JPH09210660A - Image pick-up inspection system - Google Patents

Image pick-up inspection system

Info

Publication number
JPH09210660A
JPH09210660A JP1395396A JP1395396A JPH09210660A JP H09210660 A JPH09210660 A JP H09210660A JP 1395396 A JP1395396 A JP 1395396A JP 1395396 A JP1395396 A JP 1395396A JP H09210660 A JPH09210660 A JP H09210660A
Authority
JP
Japan
Prior art keywords
image pickup
imaging
inspected
sample
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1395396A
Other languages
Japanese (ja)
Inventor
Harukazu Shimizu
治和 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP1395396A priority Critical patent/JPH09210660A/en
Publication of JPH09210660A publication Critical patent/JPH09210660A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Liquid Crystal (AREA)

Abstract

PROBLEM TO BE SOLVED: To alter the optical magnification easily depending on the size of microparticle by providing an image pick-up means, an optical magnification altering means, a scanning/moving means, a focal position adjusting means, means for varying the quantity of light being projected from a light source to an object, and a defect decision means. SOLUTION: An optical magnification varying motor 16 is driven with an operation command from a controller 19 to turn a revolver 15 and the optical magnification of an optical microscope 4 is set optimally depending on the particle size of a sample W. A plane light source 17 projects light below the sample W. A CCD camera 5 picks up the image of sample W. Focal position of the microscope 4 is then adjusted to maximize the difference between maximum and minimum densities in the screen of image. Finally, the image information picked up by means of camera 5 is analyzed by an image processor 6.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、広い検査領域にお
いて、微小な欠陥を検出する撮像式検査装置に関し、よ
り詳しくは、目視による判断が困難な微小粒子の凝集や
異物の欠陥に対して倍率を上げて検査する撮像式検査装
置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an image pickup type inspection apparatus for detecting microscopic defects in a wide inspection area, and more particularly to a magnification for microparticle agglomeration and foreign matter defects which are difficult to visually determine. The present invention relates to an imaging type inspection device that raises and inspects.

【0002】[0002]

【従来の技術】一般に、検出すべき欠陥が微小な場合、
高倍率の光学顕微鏡を使用して被検査体を拡大し、これ
を目視またはCCDカメラにより撮像して欠陥の有無が
検査される。この場合、光学顕微鏡の倍率が高いほど、
高精度な欠陥検出が行なわれる反面、観察視野が小さ
く、かつ焦点深度が浅くなり、検査領域が広いほど検査
に時間を要するようになる。
2. Description of the Related Art Generally, when a defect to be detected is very small,
A high-magnification optical microscope is used to magnify the object to be inspected, and this is visually inspected or imaged by a CCD camera to inspect for defects. In this case, the higher the magnification of the optical microscope,
While highly accurate defect detection is performed, the observation field of view becomes smaller, the depth of focus becomes shallower, and the wider the inspection area, the longer the inspection takes.

【0003】たとえば、液晶表示素子においては、液晶
を封入するガラス板間のギャップを均一に保つ目的で、
均一な大きさ(粒径)を有する透光性のプラスチックあ
るいはガラス製の球状粒子をスペーサとして用いること
が行なわれており、この場合、球状粒子によるスペーサ
がガラス板上に、複数個接して団体を形成(凝集)して
いると、その部分が黒点として観察され、液晶表示素子
そのものが欠陥品となる。このことに鑑み、液晶表示素
子の生産においては、スペーサをガラス板上に分散させ
た後、ガラス板上におけるスペーサの分散状態を検査す
ることが行なわれている。
For example, in a liquid crystal display device, in order to maintain a uniform gap between glass plates enclosing liquid crystal,
Translucent plastic or glass spherical particles having a uniform size (particle size) are used as spacers. In this case, a plurality of spherical particle spacers are in contact with each other on a glass plate. Are formed (aggregated), the portion is observed as a black spot, and the liquid crystal display element itself becomes a defective product. In view of this, in the production of the liquid crystal display element, after the spacers are dispersed on the glass plate, the dispersion state of the spacers on the glass plate is inspected.

【0004】このようなスペーサの分散状態を検査する
には、スペーサの粒径は4〜10μm程度のため、光学
顕微鏡の倍率を、たとえば40倍程度に設定する必要が
あり、この場合の視野範囲は0.2mm×0.2mm程
度であるのに対してガラス板の大きさは、たとえば28
0mm×180mm程度であるため、検査に多大な時間
が掛かることになる。このことは近年の液晶パネルの大
型化により一層顕著になっている。また、検査を正確に
実施するため、対象の粒径に対応して、光学顕微鏡の倍
率を変更する必要があり、それに応じて適正な透過光量
を調整し、さらに、焦点深度が浅くなるため、焦点合わ
せを実施する必要があり、このことによっても検査時間
が長くなる。
In order to inspect the dispersion state of such spacers, since the spacer particle size is about 4 to 10 μm, it is necessary to set the magnification of the optical microscope to, for example, about 40 times. Is about 0.2 mm × 0.2 mm, while the size of the glass plate is 28 mm, for example.
Since it is about 0 mm × 180 mm, the inspection takes a lot of time. This has become more remarkable with the recent increase in the size of liquid crystal panels. In addition, in order to carry out the inspection accurately, it is necessary to change the magnification of the optical microscope in accordance with the particle size of the target, adjust the appropriate amount of transmitted light accordingly, and because the depth of focus becomes shallower, Focusing must be performed, which also increases inspection time.

【0005】そこで、前述のように検査領域の広さに対
して検出すべき対象が微小な場合に、効率よく正確な検
査が行なわれるようにする撮像式検査装置として、撮像
手段により、低倍率で被検査体の検査領域全域に渡って
走査撮像し、当該走査撮像による撮像情報より欠陥候補
部を識別し、欠陥候補部の情報に基づき、さらに欠陥候
補部のみ高倍率で再撮像して、欠陥の判断を行なうもの
が、たとえば特願平6−72013号公報に開示されて
いる。
Therefore, as described above, when the object to be detected is small with respect to the size of the inspection area, the image pickup means enables low-magnification by the image pickup means so that the inspection can be performed efficiently and accurately. With scanning imaging over the entire inspection region of the inspected object, the defect candidate portion is identified from the imaging information by the scanning imaging, based on the information of the defect candidate portion, only the defect candidate portion is re-imaged at high magnification, A method for determining a defect is disclosed, for example, in Japanese Patent Application No. 6-72013.

【0006】[0006]

【発明が解決しようとする課題】ところが、前述した撮
像式検査装置においては、次のような問題点があること
が本発明者により見い出された。すなわち、検査領域の
大型化に対しては初期の目的を達成しているが、ガラス
板上に散布した微粒子に対し、粒径に応じた光学倍率の
変更に対する検査手段に関して、光学変位センサによる
焦点合わせの記載があるだけであり、具体的な記述がな
く、また、光学変位センサを利用すると、複数の種類の
検査手段を必要とするため、装置構成が複雑になり、高
価になる。
However, the inventor of the present invention has found that the above-mentioned imaging type inspection apparatus has the following problems. In other words, while achieving the initial objectives for increasing the size of the inspection area, for the inspection means for changing the optical magnification according to the particle size of the fine particles scattered on the glass plate, the focus by the optical displacement sensor There is only a description of matching, there is no specific description, and when an optical displacement sensor is used, a plurality of types of inspection means are required, which complicates the device configuration and increases the cost.

【0007】本発明の目的は、前述した問題点に鑑み、
複数種類の検査手段を必要とすることなく、簡単な構成
により、微粒子の粒径に応じた光学倍率の変更を容易に
行なうことができる撮像式検査装置を提供することにあ
る。本発明の前記ならびにその他の目的と新規な特徴
は、本明細書の記述および添付図面から明らかになるで
あろう。
The object of the present invention is to solve the above-mentioned problems.
It is an object of the present invention to provide an imaging type inspection apparatus that can easily change the optical magnification according to the particle diameter of fine particles with a simple configuration without requiring a plurality of types of inspection means. The above and other objects and novel features of the present invention will become apparent from the description of the present specification and the accompanying drawings.

【0008】[0008]

【課題を解決するための手段】本願において開示される
発明のうち、代表的なものの概要を簡単に説明すれば、
以下のとおりである。本発明の撮像式検査装置は、被検
査体を光学的に拡大して撮像する撮像手段と、撮像手段
の光学的倍率を変更する光学倍率可変手段と、被検査体
を撮像手段に対して走査移動させる走査移動手段と、撮
像手段の撮像範囲内の最大濃度と最小濃度との濃度差が
最大となるように撮像手段の焦点位置を調節する焦点位
置調節手段と、被検査体に光を透過させる光源と、光源
から被検査体に照射する光量を変化させる手段と、撮像
手段が撮像した被検査体の撮像情報に基づいて欠陥を判
断する欠陥判断手段とを具備したものである。
SUMMARY OF THE INVENTION Among the inventions disclosed in the present application, the outline of a representative one will be briefly described.
It is as follows. An image pickup type inspection apparatus of the present invention includes an image pickup unit that optically magnifies and images an object to be inspected, an optical magnification changing unit that changes the optical magnification of the image pickup unit, and an object to be inspected with respect to the image pickup unit. The scanning moving means for moving, the focus position adjusting means for adjusting the focus position of the image pickup means so that the density difference between the maximum density and the minimum density in the image pickup range of the image pickup means becomes maximum, and the light is transmitted to the object to be inspected. A light source for changing the amount of light emitted from the light source to the object to be inspected, and a defect determining unit for determining a defect based on the imaging information of the object to be inspected captured by the imaging unit.

【0009】また、本発明の撮像式検査装置は、被検査
体を撮像手段の撮像位置に供給し、かつ被検査体を撮像
位置より排出するロボットを備えたものである。前述し
た手段によれば、光源より被検査体に光が透過され、撮
像手段は被検査体の透過光を撮像する。焦点位置調節手
段は撮像手段の撮像範囲内の最大濃度と最小濃度との濃
度差が最大となるように撮像手段の焦点位置を調節す
る。欠陥判断手段は被検査体の撮像情報に基づいて欠陥
を判断する。ロボットは未検査の被検査体を検査装置に
供給し、検査済の被検査体を検査装置より排出する。
Further, the image pickup type inspection apparatus of the present invention comprises a robot for supplying the object to be inspected to the image pickup position of the image pickup means and discharging the object to be inspected from the image pickup position. According to the above-mentioned means, the light is transmitted from the light source to the object to be inspected, and the imaging means images the transmitted light of the object to be inspected. The focus position adjusting means adjusts the focus position of the image pickup means so that the density difference between the maximum density and the minimum density in the image pickup range of the image pickup means becomes maximum. The defect determining means determines a defect based on the imaged information of the inspection object. The robot supplies the uninspected object to the inspection apparatus and discharges the inspected object from the inspection apparatus.

【0010】[0010]

【発明の実施の形態】以下、本発明の実施例を図面に基
づいて詳細に説明する。ここで、図1は本発明の一実施
例に係る撮像式検査装置の斜視図、図2は本発明の一実
施例に係る撮像式検査装置の焦点ずれ量と撮像画面内濃
度差との特性図、図3は本発明の一実施例に係る液晶ス
ペーサの透過光による観察図、図4は本発明の他の実施
例に係る撮像式検査装置の斜視図を示す。また、実施例
を説明するための全図において、同一の機能を有するも
のは同一の符号を付け、その繰り返しの説明は省略す
る。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below in detail with reference to the drawings. Here, FIG. 1 is a perspective view of an image pickup type inspection apparatus according to one embodiment of the present invention, and FIG. 2 is a characteristic of a defocus amount and an image pickup screen density difference of the image pickup type inspection apparatus according to one embodiment of the present invention. FIG. 3 is an observation view of a liquid crystal spacer according to an embodiment of the present invention by transmitted light, and FIG. 4 is a perspective view of an imaging type inspection device according to another embodiment of the present invention. Further, in all the drawings for explaining the embodiments, those having the same functions are designated by the same reference numerals, and the repeated description thereof will be omitted.

【0011】図1において、撮像式検査装置は、基台1
と、基台1上をXY方向に移動可能なXYステージ2
と、基台1上に立設された架台3と、架台3に上下動可
能に取り付けられた光学顕微鏡4と、光学顕微鏡4が捕
らえた観察像を撮像するCCDカメラ5と、撮像された
観察像を画像処理する画像処理装置6と、画像処理され
た観察像を映像するビデオモニタ7とから概略構成され
ている。
In FIG. 1, an image pickup type inspection apparatus includes a base 1
And an XY stage 2 that can move on the base 1 in the XY directions.
A pedestal 3 erected on the base 1, an optical microscope 4 movably mounted on the pedestal 3, a CCD camera 5 for picking up an observation image captured by the optical microscope 4, and an imaged observation The image processing apparatus 6 for image-processing the image and the video monitor 7 for displaying the image-processed observation image are roughly configured.

【0012】基台1には、XYステージ2をXY方向に
駆動するX軸モータ8およびY軸モータ9が配設され、
XYステージ2上に載置された液晶スペーサなどの球状
粒子のサンプル(被検査体)WをXY方向に変位させ
る。この場合、XY方向は検査面と平行な方向である。
架台3には、リニアガイド10によって上下移動部材1
1が上下方向に変位可能に設けられている。上下移動部
材11には、Z軸モータ12により回転駆動される送り
ねじ13が螺合しており、上下移動部材11は送りねじ
13の回転により上下移動位置を調整される。
The base 1 is provided with an X-axis motor 8 and a Y-axis motor 9 for driving the XY stage 2 in the XY directions.
A sample (inspection object) W of spherical particles such as liquid crystal spacers mounted on the XY stage 2 is displaced in the XY directions. In this case, the XY directions are parallel to the inspection surface.
The gantry 3 is provided with a linear guide 10 for moving the vertically moving member 1
1 is provided so as to be vertically displaceable. A feed screw 13 that is rotationally driven by a Z-axis motor 12 is screwed into the vertical movement member 11, and the vertical movement position of the vertical movement member 11 is adjusted by the rotation of the feed screw 13.

【0013】上下移動部材11には、XYステージ2上
のサンプルWを拡大観察する光学顕微鏡4が連結されて
いる。光学顕微鏡4は複数個の対物レンズ14を有する
レボルバ15を備え、レボルバ15は、光学倍率可変モ
ータ16により対物レンズ14を分割回転駆動して変更
することにより、光学倍率を可変設定する。光学顕微鏡
4の接眼側にはCCDカメラ5が接続され、CCDカメ
ラ5は光学顕微鏡4による拡大観察像を撮像する。CC
Dカメラ5には画像処理装置6が接続されている。画像
処理装置6は、CCDカメラ5が出力する画像信号(撮
像情報)を入力し、その画像信号を解析して欠陥を検出
する。
An optical microscope 4 for magnifying and observing the sample W on the XY stage 2 is connected to the vertically moving member 11. The optical microscope 4 is provided with a revolver 15 having a plurality of objective lenses 14, and the revolver 15 variably sets the optical magnification by driving the objective lens 14 in divided rotation by a variable optical magnification motor 16 to change the objective lens 14. A CCD camera 5 is connected to the eyepiece side of the optical microscope 4, and the CCD camera 5 captures an enlarged observation image by the optical microscope 4. CC
An image processing device 6 is connected to the D camera 5. The image processing device 6 inputs an image signal (imaging information) output by the CCD camera 5, analyzes the image signal, and detects a defect.

【0014】画像処理装置6にはビデオモニタ7が接続
され、ビデオモニタ7はサンプルWの撮像画像を目視可
能に画面表示する。架台3には、サンプルWが透過性を
有するガラスであるため、面光源17がサンプルWに対
して光学顕微鏡4と反対側、すなわちサンプルWの下側
に配置されるように取り付けられている。
A video monitor 7 is connected to the image processing apparatus 6, and the video monitor 7 visually displays a captured image of the sample W on the screen. Since the sample W is a transparent glass, the surface light source 17 is attached to the gantry 3 so as to be arranged on the opposite side of the sample W from the optical microscope 4, that is, on the lower side of the sample W.

【0015】X軸モータ8、Y軸モータ9、Z軸モータ
12および光学倍率可変モータ16は、これらを駆動す
る駆動回路18に接続されている。画像処理装置6、面
光源17および駆動回路18は、制御装置19に接続さ
れている。制御装置19は、画像処理装置6に撮像情報
を解析させ、欠陥の有無を判断させると共に、X軸モー
タ8、Y軸モータ9、Z軸モータ12および光学倍率可
変モータ16の駆動を制御し、CCDカメラ5によるサ
ンプルWの撮像時には、面光源17の光強度を制御す
る。
The X-axis motor 8, the Y-axis motor 9, the Z-axis motor 12 and the variable optical magnification motor 16 are connected to a drive circuit 18 for driving them. The image processing device 6, the surface light source 17, and the drive circuit 18 are connected to the control device 19. The control device 19 causes the image processing device 6 to analyze the imaging information to determine the presence / absence of a defect, and controls the driving of the X-axis motor 8, the Y-axis motor 9, the Z-axis motor 12, and the variable optical magnification motor 16. When the CCD camera 5 takes an image of the sample W, the light intensity of the surface light source 17 is controlled.

【0016】次に、かかる撮像式検査装置による微小粒
子の欠陥検出方法を説明する。まず、制御装置19が、
光学倍率可変モータ16に動作指令する。これにより、
光学倍率可変モータ16は駆動し、レボルバ15が回転
され、光学顕微鏡4の光学的倍率がサンプルWの粒径に
応じて最適な光学倍率に設定される。さらに、制御装置
19は、X軸モータ8およびY軸モータ9に駆動動作を
指令する。これにより、X軸モータ8およびY軸モータ
9の駆動は制御され、XYステージ2によりサンプルW
が光学顕微鏡4に対してXY方向に走査移動し、サンプ
ルWは検査位置(撮像位置)に位置する。
Next, a method of detecting defects of fine particles by such an image pickup type inspection apparatus will be described. First, the control device 19
An operation command is issued to the variable optical magnification motor 16. This allows
The variable optical magnification motor 16 is driven, the revolver 15 is rotated, and the optical magnification of the optical microscope 4 is set to an optimum optical magnification according to the particle size of the sample W. Further, the control device 19 commands the X-axis motor 8 and the Y-axis motor 9 to perform a driving operation. As a result, the driving of the X-axis motor 8 and the Y-axis motor 9 is controlled, and the sample W is moved by the XY stage 2.
Scans and moves in the XY directions with respect to the optical microscope 4, and the sample W is positioned at the inspection position (imaging position).

【0017】その後、面光源17によりサンプルWの下
方に光を照射する。この場合、サンプルWの透過光量
は、光学顕微鏡4の光学倍率に対応して変更する。これ
は、光学倍率が高くなると、観察範囲が小さくなるた
め、透過光量を上げないと、必要な光量がとれなくな
り、撮像対象の適正なコントラストが得られないからで
ある。
Thereafter, the surface light source 17 irradiates the lower part of the sample W with light. In this case, the amount of transmitted light of the sample W is changed according to the optical magnification of the optical microscope 4. This is because the observation range becomes smaller as the optical magnification increases, so that the required amount of light cannot be obtained unless the amount of transmitted light is increased, and an appropriate contrast of the imaging target cannot be obtained.

【0018】次に、CCDカメラ5によりサンプルWを
撮像する。その後、撮像画面内の最大濃度と最小濃度の
濃度差が最大となるように、光学顕微鏡4の焦点位置を
調節する。つまり、図2に示すように、光学顕微鏡4の
合焦点位置と濃度差の最大位置とが一致しているため、
撮像画面内の最大濃度と最小濃度の濃度差が最大となる
よう焦点位置を調整する。撮像画面内の最大濃度と最小
濃度との濃度差が最大となるように、Z軸モータ12を
駆動して上下移動部材11を上下方向に移動調整し、光
学顕微鏡4の高さ位置調節を行なう。
Next, the sample W is imaged by the CCD camera 5. Then, the focus position of the optical microscope 4 is adjusted so that the density difference between the maximum density and the minimum density in the imaging screen becomes the maximum. That is, as shown in FIG. 2, since the in-focus position of the optical microscope 4 and the maximum position of the density difference coincide with each other,
The focus position is adjusted so that the density difference between the maximum density and the minimum density in the image pickup screen becomes maximum. The Z-axis motor 12 is driven to move and adjust the vertical moving member 11 in the vertical direction so that the difference between the maximum density and the minimum density in the imaging screen becomes maximum, and the height position of the optical microscope 4 is adjusted. .

【0019】しかる後、CCDカメラ5による撮像情報
を画像処理装置6により解析する。すなわち、サンプル
Wの透過光を光学顕微鏡4で観察すると、平行光がサン
プルWの粒子内部でsinθ1 =nsinθ2 (スネル
の法則)の関係で屈折し、図3に示すように、粒子の外
周部は暗く、中心部が明るい同軸の2重円に観察され
る。また、ゴミなどの異物は光を遮断するため、全体が
暗く観察されるので、異物と液晶スペーサなどの粒子と
が識別される。
After that, the image pickup device 6 analyzes the image pickup information from the CCD camera 5. That is, when the transmitted light of the sample W is observed by the optical microscope 4, parallel light is refracted inside the particles of the sample W according to the relationship of sin θ 1 = nsin θ 2 (Snell's law), and as shown in FIG. The part is dark and the central part is observed as a bright double coaxial circle. In addition, since foreign matter such as dust blocks light, the entire body is observed dark, so that the foreign matter is distinguished from particles such as liquid crystal spacers.

【0020】また、粒子の凝集状態は、焦点調節後に撮
像画面内の各物体の面積を計測し、それを予め設定して
ある基準面積で除することにより、粒子個数を演算して
評価する。すなわち、凝集物の外周部面積をSo 、対応
する粒子1個の基準面積をSavo とし、no=So /S
avo によって個数を判定することにより、粒子の凝集状
態および異物の混入状況を判断する。なお、撮像画像は
全てビデオモニタ7によって映し出される。
Further, the agglomeration state of particles is evaluated by measuring the area of each object in the image pickup screen after focus adjustment and dividing the area by a preset reference area to calculate the number of particles. That is, the outer peripheral area of the agglomerate is So, the reference area of one corresponding particle is Savo, and no = So / S
The agglomeration state of particles and the mixing state of foreign matter are determined by determining the number by avo. All the captured images are displayed on the video monitor 7.

【0021】このように、本実施例では、光学顕微鏡4
の焦点合わせが、撮像画面内の最大濃度と最小濃度との
最大濃度差に基づき、Z軸モータ12による上下移動部
材11の移動調整のみで行なわれるので、光学顕微鏡4
の焦点調整は光学変位センサなどの外部検知手段を利用
することなく、容易に実施される。よって、簡単な装置
構成で、サンプルWの粒子径に応じた欠陥検出を行なう
ことができる。
As described above, in this embodiment, the optical microscope 4 is used.
Is focused on by the movement adjustment of the up-and-down moving member 11 by the Z-axis motor 12 based on the maximum density difference between the maximum density and the minimum density in the imaging screen.
The focus adjustment is easily performed without using an external detection means such as an optical displacement sensor. Therefore, it is possible to detect defects according to the particle diameter of the sample W with a simple device configuration.

【0022】以上、本発明者によってなされた発明を、
実施例に基づき具体的に説明したが、本発明は、前記実
施例に限定されるものではなく、その要旨を逸脱しない
範囲で、種々変更可能であることは、言うまでもない。
すなわち、図4に示すように、前述した撮像式検査装置
に、ロボット20および複数のサンプルWを保管したサ
ンプルケース21を配設し、ロボット20によりサンプ
ルケース21から未検査のサンプルWを取り出し、これ
をXYステージ2上に載せたり、サンプルWの検査終了
後には、検査済のサンプルWをXYステージ2より取り
出し、サンプルケース21に戻すようにしてもよい。こ
れによれば、複数個のサンプルWをサンプルケース21
にセットするだけで、複数個のサンプルWの検査を連続
して行なうことができる。
As described above, the invention made by the present inventor is:
Although the present invention has been specifically described based on the embodiments, it goes without saying that the present invention is not limited to the embodiments and various modifications can be made without departing from the scope of the invention.
That is, as shown in FIG. 4, a robot 20 and a sample case 21 storing a plurality of samples W are arranged in the above-described imaging type inspection apparatus, and the robot 20 takes out an uninspected sample W from the sample case 21, This may be placed on the XY stage 2, or after the inspection of the sample W is completed, the inspected sample W may be taken out from the XY stage 2 and returned to the sample case 21. According to this, a plurality of samples W are provided in the sample case 21.
It is possible to continuously inspect a plurality of samples W simply by setting

【0023】[0023]

【発明の効果】本願によって開示される発明のうち、代
表的なものによって得られる効果を簡単に説明すれば、
以下のとおりである。本発明によれば、被検査体に光を
透過させる光源と、撮像手段の撮像範囲内の最大濃度と
最小濃度との濃度差が最大となるように撮像手段の焦点
位置を調節する焦点位置調節手段と、被検査体の撮像情
報に基づいて欠陥を判断する欠陥判断手段と、被検査体
の供給および排出を行なうロボットとを具備したので、
被検査体の粒径に応じた光学倍率での焦点合わせが、他
の手段を講じることなく、簡単な装置で容易に行なえる
と共に、ロボットにより被検査体の供給および排出が自
動化される。従って、微小な被検査体の検査が高精度か
つ作業性よく低コストででき、作業者の技量差による検
査精度のばらつきが軽減され、定量的な検査を行なうこ
とができる。
Advantageous effects obtained by typical ones of the inventions disclosed by the present application will be briefly described as follows.
It is as follows. According to the present invention, the focus position adjustment for adjusting the focus position of the image pickup means such that the density difference between the light source for transmitting light to the object to be inspected and the maximum density and the minimum density in the image pickup range of the image pickup means becomes maximum. Means, defect determining means for determining a defect based on imaging information of the inspection object, and a robot for supplying and discharging the inspection object,
Focusing at an optical magnification according to the particle size of the object to be inspected can be easily performed by a simple device without taking any other means, and the robot automatically supplies and discharges the object to be inspected. Therefore, a minute inspection object can be inspected with high accuracy and workability at low cost, variation in inspection accuracy due to difference in skill of workers can be reduced, and quantitative inspection can be performed.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例である撮像式検査装置の斜視
図である。
FIG. 1 is a perspective view of an imaging type inspection apparatus which is an embodiment of the present invention.

【図2】本発明の一実施例である撮像式検査装置の焦点
ずれ量と撮像画面内濃度差との特性図である。
FIG. 2 is a characteristic diagram of a defocus amount and an image pickup screen density difference of the image pickup inspection apparatus according to the embodiment of the present invention.

【図3】本発明の一実施例における液晶スペーサの透過
光による観察図である。
FIG. 3 is an observation diagram of light transmitted through a liquid crystal spacer according to an embodiment of the present invention.

【図4】本発明の他の実施例である撮像式検査装置の斜
視図である。
FIG. 4 is a perspective view of an imaging type inspection apparatus which is another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 基台 2 XYステージ 3 架台 4 光学顕微鏡 5 CCDカメラ 6 画像処理装置 7 ビデオモニタ 8 X軸モータ 9 Y軸モータ 10 リニアガイド 11 上下移動部材 12 Z軸モータ 13 送りねじ 14 対物レンズ 15 レボルバ 16 光学倍率可変モータ 17 面光源 18 駆動回路 19 制御装置 20 ロボット 21 サンプルケース W サンプル 1 base 2 XY stage 3 mount 4 optical microscope 5 CCD camera 6 image processing device 7 video monitor 8 X-axis motor 9 Y-axis motor 10 linear guide 11 vertical moving member 12 Z-axis motor 13 feed screw 14 objective lens 15 revolver 16 optics Variable magnification motor 17 Surface light source 18 Drive circuit 19 Controller 20 Robot 21 Sample case W sample

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 被検査体を光学的に拡大して撮像する撮
像手段と、前記撮像手段の光学的倍率を変更する光学倍
率可変手段と、前記被検査体を前記撮像手段に対して走
査移動させる走査移動手段と、前記撮像手段の撮像範囲
内の最大濃度と最小濃度との濃度差が最大となるように
前記撮像手段の焦点位置を調節する焦点位置調節手段
と、前記被検査体に光を透過させる光源と、前記光源か
ら前記被検査体に照射する光量を変化させる手段と、前
記撮像手段が撮像した前記被検査体の撮像情報に基づい
て欠陥を判断する欠陥判断手段とを具備したことを特徴
とする撮像式検査装置。
1. An imaging means for optically enlarging and imaging an inspected object, an optical magnification varying means for changing an optical magnification of the imaging means, and a scanning movement of the inspected object with respect to the imaging means. Scanning movement means, a focus position adjusting means for adjusting a focus position of the image pickup means so that a density difference between a maximum density and a minimum density within an image pickup range of the image pickup means becomes maximum, and light for the object to be inspected. A light source for transmitting light, a means for changing the amount of light emitted from the light source to the inspected object, and a defect determining means for determining a defect based on the imaging information of the inspected object captured by the imaging means. An imaging type inspection device characterized by the above.
【請求項2】 前記被検査体を前記撮像手段の撮像位置
に供給し、かつ前記被検査体を前記撮像位置より排出す
るロボットを備えたことを特徴とする請求項1記載の撮
像式検査装置。
2. The imaging type inspection apparatus according to claim 1, further comprising a robot that supplies the object to be inspected to an image pickup position of the image pickup means and discharges the object to be inspected from the image pickup position. .
JP1395396A 1996-01-30 1996-01-30 Image pick-up inspection system Pending JPH09210660A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1395396A JPH09210660A (en) 1996-01-30 1996-01-30 Image pick-up inspection system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1395396A JPH09210660A (en) 1996-01-30 1996-01-30 Image pick-up inspection system

Publications (1)

Publication Number Publication Date
JPH09210660A true JPH09210660A (en) 1997-08-12

Family

ID=11847583

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1395396A Pending JPH09210660A (en) 1996-01-30 1996-01-30 Image pick-up inspection system

Country Status (1)

Country Link
JP (1) JPH09210660A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004059244A1 (en) * 2002-12-25 2004-07-15 Japan Science And Technology Agency High-powered microscope observation device
JP2010133848A (en) * 2008-12-05 2010-06-17 Kuroda Precision Ind Ltd Surface shape measuring device
CN108594483A (en) * 2018-04-04 2018-09-28 Oppo广东移动通信有限公司 The test method of display screen test fixture and display screen
CN110594546A (en) * 2019-11-14 2019-12-20 武汉精立电子技术有限公司 Camera mounting device, camera adjusting mechanism and detection equipment
CN110986786A (en) * 2019-12-31 2020-04-10 宾努克斯科技(佛山)有限公司 Cross-scale measurement analyzer
IT201900005538A1 (en) * 2019-04-10 2020-10-10 Doss Visual Solution S R L VISION GROUP FOR AN OPTICAL INSPECTION MACHINE FOR THE QUALITY CONTROL OF PARTS

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004059244A1 (en) * 2002-12-25 2004-07-15 Japan Science And Technology Agency High-powered microscope observation device
JP2010133848A (en) * 2008-12-05 2010-06-17 Kuroda Precision Ind Ltd Surface shape measuring device
CN108594483A (en) * 2018-04-04 2018-09-28 Oppo广东移动通信有限公司 The test method of display screen test fixture and display screen
IT201900005538A1 (en) * 2019-04-10 2020-10-10 Doss Visual Solution S R L VISION GROUP FOR AN OPTICAL INSPECTION MACHINE FOR THE QUALITY CONTROL OF PARTS
WO2020208514A1 (en) * 2019-04-10 2020-10-15 Doss Visual Solution S.R.L. Vision group for an optical inspection machine for the quality control of parts
CN110594546A (en) * 2019-11-14 2019-12-20 武汉精立电子技术有限公司 Camera mounting device, camera adjusting mechanism and detection equipment
CN110594546B (en) * 2019-11-14 2022-03-04 武汉精立电子技术有限公司 Camera adjustment mechanism and detection equipment
CN110986786A (en) * 2019-12-31 2020-04-10 宾努克斯科技(佛山)有限公司 Cross-scale measurement analyzer

Similar Documents

Publication Publication Date Title
JP4610798B2 (en) Scanning electron microscope with laser defect detection function and its autofocus method
KR960006968B1 (en) Semiconductor inspection apparatus and the method
TWI797296B (en) System and method for inspecting optical power and thickness of ophthalmic lenses immersed in a solution
JP2001519890A (en) Techniques for detecting three-dimensional defect locations in transparent structures
KR20010050444A (en) Focal point control mechanism and method and apparatus and method for inspecting semiconductor wafer
JP4567594B2 (en) Microscope, sample observation method, and semiconductor inspection method
JPH05160232A (en) Bonding wire inspecting apparatus
JPH05160233A (en) Inspecting method for bonding wire
JP2969402B2 (en) Bonding wire inspection device
JP2021503079A (en) Methods and equipment for detecting surface defects on glass sheets
KR20090107314A (en) Apparatus for inspecting surface and method for inspecting surface
JP2002168793A (en) Surface defect inspection device and surface defect inspection method
JPH09210660A (en) Image pick-up inspection system
JPH1062354A (en) Device and method of inspecting transparent plate for defect
WO2024051008A1 (en) System and method for ultrafast and large-size scanning
JP4523310B2 (en) Foreign matter identification method and foreign matter identification device
US6930769B1 (en) Optical sensor module tester
JPH07280537A (en) Imaging type inspection method and apparatus
US20210263262A1 (en) Observation device
JPH07104287B2 (en) Inspection method for minute defects of transparent object with curved surface
JP3231582B2 (en) Optical member inspection device
JP2002340738A (en) Optical member inspecting apparatus
JPH07270335A (en) Method and device for imaging inspection
US20240045189A1 (en) Apparatus and method of focusing a laser-scanning cytometer using the reflection of the laser
JP2003344298A (en) Imaging means and flaw inspection device for work using it