JP2014143164A - Method and device for checking secondary battery - Google Patents

Method and device for checking secondary battery Download PDF

Info

Publication number
JP2014143164A
JP2014143164A JP2013120544A JP2013120544A JP2014143164A JP 2014143164 A JP2014143164 A JP 2014143164A JP 2013120544 A JP2013120544 A JP 2013120544A JP 2013120544 A JP2013120544 A JP 2013120544A JP 2014143164 A JP2014143164 A JP 2014143164A
Authority
JP
Japan
Prior art keywords
battery
voltage
secondary battery
charge amount
charging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013120544A
Other languages
Japanese (ja)
Inventor
Toshihiko Mankyu
俊彦 萬久
Naoki Ishii
直樹 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Automotive Energy Supply Corp
Original Assignee
Automotive Energy Supply Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Automotive Energy Supply Corp filed Critical Automotive Energy Supply Corp
Priority to JP2013120544A priority Critical patent/JP2014143164A/en
Publication of JP2014143164A publication Critical patent/JP2014143164A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To provide a secondary battery checking device capable of determining failure of a battery.SOLUTION: A device for checking a secondary battery 10 is provided with a battery element formed by laminating plural stages of positive electrode plates and negative electrode plates via separators together with an electrolyte and comprises: a charger 51 for constant-current charging the discharged secondary battery 10; a charging amount calculation part 54 for calculating a charging amount of the secondary battery 10; a battery voltage determination part 53 for determining whether or not an inter-terminal voltage of the secondary battery 10 reaches a setting voltage; a charging amount comparison part 55 for comparing a charging amount calculation value of the charging amount calculation part 54 and a set charging amount threshold value when the battery voltage determination part 53 determines that the inter-terminal voltage of the secondary battery 10 reaches the setting voltage; a determination part 56 for determining that the battery is faulty when the charging amount calculation value is smaller than the charging amount threshold value according to comparison results of the charging amount comparison part 55; and a result indicator 60 for indicating the determination results.

Description

本発明は、二次電池の検査方法および検査装置に関する。   The present invention relates to a secondary battery inspection method and inspection apparatus.

近年、携帯機器などの家電用バッテリーや自動車用バッテリーとして二次電池が多用されてきている。この二次電池は、例えば図6に示すように、電極としての正極板1と負極板2がセパレータ3を介して複数段積層されてなる電池要素4を電解液中に配設し、それらを例えばラミネートフィルムによって封止して構成される。   In recent years, secondary batteries have been widely used as batteries for home appliances such as portable devices and batteries for automobiles. In this secondary battery, for example, as shown in FIG. 6, a battery element 4 in which a positive electrode plate 1 and a negative electrode plate 2 as electrodes are laminated in a plurality of stages via a separator 3 is disposed in an electrolyte solution. For example, it is configured by sealing with a laminate film.

正極板1および負極板2は、各々集電体とその表面に設けられた活物質を備えており、図6(b)に示すように正極板1の一辺の寸法は負極板2のそれよりも短く設計されている。   Each of the positive electrode plate 1 and the negative electrode plate 2 includes a current collector and an active material provided on the surface thereof, and the dimension of one side of the positive electrode plate 1 is larger than that of the negative electrode plate 2 as shown in FIG. Also designed to be short.

正極板1の活物質と負極板2の活物質が対向する部位で、例えばリチウムイオン二次電池であればリチウムイオンのやりとりがなされ、充放電が行われる。   In a portion where the active material of the positive electrode plate 1 and the active material of the negative electrode plate 2 face each other, for example, in the case of a lithium ion secondary battery, lithium ions are exchanged and charging / discharging is performed.

しかし、電極積層時に、図6(c)に示すように正極板1と負極板2の位置がずれて対向面積が小さくなると、設計した電池容量が得られなくなってしまう。   However, when the electrodes are stacked, as shown in FIG. 6C, if the positions of the positive electrode plate 1 and the negative electrode plate 2 are shifted and the facing area is reduced, the designed battery capacity cannot be obtained.

特開2007−265863号公報JP 2007-265863 A

正極板1と負極板2が位置ずれしても、対向面積が変わらないようにするため、負極板2を大きく形成すればよいが、過剰に負極板2を大きくすると電池が大型化してしまう。   Even if the positive electrode plate 1 and the negative electrode plate 2 are displaced from each other, the negative electrode plate 2 may be formed larger in order to keep the facing area unchanged. However, if the negative electrode plate 2 is excessively enlarged, the battery becomes larger.

また、電極積層時の位置ずれ等により正極板1と負極板2の対向面積が設計どおりか否かを外観から判断することは難しい。   Moreover, it is difficult to judge from the appearance whether the opposing area of the positive electrode plate 1 and the negative electrode plate 2 is as designed due to a positional deviation at the time of electrode lamination.

例えば特許文献1には、電池要素を構成する電極積層体の表面に密着させた外装体フィルム表面に発生したしわなどの局部的な変形を、照射手段により照射した光の散乱光に基づいて判断する方法が開示されているが、電極積層体の内部で生じた電極の位置ずれや活物質の脱落等を検出し、不良であると判断することは難しい。   For example, in Patent Document 1, local deformation such as wrinkles generated on the surface of an exterior body film adhered to the surface of an electrode laminate constituting a battery element is determined based on scattered light of light irradiated by an irradiation unit. However, it is difficult to judge that the electrode is defective by detecting the displacement of the electrode or the loss of the active material generated in the electrode stack.

本発明は上記課題を解決するものであり、電池の不良を判断することができる二次電池の検査方法および検査装置を提供することを目的としている。   The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a secondary battery inspection method and inspection apparatus that can determine a battery failure.

上記課題を解決するための本発明の二次電池の検査方法は、正極板と負極板がセパレータを介して複数段積層されてなる電池要素を電解質と共に備えて構成された二次電池の検査方法であって、放電状態の電池を定電流充電する充電ステップと、前記電池の端子間電圧が設定電圧になったときの、前記充電ステップにより充電された充電量演算値と、設定された充電量しきい値とに基づき、当該電池の検査を行うステップと、を備えたことを特徴としている。   The secondary battery inspection method of the present invention for solving the above-described problems is a secondary battery inspection method comprising a battery element formed by laminating a plurality of stages of a positive electrode plate and a negative electrode plate via a separator together with an electrolyte. A charging step for charging a battery in a discharged state at a constant current, a charge amount calculation value charged by the charging step when a voltage between terminals of the battery becomes a set voltage, and a set charge amount And a step of inspecting the battery based on the threshold value.

(1)請求項1〜8に記載の発明によれば二次電池の不良を容易に判断することができる。
(2)請求項2、6に記載の発明によれば、電池の検査実施時に不要な充電動作を避けることができる。
(3)請求項3、7に記載の発明によれば、他の工程を追加することなく、電池の検査実施によって充電率がゼロより大きい電池を構成することができる。
(4)請求項4、8に記載の発明によれば、二次電池の不良判断の精度が向上する。
(1) According to the first to eighth aspects of the invention, it is possible to easily determine whether or not the secondary battery is defective.
(2) According to the second and sixth aspects of the invention, unnecessary charging operation can be avoided when the battery is inspected.
(3) According to the invention described in claims 3 and 7, it is possible to configure a battery having a charging rate larger than zero by performing inspection of the battery without adding another process.
(4) According to the inventions described in claims 4 and 8, the accuracy of determining the defect of the secondary battery is improved.

本発明が適用される二次電池の外観斜視図。1 is an external perspective view of a secondary battery to which the present invention is applied. 図1の二次電池の分解斜視図。The disassembled perspective view of the secondary battery of FIG. 図1中のA−A線に沿った拡大断面図。The expanded sectional view along the AA line in FIG. 本発明の一実施形態例による二次電池の検査装置の構成図。The block diagram of the inspection apparatus of the secondary battery by one example of the present invention. 本発明の、二次電池の充電容量平均値に基づいて充電量しきい値を変化させる実施形態例における、日単位の充電容量の例を示す特性図。The characteristic view which shows the example of the charge capacity of a day unit in the embodiment which changes a charge amount threshold value based on the charge capacity average value of a secondary battery of this invention. 二次電池の電極積層体の断面構成図。The cross-sectional block diagram of the electrode laminated body of a secondary battery.

以下、図面を参照しながら本発明の実施の形態を説明するが、本発明は下記の実施形態例に限定されるものではない。まず、本発明が適用される二次電池の基本構成を説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings, but the present invention is not limited to the following embodiments. First, a basic configuration of a secondary battery to which the present invention is applied will be described.

二次電池の基本構成として、正極活物質材料およびバインダを含む正極合材と、負極活物質材料およびバインダを含む負極合材をそれぞれ混練し、正極集電体および負極集電体となるそれぞれの金属箔上に正極合材と負極合材を塗工し、金属箔上に電極合材層を形成した正極と負極が電極として作製される。   As a basic configuration of the secondary battery, a positive electrode mixture containing a positive electrode active material and a binder, and a negative electrode mixture containing a negative electrode active material and a binder, respectively, are kneaded to form a positive electrode current collector and a negative electrode current collector. A positive electrode and a negative electrode in which a positive electrode mixture and a negative electrode mixture are coated on a metal foil and an electrode mixture layer is formed on the metal foil are produced as electrodes.

正極は、通常のリチウムイオン二次電池用正極を用いることができる。例えば、正極活物質材料として、LiCoO2、LiNiO2、LiMn24、LiNi1/3Co1/3Mn1/32、LiNi1/2Mn1/24、LiFePO4等のリチウム含有複合酸化物が挙げられ、リチウム含有複合酸化物の遷移金属部分を他の元素で置換させたものでもよく、またこれらの混合物でもよい。 As the positive electrode, a normal positive electrode for a lithium ion secondary battery can be used. For example, as a positive electrode active material, lithium such as LiCoO 2 , LiNiO 2 , LiMn 2 O 4 , LiNi 1/3 Co 1/3 Mn 1/3 O 2 , LiNi 1/2 Mn 1/2 O 4 , LiFePO 4, etc. A composite oxide containing lithium, a transition metal portion of a lithium-containing composite oxide substituted with another element, or a mixture thereof.

これらの正極活物質材料とバインダ材料とをN−メチル−2−ピロリドン(NMP)に分散混練した後、例えば厚さ20μmの帯状のアルミニウム箔等の集電体の両面上へ塗工し、NMPを除去し正極合材層を形成する。   These positive electrode active material and binder material are dispersed and kneaded in N-methyl-2-pyrrolidone (NMP), and then coated on both sides of a current collector such as a 20 μm-thick aluminum foil, for example. And a positive electrode mixture layer is formed.

負極は、通常のリチウムイオン二次電池用負極を用いることができる。例えば、負極活物質として、黒鉛材料、非晶質炭素材料、ケイ素材料、ケイ素化合物材料等のリチウムを吸蔵、放出可能な材料が挙げられ、またこれらの混合物でもよい。負極活物質材料とバインダ材料とをN−メチル−2−ピロリドン(NMP)に分散混練した後、例えば厚さ20μmの銅箔等の集電体の両面上へ塗工しNMPを除去し負極合材層を形成する。   As the negative electrode, a normal negative electrode for a lithium ion secondary battery can be used. For example, examples of the negative electrode active material include materials capable of occluding and releasing lithium, such as graphite materials, amorphous carbon materials, silicon materials, and silicon compound materials, and mixtures thereof may be used. A negative electrode active material and a binder material are dispersed and kneaded in N-methyl-2-pyrrolidone (NMP), and then coated on both sides of a current collector such as a copper foil having a thickness of 20 μm, for example. Form a material layer.

本発明が適用される二次電池に用いるセパレータは、通常のリチウムイオン二次電池用セパレータを用いることができる。例えば、ポリプロピレン、ポリエチレン系の多孔膜が薄膜、大面積化、膜強度、膜抵抗の面で好ましく用いられる。   As the separator used in the secondary battery to which the present invention is applied, a normal lithium ion secondary battery separator can be used. For example, a polypropylene or polyethylene-based porous film is preferably used in terms of a thin film, large area, film strength, and film resistance.

本発明が適用される二次電池の電解液は、通常のリチウムイオン二次電池用電解液を用いることができる。例えば、非水溶媒へ電解質としてリチウム塩を溶解させた非水電解液を用いることができ、リチウム塩としては、リチウムイミド塩、LiPF6、LiAsF6、LiAlCl4、LiClO4、LiBF4、LiSbF6等が挙げられ、特にLiPF6、LiBF4が好ましく用いられる。リチウムイミド塩としてはLiN(Ck2k+1SO2)(Cm2m+1SO2)(k、mはそれぞれ独立して1または2である)が挙げられ、また、これらリチウム塩を複数種組み合わせて用いることもできる。非水溶媒としては、環状カーボネート類、鎖状カーボネート類、脂肪族カルボン酸エステル類、ラクトン類、環状エーテル類、鎖状エーテル類、およびそれらのフッ化誘導体の有機溶媒から選ばれた少なくとも1種類の有機溶媒を用いることができる。 As the electrolytic solution of the secondary battery to which the present invention is applied, an ordinary electrolytic solution for a lithium ion secondary battery can be used. For example, the non-aqueous solvent lithium salt can be used a nonaqueous electrolyte solution obtained by dissolving as an electrolyte, a lithium salt, lithium imide salt, LiPF 6, LiAsF 6, LiAlCl 4, LiClO 4, LiBF 4, LiSbF 6 In particular, LiPF 6 and LiBF 4 are preferably used. Examples of the lithium imide salt include LiN (C k F 2k + 1 SO 2 ) (C m F 2m + 1 SO 2 ) (k and m are each independently 1 or 2), and these lithium salts Can be used in combination. The non-aqueous solvent is at least one selected from cyclic carbonates, chain carbonates, aliphatic carboxylic acid esters, lactones, cyclic ethers, chain ethers, and organic solvents of their fluorinated derivatives. These organic solvents can be used.

より具体的には、環状カーボネート類:プロピレンカーボネート(PC)、エチレンカーボネート(EC)、ブチレンカーボネート(BC)およびこれらの誘導体、鎖状カーボネート類:ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)、ジプロピルカーボネート(DPC)およびこれらの誘導体、脂肪族カルボン酸エステル類:ギ酸メチル、酢酸メチル、プロピオン酸エチルおよびこれらの誘導体、ラクトン類:γ−ブチロラクトン、およびこの誘導体、環状エーテル類:テトラヒドロフラン、2−メチルテトラヒドロフラン、鎖状エーテル類:1、2−ジエトキシエタン(DEE)、エトキシメトキシエタン(EME)、ジエチルエーテルおよびこれらの誘導体、その他:ジメチルスルホキシド、1、3−ジオキソラン、ホルムアミド、アセトアミド、ジメチルホルムアミド、ジオキソラン、アセトニトリル、プロピルニトリル、ニトロメタン、エチルモノグライム、リン酸トリエステル、トリメトキシメタン、ジオキソラン誘導体、スルホラン、メチルスルホラン、1、3−ジメチル−2−イミダゾリジノン、3−メチル−2−オキサゾリジノン、プロピレンカーボネート誘導体、テトラヒドロフラン誘導体、エチルエーテル、1、3−プロパンスルトン、アニソール、N−メチルピロリドン、フッ素化カルボン酸エステルこれらを1種または2種以上を混合して使用することができる。さらに電解液添加剤として、一般的な、例えば、ビニレンカーボネート(VC)等を用いることも可能である。   More specifically, cyclic carbonates: propylene carbonate (PC), ethylene carbonate (EC), butylene carbonate (BC) and derivatives thereof, chain carbonates: dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl Methyl carbonate (EMC), dipropyl carbonate (DPC) and derivatives thereof, aliphatic carboxylic acid esters: methyl formate, methyl acetate, ethyl propionate and derivatives thereof, lactones: γ-butyrolactone, and derivatives thereof, cyclic Ethers: Tetrahydrofuran, 2-methyltetrahydrofuran, chain ethers: 1,2-diethoxyethane (DEE), ethoxymethoxyethane (EME), diethyl ether and their derivatives, others: dimethyl Sulfoxide, 1,3-dioxolane, formamide, acetamide, dimethylformamide, dioxolane, acetonitrile, propylnitrile, nitromethane, ethyl monoglyme, phosphoric acid triester, trimethoxymethane, dioxolane derivative, sulfolane, methylsulfolane, 1,3- Dimethyl-2-imidazolidinone, 3-methyl-2-oxazolidinone, propylene carbonate derivative, tetrahydrofuran derivative, ethyl ether, 1,3-propane sultone, anisole, N-methylpyrrolidone, fluorinated carboxylic acid ester Two or more kinds can be mixed and used. Furthermore, it is also possible to use common, for example, vinylene carbonate (VC) as the electrolyte solution additive.

本発明が適用されるリチウムイオン二次電池は、負極および正極を、セパレータを介して積層、あるいは積層したものを捲回した後に外装体に挿入し、電解液を含浸させた後、外装体を封止することで得られる。このとき正極端子及び負極端子をそれぞれ集電体と接合させ各端子は一部を外装体の外に突出させる。電池形状には制限がなく、セパレータを挟んで対向した正極、負極を巻回型、積層型などの形態を取ることが可能であり、外装体にも、コイン型、ラミネート型、金属缶角型、金属缶円筒型等特に制限はないが、薄型化の面からラミネート型がより好ましい。   The lithium ion secondary battery to which the present invention is applied is a laminate of a negative electrode and a positive electrode with a separator interposed therebetween, or after winding the laminated one, it is inserted into an exterior body and impregnated with an electrolytic solution. Obtained by sealing. At this time, the positive electrode terminal and the negative electrode terminal are joined to the current collector, respectively, and a part of each terminal protrudes outside the exterior body. There is no limitation on the battery shape, and it is possible to take the form of a positive electrode and a negative electrode facing each other with a separator interposed between them, a wound type, a laminated type, etc. There are no particular limitations on the metal can cylindrical type, but a laminate type is more preferable in terms of thickness reduction.

次に、本発明が適用されるリチウムイオン二次電池の具体的な構成、形状の一例を図1〜図3とともに説明する。図1は本実施形態に係る二次電池10の外観斜視図、図2は分解斜視図、図3は図1中のA−A線に沿った拡大断面図である。図1〜図3に示すように、二次電池10は長方形の偏平な形状をなし、電池要素20と、電池要素20および図示省略の電解液を機密に封止する2枚のフィルム31,32とを有する。   Next, an example of a specific configuration and shape of a lithium ion secondary battery to which the present invention is applied will be described with reference to FIGS. FIG. 1 is an external perspective view of a secondary battery 10 according to the present embodiment, FIG. 2 is an exploded perspective view, and FIG. 3 is an enlarged cross-sectional view along the line AA in FIG. As shown in FIGS. 1 to 3, the secondary battery 10 has a rectangular flat shape, and the two films 31 and 32 that secretly seal the battery element 20, the battery element 20, and an electrolyte solution (not shown). And have.

図2に示すように、電池要素20は、セパレータ23(図3)を介して交互に積層された複数の長方形の正極板21および負極板22を有している。   As shown in FIG. 2, the battery element 20 includes a plurality of rectangular positive plates 21 and negative plates 22 that are alternately stacked via separators 23 (FIG. 3).

各正極板21からは正極延出部24が引き出され、各負極板22からは負極延出部25が引き出されている。また、各正極延出部24は正極リード26の一端に一括して接合され、各負極延出部25は負極リード27の一端に一括して接合されている。   A positive electrode extension 24 is drawn out from each positive electrode plate 21, and a negative electrode extension 25 is drawn out from each negative electrode plate 22. Each positive electrode extension 24 is collectively bonded to one end of the positive electrode lead 26, and each negative electrode extension 25 is collectively bonded to one end of the negative electrode lead 27.

図3に示すように、正極板21の両面には正極活物質が塗布され、負極板22の両面には負極活物質が塗布されている。   As shown in FIG. 3, the positive electrode active material is applied to both surfaces of the positive electrode plate 21, and the negative electrode active material is applied to both surfaces of the negative electrode plate 22.

フィルム31,32は積層構造を有するラミネートフィルムであり、少なくとも熱融着層、金属層および保護層を各々有している。各フィルム31,32は、図2に示すように互いの熱融着層を内側にして電池要素20を上下から挟み、電解液が漏洩しないように電池要素20を封止している。また、各フィルム31,32の対向する熱融着層同士は熱融着されている。   The films 31 and 32 are laminated films having a laminated structure, and each have at least a heat fusion layer, a metal layer, and a protective layer. As shown in FIG. 2, the films 31 and 32 sandwich the battery element 20 from above and below with the heat fusion layer inside, and seal the battery element 20 so that the electrolyte does not leak. Further, the opposing heat-sealing layers of the films 31 and 32 are heat-sealed.

正極リード26の他端は、フィルム31,32の各一辺(短辺)から外側に引き出されている。また、負極リード27の他端は、フィルム31,32の他方の各一辺(短辺)から外側に引き出されている。   The other end of the positive electrode lead 26 is drawn outward from one side (short side) of the films 31 and 32. Further, the other end of the negative electrode lead 27 is drawn out from the other one side (short side) of the films 31 and 32.

二次電池10の具体的な作製例は以下のとおりである。正極板21について、正極活物質(LiMn24)、PVdFおよび導電助剤としてカーボンブラックとをNMP中に分散混練し、正極合材スラリーを作製した。そのスラリーを正極集電体(アルミニウム箔・厚み20μm)上に塗工し、乾燥によりNMPを除去し、巻き取って正極合材層ロールを作製した。正極合材層中の固形分比率は、正極活物質:PVdF:導電助剤=90:5:5(wt%)とした。 A specific manufacturing example of the secondary battery 10 is as follows. About the positive electrode plate 21, positive electrode active material (LiMn 2 O 4 ), PVdF, and carbon black as a conductive additive were dispersed and kneaded in NMP to prepare a positive electrode mixture slurry. The slurry was coated on a positive electrode current collector (aluminum foil, thickness 20 μm), NMP was removed by drying, and wound to prepare a positive electrode mixture layer roll. The solid content ratio in the positive electrode mixture layer was positive electrode active material: PVdF: conductive aid = 90: 5: 5 (wt%).

負極板22について、負極活物質(黒鉛材料)、PVdFおよび導電助剤としてカーボンブラックとをNMP中に分散混練し、負極合材スラリーを作製した。そのスラリーを負極集電体(銅箔・厚み20μm)上に未塗工部長さ50mm、塗工部長さ210mm、未塗工部長さ50mm、塗工部長さ210mmを交互に繰り返し連続して塗工し、乾燥によりNMPを除去し、巻き取って、負極合材層ロールを作製した。負極合材層中の固形分比率は、負極活物質:PVdF:導電助剤=93:5:2(wt%)とした。   For the negative electrode plate 22, a negative electrode active material (graphite material), PVdF, and carbon black as a conductive additive were dispersed and kneaded in NMP to prepare a negative electrode mixture slurry. Coating the slurry on a negative electrode current collector (copper foil, thickness 20 μm) alternately and repeatedly in an uncoated portion length of 50 mm, a coated portion length of 210 mm, an uncoated portion length of 50 mm, and a coated portion length of 210 mm. Then, NMP was removed by drying and wound up to prepare a negative electrode mixture layer roll. The solid content ratio in the negative electrode mixture layer was negative electrode active material: PVdF: conductive aid = 93: 5: 2 (wt%).

そして、正極板21および負極板22の寸法が120mm×200mmとなるように切断し、正極板21と負極板22を、ポリエチレンおよびポリプロピレンの2層構造よりなる、長さ220mm、幅60mm、厚さ25μmのセパレータ23を介して積層し、負極/セパレータ/正極/セパレータ/負極よりなる電極を作製した。このとき正極電極数を14層、負極電極数を15層となるように積層させ電池要素20を作製した。   Then, the positive electrode plate 21 and the negative electrode plate 22 are cut so that the dimensions are 120 mm × 200 mm, and the positive electrode plate 21 and the negative electrode plate 22 are made of a two-layer structure of polyethylene and polypropylene, and have a length of 220 mm, a width of 60 mm, and a thickness. Lamination was performed via a 25 μm separator 23 to prepare an electrode composed of negative electrode / separator / positive electrode / separator / negative electrode. At this time, the battery element 20 was fabricated by stacking so that the number of positive electrodes was 14 and the number of negative electrodes was 15.

次に正極リード26および負極リード27をそれぞれ集電体(正極延出部24、負極延出部25)と接合させ、電極体を凹部形成した2枚のアルミラミネートフィルム外装体(フィルム31,32)に収納した。この外装体はPET/アルミ/ポリプロピレンの3層構造をもつアルミラミネートフィルムからなるラミネート外装材を使用した。   Next, the positive electrode lead 26 and the negative electrode lead 27 are joined to current collectors (the positive electrode extension portion 24 and the negative electrode extension portion 25), respectively, and two aluminum laminate film exterior bodies (films 31 and 32) in which the electrode body is formed as a recess. ). As the outer package, a laminate outer package made of an aluminum laminate film having a three-layer structure of PET / aluminum / polypropylene was used.

次に、正極リード26および負極リード27を外装体(フィルム31,32)外部へ突出させた状態にて、電極リード辺以外の1辺を残して外周部を熱融着封口した後、電解液を注入して、熱融着封口してラミネート型電池を作製した。電解液は、EC:DEC=40:60(vol%)に、電解質として1mol/LのLiPF6を溶解したもの2gを注入した。 Next, in a state in which the positive electrode lead 26 and the negative electrode lead 27 are projected to the outside of the outer package (films 31 and 32), the outer peripheral portion is heat sealed and sealed except for one side other than the electrode lead side, and then the electrolytic solution And heat sealed to produce a laminate type battery. 2 g of an electrolyte solution in which 1 mol / L LiPF 6 was dissolved as an electrolyte was injected into EC: DEC = 40: 60 (vol%).

本実施形態例では、図1〜図3のように構成された二次電池の検査を、図4に示す検査装置によって電池の出荷前に行う。   In the present embodiment, the secondary battery configured as shown in FIGS. 1 to 3 is inspected by the inspection apparatus shown in FIG. 4 before the battery is shipped.

図4は二次電池の検査装置の構成を示し、検査対象の二次電池10の正極、負極に接続されるプローブ端子50P,50N間には、充電器51(充電部)および電圧測定器52が並列に接続されている。   FIG. 4 shows the configuration of a secondary battery inspection device. Between the probe terminals 50P and 50N connected to the positive electrode and the negative electrode of the secondary battery 10 to be inspected, a charger 51 (charging unit) and a voltage measuring device 52 are provided. Are connected in parallel.

尚、二次電池10は、プローブ端子50P,50Nに接続される前に予め豆電球や抵抗への通電によって放電されているものとする。放電は、満充電した後放電することによって電池容量を測定する工程における放電を利用することで新たな工程を増加しなくても済むという効果がある。   It is assumed that the secondary battery 10 is discharged in advance by energizing a miniature bulb or a resistor before being connected to the probe terminals 50P and 50N. Discharging has the effect that it is not necessary to increase the number of new steps by using the discharging in the step of measuring battery capacity by discharging after full charge.

充電器51は、放電された二次電池10を定電流で充電し、電圧測定器52は二次電池10の端子間電圧(プローブ端子50P,50N間の電圧)を測定する。   The charger 51 charges the discharged secondary battery 10 with a constant current, and the voltage measuring device 52 measures the voltage between the terminals of the secondary battery 10 (voltage between the probe terminals 50P and 50N).

53は、電圧測定器52の測定電圧が、設定電圧、例えば充電率(SOC:State of Charge)10%に相当する電圧になったか否かを判定する電池電圧判定部である。   Reference numeral 53 denotes a battery voltage determination unit that determines whether or not the measurement voltage of the voltage measuring device 52 has reached a set voltage, for example, a voltage corresponding to 10% of a charge rate (SOC: State of Charge).

電池電圧判定部53は、例えば電圧測定器52の測定電圧と設定電圧を比較する電圧比較器を備え、前記測定電圧が設定電圧に到達したか又は測定電圧が設定電圧を超えたときの比較器出力を、電池の端子間電圧が設定電圧になったことを示す判定出力として出力し、該判定出力によって充電器51の充電動作を停止させる。   The battery voltage determination unit 53 includes, for example, a voltage comparator that compares the measured voltage of the voltage measuring device 52 with the set voltage, and the comparator when the measured voltage reaches the set voltage or the measured voltage exceeds the set voltage. The output is output as a determination output indicating that the voltage between the terminals of the battery has reached the set voltage, and the charging operation of the charger 51 is stopped by the determination output.

54は、二次電池10の充電開始からの充電量(充電容量)を演算する充電量演算部であり、電池電圧測定部53から判定出力が出力されるまで、すなわち電池の端子間電圧が設定電圧になったと判定されたときまでの充電量演算値を出力する。   A charge amount calculation unit 54 calculates a charge amount (charge capacity) from the start of charging of the secondary battery 10 until the determination output is output from the battery voltage measurement unit 53, that is, the battery terminal voltage is set. The charge amount calculation value until it is determined that the voltage has been reached is output.

二次電池10の充電量は電流値(一定)×時間により演算され、電流値は例えば充電器51と二次電池10を結ぶ電路に挿入したシャント抵抗やデジタルマルチメータ(図示省略)などによって検出し、その検出電流値を充電量演算に用いる。   The amount of charge of the secondary battery 10 is calculated by current value (constant) × time, and the current value is detected by, for example, a shunt resistor or a digital multimeter (not shown) inserted in the electric path connecting the charger 51 and the secondary battery 10 The detected current value is used for the charge amount calculation.

55は、充電量演算部54から出力された充電量演算値と設定された充電量しきい値とを比較する充電量比較部である。   55 is a charge amount comparison unit that compares the charge amount calculation value output from the charge amount calculation unit 54 with a set charge amount threshold value.

56は、充電量比較部55の比較結果に基づいて、充電量しきい値よりも充電量演算値の方が小であれば、電池は不良品であると判定し、充電量演算値が充電量しきい値以上であれば良品であると判定する判定部である。   56, based on the comparison result of the charge amount comparison unit 55, if the charge amount calculated value is smaller than the charge amount threshold value, it is determined that the battery is defective, and the charge amount calculated value is charged. The determination unit determines that the product is non-defective if it is equal to or greater than the amount threshold value.

60は、判定部56で判定された不良品、良品の判定結果を表示する例えばディスプレイなどの結果表示器である。   Reference numeral 60 denotes a result display device such as a display for displaying the determination result of the defective product and the non-defective product determined by the determination unit 56.

尚、本実施形態例では、電池電圧判定部53、充電量演算部54、充電量比較部55および判定部56を、コンピュータによる演算器70として構成している。   In this embodiment, the battery voltage determination unit 53, the charge amount calculation unit 54, the charge amount comparison unit 55, and the determination unit 56 are configured as a calculator 70 by a computer.

次に、上記のように構成された二次電池の検査装置を用いた検査方法の手順の一例を説明する。   Next, an example of a procedure of an inspection method using the secondary battery inspection apparatus configured as described above will be described.

ステップS1:まず二次電池10を放電する。   Step S1: First, the secondary battery 10 is discharged.

ステップS2:放電が完了した二次電池10を端子50P,50Nへ接続して充電器51によって定電流充電を開始する。電圧測定器52は二次電池10の端子間電圧を測定する。   Step S2: The secondary battery 10 that has been discharged is connected to the terminals 50P and 50N, and constant current charging is started by the charger 51. The voltage measuring device 52 measures the voltage between the terminals of the secondary battery 10.

ステップS3:充電量演算部54が二次電池10の充電量の演算を開始する。   Step S <b> 3: The charge amount calculation unit 54 starts calculating the charge amount of the secondary battery 10.

ステップS4:電圧測定器52の測定電圧が設定電圧になると、電池電圧判定部53は電池の端子間電圧が設定電圧になったことを示す判定出力を出力し、充電器51の充電動作を停止させる。   Step S4: When the measured voltage of the voltage measuring device 52 becomes the set voltage, the battery voltage determining unit 53 outputs a determination output indicating that the battery terminal voltage has reached the set voltage, and stops the charging operation of the charger 51. Let

ステップS5:充電量演算部54が、ステップS4において電池電圧判定部53から判定出力が出力されるまでの間に演算していた充電量演算値を出力する。   Step S5: The charge amount calculation unit 54 outputs the charge amount calculation value calculated until the determination output is output from the battery voltage determination unit 53 in step S4.

ステップS6:充電量比較部55が、ステップS5により出力された充電量演算値と設定された充電量しきい値とを比較する。   Step S6: The charge amount comparison unit 55 compares the charge amount calculation value output in step S5 with the set charge amount threshold value.

ステップS7:判定部56が、充電量演算値<充電量しきい値であれば「不良品」、充電量演算値≧充電量しきい値であれば「良品」と判定する。   Step S7: The determination unit 56 determines “defective product” if the charge amount calculated value <charge amount threshold value, and “good” if the charge amount calculated value ≧ charge amount threshold value.

ステップS8:結果表示器60が「不良品」、「良品」を表示する。   Step S8: The result display 60 displays “defective product” and “good product”.

尚、検査実施時に、二次電池10を例えば充電率(SOC)が10%に相当する電圧まで充電するのは、出荷後の自然放電によって充電率がマイナスになることを防止するためである。   Note that the reason why the secondary battery 10 is charged to a voltage corresponding to, for example, a charging rate (SOC) of 10% during the inspection is to prevent the charging rate from becoming negative due to natural discharge after shipment.

二次電池10内の積層された正極板21、負極板22の対向面積が小さくなっていると、定電流充電を実施した際に電気抵抗が増加し定電流で流れる時間が短くなるため充分な充電が行なえず、これによって充電開始から設定電圧に到達するまでの間の充電量演算値が、設定された充電量しきい値よりも小さくなると推測される。   If the facing area of the stacked positive electrode plate 21 and negative electrode plate 22 in the secondary battery 10 is small, the electric resistance increases when the constant current charging is performed, and the time for flowing at a constant current is shortened. It is estimated that the charge amount calculation value from the start of charging until the set voltage is reached becomes smaller than the set charge amount threshold value because charging cannot be performed.

したがって、図4の検査装置を用いてステップS1〜S8の手順によって検査を実施することによって、二次電池10の「不良品」、「良品」を判定することができる。   Therefore, by performing the inspection according to the procedure of steps S1 to S8 using the inspection apparatus of FIG. 4, it is possible to determine “defective product” and “good product” of the secondary battery 10.

尚、本発明の検査方法は、正極板と負極板の位置がずれて対向面積が小さくなっている場合に限らず、正極板、負極板の活物質が脱落(脱粒)してその部分が充放電に寄与しなくなっている場合も同様に電池の不良を判定することができる。   The inspection method of the present invention is not limited to the case where the positions of the positive electrode plate and the negative electrode plate are shifted and the opposing area is small, but the active material of the positive electrode plate and the negative electrode plate is dropped (granulated) and the portion is filled. Similarly, when the battery does not contribute to the discharge, the battery failure can be determined.

図4の実施形態例では、電池電圧判定部53の出力によって充電器51の充電動作を停止しているので、不要な充電動作を避けることができる。   In the embodiment example of FIG. 4, the charging operation of the charger 51 is stopped by the output of the battery voltage determination unit 53, so that unnecessary charging operation can be avoided.

また、他の工程を追加することなく電池の検査を実施することによって、充電された状態の電池を製造し出荷することができる。   Moreover, the battery in a charged state can be manufactured and shipped by performing the inspection of the battery without adding another process.

図4の実施形態例では、充電量しきい値は唯一の値に設定されていたが、これに限らず、他の実施形態例として、同一ロットの複数の二次電池の充電容量平均値に応じて変化させてもよい。   In the embodiment example of FIG. 4, the charge amount threshold value is set to a single value. However, the present invention is not limited to this, and as another embodiment example, the charge capacity average value of a plurality of secondary batteries in the same lot is used. It may be changed accordingly.

すなわち、同一仕様であり同一製造日の複数の二次電池に対して各々初充電容量を測定し、その平均をとった初充電容量平均値に基づいて充電量しきい値を設定する。   That is, the initial charge capacity is measured for each of a plurality of secondary batteries having the same specifications and the same manufacturing date, and the charge amount threshold value is set based on the average value of the initial charge capacity obtained by taking the average.

具体例としては、二次電池内の電極の積層ずれ対策のため、初充電容量平均値より小さい値を閾値(充電量しきい値)とし、その閾値より初充電容量が小さい場合に、積層ズレと判定するようにした。   As a specific example, in order to prevent the stacking error of the electrodes in the secondary battery, a value smaller than the initial charge capacity average value is set as a threshold value (charge amount threshold value), and when the initial charge capacity is smaller than the threshold value, the stacking shift is reduced. I decided to judge.

前記閾値は、例えば、閾値=初充電容量平均値×係数kにより決定するものであり、係数kの値は積層ズレ量の許容範囲から設定する。   The threshold is determined by, for example, threshold = initial charge capacity average value × coefficient k, and the value of the coefficient k is set from the allowable range of stacking misalignment.

本実施形態例では、ロット毎に充電容量平均値に基づいて決定された充電量しきい値を、例えば図4の演算器70内のメモリに保存しておき、二次電池の検査時に、検査対象電池のロットに対応して設定されたメモリ内の充電量しきい値と、充電量演算部54により演算された充電量演算値とを、充電量比較部55が比較することによって、二次電池の「不良品」、「良品」が判定される。   In the present embodiment example, the charge amount threshold value determined based on the average charge capacity value for each lot is stored in, for example, the memory in the arithmetic unit 70 of FIG. The charge amount comparison unit 55 compares the charge amount threshold value in the memory set corresponding to the lot of the target battery and the charge amount calculation value calculated by the charge amount calculation unit 54, so that the secondary value is obtained. A “defective” or “non-defective” battery is determined.

図5は、本実施形態例における日単位の充電容量の例を表し、横軸は充電容量の計測日、縦軸は初充電容量の値を示している。   FIG. 5 shows an example of the charge capacity in units of days in the present embodiment example, the horizontal axis shows the measurement date of the charge capacity, and the vertical axis shows the value of the initial charge capacity.

図5の上段のグラフは日単位の初充電容量平均値(Ave)、中段のグラフは日単位の初充電容量最小値(Min)(二次電池の検査時に充電量演算部54により演算された充電量演算値に相当)、下段のグラフは初充電容量平均値に基づいて設定された日毎の閾値(充電量しきい値)を各々示している。   The upper graph in FIG. 5 is the daily initial charge capacity average value (Ave), and the middle graph is the daily initial charge capacity minimum value (Min) (calculated by the charge amount calculation unit 54 during the secondary battery inspection). The lower graph shows the daily threshold values (charge amount threshold values) set based on the initial charge capacity average value.

図5において、計測日毎に初充電容量平均値が異なっているのは、製造日の違いによる製造ばらつきや、温度条件等による測定ばらつきがあることによるものと推測される。   In FIG. 5, the initial charge capacity average value is different for each measurement day, which is presumed to be due to manufacturing variations due to differences in manufacturing dates, measurement variations due to temperature conditions, and the like.

図5において、閾値は、初充電容量平均値に応じて設定されているが、例えば計測日D1、D2では初充電容量最小値が閾値よりも小さくなっており、この場合に積層ズレNG(「不良品である」)と判定する。   In FIG. 5, the threshold value is set according to the initial charge capacity average value. However, for example, on the measurement dates D1 and D2, the initial charge capacity minimum value is smaller than the threshold value. In this case, the stacking deviation NG (“ It is determined that the product is defective.

上記のように本実施形態例によれば、ロット毎に異なる充電容量平均値に応じて充電量しきい値を設定しているので、二次電池の良品、不良品の判定の精度が向上する。   As described above, according to the present embodiment, the charge amount threshold value is set in accordance with the average charge capacity value that is different for each lot, so that the accuracy of determination of non-defective and defective secondary batteries is improved. .

本発明による二次電池の検査方法は、従来の他の検査方法と比べて以下のように優れている。すなわち、目視による検査を行なった結果「良品」と判定された二次電池について、図4の装置を用いて本発明による検査を行なったところ、「不良品」と判定された。これは、本発明による検査が、目視では判明しない電池内部の不良を判定することができることを示している。この目視については、電池要素の積層体内部で活物質の脱粒やセパレータのしわが発生していても、積層体の積層枚数が多いと外観形状に現われなくなるため、積層枚数が多いほど本発明の検査方法は有効である。   The inspection method for a secondary battery according to the present invention is superior to other conventional inspection methods as follows. That is, as a result of visual inspection, the secondary battery determined to be “non-defective” was inspected according to the present invention using the apparatus of FIG. 4 and was determined to be “defective”. This indicates that the inspection according to the present invention can determine defects inside the battery that cannot be visually determined. As for this visual inspection, even if active material degranulation or separator wrinkles are generated inside the battery element laminate, the appearance of the outer shape does not appear when the number of laminates is large. The inspection method is effective.

また自己放電検査では、正極板と負極板の位置がずれて対向面積が小さくなっていると、電気抵抗が大きくなって自己放電が小さくなることから、本発明の検査方法により「不良品」と判定した電池についても「良品」と判定することが考えられる。   Further, in the self-discharge inspection, if the positions of the positive electrode plate and the negative electrode plate are shifted and the facing area is small, the electrical resistance is increased and the self-discharge is reduced. It can be considered that the determined battery is determined as “good”.

また直流抵抗検査DCR(Direct Current Resistance)では、電圧変化が電流値に依存しない範囲で行なうことが多く、低電流で所定時間放電したときの電圧変化を測定するものであるが、低電流であるため正極板と負極板の位置ずれにより対向面積が小さくなっていることにより影響が小さく、「不良品」、「良品」の判別がしにくい。   In DC resistance inspection DCR (Direct Current Resistance), the voltage change is often performed in a range that does not depend on the current value, and the voltage change when discharging for a predetermined time at a low current is measured, but the current is low. For this reason, since the opposing area is reduced due to the positional deviation between the positive electrode plate and the negative electrode plate, the influence is small, and it is difficult to distinguish between “defective product” and “good product”.

これに対して本発明の検査方法によれば、正極板と負極板の位置ずれにより対向面積が小さくなっている場合、電気抵抗の増加により定電流で流れる時間が短くなるため確実に充電量に反映されるので、「不良品」と判定することができる。   On the other hand, according to the inspection method of the present invention, when the facing area is small due to the displacement of the positive electrode plate and the negative electrode plate, the time required to flow at a constant current is shortened due to the increase in electrical resistance, so that the amount of charge is reliably increased. Since it is reflected, it can be determined as “defective product”.

10…二次電池
20…電池要素
21…正極板
22…負極板
23…セパレータ
24…正極延出部
25…負極延出部
26…正極リード
27…負極リード
31,32…フィルム
50P,50N…端子
51…充電器
52…電圧測定器
53…電池電圧判定部
54…充電量演算部
55…充電量比較部
56…判定部
60…結果表示器
70…演算器
DESCRIPTION OF SYMBOLS 10 ... Secondary battery 20 ... Battery element 21 ... Positive electrode plate 22 ... Negative electrode plate 23 ... Separator 24 ... Positive electrode extension part 25 ... Negative electrode extension part 26 ... Positive electrode lead 27 ... Negative electrode lead 31, 32 ... Film 50P, 50N ... Terminal DESCRIPTION OF SYMBOLS 51 ... Charger 52 ... Voltage measuring device 53 ... Battery voltage determination part 54 ... Charge amount calculating part 55 ... Charge amount comparison part 56 ... Determination part 60 ... Result indicator 70 ... Calculator

Claims (8)

正極板と負極板がセパレータを介して複数段積層されてなる電池要素を電解質と共に備えて構成された二次電池の検査方法であって、
放電状態の電池を定電流充電する充電ステップと、
前記電池の端子間電圧が設定電圧になったときの、前記充電ステップにより充電された充電量演算値と、設定された充電量しきい値とに基づき、当該電池の検査を行うステップと、
を備えたことを特徴とする二次電池の検査方法。
A method for inspecting a secondary battery comprising a battery element, in which a positive electrode plate and a negative electrode plate are laminated in multiple stages via a separator, together with an electrolyte,
A charging step for charging a discharged battery at a constant current;
A step of inspecting the battery based on a charge amount calculation value charged by the charging step and a set charge amount threshold when the voltage between the terminals of the battery becomes a set voltage;
A method for inspecting a secondary battery, comprising:
前記電池の端子間電圧が設定電圧になったときに、前記充電ステップにおける充電を停止させるステップを備えたことを特徴とする請求項1に記載の二次電池の検査方法。 The secondary battery inspection method according to claim 1, further comprising a step of stopping charging in the charging step when a voltage between the terminals of the battery reaches a set voltage. 前記端子電圧の設定電圧は、充電率がゼロより大きい電池の端子間電圧に設定されていることを特徴とする請求項1又は2に記載の二次電池の検査方法。 3. The method for inspecting a secondary battery according to claim 1, wherein the set voltage of the terminal voltage is set to a voltage between terminals of a battery having a charging rate larger than zero. 前記充電量しきい値は、同一ロットの複数の二次電池の充電容量平均値に応じて設定されていることを特徴とする請求項1ないし3のいずれか1項に記載の二次電池の検査方法。 4. The secondary battery according to claim 1, wherein the charge amount threshold value is set according to an average charge capacity value of a plurality of secondary batteries in the same lot. 5. Inspection method. 正極板と負極板がセパレータを介して複数段積層されてなる電池要素を電解質と共に備えて構成された二次電池の検査装置であって、
放電された電池を定電流充電する充電部と、
前記電池の充電量を演算する充電量演算部と、
前記電池の端子間電圧が設定電圧になったか否かを判定する電池電圧判定部と、
前記電池電圧判定部によって電池の端子間電圧が設定電圧になったと判定されたときの、前記充電量演算部の充電量演算値と、設定された充電量しきい値とを比較する充電量比較部と、
前記充電量比較部の比較結果が、充電量しきい値よりも充電量演算値の方が小であるとき、当該電池は不良であると判定する判定部と、
を備えたことを特徴とする二次電池の検査装置。
An inspection apparatus for a secondary battery comprising a battery element, in which a positive electrode plate and a negative electrode plate are laminated in multiple stages via a separator, together with an electrolyte,
A charging unit for charging a discharged battery with a constant current; and
A charge amount calculation unit for calculating the charge amount of the battery;
A battery voltage determination unit that determines whether or not the terminal voltage of the battery has reached a set voltage;
Charge amount comparison for comparing the charge amount calculation value of the charge amount calculation unit and the set charge amount threshold when the battery voltage determination unit determines that the voltage between the terminals of the battery has reached a set voltage And
When the comparison result of the charge amount comparison unit is smaller in the charge amount calculation value than the charge amount threshold, the determination unit determines that the battery is defective,
An inspection apparatus for a secondary battery, comprising:
前記電池電圧判定部は、電池の端子間電圧が設定電圧になったと判定されたときに、前記充電部の充電動作を停止させる機能を有していることを特徴とする請求項5に記載の二次電池の検査装置。 The said battery voltage determination part has a function which stops the charging operation of the said charging part, when it determines with the voltage between terminals of a battery becoming a setting voltage. Secondary battery inspection device. 前記電池電圧判定部により判定される設定電圧は、充電率がゼロより大きい電池の端子間電圧に設定されていることを特徴とする請求項5又は6に記載の二次電池の検査装置。 The inspection apparatus for a secondary battery according to claim 5 or 6, wherein the set voltage determined by the battery voltage determination unit is set to a terminal voltage of a battery having a charging rate larger than zero. 前記充電量しきい値は、同一ロットの複数の二次電池の充電容量平均値に応じて設定されていることを特徴とする請求項5ないし7のいずれか1項に記載の二次電池の検査装置。 The secondary battery according to any one of claims 5 to 7, wherein the charge amount threshold value is set according to an average charge capacity value of a plurality of secondary batteries in the same lot. Inspection device.
JP2013120544A 2012-12-27 2013-06-07 Method and device for checking secondary battery Pending JP2014143164A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013120544A JP2014143164A (en) 2012-12-27 2013-06-07 Method and device for checking secondary battery

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012283807 2012-12-27
JP2012283807 2012-12-27
JP2013120544A JP2014143164A (en) 2012-12-27 2013-06-07 Method and device for checking secondary battery

Publications (1)

Publication Number Publication Date
JP2014143164A true JP2014143164A (en) 2014-08-07

Family

ID=51424293

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013120544A Pending JP2014143164A (en) 2012-12-27 2013-06-07 Method and device for checking secondary battery

Country Status (1)

Country Link
JP (1) JP2014143164A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101778348B1 (en) * 2014-10-24 2017-09-13 주식회사 엘지화학 System capacity measure of secondary battery and method for measuring capacity of secondary battery
CN108594139A (en) * 2018-07-23 2018-09-28 佛山市众盈电子有限公司 A kind of method of critical battery failure detection

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001266956A (en) * 2000-03-17 2001-09-28 Matsushita Electric Ind Co Ltd Delivery test method of battery
JP2004132776A (en) * 2002-10-09 2004-04-30 Matsushita Electric Ind Co Ltd Inspection method of battery
JP2007304006A (en) * 2006-05-12 2007-11-22 Nec Corp Secondary battery charge/discharge inspection device and method
JP2009225644A (en) * 2008-03-19 2009-10-01 Sansha Electric Mfg Co Ltd Power supply apparatus
JP2011100691A (en) * 2009-11-09 2011-05-19 Hitachi Ltd Diagnostic system and diagnostic method for lithium ion secondary battery
JP2012141166A (en) * 2010-12-28 2012-07-26 Yokogawa Electric Corp Self discharge defect detection device and self discharge defect detection method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001266956A (en) * 2000-03-17 2001-09-28 Matsushita Electric Ind Co Ltd Delivery test method of battery
JP2004132776A (en) * 2002-10-09 2004-04-30 Matsushita Electric Ind Co Ltd Inspection method of battery
JP2007304006A (en) * 2006-05-12 2007-11-22 Nec Corp Secondary battery charge/discharge inspection device and method
JP2009225644A (en) * 2008-03-19 2009-10-01 Sansha Electric Mfg Co Ltd Power supply apparatus
JP2011100691A (en) * 2009-11-09 2011-05-19 Hitachi Ltd Diagnostic system and diagnostic method for lithium ion secondary battery
JP2012141166A (en) * 2010-12-28 2012-07-26 Yokogawa Electric Corp Self discharge defect detection device and self discharge defect detection method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101778348B1 (en) * 2014-10-24 2017-09-13 주식회사 엘지화학 System capacity measure of secondary battery and method for measuring capacity of secondary battery
CN108594139A (en) * 2018-07-23 2018-09-28 佛山市众盈电子有限公司 A kind of method of critical battery failure detection

Similar Documents

Publication Publication Date Title
US10317477B2 (en) Inspection method and manufacturing method of secondary battery
US20190140269A1 (en) Positive electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
EP3134930B1 (en) Nonaqueous electrolyte secondary battery and method of manufacturing the same
US20170229743A1 (en) Nonaqueous electrolyte secondary battery
US9614194B2 (en) Battery
JP2018526798A (en) Battery cell with atypical structure with improved sealing reliability of cell case
JP6138436B2 (en) Non-aqueous electrolyte secondary battery and manufacturing method thereof
WO2015049778A1 (en) Lithium ion secondary battery, lithium ion secondary battery system, method for detecting potential in lithium ion secondary battery, and method for controlling lithium ion secondary battery
US20160056463A1 (en) Non-aqueous electrolyte secondary battery
US20170365842A1 (en) Nonaqueous electrolyte battery electrode, nonaqueous electrolyte battery, and battery pack
WO2017122251A1 (en) Non-aqueous electrolyte secondary battery
US10263290B2 (en) Nonaqueous electrolyte secondary battery
JP2014035923A (en) Non-aqueous electrolyte secondary battery
JP6865596B2 (en) Lithium secondary battery
US10541418B2 (en) Nonaqueous electrolyte secondary battery
WO2015040684A1 (en) Reference electrode with thermometer function, lithium-ion secondary battery including reference electrode with thermometer function, lithium-ion secondary battery system including reference electrode with thermometer function, and lithium-ion secondary battery control method
JP2015125091A (en) Method for inspecting secondary battery
JP2014143164A (en) Method and device for checking secondary battery
JP2014238961A (en) Method for manufacturing nonaqueous electrolyte secondary battery
JP5413945B2 (en) Multilayer laminated nonaqueous electrolyte secondary battery
CN108369259B (en) Test cell with high reliability in electrode characteristic test
JP5978815B2 (en) Method for producing lithium ion secondary battery
JP2013157136A (en) Nonaqueous electrolyte secondary battery
JP6189024B2 (en) Battery and battery manufacturing method
JP2017212074A (en) Lithium ion secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160307

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160628

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170404