、充放電装置310と、を備える。二次電池701は、二次電池の検査装置300の検査対象となる。二次電池の検査装置300は、二次電池701の内部の短絡の有無を検査する。本実施の形態にかかる二次電池の検査装置300は、記憶部304と、充放電装置310と、を有する点が、実施の形態1にかかる二次電池の検査装置100(図1参照)と異なる。充放電装置310は、二次電池701の正極および負極に接続される。充放電装置310は、二次電池701の充放電を行うことにより、二次電池701の電圧を変更することができる。   As shown in FIG. 7, the secondary battery inspection device 300 includes a magnetic sensor 101, a magnetic field detection unit 102, a pass / fail determination unit 103, a storage unit 304, and a charge / discharge device 310. The secondary battery 701 is an inspection target of the secondary battery inspection device 300. The secondary battery inspection device 300 inspects the presence or absence of a short circuit inside the secondary battery 701. The secondary battery inspection device 300 according to the present embodiment includes a storage unit 304 and a charge / discharge device 310, and the secondary battery inspection device 100 according to the first embodiment (see FIG. 1). Different. Charging / discharging device 310 is connected to the positive electrode and the negative electrode of secondary battery 701. The charging / discharging device 310 can change the voltage of the secondary battery 701 by charging / discharging the secondary battery 701.

次に、本実施の形態にかかる二次電池の検査方法について説明する。図8は、本実施の形態にかかる二次電池の検査方法の流れを示すフローチャートである。
まず、検査対象の二次電池701を、二次電池の検査装置300内に入れる(S601)。
次に、二次電池701の正極および負極を開放した状態で、磁気センサ101により二次電池701の磁場強度を測定する(S602)。このときの二次電池701の電圧を第1の電圧V1とし、磁気センサ101により測定された磁場強度を第1の磁場強度B1とする。なお、磁場強度の測定中は、二次電池701の電圧値は一定である。
Next, a secondary battery inspection method according to the present embodiment will be described. FIG. 8 is a flowchart showing the flow of the secondary battery inspection method according to the present embodiment.
First, the secondary battery 701 to be inspected is placed in the secondary battery inspection device 300 (S601).
Next, the magnetic field intensity of the secondary battery 701 is measured by the magnetic sensor 101 with the positive electrode and the negative electrode of the secondary battery 701 open (S602). The voltage of the secondary battery 701 at this time is defined as a first voltage V1, and the magnetic field intensity measured by the magnetic sensor 101 is defined as a first magnetic field intensity B1. Note that the voltage value of the secondary battery 701 is constant during the measurement of the magnetic field strength.

次に、二次電池701の正極および負極に充放電装置310を接続し、二次電池701と磁気センサとの位置関係を固定したまま、充放電装置310により二次電池701の電圧を第2の電圧V2に変化させる(S603)。二次電池701の電圧を第2の電圧V2とし、正極および負極を開放した状態で、磁気センサ101により二次電池701の磁場強度を測定する(S604)。このとき磁気センサ101により測定された磁場強度を、第2の磁場強度B2とする。なお、磁場強度の測定中は、二次電池701の電圧値は一定である。   Next, the charging / discharging device 310 is connected to the positive electrode and the negative electrode of the secondary battery 701, and the voltage of the secondary battery 701 is set to the second voltage by the charging / discharging device 310 while the positional relationship between the secondary battery 701 and the magnetic sensor is fixed. The voltage V2 is changed to (S603). With the voltage of the secondary battery 701 set to the second voltage V2, the magnetic field strength of the secondary battery 701 is measured by the magnetic sensor 101 with the positive electrode and the negative electrode opened (S604). At this time, the magnetic field intensity measured by the magnetic sensor 101 is defined as a second magnetic field intensity B2. Note that the voltage value of the secondary battery 701 is constant during the measurement of the magnetic field strength.

第2の電圧V2は、第1の電圧V1より大きくてもよいし、小さくてもよい。また、第1の電圧V1を二次電池701の使用下限電圧とし、第2の電圧V2を二次電池701の使用上限電圧とすることもできる。第1の電圧V1と第2の電圧V2の差を大きくするほど、二次電池701から発生する磁場強度の差が大きくなるので、微小短絡の検出感度が向上する。検出感度の向上のため、検査時だけ、使用上限電圧より大きい電圧や使用下限電圧より小さい電圧を用いてもよい。   The second voltage V2 may be larger or smaller than the first voltage V1. In addition, the first voltage V1 can be the lower limit voltage of the secondary battery 701 and the second voltage V2 can be the upper limit voltage of the secondary battery 701. As the difference between the first voltage V1 and the second voltage V2 is increased, the difference in magnetic field intensity generated from the secondary battery 701 is increased, so that the detection sensitivity of the micro short circuit is improved. In order to improve the detection sensitivity, a voltage higher than the upper limit voltage or a voltage lower than the lower limit voltage may be used only during inspection.

次に、良否判定部103は、ステップS602で測定された第1の磁場強度B1と、ステップS604で測定された第2の磁場強度B2とが等しいか判定する(S605)。すなわち、二次電池701の電圧を変更した前後で、測定される磁場強度に違いがあるかを判定する。二次電池701自体の残留磁場は、電圧を変化させても一定である。それに対して、短絡部を流れる電流量は二次電池701の電圧に依存するので、短絡がある場合には、二次電池701の電圧を変化させると、二次電池701の磁場強度も変化する。   Next, the quality determination unit 103 determines whether or not the first magnetic field strength B1 measured in step S602 is equal to the second magnetic field strength B2 measured in step S604 (S605). That is, it is determined whether there is a difference in the measured magnetic field strength before and after the voltage of the secondary battery 701 is changed. The residual magnetic field of the secondary battery 701 itself is constant even when the voltage is changed. On the other hand, since the amount of current flowing through the short-circuit portion depends on the voltage of the secondary battery 701, if there is a short circuit, changing the voltage of the secondary battery 701 also changes the magnetic field strength of the secondary battery 701. .

良否判定部103が第1の磁場強度B1と第2の磁場強度B2とが等しいと判定した場合(S605 YES)、検査対象の二次電池701を良品と判定し、次工程へと送る(S606)。一方、良否判定部103がステップS605において第1の磁場強度B1と第2の磁場強度B2とが等しくないと判定した場合(S605 NO)、検査対象の二次電池701を、二次電池701内に短絡がある不良品と判定する(S607)。不良品と判定された二次電池701は、後工程には送られない。   When the pass / fail determination unit 103 determines that the first magnetic field strength B1 and the second magnetic field strength B2 are equal (YES in S605), the secondary battery 701 to be inspected is determined to be a non-defective product and sent to the next process (S606). ). On the other hand, when the pass / fail determination unit 103 determines in step S605 that the first magnetic field strength B1 and the second magnetic field strength B2 are not equal (NO in S605), the secondary battery 701 to be inspected is stored in the secondary battery 701. (S607). The secondary battery 701 determined to be defective is not sent to the subsequent process.

二次電池701自体の残留磁場は、電圧を変化させても一定である。それに対して、短絡がある場合には、二次電池701の電圧を変化させると、二次電池701の磁場強度が変化する。本実施の形態にかかる二次電池の検査方法は、二次電池701の電圧を変更した前後で、測定される磁場強度に違いがあるかを判定することにより、二次電池の微小短絡の有無を迅速かつ精度よく検査することができる。   The residual magnetic field of the secondary battery 701 itself is constant even when the voltage is changed. On the other hand, when there is a short circuit, the magnetic field strength of the secondary battery 701 changes when the voltage of the secondary battery 701 is changed. The secondary battery inspection method according to the present embodiment determines whether or not there is a micro short circuit in the secondary battery by determining whether there is a difference in the measured magnetic field strength before and after the voltage of the secondary battery 701 is changed. Can be inspected quickly and accurately.

また、二次電池701には残留磁場があり、残留磁場の分布や強度は二次電池701の個体ごとに異なる。図9は、ベルトコンベア等の搬送手段に二次電池701を乗せ、二次電池701と磁気センサ101との相対的な位置を変化させながら磁場強度を測定した結果の一例を示す図である。二次電池701の電圧は図9には、ロットA〜ロットCの3種類の異なるロットの二次電池701について磁場強度を測定した結果が示されている。この測定においては、二次電池701の電圧は、ロットA〜ロットCの全てで等しい。しかし、測定された磁場強度のカーブは、ロットA〜ロットCで異なっており、ロットA〜ロットCの有する残留磁場はそれぞれ異なっている。   Further, the secondary battery 701 has a residual magnetic field, and the distribution and strength of the residual magnetic field vary depending on the individual secondary battery 701. FIG. 9 is a diagram illustrating an example of a result of measuring the magnetic field strength while placing the secondary battery 701 on a transport unit such as a belt conveyor and changing the relative position between the secondary battery 701 and the magnetic sensor 101. The voltage of the secondary battery 701 is shown in FIG. 9 as a result of measuring the magnetic field strength of the secondary batteries 701 in three different lots of lot A to lot C. In this measurement, the voltage of the secondary battery 701 is the same for all of lot A to lot C. However, the measured magnetic field intensity curves are different for lot A to lot C, and the residual magnetic fields of lot A to lot C are different.

例えば、検査対象物の残留磁場を打ち消すために、検査対象物の搬送台の下面に磁性体の層を形成した場合は、二次電池701の残留磁場は個体差が大きいので、個体ごとの残留磁場に合うような磁性体の層を形成する必要があり、検査に要するコストが高くなる。しかし、本実施の形態にかかる二次電池の検査方法では、1つの二次電池701の電圧を変化させたときの磁場強度の変化を検出しているので、二次電池701の残留磁場の個体ごとのばらつきの影響を低減することができる。このため、二次電池701の微小短絡の有無を迅速かつ精度よく検査することができる。   For example, when a magnetic layer is formed on the lower surface of the inspection object carrier to cancel the residual magnetic field of the inspection object, the residual magnetic field of the secondary battery 701 has a large individual difference. It is necessary to form a magnetic layer suitable for the magnetic field, which increases the cost required for inspection. However, in the secondary battery inspection method according to the present embodiment, since the change in magnetic field strength when the voltage of one secondary battery 701 is changed is detected, the individual residual magnetic field of the secondary battery 701 is detected. It is possible to reduce the influence of variation for each. For this reason, the presence or absence of the micro short circuit of the secondary battery 701 can be inspected quickly and accurately.

(変形例)
本実施の形態にかかる二次電池の検査方法の変形例を示す。図10は、二次電池の検査方法の変形例を示す図である。図10に、ベルトコンベア等の搬送手段に二次電池701を乗せ、二次電池701と磁気センサ101との相対的な位置を変化させながら磁場強度を測定する様子を示す。図10に示すように、二次電池701を水平方向に(a)、(b)、(c)の順番で移動させた場合に、二次電池701のうち磁気センサ101の直下に(対象とする磁場強度や向きによっては、水平方向にも検出領域が広がるが、ここでは簡単のために、センサ直下部にのみ検出領域があるとした)来る部分が測定範囲となる。
(Modification)
The modification of the inspection method of the secondary battery concerning this embodiment is shown. FIG. 10 is a diagram showing a modification of the inspection method for the secondary battery. FIG. 10 shows a state in which the secondary battery 701 is placed on a conveying means such as a belt conveyor and the magnetic field strength is measured while the relative position between the secondary battery 701 and the magnetic sensor 101 is changed. As shown in FIG. 10, when the secondary battery 701 is moved in the order of (a), (b), and (c) in the horizontal direction, the secondary battery 701 is directly under the magnetic sensor 101 (with the target). Depending on the strength and direction of the magnetic field, the detection area extends in the horizontal direction, but for the sake of simplicity, the area to be detected is assumed to be the detection area only immediately below the sensor.

二次電池701と磁気センサ101の位置関係を変えて、複数の位置で第1の磁場強度B1および第2の磁場強度B2を測定する。そして、第1の磁場強度B1と第2の磁場強度B2との差が最大になる位置が、二次電池701の短絡部位と判定できる。例えば、図10において、第1の磁場強度B1と第2の磁場強度B2との差が(a)の位置で最大になったとすると、(a)の位置で磁気センサ101の測定範囲に入っている部位に短絡が存在すると判定できる。   By changing the positional relationship between the secondary battery 701 and the magnetic sensor 101, the first magnetic field strength B1 and the second magnetic field strength B2 are measured at a plurality of positions. Then, the position where the difference between the first magnetic field strength B1 and the second magnetic field strength B2 is maximized can be determined as the short-circuit portion of the secondary battery 701. For example, in FIG. 10, if the difference between the first magnetic field strength B1 and the second magnetic field strength B2 is maximized at the position (a), the measurement range of the magnetic sensor 101 is entered at the position (a). It can be determined that there is a short circuit at the site.

この変形例では、二次電池701を移動させて複数の位置において、図8に示す二次電池の検査方法を実行することになる。
一方、このように二次電池701を移動させて磁場強度を測定するのではなく、二次電池701の周囲に磁気センサ101を複数配置し、短絡の有無と短絡部位の特定を同時に行う構成とすることにより、検査時間の短縮が可能となる。
In this modification, the secondary battery 701 is moved and the secondary battery inspection method shown in FIG. 8 is performed at a plurality of positions.
On the other hand, instead of moving the secondary battery 701 and measuring the magnetic field intensity in this way, a plurality of magnetic sensors 101 are arranged around the secondary battery 701, and the presence or absence of a short circuit and the identification of the short-circuited part are performed simultaneously. By doing so, the inspection time can be shortened.

[実施の形態3]
本実施の形態では、実施の形態2と同じ二次電池の検査装置300を用いる。
本実施の形態にかかる二次電池の検査方法について説明する。図11は、本実施の形態にかかる二次電池の検査方法の流れを示すフローチャートである。
まず、検査対象の二次電池701を、二次電池の検査装置300内に入れる(S801)。
[Embodiment 3]
In the present embodiment, the same secondary battery inspection apparatus 300 as in the second embodiment is used.
A method for inspecting a secondary battery according to the present embodiment will be described. FIG. 11 is a flowchart showing the flow of the secondary battery inspection method according to the present embodiment.
First, the secondary battery 701 to be inspected is placed in the secondary battery inspection apparatus 300 (S801).

次に、二次電池701の正極および負極を開放した状態で、磁気センサ101により二次電池701の磁場強度を測定する(S802)。このときの二次電池701の電圧を第1の電圧V1とし、磁気センサ101により測定された磁場強度を第1の磁場強度B1とする。測定された磁場強度の値B1は記憶部304に記憶される。   Next, the magnetic field intensity of the secondary battery 701 is measured by the magnetic sensor 101 in a state where the positive electrode and the negative electrode of the secondary battery 701 are opened (S802). The voltage of the secondary battery 701 at this time is defined as a first voltage V1, and the magnetic field intensity measured by the magnetic sensor 101 is defined as a first magnetic field intensity B1. The measured magnetic field strength value B 1 is stored in the storage unit 304.

次に、二次電池701の正極および負極に充放電装置310を接続し、二次電池701と磁気センサ101との位置関係を固定したまま、充放電装置310により二次電池701の電圧を第2の電圧V2に変化させる(S803)。二次電池701の電圧を第2の電圧V2とし、正極および負極を開放した状態で、磁気センサ101により二次電池701の磁場強度を測定する(S804)。このとき磁気センサ101により測定された磁場強度を、第2の磁場強度B2とする。測定された磁場強度の値B2は記憶部304に記憶される。   Next, the charging / discharging device 310 is connected to the positive electrode and the negative electrode of the secondary battery 701, and the voltage of the secondary battery 701 is changed by the charging / discharging device 310 while the positional relationship between the secondary battery 701 and the magnetic sensor 101 is fixed. The voltage V2 is changed to 2 (S803). With the voltage of the secondary battery 701 set to the second voltage V2, the magnetic field strength of the secondary battery 701 is measured by the magnetic sensor 101 in a state where the positive electrode and the negative electrode are opened (S804). At this time, the magnetic field intensity measured by the magnetic sensor 101 is defined as a second magnetic field intensity B2. The measured magnetic field strength value B 2 is stored in the storage unit 304.

良否判定部103は、二次電池701の電圧を第2の電圧V2に変更して磁場強度を測定した後、所望の電圧の全てで二次電池701の磁場強度を測定したか判定する(S805)。良否判定部103が所望の電圧の全てで二次電池701の磁場を測定していないと判定した場合(S805 NO)、二次電池701の電圧を変更して(S803)、磁気センサ101により二次電池701の磁場強度を測定する(S804)。   The pass / fail determination unit 103 changes the voltage of the secondary battery 701 to the second voltage V2 and measures the magnetic field strength, and then determines whether or not the magnetic field strength of the secondary battery 701 has been measured at all desired voltages (S805). ). When the pass / fail judgment unit 103 judges that the magnetic field of the secondary battery 701 is not measured with all desired voltages (NO in S805), the voltage of the secondary battery 701 is changed (S803), and the magnetic sensor 101 The magnetic field strength of the secondary battery 701 is measured (S804).

このように、ステップS803〜S805の処理を繰り返して、所望の電圧V1〜Vnに対応した磁場強度B1〜Bnを測定することができる。二次電池701の電圧を変更する際は、例えば前工程から送られてきた二次電池701の電圧が高い場合は、充放電装置310により放電を行い、順次電圧を下げていくようにしてもよい。また、前工程から送られてきた二次電池701の電圧が低い場合は、充放電装置310により充電を行い、順次電圧を上げていくようにしてもよい。   In this manner, the magnetic field strengths B1 to Bn corresponding to the desired voltages V1 to Vn can be measured by repeating the processes of steps S803 to S805. When changing the voltage of the secondary battery 701, for example, when the voltage of the secondary battery 701 sent from the previous process is high, the battery is discharged by the charging / discharging device 310 and the voltage is gradually lowered. Good. In addition, when the voltage of the secondary battery 701 sent from the previous process is low, charging may be performed by the charging / discharging device 310, and the voltage may be sequentially increased.

良否判定部103は、所望の電圧の全てで二次電池701の磁場を測定したと判定した場合(S805 YES)、二次電池701の電圧と測定された磁場強度との関係を求める(S806)。図12に、二次電池701の電圧と測定された磁場強度との関係の一例を示す。図12では、短絡がある不良品の場合を実線で、短絡のない良品の場合を破線で示している。   When it is determined that the magnetic field of the secondary battery 701 has been measured at all desired voltages (YES in S805), the pass / fail determination unit 103 obtains the relationship between the voltage of the secondary battery 701 and the measured magnetic field strength (S806). . FIG. 12 shows an example of the relationship between the voltage of the secondary battery 701 and the measured magnetic field strength. In FIG. 12, a defective product with a short circuit is indicated by a solid line, and a non-defective product without a short circuit is indicated by a broken line.

次に、良否判定部103は、測定された磁場強度の、二次電池701の電圧に対する傾きを算出し、磁場強度の傾きが閾値より小さいか判定する(S807)。磁場強度の傾きは、測定電圧ごとの磁場強度をプロットしたグラフの傾きを求めてもよいし、最小二乗法により傾きを求めてもよい。測定電圧を多くとるほど、測定ばらつきによる傾きの誤差を低減することができる。傾きの誤差を低減することにより、二次電池701の良否判定の精度を向上することができる。良否判定の基準となる閾値は、事前に算出して、記憶部304に記憶しておく。   Next, the pass / fail determination unit 103 calculates the gradient of the measured magnetic field strength with respect to the voltage of the secondary battery 701, and determines whether the gradient of the magnetic field strength is smaller than the threshold (S807). For the gradient of the magnetic field strength, the gradient of the graph plotting the magnetic field strength for each measurement voltage may be obtained, or the gradient may be obtained by the least square method. As the measurement voltage is increased, an error in inclination due to measurement variation can be reduced. By reducing the tilt error, the accuracy of the quality determination of the secondary battery 701 can be improved. A threshold value that is a criterion for pass / fail determination is calculated in advance and stored in the storage unit 304.

電圧に対する磁場強度の傾きが閾値より小さい場合(S807 YES)、電圧が増大しても磁場強度が増大しないので、検査対象の二次電池701を良品と判定し、次工程へと送る(S808)。   If the gradient of the magnetic field strength with respect to the voltage is smaller than the threshold (YES in S807), the magnetic field strength does not increase even if the voltage increases, so the secondary battery 701 to be inspected is determined to be a non-defective product and sent to the next process (S808). .

算出された電圧に対する磁場強度の傾きが閾値より大きい場合(S807 NO)、電圧が増大するにつれて磁場強度も増大するので、検査対象の二次電池701を、二次電池701内に短絡がある不良品と判定する(S809)。不良品と判定された二次電池701は、後工程には送られない。   When the gradient of the magnetic field strength with respect to the calculated voltage is larger than the threshold value (NO in S807), the magnetic field strength increases as the voltage increases, so that the secondary battery 701 to be inspected is not short-circuited in the secondary battery 701. It is determined as a non-defective product (S809). The secondary battery 701 determined to be defective is not sent to the subsequent process.

本実施の形態にかかる二次電池の検査方法は、測定電圧を多くとることができるので、測定ばらつきによる誤差を低減することができる。測定ばらつきの影響を低減することにより、二次電池701の良否判定の精度を向上することができる。   Since the secondary battery inspection method according to this embodiment can take a large amount of measurement voltage, errors due to measurement variations can be reduced. By reducing the influence of measurement variation, the accuracy of the quality determination of the secondary battery 701 can be improved.

[実施の形態4]
図13を用いて、本実施の形態にかかる二次電池の検査装置1000について説明する。図13に示すように、二次電池の検査装置1000は、磁気センサ101と、磁場検出部102と、良否判定部103と、記憶部304と、充放電装置310と、補正磁場発生部111と、補正磁場制御部112と、磁気シールドボックス120と、を備える。本実施の形態にかかる二次電池の検査装置1000は、補正磁場発生部111と、補正磁場制御部112と、を有する点が、実施の形態2にかかる二次電池の検査装置300(図7参照)と異なる。
[Embodiment 4]
A secondary battery inspection apparatus 1000 according to the present embodiment will be described with reference to FIG. As shown in FIG. 13, the secondary battery inspection apparatus 1000 includes a magnetic sensor 101, a magnetic field detection unit 102, a pass / fail determination unit 103, a storage unit 304, a charge / discharge device 310, and a corrected magnetic field generation unit 111. The correction magnetic field control unit 112 and the magnetic shield box 120 are provided. The secondary battery inspection apparatus 1000 according to the present embodiment includes a correction magnetic field generation unit 111 and a correction magnetic field control unit 112, the secondary battery inspection apparatus 300 according to the second embodiment (FIG. 7). Different from reference).

補正磁場発生部111は、二次電池701の残留磁場を打ち消すように磁場を発生する。補正磁場発生部111は、導線に電流を流す単純な構成で、アンペールの法則を利用して磁場を発生させるものでもよいし、コイルを用いた電磁石であってもよい。補正磁場発生部111が発生する磁場強度は、補正磁場発生部111に流す電流値を変化させることにより制御できる。なお、補正磁場発生部111は、磁気シールドボックス120の外部から制御可能なパラメータを変化させることにより、発生する磁場強度を変化させることができるものであればよく、上述の構成に限定されるものではない。例えば、電流、電圧、又は温度を変化させることにより磁場が変化する材料単体を用いてもよい。   The correction magnetic field generation unit 111 generates a magnetic field so as to cancel the residual magnetic field of the secondary battery 701. The correction magnetic field generation unit 111 has a simple configuration in which a current is passed through a conducting wire, and may generate a magnetic field using Ampere's law, or may be an electromagnet using a coil. The intensity of the magnetic field generated by the correction magnetic field generation unit 111 can be controlled by changing the value of the current passed through the correction magnetic field generation unit 111. The correction magnetic field generation unit 111 may be any unit that can change the intensity of the generated magnetic field by changing a parameter that can be controlled from the outside of the magnetic shield box 120, and is limited to the above-described configuration. is not. For example, a single material whose magnetic field changes by changing current, voltage, or temperature may be used.

補正磁場制御部112は、補正磁場発生部111を制御する。補正磁場制御部112は、良否判定部103から磁気センサ101により測定した磁場強度を取得し、磁場強度に合わせて補正磁場発生部111が発生する磁場を変化させる。   The correction magnetic field control unit 112 controls the correction magnetic field generation unit 111. The correction magnetic field control unit 112 acquires the magnetic field strength measured by the magnetic sensor 101 from the pass / fail determination unit 103, and changes the magnetic field generated by the correction magnetic field generation unit 111 in accordance with the magnetic field strength.

磁気シールドボックス120は、外部からの磁場を遮断する。磁気シールドボックス120の内部で検査を行うことにより、外部からの磁場の影響を小さくできるので、磁場の補正を精度よく行うことができる。   The magnetic shield box 120 blocks an external magnetic field. By performing the inspection inside the magnetic shield box 120, the influence of the external magnetic field can be reduced, so that the magnetic field can be corrected with high accuracy.

本実施の形態にかかる二次電池の検査方法について説明する。図14は、本実施の形態にかかる二次電池の検査方法の流れを示すフローチャートである。
まず、検査対象の二次電池701を、二次電池の検査装置内に入れる(S901)。
次に、二次電池701の正極および負極を開放した状態で、磁気センサ101により二次電池701の磁場強度を測定する(S902)。測定された磁場強度B0は記憶部304に記憶される。
A method for inspecting a secondary battery according to the present embodiment will be described. FIG. 14 is a flowchart showing the flow of the secondary battery inspection method according to the present embodiment.
First, the secondary battery 701 to be inspected is placed in a secondary battery inspection device (S901).
Next, the magnetic field intensity of the secondary battery 701 is measured by the magnetic sensor 101 in a state where the positive electrode and the negative electrode of the secondary battery 701 are opened (S902). The measured magnetic field strength B0 is stored in the storage unit 304.

次に、良否判定部103は、磁場強度B0の測定結果から、磁場強度の測定において磁場補正が必要か否か判定する(S903)。図15は、二次電池701の残留磁場が大きい場合の、磁場強度の測定結果の一例を示す図である。図15では、ベルトコンベア等の搬送手段に二次電池701を乗せ、二次電池701と磁気センサ101との相対的な位置を変化させながら磁場強度を測定している。   Next, the quality determination unit 103 determines whether or not magnetic field correction is necessary in the measurement of the magnetic field strength from the measurement result of the magnetic field strength B0 (S903). FIG. 15 is a diagram illustrating an example of the measurement result of the magnetic field strength when the residual magnetic field of the secondary battery 701 is large. In FIG. 15, the secondary battery 701 is placed on a conveying means such as a belt conveyor, and the magnetic field strength is measured while changing the relative position between the secondary battery 701 and the magnetic sensor 101.

図15においては、破線で囲った部分の測定結果が磁気センサ101の測定可能範囲を振り切っており、磁場強度の正確な測定ができていない。このような場合に、補正磁場発生部111を用いて、二次電池701の残留磁場を打ち消す方向に磁場を印加することで、磁気センサ101の測定可能範囲に収まるように磁場強度測定の0点を補正することができる。また、磁気センサ101の感度が振り切れていない場合でも、測定可能範囲の上限又は下限付近であれば、磁場補正をすることで検出能力が向上するので、磁場補正が必要と判定する設定にしてもよい。   In FIG. 15, the measurement result of the portion surrounded by the broken line has swung out the measurable range of the magnetic sensor 101, and the magnetic field strength cannot be accurately measured. In such a case, the correction magnetic field generation unit 111 is used to apply a magnetic field in a direction that cancels the residual magnetic field of the secondary battery 701, so that the magnetic field strength measurement zero point so that it is within the measurable range of the magnetic sensor 101. Can be corrected. Even when the sensitivity of the magnetic sensor 101 has not been fully affected, if the magnetic field correction is performed near the upper limit or lower limit of the measurable range, the detection capability is improved by correcting the magnetic field. Good.

良否判定部103が磁場補正を行う必要があると判定した場合(S903 YES)、補正磁場発生部111を用いて磁場補正を行う(S904)。
磁場補正を行った後、補正後の磁場強度の測定を行い、補正後の磁場強度の測定結果に基づいて二次電池701の良否を判定する(S905)。
When the pass / fail determination unit 103 determines that the magnetic field correction needs to be performed (YES in S903), the correction magnetic field generation unit 111 is used to correct the magnetic field (S904).
After the magnetic field correction, the corrected magnetic field strength is measured, and the quality of the secondary battery 701 is determined based on the corrected magnetic field strength measurement result (S905).

良否判定部103が磁場補正を行う必要がないと判定した場合(S903 NO)、磁場補正は行わずに磁場強度の測定を継続して、磁場強度の測定結果に基づいて二次電池701の良否を判定する(S906)。なお、磁場強度の測定は、実施の形態1〜3に記載した方法のいずれかで行ってもよい。   When the pass / fail determination unit 103 determines that the magnetic field correction is not necessary (NO in S903), the measurement of the magnetic field strength is continued without performing the magnetic field correction, and the pass / fail of the secondary battery 701 is determined based on the measurement result of the magnetic field strength. Is determined (S906). The measurement of the magnetic field strength may be performed by any of the methods described in the first to third embodiments.

本実施の形態にかかる二次電池の検査装置1000によれば、二次電池701の個体ごとに残留磁場の大きさが異なる場合でも、磁場強度のピークが磁気センサ101の測定可能範囲内に収まるようにすることができる。   According to the secondary battery inspection apparatus 1000 according to the present embodiment, the peak of the magnetic field strength is within the measurable range of the magnetic sensor 101 even when the magnitude of the residual magnetic field differs for each individual secondary battery 701. Can be.

また、二次電池701の電圧を変更するときに、充放電する電流により磁場が発生する。超高感度なSQUIDセンサを用いる場合、センサに大きな磁場が入ると、磁束トラップ・ジャンプが生じ、充放電電流を0にしても(所望電圧に達し、充放電を止めても)、センサから出力される磁場強度信号が、元に戻らない場合がある。これは、例えば、良品の二次電池を測定している場合、本来なら電圧を変更しても磁場強度が変わらないものが、センサの特性上、電圧変更の前後で、磁場強度が変化しているように計測されてしまう。特に、検査時間の短縮を狙って、大電流を流して電圧変更するときにこのような現象が起こることがある。   Further, when the voltage of the secondary battery 701 is changed, a magnetic field is generated by the current that is charged and discharged. When using a highly sensitive SQUID sensor, if a large magnetic field enters the sensor, a magnetic flux trap / jump occurs, and even if the charge / discharge current is set to 0 (even if the charge / discharge is stopped), output from the sensor The applied magnetic field strength signal may not be restored. This is because, for example, when measuring a non-defective secondary battery, the magnetic field strength does not change even if the voltage is changed, but the magnetic field strength changes before and after the voltage change due to the characteristics of the sensor. Will be measured. In particular, such a phenomenon may occur when the voltage is changed by passing a large current with the aim of shortening the inspection time.

このように大電流を流して電圧変更するときは、充放電する電流を小さな値から徐々に大きくしていき、磁気センサ101の出力値に応じて補正磁場発生部111が発生する磁場の強度を調整することにより、センサ部に大きな磁場が入る事を防ぐ事ができる。また、検査時間の関係等により、大電流での充放電を必要とし、本手法による磁束トラップ・ジャンプが回避できない場合には、別の高感度センサ、例えば、MIセンサやフラックスゲートセンサを用いる事で回避する事もできる。特に近年では、MIセンサやフラックスゲートセンサの感度向上は目覚しく、SQUIDセンサを用いる場合との検出感度差も小さくなってきており、効果的な対策となる。   When the voltage is changed by flowing a large current in this way, the charging / discharging current is gradually increased from a small value, and the intensity of the magnetic field generated by the correction magnetic field generation unit 111 according to the output value of the magnetic sensor 101 is increased. By adjusting, it is possible to prevent a large magnetic field from entering the sensor unit. In addition, if high current charging / discharging is required due to the inspection time, etc., and magnetic flux trapping / jumping by this method cannot be avoided, another high-sensitivity sensor such as an MI sensor or fluxgate sensor should be used. Can also be avoided. In particular, in recent years, the sensitivity of MI sensors and fluxgate sensors has improved remarkably, and the difference in detection sensitivity from the case of using a SQUID sensor has become smaller, which is an effective measure.

なお、本発明は上記実施の形態に限られたものではなく、趣旨を逸脱しない範囲で適宜変更することが可能である。例えば、本発明にかかる二次電池の検査方法の対象となる二次電池は、自動車用二次電池に限定されるものではなく、携帯電話やノート型パーソナルコンピュータ等の家電製品用二次電池であってもよい。また、本発明にかかる二次電池の検査方法の対象となる二次電池は、短絡が発生した場合に電流が発生するものであればよく、リチウムイオン電池やニッケル水素電池に限定されるものではない。   Note that the present invention is not limited to the above-described embodiment, and can be changed as appropriate without departing from the spirit of the present invention. For example, the secondary battery that is a target of the secondary battery inspection method according to the present invention is not limited to a secondary battery for automobiles, but is a secondary battery for home appliances such as a mobile phone and a notebook personal computer. There may be. In addition, the secondary battery that is the target of the secondary battery inspection method according to the present invention may be any battery that generates current when a short circuit occurs, and is not limited to a lithium ion battery or a nickel metal hydride battery. Absent.

100、300、1000 二次電池の検査装置
101 磁気センサ
102 磁場検出部
103 良否判定部
111 補正磁場発生部
112 補正磁場制御部
120 磁気シールドボックス
201 正極材
202 負極材
203 セパレータ
304 記憶部
310 充放電装置
701 二次電池
702 導電性異物
703 磁場
100, 300, 1000 Secondary battery inspection device 101 Magnetic sensor 102 Magnetic field detector 103 Pass / fail judgment unit 111 Corrected magnetic field generator 112 Corrected magnetic field controller 120 Magnetic shield box 201 Positive electrode material 202 Negative electrode material 203 Separator 304 Storage unit 310 Charge / Discharge Device 701 Secondary battery 702 Conductive foreign matter 703 Magnetic field

Claims (10)

二次電池の正極および負極を開放した状態で、前記二次電池の磁場強度を測定し、
測定した前記二次電池の磁場強度に基づいて、前記二次電池内に流れる電流が作り出す磁場を検出し、
前記電流が作り出す磁場が検出された場合に、前記二次電池内に短絡があると判定する
二次電池の検査方法。
With the positive and negative electrodes of the secondary battery open, measure the magnetic field strength of the secondary battery,
Based on the measured magnetic field strength of the secondary battery, detect the magnetic field created by the current flowing in the secondary battery,
A secondary battery inspection method for determining that a short circuit is present in the secondary battery when a magnetic field generated by the current is detected.
請求項1に記載の二次電池の検査方法であって、
前記二次電池の電圧が第1の電圧のときに前記二次電池の第1の磁場強度を測定し、
前記二次電池の電圧を前記第1の電圧から第2の電圧に変更し、
前記二次電池の前記第2の電圧における第2の磁場強度を測定し、
前記第1の磁場強度と前記第2の磁場強度との差に基づいて、前記二次電池内に流れる電流が作り出す磁場を検出する
ことを特徴とする二次電池の検査方法。
A method for inspecting a secondary battery according to claim 1,
Measuring the first magnetic field strength of the secondary battery when the voltage of the secondary battery is the first voltage;
Changing the voltage of the secondary battery from the first voltage to the second voltage;
Measuring a second magnetic field strength at the second voltage of the secondary battery;
A method for inspecting a secondary battery, comprising: detecting a magnetic field generated by a current flowing in the secondary battery based on a difference between the first magnetic field intensity and the second magnetic field intensity.
請求項1に記載の二次電池の検査方法であって、
複数の電圧における前記二次電池の磁場強度をそれぞれ測定し、
前記複数の電圧と前記測定された磁場強度との関係から、前記複数の電圧に対しての前記磁場強度の傾きを算出し、
前記傾きに基づいて、前記二次電池の短絡の有無を判定する
ことを特徴とする二次電池の検査方法。
A method for inspecting a secondary battery according to claim 1,
Measure the magnetic field strength of the secondary battery at a plurality of voltages,
From the relationship between the plurality of voltages and the measured magnetic field strength, the inclination of the magnetic field strength with respect to the plurality of voltages is calculated,
The method for inspecting a secondary battery, wherein the presence or absence of a short circuit of the secondary battery is determined based on the inclination.
請求項1に記載の二次電池の検査方法であって、
短絡がない二次電池の磁場強度を測定し、前記短絡がない二次電池の磁場強度と、検査対象の二次電池の測定した磁場強度との差に基づいて、前記検査対象の二次電池内に流れる電流が作り出す磁場を検出する
ことを特徴とする二次電池の検査方法。
A method for inspecting a secondary battery according to claim 1,
Measuring the magnetic field strength of a secondary battery without a short circuit, and based on the difference between the magnetic field strength of the secondary battery without the short circuit and the measured magnetic field strength of the secondary battery to be inspected, the secondary battery to be inspected A method for inspecting a secondary battery, characterized by detecting a magnetic field generated by a current flowing in the inside.
請求項1〜4のいずれか1項に記載の二次電池の検査方法であって、
磁気センサを用いて測定された前記二次電池の磁場強度が、前記磁気センサの測定可能範囲を超える場合は、測定される前記二次電池の磁場強度が前記測定可能範囲内に収まるように前記二次電池に磁場を印加する
ことを特徴とする二次電池の検査方法。
A method for inspecting a secondary battery according to any one of claims 1 to 4,
When the magnetic field strength of the secondary battery measured using a magnetic sensor exceeds the measurable range of the magnetic sensor, the magnetic field strength of the secondary battery to be measured is within the measurable range. A method for inspecting a secondary battery, comprising applying a magnetic field to the secondary battery.
請求項1〜5のいずれか1項に記載の二次電池の検査方法であって、
二次電池と磁気センサとの相対的な位置関係を変化させながら前記二次電池の磁場強度を測定し、
測定した前記二次電池の磁場強度に基づいて前記短絡の位置を特定する
ことを特徴とする二次電池の検査方法。
A method for inspecting a secondary battery according to any one of claims 1 to 5,
Measure the magnetic field strength of the secondary battery while changing the relative positional relationship between the secondary battery and the magnetic sensor,
The method for inspecting a secondary battery, wherein the position of the short circuit is specified based on the measured magnetic field strength of the secondary battery.
請求項1〜6のいずれか1項に記載の二次電池の検査方法であって、
前記二次電池を加圧した状態で検査を行う
ことを特徴とする二次電池の検査方法。
A method for inspecting a secondary battery according to any one of claims 1 to 6,
An inspection method for a secondary battery, wherein the inspection is performed in a state where the secondary battery is pressurized.
請求項1〜7のいずれか1項に記載の二次電池の検査方法であって、
環境磁場を遮断する磁気シールドボックス内において、前記二次電池の磁場強度を測定する
ことを特徴とする二次電池の検査方法。
A secondary battery inspection method according to any one of claims 1 to 7,
A method of inspecting a secondary battery, comprising: measuring a magnetic field strength of the secondary battery in a magnetic shield box that blocks an environmental magnetic field.
請求項1〜8のいずれか1項に記載の二次電池の検査方法であって、
二次元の格子状に配置された複数の磁気センサを用いて前記二次電池の磁場強度を測定する
ことを特徴とする二次電池の検査方法。
A method for inspecting a secondary battery according to any one of claims 1 to 8,
A method for inspecting a secondary battery, wherein the magnetic field strength of the secondary battery is measured using a plurality of magnetic sensors arranged in a two-dimensional lattice pattern.
二次電池の磁場強度を測定する磁気センサと、
前記磁気センサにより測定した前記二次電池の磁場強度に基づいて、前記二次電池内に流れる電流が作り出す磁場を検出する磁場検出部と、
前記磁場検出部において、前記電流が作り出す磁場が検出された場合に短絡があると判定する良否判定部と、を備え、
前記磁気センサは、前記二次電池の正極および負極を開放した状態で前記二次電池の磁場強度を測定する
ことを特徴とする二次電池の検査装置。
A magnetic sensor for measuring the magnetic field strength of the secondary battery;
Based on the magnetic field strength of the secondary battery measured by the magnetic sensor, a magnetic field detection unit that detects a magnetic field created by a current flowing in the secondary battery;
In the magnetic field detection unit, including a pass / fail determination unit that determines that there is a short circuit when a magnetic field generated by the current is detected,
The said magnetic sensor measures the magnetic field intensity of the said secondary battery in the state which open | released the positive electrode and negative electrode of the said secondary battery. The inspection apparatus of the secondary battery characterized by the above-mentioned.
JP2014010357A 2013-09-27 2014-01-23 Secondary battery inspection method and inspection device Active JP6167917B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014010357A JP6167917B2 (en) 2013-09-27 2014-01-23 Secondary battery inspection method and inspection device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013201890 2013-09-27
JP2013201890 2013-09-27
JP2014010357A JP6167917B2 (en) 2013-09-27 2014-01-23 Secondary battery inspection method and inspection device

Publications (2)

Publication Number Publication Date
JP2015087372A true JP2015087372A (en) 2015-05-07
JP6167917B2 JP6167917B2 (en) 2017-07-26

Family

ID=53050280

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014010357A Active JP6167917B2 (en) 2013-09-27 2014-01-23 Secondary battery inspection method and inspection device

Country Status (1)

Country Link
JP (1) JP6167917B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019045027A1 (en) * 2017-09-01 2019-03-07 コニカミノルタ株式会社 Nondestructive test method and nondestructive test instrument
WO2019045028A1 (en) * 2017-09-01 2019-03-07 コニカミノルタ株式会社 Nondestructive test method and nondestructive test device
WO2021024859A1 (en) * 2019-08-06 2021-02-11 株式会社 Integral Geometry Science Storage battery inspection device and storage battery inspection method
JP7323417B2 (en) 2019-10-17 2023-08-08 株式会社Soken Method for manufacturing secondary battery

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001236985A (en) * 2000-02-22 2001-08-31 Matsushita Electric Ind Co Ltd Method of inspecting short circuit in battery and method of manufacturing battery
JP2002008631A (en) * 2000-06-16 2002-01-11 Mitsubishi Heavy Ind Ltd Inner short-circuit detecting device, inner energy absorber and secondary battery
JP2004132776A (en) * 2002-10-09 2004-04-30 Matsushita Electric Ind Co Ltd Inspection method of battery
JP2010231948A (en) * 2009-03-26 2010-10-14 Primearth Ev Energy Co Ltd Method for inspecting internal short circuit of battery
JP2010277979A (en) * 2009-05-22 2010-12-09 Shuji Onita Method of detecting internal short-circuiting phenomenon at secondary battery having foil structure
US20110298417A1 (en) * 2010-06-08 2011-12-08 Tesla Motors, Inc. Methodology for charging batteries safely
JP2013054984A (en) * 2011-09-06 2013-03-21 Hitachi Ltd Magnetic measuring device and magnetic measurement method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001236985A (en) * 2000-02-22 2001-08-31 Matsushita Electric Ind Co Ltd Method of inspecting short circuit in battery and method of manufacturing battery
JP2002008631A (en) * 2000-06-16 2002-01-11 Mitsubishi Heavy Ind Ltd Inner short-circuit detecting device, inner energy absorber and secondary battery
JP2004132776A (en) * 2002-10-09 2004-04-30 Matsushita Electric Ind Co Ltd Inspection method of battery
JP2010231948A (en) * 2009-03-26 2010-10-14 Primearth Ev Energy Co Ltd Method for inspecting internal short circuit of battery
JP2010277979A (en) * 2009-05-22 2010-12-09 Shuji Onita Method of detecting internal short-circuiting phenomenon at secondary battery having foil structure
US20110298417A1 (en) * 2010-06-08 2011-12-08 Tesla Motors, Inc. Methodology for charging batteries safely
JP2013054984A (en) * 2011-09-06 2013-03-21 Hitachi Ltd Magnetic measuring device and magnetic measurement method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019045027A1 (en) * 2017-09-01 2019-03-07 コニカミノルタ株式会社 Nondestructive test method and nondestructive test instrument
WO2019045028A1 (en) * 2017-09-01 2019-03-07 コニカミノルタ株式会社 Nondestructive test method and nondestructive test device
WO2021024859A1 (en) * 2019-08-06 2021-02-11 株式会社 Integral Geometry Science Storage battery inspection device and storage battery inspection method
JP7323417B2 (en) 2019-10-17 2023-08-08 株式会社Soken Method for manufacturing secondary battery

Also Published As

Publication number Publication date
JP6167917B2 (en) 2017-07-26

Similar Documents

Publication Publication Date Title
Feng et al. Detecting the internal short circuit in large-format lithium-ion battery using model-based fault-diagnosis algorithm
KR101685461B1 (en) Apparatus and Method for Evaluating Sheet-like Battery
JP5071747B2 (en) Secondary battery inspection device, secondary battery inspection method, secondary battery manufacturing method
JP6167917B2 (en) Secondary battery inspection method and inspection device
US11686699B2 (en) System and method for anomaly detection and total capacity estimation of a battery
US20160061907A1 (en) Battery state determination device
US10847849B2 (en) Inspection method of electrical storage device and manufacturing method thereof
KR20200005290A (en) Method of detecting electrode damage in pouch type secondary battery and apparatus for detecting electrode damage in pouch type secondary battery
US20150056478A1 (en) Lithium-ion secondary battery system, inspection method for lithium-ion secondary battery, and control method for lithium-ion secondary battery
JP2014089819A (en) Magnetic field measuring device, and battery deterioration inspecting method using the same
JP2012251919A (en) Inspection equipment of lithium ion secondary battery, inspection method and secondary battery module
US20210181150A1 (en) Method for characterizing a weld
Ahmeid et al. A rapid capacity evaluation of retired electric vehicle battery modules using partial discharge test
US20170254714A1 (en) Vacuum gauge and contamination diagnosis method
US20220357402A1 (en) Battery characterisation and monitoring system
KR101398477B1 (en) Precise Detector of Charge Voltage for Charge-Discharge Device
JP2017003325A (en) Secondary battery inspection method
JP2016219272A (en) Inspection method for secondary battery
CN115443417A (en) Method and device for checking the state of a battery
JP7278312B2 (en) SELF-DISCHARGE INSPECTION METHOD FOR ELECTRICITY STORAGE DEVICE AND METHOD FOR MANUFACTURING ELECTRICITY STORAGE DEVICE
WO2024009894A1 (en) Measurement device and measurement method
WO2019096362A1 (en) Device and method for testing a solid state elektrolyte and system
KR20220090975A (en) Device and method for crack detection of battery cell using eddy current
KR20220060880A (en) Eddy current sensor for detecting crack of battery cell and system for detecting crack of battery including the same
KR20220095294A (en) Eddy current sensor for detecting crack of battery cell and method for detecting crack of battery cell using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170530

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170612

R151 Written notification of patent or utility model registration

Ref document number: 6167917

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151