JP2007305396A - Electrode for secondary battery and its manufacturing method - Google Patents

Electrode for secondary battery and its manufacturing method Download PDF

Info

Publication number
JP2007305396A
JP2007305396A JP2006132168A JP2006132168A JP2007305396A JP 2007305396 A JP2007305396 A JP 2007305396A JP 2006132168 A JP2006132168 A JP 2006132168A JP 2006132168 A JP2006132168 A JP 2006132168A JP 2007305396 A JP2007305396 A JP 2007305396A
Authority
JP
Japan
Prior art keywords
electrode
metal
paste
secondary battery
porous body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006132168A
Other languages
Japanese (ja)
Other versions
JP5092277B2 (en
Inventor
Kazufumi Okawa
和史 大川
Takashi Ebihara
孝 海老原
Yoshinori Ito
義則 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2006132168A priority Critical patent/JP5092277B2/en
Priority to US12/300,441 priority patent/US20090170004A1/en
Priority to CN2007800171041A priority patent/CN101443934B/en
Priority to PCT/JP2007/058971 priority patent/WO2007132655A1/en
Publication of JP2007305396A publication Critical patent/JP2007305396A/en
Application granted granted Critical
Publication of JP5092277B2 publication Critical patent/JP5092277B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0416Methods of deposition of the material involving impregnation with a solution, dispersion, paste or dry powder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/043Processes of manufacture in general involving compressing or compaction
    • H01M4/0435Rolling or calendering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/665Composites
    • H01M4/667Composites in the form of layers, e.g. coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/80Porous plates, e.g. sintered carriers
    • H01M4/808Foamed, spongy materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Dispersion Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrode for a secondary battery having high short circuit resistance and a high current collecting property by making bear the current collecting property to the metal rich layer having higher metal density than other part of a three-dimensional metallic porous body and making arrangement of the metal rich layer fair. <P>SOLUTION: The electrode for the secondary battery is formed by filling an active material in pores of the three-dimensional metallic porous body, and the metal rich layer having higher metal density than other part of the three-dimensional metallic porous body is formed in a portion other than a surface layer part in the thickness direction. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明はアルカリ蓄電池等に用いる二次電池用電極及び電極の製造方法に関し、より詳しくは構造的な課題を解決し捲回時の短絡を抑制する技術に関する。   The present invention relates to an electrode for a secondary battery used for an alkaline storage battery and the like, and more particularly to a technique for solving a structural problem and suppressing a short circuit during winding.

二次電池、中でもアルカリ蓄電池は、一定の容量密度を有しつつ過充電や不定期なパターンの充放電に対する耐性が高いことから、タフユース用途を中心に非水電解液二次電池との棲み分けが進みつつある。   Secondary batteries, especially alkaline storage batteries, have a high capacity against overcharge and irregular patterns of charge and discharge while having a constant capacity density, so they are segregated from non-aqueous electrolyte secondary batteries mainly for tough use applications. Is progressing.

アルカリ蓄電池用電極には、大別してペースト式電極と焼結式電極とがある。近年は高容量化の観点から、スポンジ状金属多孔体やニッケル繊維不織布などの三次元金属多孔体の空隙に活物質を主体としたペーストを充填してなるペースト式電極が、アルカリ蓄電池の正極として活用されている。   The alkaline storage battery electrode is roughly classified into a paste type electrode and a sintered type electrode. In recent years, from the viewpoint of increasing capacity, a paste-type electrode in which a paste mainly composed of an active material is filled in a void of a three-dimensional metal porous body such as a sponge-like metal porous body or a nickel fiber nonwoven fabric is used as a positive electrode of an alkaline storage battery. It is utilized.

これらの三次元金属多孔体は多孔度(全体積に占める空隙体積の比率)が95%程度で、空隙部の孔径は最大数百μmにも及ぶことから、上述したペーストを直接かつ多量に充填することが可能である。しかしながら高容量のペースト式電極を得るために、無作為に多孔度を高くしてペーストをより多く充填した場合、ペーストを充填した部分の三次元金属多孔体の割合が過度に低くなり、集電性が低下して二次電池の放電特性が低下しやすくなる。   These three-dimensional metal porous bodies have a porosity (ratio of void volume occupying the total volume) of about 95%, and the pore diameter of the voids reaches up to several hundred μm. Is possible. However, in order to obtain a high-capacity paste-type electrode, when the porosity is randomly increased and the paste is filled more, the proportion of the three-dimensional porous metal in the portion filled with the paste becomes too low, and the current collector And the discharge characteristics of the secondary battery are likely to deteriorate.

これらの課題に対して、特許文献1のように三次元金属多孔体の構造を工夫したり、特許文献2のようにペーストの充填方法を工夫することにより、三次元金属多孔体の厚み方向の片側のみに活物質を充填し、活物質が充填されていない他方で集電を担う電極構造を実現し、二次電池の放電特性を高める技術が提案されている。
特開2000−208144号公報 特許第2976863号公報
For these problems, the structure of the three-dimensional metal porous body is devised as in Patent Document 1, or the paste filling method is devised as in Patent Document 2, so that the thickness direction of the three-dimensional metal porous body is improved. A technique has been proposed in which only one side is filled with an active material, and an electrode structure that collects current on the other side that is not filled with an active material is realized to enhance the discharge characteristics of the secondary battery.
JP 2000-208144 A Japanese Patent No. 2976863

ところで三次元金属多孔体を用いたペースト式電極は、対極やセパレータとともに渦巻き状に捲回して円筒缶内に収容した場合、概して曲率が小さい捲回芯の付近で亀裂が発生しやすい。特許文献1〜2の技術を駆使して作製された電極は、その表面の片側にのみ金属の存在比率が高い箇所(以下、金属リッチ層と称す)が偏在している。この金属リッチ層自体は活物質が充填された箇所と比較して応力に対して自由度を持つので、曲げに対する耐性が高く、捲回による亀裂は生じにくい。しかし三次元金属多孔体の表面では、金属骨格が不規則かつ不連続に存在する。よって捲回時に、金属リッチ層の不連続な金属骨格が電極表面から突出してセパレータを破り、対極と接触することによる内部短絡が発生しやすくなる。特に電極の端面は切断加工により不連続な金属骨格が多数存在するため、内部短絡はさらに発生しやすくなる。   By the way, when the paste type electrode using a three-dimensional metal porous body is wound together with a counter electrode and a separator in a spiral shape and accommodated in a cylindrical can, cracks are generally likely to occur near a wound core having a small curvature. The electrode produced by using the techniques of Patent Documents 1 and 2 has unevenly distributed portions (hereinafter referred to as metal-rich layers) where the abundance ratio of the metal is high only on one side of the surface. Since the metal rich layer itself has a degree of freedom with respect to stress as compared with the portion filled with the active material, it has a high resistance to bending, and cracks due to winding are unlikely to occur. However, the metal skeleton is irregular and discontinuous on the surface of the three-dimensional porous metal body. Therefore, during winding, the discontinuous metal skeleton of the metal rich layer protrudes from the electrode surface, breaks the separator, and an internal short circuit easily occurs due to contact with the counter electrode. In particular, since the end face of the electrode has many discontinuous metal skeletons by cutting, an internal short circuit is more likely to occur.

本発明は上記課題を解決するためのものであり、集電性を担う金属リッチ層の配置を適正化することにより、耐短絡性と集電性の双方が高い二次電池用電極を提供することを目的とする。   This invention is for solving the said subject, and provides the electrode for secondary batteries with both high short circuit resistance and high current collection property by optimizing arrangement | positioning of the metal rich layer which bears current collection property. For the purpose.

上記課題に基づき、本発明の二次電池用電極は、三次元金属多孔体の空隙に活物質を充
填したものであって、厚み方向の表層部を除く箇所に、三次元金属多孔体の金属密度が他の箇所より大きい金属リッチ層を設けたことを特徴とする。
Based on the above problems, the electrode for a secondary battery of the present invention is obtained by filling the voids of the three-dimensional metal porous body with an active material, and the metal of the three-dimensional metal porous body at a location excluding the surface layer portion in the thickness direction. It is characterized in that a metal rich layer having a density higher than other portions is provided.

さらに上述した二次電池用電極を得るための製造方法として、本発明の二次電池用電極の製造方法は、帯状の三次元金属多孔体を走行させながら、その空隙に活物質を主体としたペーストを充填するものであって、三次元金属多孔体の内部に未充填箇所が残るように三次元金属多孔体の双方の面に配置した一対のペースト吐出ノズルからペーストを吐出して電極前駆体を作製する第1の工程と、電極前駆体を乾燥する第2の工程と、電極前駆体を圧延する第3の工程とを含むことを特徴とする。   Further, as a manufacturing method for obtaining the above-described secondary battery electrode, the secondary battery electrode manufacturing method of the present invention is mainly composed of an active material in the voids while running a strip-shaped three-dimensional porous metal body. An electrode precursor that is filled with paste and discharges paste from a pair of paste discharge nozzles arranged on both sides of the three-dimensional metal porous body so that an unfilled portion remains inside the three-dimensional metal porous body. The method includes a first step for manufacturing the electrode precursor, a second step for drying the electrode precursor, and a third step for rolling the electrode precursor.

金属リッチ層自体は活物質が充填された箇所と比較して応力に対して自由度を持つので、曲げに対する耐性が高い。ただし特許文献1〜2のように電極の表層部のみに金属リッチ層がある場合、金属リッチ層の不連続な金属骨格が捲回により、電極表面から突出してセパレータを破り、対極と接触することによる内部短絡が発生しやすくなる。しかるに本発明はこの金属リッチ層が電極の表層部に位置しないので、特許文献1〜2の電極が有する課題をクリアできる。   Since the metal rich layer itself has a degree of freedom with respect to stress as compared with the portion filled with the active material, it has a high resistance to bending. However, when there is a metal-rich layer only in the surface layer part of the electrode as in Patent Documents 1 and 2, the discontinuous metal skeleton of the metal-rich layer protrudes from the electrode surface by winding and breaks the separator and contacts the counter electrode Internal short circuit is likely to occur. However, since this metal rich layer is not located in the surface layer part of an electrode, this invention can clear the subject which the electrodes of patent documents 1-2 have.

本発明によって、集電性を担う金属リッチ層を適正に配置することができるようになるので、耐短絡性と集電性の双方が高い二次電池用電極と、高性能な二次電池を提供することができる。   According to the present invention, the metal-rich layer responsible for current collection can be appropriately disposed. Therefore, an electrode for a secondary battery having both high short-circuit resistance and current collection and a high-performance secondary battery are provided. Can be provided.

本発明を実施するための最良の形態について、図を用いて詳細に説明する。   The best mode for carrying out the present invention will be described in detail with reference to the drawings.

第1の発明は、三次元金属多孔体の空隙に活物質を充填したものであって、厚み方向の表層部を除く箇所に、三次元金属多孔体の金属密度が他の箇所より大きい金属リッチ層を設けたことを特徴とする二次電池用電極に関する。   In the first invention, the voids of the three-dimensional metal porous body are filled with an active material, and the metal density of the three-dimensional metal porous body is higher than that of other portions in the portion excluding the surface layer portion in the thickness direction. The present invention relates to an electrode for a secondary battery, characterized in that a layer is provided.

図1は第1の発明の二次電池用電極を示す概略断面図である。三次元多孔体1の空隙に活物質2が充填されることにより電極が構成される中で、表層部を除く箇所に三次元金属多孔体1の金属密度が他の箇所より大きい金属リッチ層3が設けられている。この金属リッチ層は図2に示すように特許文献1〜2にも存在するが、本発明においては金属リッチ層3が電極の表層部に位置しないので、特許文献1〜2の電極が有する課題をクリアできる。   FIG. 1 is a schematic cross-sectional view showing a secondary battery electrode of the first invention. While the electrode is formed by filling the voids of the three-dimensional porous body 1 with the active material 2, the metal rich layer 3 in which the metal density of the three-dimensional metal porous body 1 is higher than that of the other portions in the portion excluding the surface layer portion. Is provided. Although this metal rich layer exists also in patent documents 1-2 as shown in FIG. 2, since the metal rich layer 3 is not located in the surface layer part of an electrode in this invention, the subject which the electrodes of patent documents 1-2 have Can be cleared.

第1の効果として、金属リッチ層3が電極の表層部に位置しないので、特許文献1〜2のように捲回時に金属リッチ層の不連続な金属骨格が電極表面から突出することによる内部短絡の懸念を排除できる。第2の効果として、活物質2が充填された部分は金属リッチ層3よりも曲げに対する耐性が低いので亀裂が発生しやすいが、この亀裂は金属リッチ層3を越えて成長しないので、電極トータルでの曲げに対する耐性を向上できる。これら第1〜2の効果によって、耐短絡性が高い電極を実現できる。   As the first effect, since the metal rich layer 3 is not located in the surface layer portion of the electrode, an internal short circuit caused by a discontinuous metal skeleton of the metal rich layer protruding from the electrode surface during winding as in Patent Documents 1-2. Can be eliminated. As a second effect, the portion filled with the active material 2 has a lower resistance to bending than the metal rich layer 3 and is likely to crack. However, since this crack does not grow beyond the metal rich layer 3, It can improve the resistance to bending. By these first and second effects, an electrode with high short-circuit resistance can be realized.

ここで三次元多孔体1として、ニッケルやニッケルを被覆した鉄を原料としたスポンジ状金属多孔体や繊維不織布などを用いることができる。また活物質2として、アルカリ蓄電池用正極ならば水酸化ニッケル粉末を、アルカリ蓄電池用負極ならば水素吸蔵合金粉末を用いることができる。なお活物質2として水酸化ニッケル粉末を用いる場合、水酸化コバルトや金属コバルトなどの導電剤や、ポリテトラフルオロエチレン(以下PTFEと略記)などの結着剤や、カルボキシメチルセルロース(以下CMCと略記)などの増粘剤を併せて用いることができる。   Here, as the three-dimensional porous body 1, it is possible to use a sponge-like metal porous body or a fiber nonwoven fabric made of nickel or nickel-coated iron as a raw material. As the active material 2, nickel hydroxide powder can be used for a positive electrode for an alkaline storage battery, and hydrogen storage alloy powder can be used for a negative electrode for an alkaline storage battery. When nickel hydroxide powder is used as the active material 2, a conductive agent such as cobalt hydroxide or metallic cobalt, a binder such as polytetrafluoroethylene (hereinafter abbreviated as PTFE), or carboxymethyl cellulose (hereinafter abbreviated as CMC). A thickener such as can be used together.

第2の発明は、第1の発明において、電極の厚みに対する金属リッチ層3の厚みの比率を5〜15%としたことを特徴とする。電極の厚みに対する金属リッチ層3の厚みの比率が5%未満の場合、上述した第1〜2の効果を金属リッチ層3に持たせるのが困難になる。一方で電池容量を保つために三次元多孔体1の目付重量(単位面積当りの金属重量)を一定にしつつ金属リッチ層3の厚みの比率を15%超過にしようとすると、最初に三次元金属多孔体1を厚くする必要があるので活物質2を充填している部分の金属骨格が細くなり、捲回時に亀裂を起こすのでかえって内部短絡を誘発する確率が高まる。   The second invention is characterized in that, in the first invention, the ratio of the thickness of the metal rich layer 3 to the thickness of the electrode is 5 to 15%. When the ratio of the thickness of the metal rich layer 3 to the thickness of the electrode is less than 5%, it is difficult to give the metal rich layer 3 the first and second effects described above. On the other hand, in order to maintain the battery capacity, if the weight ratio of the metal rich layer 3 is made to exceed 15% while keeping the weight per unit area (metal weight per unit area) constant, the first three-dimensional metal Since it is necessary to make the porous body 1 thick, the metal skeleton in the portion filled with the active material 2 becomes thin, and a crack is generated at the time of winding, so that the probability of inducing an internal short circuit is increased.

第3の発明は、第1の発明において、金属リッチ層3の位置を電極の厚み方向において周期的に変化させたことを特徴とする。図3は第3の発明の二次電池用電極を示す概略断面図である。金属リッチ層3の位置は電極の厚み方向において周期的に変化している。金属リッチ層3を周期的に変化させることにより蛇腹構造になるので、捲回時に金属リッチ層3が引っ張られることによるストレスが緩和されるので好ましい。加えて第3の発明の電極を捲回した場合、亀裂は捲回時の外側における表層から金属リッチ層3の距離がもっとも大きい箇所で発生しやすくなるが、その間隔は相対的に大きいので、均一に浅い亀裂が発生しやすい第1の発明に対して、亀裂の発生数が低減でき、さらに耐短絡性が向上できる。   According to a third invention, in the first invention, the position of the metal rich layer 3 is periodically changed in the thickness direction of the electrode. FIG. 3 is a schematic cross-sectional view showing a secondary battery electrode of the third invention. The position of the metal rich layer 3 periodically changes in the thickness direction of the electrode. Since the bellows structure is obtained by periodically changing the metal rich layer 3, stress due to the metal rich layer 3 being pulled at the time of winding is relieved, which is preferable. In addition, when the electrode of the third invention is wound, cracks are likely to occur at the place where the distance from the surface layer to the metal rich layer 3 on the outside at the time of winding is the largest, but the interval is relatively large, Compared to the first invention in which uniform shallow cracks are likely to occur, the number of cracks can be reduced, and the short-circuit resistance can be improved.

第4の発明は、帯状の三次元金属多孔体を走行させながら、その空隙に活物質を主体としたペーストを充填するものであって、三次元金属多孔体の内部に未充填箇所が残るように三次元金属多孔体の双方の面に配置した一対のペースト吐出ノズルからペーストを吐出して電極前駆体を作製する第1の工程と、電極前駆体を乾燥する第2の工程と、電極前駆体を圧延する第3の工程とを含むことを特徴とする二次電池用電極の製造方法に関する。   According to a fourth aspect of the invention, while the strip-shaped three-dimensional metal porous body is run, the voids are filled with a paste mainly composed of an active material so that an unfilled portion remains inside the three-dimensional metal porous body. A first step of producing an electrode precursor by discharging paste from a pair of paste discharge nozzles disposed on both surfaces of the three-dimensional metal porous body, a second step of drying the electrode precursor, and an electrode precursor The manufacturing method of the electrode for secondary batteries characterized by including the 3rd process of rolling a body.

図4は第4の発明の二次電池用電極の製造方法における第1の工程を示す概略断面図である。図4の下方から上方に向かって走行している帯状の三次元金属多孔体1の双方の面に一対のペースト吐出ノズル4を配置して活物質2を主体としたペースト5を吐出することにより、電極前駆体6が作製される。ここで三次元金属多孔体1の内部にペースト5の未充填箇所が残るようにペースト5の吐出量を調整することにより、第2〜3の工程(図示せず)を経た電極前駆体6を第1の発明に示す二次電池用電極とすることができる。   FIG. 4 is a schematic cross-sectional view showing a first step in the method for producing a secondary battery electrode of the fourth invention. By disposing a pair of paste discharge nozzles 4 on both sides of the band-shaped three-dimensional metal porous body 1 running from the lower side to the upper side in FIG. 4, the paste 5 mainly composed of the active material 2 is discharged. The electrode precursor 6 is produced. Here, by adjusting the discharge amount of the paste 5 so that an unfilled portion of the paste 5 remains inside the three-dimensional metal porous body 1, the electrode precursor 6 that has undergone the second to third steps (not shown) is obtained. It can be set as the electrode for secondary batteries shown in 1st invention.

第5の発明は、第4の発明において、第1の工程における一対のペースト吐出ノズル4から吐出するペースト5の総量を略一定にしつつ、一方のペースト吐出ノズル4と他方のペースト吐出ノズル4との吐出量を周期的に変動させるようにしたことを特徴とする。このような方法を採ることにより、第2〜3の工程を経た電極前駆体6を第3の発明に示す二次電池用電極とすることができる。   According to a fifth invention, in the fourth invention, while the total amount of paste 5 discharged from the pair of paste discharge nozzles 4 in the first step is made substantially constant, one paste discharge nozzle 4 and the other paste discharge nozzle 4 The discharge amount is periodically changed. By adopting such a method, the electrode precursor 6 having undergone the second to third steps can be used as the secondary battery electrode shown in the third invention.

以下に実施例を示すことによって、本発明をさらに詳述する。   The present invention will be further described in detail by the following examples.

(実施例1)
5m/分で走行させた三次元金属多孔体1(厚み2.0mm、目付が700g/cm3)の双方の面に一対のペースト吐出ノズル4を配置し、活物質2である水酸化ニッケル粉末(平均粒径10μm)100重量部に対し水酸化コバルト10重量部、PTFE0.5重量部、CMC0.3重量部および適量の水を加えたペースト5(固形分比70%)を、ポンプで一定の圧力をかけながら吐出し、三次元金属多孔体1の表層からそれぞれ0.5mmの深さまで充填した。この電極前駆体6を乾燥した後で厚みが0.68mmとなるように圧延し、厚み方向の中心部に金属密度が大きい金属リッチ層3(厚み0.10mm、電極の厚みに対する厚みの比率15%)を形成した。これを縦35mm、横250mmに
加工して、リード板を取り付け、正極とした。これを実施例1とする。
Example 1
A pair of paste discharge nozzles 4 are arranged on both sides of a three-dimensional metal porous body 1 (thickness 2.0 mm, basis weight 700 g / cm 3 ) traveled at 5 m / min, and nickel hydroxide powder as an active material 2 (Average particle size 10 μm) 10 parts by weight of cobalt hydroxide, 0.5 parts by weight of PTFE, 0.3 parts by weight of CMC and an appropriate amount of water (solid content ratio 70%) to 100 parts by weight are constant with a pump The liquid was discharged while applying a pressure of 0.5 mm from the surface layer of the three-dimensional metal porous body 1. The electrode precursor 6 is dried and then rolled to a thickness of 0.68 mm, and the metal rich layer 3 (thickness: 0.10 mm, thickness ratio to electrode thickness: 15 at the center in the thickness direction is large). %). This was processed into a length of 35 mm and a width of 250 mm, and a lead plate was attached to form a positive electrode. This is Example 1.

(実施例2)
実施例1に対し、三次元金属多孔体1の厚みを1.2mmとし、電極前駆体6を乾燥した後で厚みが0.61mmとなるように圧延し、金属リッチ層3の厚みを0.03mm(電極の厚みに対する厚みの比率5%)としたこと以外は、実施例1と同様の正極を作製した。これを実施例2とする。
(Example 2)
Compared to Example 1, the thickness of the three-dimensional metal porous body 1 was 1.2 mm, and the electrode precursor 6 was dried and then rolled to a thickness of 0.61 mm. A positive electrode was produced in the same manner as in Example 1 except that the thickness was 03 mm (ratio of thickness to electrode thickness: 5%). This is Example 2.

(実施例3)
実施例1に対し、一対のペースト吐出ノズル4から吐出するペースト5の総量は三次元金属多孔体1の厚み方向で1.0mm一定にしつつ、一方のペースト吐出ノズル4と他方のペースト吐出ノズル4からのペースト5の吐出量を、三次元金属多孔体1が10mm走行するたびに表層からの深さが0.30〜0.70mmの範囲で周期的に変動させるようにした。このこと以外は実施例1と同様に作製した正極を実施例2とする。なお電極の厚みに対する金属リッチ層3の厚みの比率は実施例1と同様15%であった。
(Example 3)
Compared to Example 1, the total amount of the paste 5 discharged from the pair of paste discharge nozzles 4 is kept constant by 1.0 mm in the thickness direction of the three-dimensional metal porous body 1, while one paste discharge nozzle 4 and the other paste discharge nozzle 4. The discharge amount of the paste 5 was periodically changed within the range of 0.30 to 0.70 mm when the three-dimensional porous metal body 1 traveled 10 mm. A positive electrode produced in the same manner as in Example 1 except for this is referred to as Example 2. Note that the ratio of the thickness of the metal rich layer 3 to the thickness of the electrode was 15% as in Example 1.

(実施例4)
実施例1に対し、三次元金属多孔体1の厚みを3.5mmとし、電極前駆体6を乾燥した後で厚みが0.73mmとなるように圧延し、金属リッチ層3の厚みを0.15mm(電極の厚みに対する厚みの比率20%)としたこと以外は、実施例1と同様の正極を作製した。これを実施例4とする。
Example 4
In contrast to Example 1, the thickness of the three-dimensional porous metal body 1 is 3.5 mm, and the electrode precursor 6 is dried and then rolled to a thickness of 0.73 mm. A positive electrode similar to that of Example 1 was prepared except that the thickness was 15 mm (ratio of thickness to electrode thickness: 20%). This is Example 4.

(実施例5)
実施例1に対し、三次元金属多孔体1の厚みを1.1mmとし、電極前駆体6を乾燥した後で厚みが0.60mmとなるように圧延し、金属リッチ層3の厚みを0.02mm(電極の厚みに対する厚みの比率3%)としたこと以外は、実施例1と同様の正極を作製した。これを実施例5とする。
(Example 5)
In contrast to Example 1, the thickness of the three-dimensional metal porous body 1 was 1.1 mm, and the electrode precursor 6 was dried and then rolled to a thickness of 0.60 mm. A positive electrode was produced in the same manner as in Example 1 except that the thickness was 02 mm (ratio of thickness to electrode thickness: 3%). This is Example 5.

(比較例1)
実施例1に対し、三次元金属多孔体1の厚みを1.0mmとし、電極前駆体6を乾燥した後で厚みが0.58mmとなるように圧延し、金属リッチ層3を形成させなかったこと以外は、実施例1と同様の正極を作製した。これを比較例1とする。
(Comparative Example 1)
In contrast to Example 1, the thickness of the three-dimensional metal porous body 1 was 1.0 mm, and the electrode precursor 6 was dried and then rolled to a thickness of 0.58 mm, so that the metal rich layer 3 was not formed. Except for this, a positive electrode similar to that of Example 1 was produced. This is referred to as Comparative Example 1.

(比較例2)
実施例2に対し、片方のペースト吐出ノズル4のみからペースト5を吐出し、三次元金属多孔体1の表層から1.0mmの深さまで充填して電極前駆体6を得て、これを乾燥した後で厚みが0.61mmとなるように圧延し、一方の表層部のみに金属リッチ層3(厚み0.03mm、電極の厚みに対する厚みの比率5%)を形成した。このこと以外は実施例2と同様に作製した正極を比較例2とする。
(Comparative Example 2)
For Example 2, the paste 5 was discharged from only one paste discharge nozzle 4 and filled to a depth of 1.0 mm from the surface layer of the three-dimensional metal porous body 1 to obtain an electrode precursor 6, which was dried. Later, the metal rich layer 3 (thickness 0.03 mm, ratio of thickness to electrode thickness 5%) was formed only on one surface layer portion by rolling to a thickness of 0.61 mm. A positive electrode produced in the same manner as in Example 2 except for this is referred to as Comparative Example 2.

得られた各実施例および比較例の正極を、公知のMmNi5系の水素吸蔵合金を用いた負極(厚み0.5mm、縦35mm、横300mm、Mmは軽希土類の混合物)および親水処理を施したポリプロピレン不織布セパレータ(厚み0.15mm、縦39mm、横550mm)を介して渦巻き状に捲回して電極群を構成した。 The obtained positive electrode of each example and comparative example was subjected to a negative electrode (thickness 0.5 mm, length 35 mm, width 300 mm, Mm is a mixture of light rare earths) and a hydrophilic treatment using a known MmNi 5 type hydrogen storage alloy. The electrode group was configured by winding in a spiral manner through the polypropylene nonwoven fabric separator (thickness 0.15 mm, length 39 mm, width 550 mm).

この電極群の亀裂の発生状態について、円筒状の電極群の底面における正極の厚み方向の亀裂深さの最大値を測定して百分率で計算した。またこの電極群を1000個作製して、150Vの電圧を印加したときの抵抗が2kΩ以上であれば合格とする絶縁性評価を行い、内部短絡している電極群の割合を求めた。さらに10個の電極群を円筒状のケースに挿入して濃度30wt%の水酸化カリウム水溶液を電解液として注入して封口板で密封し
、理論容量が3000mAhの円筒型ニッケル水素蓄電池を得た。この電池に対して、1時間率(1It)の電流で充放電を行い、放電容量の平均値と平均放電電圧の代表値(値が5番目に大きいもの)を求めた。これらの結果をすべて(表1)に示す。
The crack generation state of this electrode group was calculated as a percentage by measuring the maximum value of the crack depth in the thickness direction of the positive electrode on the bottom surface of the cylindrical electrode group. In addition, 1000 electrode groups were prepared, and if the resistance when a voltage of 150 V was applied was 2 kΩ or more, an insulating evaluation was made to pass, and the ratio of the electrode groups that were internally short-circuited was determined. Furthermore, 10 electrode groups were inserted into a cylindrical case, and a 30 wt% potassium hydroxide aqueous solution was injected as an electrolyte solution and sealed with a sealing plate to obtain a cylindrical nickel-metal hydride storage battery having a theoretical capacity of 3000 mAh. This battery was charged and discharged at a current of 1 hour rate (1 It), and the average value of the discharge capacity and the representative value of the average discharge voltage (the value having the fifth largest value) were obtained. All these results are shown in (Table 1).

(表1)から明らかなように、実施例1〜5は比較例1に対して、最大亀裂の深さが低減されており、その結果として内部短絡発生率が低減されている。詳細に見ると、金属リッチ層3の厚みが大きい程、亀裂の抑制によって内部短絡発生率を低減できる傾向がある。また、金属リッチ層3の位置を厚み方向で周期的に変動させることにより、最大亀裂の深さが顕著に低減して内部短絡発生率が激減していることがわかる。。 As is clear from (Table 1), in Examples 1 to 5, the depth of the maximum crack is reduced compared to Comparative Example 1, and as a result, the internal short-circuit occurrence rate is reduced. When it sees in detail, there exists a tendency which can reduce an internal short circuit incidence rate by suppression of a crack, so that the thickness of the metal rich layer 3 is large. Further, it can be seen that by periodically changing the position of the metal rich layer 3 in the thickness direction, the depth of the maximum crack is remarkably reduced and the internal short-circuit occurrence rate is drastically reduced. .

比較例2の電極は、亀裂は観察されなかったが、内部短絡の発生率が各実施例と比較して高くなっている。内部短絡が発生した箇所を見ると、発生箇所は三次元金属多孔体1が露出した部分であり、金属リッチ層3の不連続な金属骨格が、捲回により電極表面から突出してセパレータを突き破り、負極と接触した可能性が高いと考えられる。   Although the crack of the electrode of Comparative Example 2 was not observed, the incidence rate of internal short circuit was higher than that of each Example. Looking at the location where the internal short circuit occurred, the occurrence location is a portion where the three-dimensional porous metal body 1 is exposed, and the discontinuous metal skeleton of the metal rich layer 3 protrudes from the electrode surface by winding and breaks through the separator, The possibility of contact with the negative electrode is considered high.

放電容量、放電平均電圧特性の結果から、実施例1〜5は比較例1に対して、放電特性が向上されていることがわかる。これは金属リッチ層3の有無に由来する。さらに詳細に見ると、金属リッチ層3の厚みが大きい程、放電特性が向上する傾向がある。また金属リッチ層3を厚み方向で周期的に変動させることにより、金属リッチ層3の厚みが同様であっても放電特性の向上を図ることができた。これらは、いずれも亀裂の抑制によって集電性が向上したことが原因と考えられる。   From the results of the discharge capacity and the discharge average voltage characteristics, it can be seen that the discharge characteristics of Examples 1 to 5 are improved with respect to Comparative Example 1. This is due to the presence or absence of the metal rich layer 3. If it sees in detail, there exists a tendency for a discharge characteristic to improve, so that the thickness of the metal rich layer 3 is large. Further, by periodically varying the metal rich layer 3 in the thickness direction, the discharge characteristics could be improved even when the metal rich layer 3 had the same thickness. These are considered to be caused by the fact that the current collecting property is improved by suppressing cracks.

ただし電極の厚みに対する金属リッチ層3の厚みの比率が3%の実施例5の場合、金属リッチ層3が相対的に薄いために上述した効果がやや低下する。逆にこの比率が20%の実施例4の場合、亀裂の深さや内部短絡の発生率は悪化していることがわかる。これは電池容量を保つために三次元多孔体1の目付重量を一定にしつつ金属リッチ層3の厚みの比率を大きくしすぎたため、最初に三次元金属多孔体1を厚くして活物質2を充填することによりこの箇所の金属骨格が細くなり、捲回時に亀裂を起こして内部短絡を誘発したためと推定している。従って、電極の厚みに対する金属リッチ層3の厚みの比率は5〜15%にすることが好ましい。   However, in the case of Example 5 in which the ratio of the thickness of the metal rich layer 3 to the thickness of the electrode is 3%, since the metal rich layer 3 is relatively thin, the above-described effect is slightly reduced. On the other hand, in Example 4 where this ratio is 20%, it can be seen that the depth of cracks and the occurrence rate of internal short-circuits have deteriorated. This is because the ratio of the thickness of the metal rich layer 3 is made too large while keeping the weight per unit area of the three-dimensional porous body 1 constant in order to maintain the battery capacity. It is presumed that the metal skeleton at this point became thinner by filling, causing a crack at the time of winding and inducing an internal short circuit. Therefore, the ratio of the thickness of the metal rich layer 3 to the thickness of the electrode is preferably 5 to 15%.

本発明の二次電池用電極を用いた二次電池は、高い放電特性と優れた対短絡性を併せ持つので、ハイブリッド電気自動車の補助電源や電動工具の電源などのタフユース用途に適
しており、その利用可能性は極めて高い。
Since the secondary battery using the secondary battery electrode of the present invention has both high discharge characteristics and excellent short-circuit resistance, it is suitable for tough use applications such as an auxiliary power source for hybrid electric vehicles and a power source for electric tools. The availability is extremely high.

第1の発明の二次電池用電極を示す概略断面図Schematic sectional view showing an electrode for a secondary battery of the first invention 従来の二次電池用電極を示す概略断面図Schematic sectional view showing a conventional secondary battery electrode 第3の発明の二次電池用電極を示す概略断面図Schematic sectional view showing a secondary battery electrode of the third invention 第4の発明の二次電池用電極の製造方法における第1の工程を示す概略断面図Schematic sectional view showing the first step in the method for manufacturing a secondary battery electrode of the fourth invention

符号の説明Explanation of symbols

1 三次元金属多孔体
2 活物質
3 金属リッチ層
4 ペースト吐出ノズル
5 ペースト
6 電極前駆体
DESCRIPTION OF SYMBOLS 1 Three-dimensional metal porous body 2 Active material 3 Metal rich layer 4 Paste discharge nozzle 5 Paste 6 Electrode precursor

Claims (5)

三次元金属多孔体の空隙に活物質を充填してなる二次電池用電極であって、
厚み方向の表層部を除く箇所に、前記三次元金属多孔体の金属密度が他の箇所より大きい金属リッチ層を設けたことを特徴とする二次電池用電極。
An electrode for a secondary battery in which an active material is filled in a void of a three-dimensional metal porous body,
An electrode for a secondary battery, wherein a metal-rich layer having a metal density of the three-dimensional porous metal body larger than other portions is provided at a portion excluding a surface layer portion in the thickness direction.
電極の厚みに対する前記金属リッチ層の厚みの比率を5〜15%としたことを特徴とする請求項1記載の二次電池用電極 2. The electrode for a secondary battery according to claim 1, wherein a ratio of the thickness of the metal rich layer to the thickness of the electrode is 5 to 15%. 前記金属リッチ層の位置を、電極の厚み方向において周期的に変化させたことを特徴とする請求項1記載の二次電池用電極。 2. The electrode for a secondary battery according to claim 1, wherein the position of the metal rich layer is periodically changed in the thickness direction of the electrode. 帯状の三次元金属多孔体を走行させながら、その空隙に活物質を主体としたペーストを充填する二次電池用電極の製造方法であって、
前記三次元金属多孔体の内部に未充填箇所が残るように、前記三次元金属多孔体の双方の面に配置した一対のペースト吐出ノズルから前記ペーストを吐出して電極前駆体を作製する第1の工程と、
前記電極前駆体を乾燥する第2の工程と、
前記電極前駆体を圧延する第3の工程と、
を含むことを特徴とする二次電池用電極の製造方法。
A method of manufacturing an electrode for a secondary battery in which a paste mainly composed of an active material is filled in the voids while running a band-shaped three-dimensional metal porous body,
A first electrode precursor is produced by discharging the paste from a pair of paste discharge nozzles arranged on both surfaces of the three-dimensional metal porous body so that an unfilled portion remains inside the three-dimensional metal porous body. And the process of
A second step of drying the electrode precursor;
A third step of rolling the electrode precursor;
The manufacturing method of the electrode for secondary batteries characterized by including.
前記第1の工程において、前記一対のペースト吐出ノズルから吐出する前記ペーストの総量を略一定にしつつ、一方のペースト吐出ノズルと他方のペースト吐出ノズルとの吐出量を周期的に変動させるようにしたことを特徴とする、請求項4記載の二次電池用電極の製造方法。
In the first step, the discharge amount of one paste discharge nozzle and the other paste discharge nozzle is periodically changed while making the total amount of the paste discharged from the pair of paste discharge nozzles substantially constant. The manufacturing method of the electrode for secondary batteries of Claim 4 characterized by the above-mentioned.
JP2006132168A 2006-05-11 2006-05-11 Secondary battery electrode and manufacturing method thereof Expired - Fee Related JP5092277B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2006132168A JP5092277B2 (en) 2006-05-11 2006-05-11 Secondary battery electrode and manufacturing method thereof
US12/300,441 US20090170004A1 (en) 2006-05-11 2007-04-25 Electrode for rechargeable battery and method for manufacturing the same
CN2007800171041A CN101443934B (en) 2006-05-11 2007-04-25 Electrode for secondary battery and its manufacturing method
PCT/JP2007/058971 WO2007132655A1 (en) 2006-05-11 2007-04-25 Electrode for secondary battery and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006132168A JP5092277B2 (en) 2006-05-11 2006-05-11 Secondary battery electrode and manufacturing method thereof

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2010072049A Division JP5093275B2 (en) 2010-03-26 2010-03-26 Method for manufacturing electrode for secondary battery

Publications (2)

Publication Number Publication Date
JP2007305396A true JP2007305396A (en) 2007-11-22
JP5092277B2 JP5092277B2 (en) 2012-12-05

Family

ID=38693754

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006132168A Expired - Fee Related JP5092277B2 (en) 2006-05-11 2006-05-11 Secondary battery electrode and manufacturing method thereof

Country Status (4)

Country Link
US (1) US20090170004A1 (en)
JP (1) JP5092277B2 (en)
CN (1) CN101443934B (en)
WO (1) WO2007132655A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009277477A (en) * 2008-05-14 2009-11-26 Sanyo Electric Co Ltd Cylindrical alkaline secondary battery
JP2015191702A (en) * 2014-03-27 2015-11-02 プライムアースEvエナジー株式会社 Positive electrode plate for battery, alkali storage battery, and method of manufacturing positive electrode plate for battery

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5472207B2 (en) * 2011-05-30 2014-04-16 株式会社デンソー Battery, battery manufacturing method and battery manufacturing apparatus

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08148150A (en) * 1994-11-21 1996-06-07 Shin Kobe Electric Mach Co Ltd Electrode using three-dimensional substrate and manufacture thereof
JPH09106814A (en) * 1995-10-09 1997-04-22 Matsushita Electric Ind Co Ltd Electrode for battery and manufacture thereof
JP2000208144A (en) * 1999-01-19 2000-07-28 Sumitomo Electric Ind Ltd Battery electrode substrate and manufacture thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004342519A (en) * 2003-05-16 2004-12-02 M & G Eco Battery Institute Co Ltd Battery using paste type thin electrode and its manufacturing method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08148150A (en) * 1994-11-21 1996-06-07 Shin Kobe Electric Mach Co Ltd Electrode using three-dimensional substrate and manufacture thereof
JPH09106814A (en) * 1995-10-09 1997-04-22 Matsushita Electric Ind Co Ltd Electrode for battery and manufacture thereof
JP2000208144A (en) * 1999-01-19 2000-07-28 Sumitomo Electric Ind Ltd Battery electrode substrate and manufacture thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009277477A (en) * 2008-05-14 2009-11-26 Sanyo Electric Co Ltd Cylindrical alkaline secondary battery
JP2015191702A (en) * 2014-03-27 2015-11-02 プライムアースEvエナジー株式会社 Positive electrode plate for battery, alkali storage battery, and method of manufacturing positive electrode plate for battery

Also Published As

Publication number Publication date
JP5092277B2 (en) 2012-12-05
WO2007132655A1 (en) 2007-11-22
US20090170004A1 (en) 2009-07-02
CN101443934A (en) 2009-05-27
CN101443934B (en) 2011-04-27

Similar Documents

Publication Publication Date Title
US7006346B2 (en) Positive electrode of an electric double layer capacitor
JP5361712B2 (en) New silver positive electrode for alkaline storage batteries
JPH11233116A (en) Electrode structural body for lithium secondary battery, its manufacture and lithium secondary battery
EP1478037A2 (en) Secondary battery using non-sintered thin electrode and process for same
JP4429569B2 (en) Nickel metal hydride storage battery
JP5092277B2 (en) Secondary battery electrode and manufacturing method thereof
JP2019216057A (en) Porous membrane, battery member, and zinc battery
JP5093275B2 (en) Method for manufacturing electrode for secondary battery
JP4772185B2 (en) Positive electrode plate for alkaline storage battery, method for producing the same, and alkaline storage battery using the same
JP2012238565A (en) Alkaline storage battery
JP2008078037A (en) Electrode substrate for battery and electrode for battery
JP7182062B2 (en) Nickel-zinc battery manufacturing method
JP2013206674A (en) Cylindrical alkali storage battery
JP4752401B2 (en) Manufacturing method of cylindrical alkaline storage battery
JP2009170284A (en) Secondary battery
JP5125246B2 (en) Method for manufacturing electrode for secondary battery
JP4997529B2 (en) Nickel electrode for alkaline battery and method for producing the same
JP2004006258A (en) Negative electrode plate for nickel-hydrogen storage batteries, its manufacturing method, and nickel-hydrogen storage battery using it
JP3759589B2 (en) Method for producing alkaline storage battery
JP2009187692A (en) Electrode for secondary battery, and secondary battery
JPH09129223A (en) Electrode for winding type battery
EP0834940A2 (en) Sealed alkaline storage battery
WO2024043226A1 (en) Aqueous electrolyte secondary battery
JP5752487B2 (en) Alkaline storage battery and alkaline storage battery system
JP5023645B2 (en) Alkaline storage battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090424

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20090513

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120529

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120727

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120821

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120903

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150928

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees