JPH07270335A - Method and device for imaging inspection - Google Patents

Method and device for imaging inspection

Info

Publication number
JPH07270335A
JPH07270335A JP5873094A JP5873094A JPH07270335A JP H07270335 A JPH07270335 A JP H07270335A JP 5873094 A JP5873094 A JP 5873094A JP 5873094 A JP5873094 A JP 5873094A JP H07270335 A JPH07270335 A JP H07270335A
Authority
JP
Japan
Prior art keywords
image pickup
imaging
defect
information
magnification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5873094A
Other languages
Japanese (ja)
Inventor
Yoichi Sato
洋一 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP5873094A priority Critical patent/JPH07270335A/en
Publication of JPH07270335A publication Critical patent/JPH07270335A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To precisely judge a defect by a method wherein a position defined by position information of a candidate section having a defect stored in a memory is imaged with a high magnification as an imaging-attention position. CONSTITUTION:An imaging information taken by the imaging with a low magnification by a CCD camera 15 is inputted to an image processing device 17, then the presence or absence of a condensation candidate section of a spacer S is discriminated by a defective candidate discrimination section 19. Next, gravity coordinates of the condensation candidate section are calculated to be stored in a memory means 21. An imaging position control section 27 of a host computer 25 controls the action of an XY stage 1 so that a position defined by the position information from the memory means 21 is set to a central imaging position of the camera 15 as an imaging attention position. Thereby, the stage 1 is driven so that the condensation candidate section of a glass plate G is sequentially imaged with a high magnification by the camera 15. The information obtained by the imaging with the high magnification by the camera 15 is inputted to the device 17, then a defect-judgment section 23 counts the number of spacers. The defect is judged by checking whether the number exceeds a condensation-allowance number.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、撮像式検査方法および
装置に関し、特に検査領域の広さに対して検出すべき欠
陥が微小な場合の撮像式検査方法および装置に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an imaging type inspection method and apparatus, and more particularly to an imaging type inspection method and apparatus when a defect to be detected is small with respect to the size of an inspection area.

【0002】[0002]

【従来の技術】液晶表示素子においては、液晶を封入す
るガラス板間のギャップを均一に保つ目的で、均一な大
きさ(粒径)を有するプラスチックスあるいはガラス製
の球状粒子をスペーサとして用いることが行われてお
り、この場合、球状粒子によるスペーサがガラス板上に
均一に分散していることが要求され、スペーサがガラス
板上に凝集していると、その部分が黒点に観察され、液
晶表示素子そのものが欠陥品になる。
2. Description of the Related Art In a liquid crystal display device, plastic or glass spherical particles having a uniform size (particle size) are used as spacers for the purpose of maintaining a uniform gap between glass plates enclosing liquid crystals. In this case, it is required that the spacers composed of spherical particles are evenly dispersed on the glass plate, and if the spacers are aggregated on the glass plate, that part is observed as a black dot and the liquid crystal The display element itself becomes a defective product.

【0003】このことに鑑み、液晶表示素子の生産にお
いては、スペーサをガラス板上に分散させた後に、ガラ
ス板上におけるスペーサの凝集具合を検査することが行
われている。スペーサの粒径は数ミクロンであるのに対
し、液晶表示素子のガラス板の大きさ、即ち検査領域の
広さは大きく、このことは近年の液晶パネルの大型化に
より一層顕著となっている。
In view of this, in the production of a liquid crystal display element, after the spacers are dispersed on the glass plate, the aggregation state of the spacers on the glass plate is inspected. While the particle diameter of the spacer is several microns, the size of the glass plate of the liquid crystal display element, that is, the size of the inspection area is large, which is more remarkable as the size of the liquid crystal panel has increased in recent years.

【0004】このように検査領域の広さに対して検出す
べき欠陥が微小な場合に、効率よく正確な検査が行われ
るようにする撮像式検査方法として、特開平3−187
08号公報に示されているように、被検査体の比較的大
きな面積を有する検査領域全体に亙ってレーザビームを
走査して欠陥位置を検出し、このレーザビーム走査によ
り検出された欠陥位置についてオペレータの指示により
光学顕微鏡とビデオカメラを使用した光学検査手段によ
って精密検査する方法がある。
As an imaging type inspection method that enables an efficient and accurate inspection when a defect to be detected is small with respect to the size of the inspection area, as described in JP-A-3-187.
As disclosed in Japanese Patent Laid-Open No. 08-2008, a defect position is detected by scanning a laser beam over the entire inspection area having a relatively large area of the inspection object, and the defect position detected by this laser beam scanning is detected. There is a method of performing a precise inspection by an optical inspection means using an optical microscope and a video camera according to an operator's instruction.

【0005】[0005]

【発明が解決しようとする課題】上述の撮像式検査方法
は、所期の目的を達成するが、しかし、レーザビーム走
査による検査手段と、光学顕微鏡とビデオカメラを使用
した検査手段の2種類の検査手段が必要であり、またレ
ーザビーム走査による検査手段においてはレーザビーム
を走査するために複雑な走査光学系が必要であり、しか
も制御要素が多く、制御系も複雑になる。これらのこと
から、この撮像式検査方法による検査装置は、大掛かり
で、高価なものになる。
The above-mentioned imaging type inspection method achieves the intended purpose, but there are two types of inspection means, that is, inspection means by laser beam scanning and inspection means using an optical microscope and a video camera. The inspection means is required, and the inspection means by laser beam scanning requires a complicated scanning optical system for scanning the laser beam, and more control elements are required, and the control system becomes complicated. For these reasons, the inspection apparatus based on this imaging type inspection method is large-scale and expensive.

【0006】本発明は、上述の如き問題点に着目してな
されたものであり、検査領域の広さに対して検出すべき
欠陥が微小な場合の検査を、複数種類の検査手段を必要
とすることなく、簡単な構成により、高速かつ確実に、
しかも多くのマニュアル操作を要することなく行われる
ようにする撮像式検査方法および装置を提供することを
目的としている。
The present invention has been made by paying attention to the above-mentioned problems, and requires a plurality of types of inspection means for the inspection when the defects to be detected are small with respect to the size of the inspection area. Fast and reliably with a simple configuration without
Moreover, it is an object of the present invention to provide an imaging type inspection method and apparatus that can be performed without requiring many manual operations.

【0007】[0007]

【課題を解決するための手段】上述の如き目的は、本発
明によれば、被検査体の撮像情報より欠陥を検出する撮
像式検査方法において、被検査体の検査領域全域に亙っ
て低倍率にて撮像手段により走査撮像し、当該走査撮像
による撮像情報より欠陥候補部を識別し、当該欠陥候補
部の位置情報を記憶手段に記憶し、前記記憶手段に記憶
されている欠陥候補部の位置情報により定義される位置
を注目撮像位置として高倍率にて撮像手段により撮像
し、この高倍率撮像による撮像情報より欠陥の判断を行
うことを特徴とする撮像式検査方法によって達成され
る。
According to the present invention, an object as described above is reduced in the entire inspection area of the object to be inspected in the image inspection method for detecting a defect from image information of the object to be inspected. The imaging means scans and images at a magnification, the defect candidate portion is identified from the imaging information by the scanning imaging, the position information of the defect candidate portion is stored in the storage portion, and the defect candidate portion stored in the storage portion is stored. This is achieved by an imaging type inspection method characterized in that a position defined by the position information is taken as a target imaging position at a high magnification by an imaging means, and a defect is judged from the imaging information obtained by the high magnification imaging.

【0008】上述の如き目的を達成するため、本発明に
よる撮像式検査装置は、被検査体の撮像情報より欠陥を
検出する撮像式検査装置において、被検査体を撮像する
光学的倍率可変の撮像手段と、被検査体と前記撮像手段
とを相対的に走査移動させる走査移動手段と、前記走査
移動手段により被検査体と前記撮像手段とを相対的に走
査移動させて前記撮像手段により低倍率にて撮像した被
検査体の撮像情報より欠陥候補部を識別する欠陥候補部
識別部と、前記欠陥候補部識別部により識別された欠陥
候補部の位置情報を記憶する記憶手段と、前記撮像手段
の光学的倍率を高倍率に設定し前記記憶手段に記憶され
ている欠陥候補部の位置情報により定義される位置を前
記撮像手段による撮像位置にすべく前記走査移動手段の
動作を制御する撮像位置制御手段と、前記撮像手段によ
り高倍率にて撮像した被検査体の撮像情報より欠陥の判
断を行う欠陥判断手段とを有していることを特徴として
いる。
In order to achieve the above-mentioned object, an image pickup type inspection apparatus according to the present invention is an image pickup type inspection apparatus which detects a defect from image pickup information of an object to be inspected, and an image of which optical magnification is variable to image the object to be inspected. Means, scanning moving means for relatively scanning and moving the object to be inspected and the image pickup means, and relatively moving the object to be inspected and the image pickup means by the scanning and moving means to obtain a low magnification by the image pickup means. A defect candidate part identifying part for identifying a defect candidate part from the imaged information of the inspected object, storage means for storing position information of the defect candidate part identified by the defect candidate part identifying part, and the imaging part. Is set to a high magnification to control the operation of the scanning moving means so that the position defined by the position information of the defect candidate portion stored in the storage means is set to the image pickup position by the image pickup means. And position control means is characterized by having a defect determination unit for performing a defect determination from the imaging information of the object to be inspected picked up at a high magnification by the imaging means.

【0009】[0009]

【作 用】上述の如き構成によれば、先ず低倍率による
被検査体の検査領域全域についての走査撮像による撮像
情報により欠陥候補部を識別し、この欠陥候補部の位置
情報を記憶手段に記憶することが行われる。そして記憶
手段に記憶されている欠陥候補部の位置情報により定義
される位置を注目撮像位置として高倍率にて撮像するこ
とが行われ、この高倍率撮像による撮像情報より欠陥の
判断が精密に行われる。
[Operation] According to the above-mentioned configuration, first, the defect candidate portion is identified by the imaging information obtained by scanning and imaging the entire inspection region of the inspection object at a low magnification, and the position information of this defect candidate portion is stored in the storage means. Is done. Then, the position defined by the position information of the defect candidate portion stored in the storage means is taken as a target image pickup position at a high magnification, and the defect is precisely determined based on the image pickup information obtained by the high magnification image pickup. Be seen.

【0010】[0010]

【実施例】以下に本発明の実施例を図面を用いて詳細に
説明する。図1は本発明による撮像式検査装置の一実施
例を示している。図1において、符号1はXYステージ
を示している。XYステージ1は、中央が開口してお
り、被検査体、例えば液晶表示素子用のガラス板Gをス
テージ上に載置され、走査移動手段として、ガラス板G
をXY方向へ変位させる。なお、符号Sは球状粒子によ
るスペーサを模式的に示している。
Embodiments of the present invention will be described in detail below with reference to the drawings. FIG. 1 shows an embodiment of an image pickup type inspection apparatus according to the present invention. In FIG. 1, reference numeral 1 indicates an XY stage. The XY stage 1 has an opening at the center, and an object to be inspected, for example, a glass plate G for a liquid crystal display device is placed on the stage, and the glass plate G is used as a scanning moving means.
Is displaced in the XY directions. The symbol S schematically shows a spacer made of spherical particles.

【0011】XYステージ1の下方には被検査体照明用
の照明装置3が配置されている。XYステージ1の上方
には光学顕微鏡5が配置されている。光学顕微鏡5は、
電動レボルバ7に3個の対物レンズ9、11、13をマ
ウントされ、接眼側にCCDカメラ15を接続されてい
る。CCDカメラ15は電動レボルバ7による対物レン
ズ9、11、13の択一的使用により低、中、高の三つ
の光学的倍率によってXYステージ1上のガラス板Gの
撮像を行う。このCCDカメラ15による撮像は照明装
置3よりガラス板Gを通過した透過光による可視像の撮
像である。
Below the XY stage 1, an illumination device 3 for illuminating an object to be inspected is arranged. An optical microscope 5 is arranged above the XY stage 1. The optical microscope 5
Three objective lenses 9, 11, and 13 are mounted on the electric revolver 7, and a CCD camera 15 is connected to the eyepiece side. The CCD camera 15 picks up an image of the glass plate G on the XY stage 1 with three optical magnifications of low, medium, and high by selectively using the objective lenses 9, 11, and 13 by the electric revolver 7. The image pickup by the CCD camera 15 is a visible image picked up by the transmitted light that has passed through the glass plate G from the illumination device 3.

【0012】CCDカメラ15には画像処理装置17が
接続されている。画像処理装置17は、CCDカメラ1
5が出力する画像信号(撮像情報)を入力し、画像信号
の前処理と解析を行うものであり、低倍率にてCCDカ
メラ15により撮像したガラス板Gの撮像情報より欠陥
候補部を、この場合、スペーサSの凝集部の有無を識別
する欠陥候補部識別部19と、欠陥候補部識別部19に
より識別された欠陥候補部の位置情報を記憶する記憶手
段21と、高倍率にてCCDカメラ15により撮像した
ガラス板Gの撮像情報より欠陥の判断を行う欠陥判断部
23とを含んでいる。
An image processing device 17 is connected to the CCD camera 15. The image processing device 17 is a CCD camera 1.
The image signal (imaging information) output by 5 is input to perform preprocessing and analysis of the image signal, and the defect candidate portion is identified from the imaging information of the glass plate G captured by the CCD camera 15 at a low magnification. In this case, the defect candidate portion identifying portion 19 for identifying the presence or absence of the agglomerated portion of the spacer S, the storage means 21 for storing the position information of the defect candidate portion identified by the defect candidate portion identifying portion 19, and the CCD camera at high magnification. It also includes a defect determining unit 23 that determines a defect based on the imaged information of the glass plate G imaged by 15.

【0013】画像処理装置17はホストコンピュータ2
5と双方向にデータ通信可能に接続されている。ホスト
コンピュータ25は、画像処理装置17の管理と、XY
ステージ1、照明装置3、電動レボルバ7の動作を制御
するものであり、電動レボルバ7によって光学顕微鏡5
の光学的倍率を高倍率に設定し、記憶手段21に記憶さ
れている欠陥候補部の位置情報により定義される位置を
CCDカメラ15による撮像位置にすべくXYステージ
1の動作を制御する撮像位置制御部27を含んでいる。
The image processing device 17 is a host computer 2.
5 is bidirectionally connected for data communication. The host computer 25 manages the image processing device 17 and manages the XY
The operation of the stage 1, the illumination device 3, and the electric revolver 7 is controlled, and the optical microscope 5 is controlled by the electric revolver 7.
The optical position of the XY stage 1 is set to a high value, and the operation of the XY stage 1 is controlled so that the position defined by the position information of the defect candidate portion stored in the storage unit 21 becomes the image capturing position of the CCD camera 15. The control unit 27 is included.

【0014】図2は、スペーサSを分散されたガラス板
Gを上方より観察したモデル図である。図2において、
符号Aは低倍率撮像時の視野枠を、符号Bは高倍率撮像
時の視野枠を各々示している。次に上述の如き構成によ
りなる撮像式検査装置によるスペーサ分散検査の手順に
ついて説明する。
FIG. 2 is a model diagram in which the glass plate G in which the spacers S are dispersed is observed from above. In FIG.
Reference A indicates a field frame during low-magnification imaging, and reference B indicates a field frame during high-magnification imaging. Next, the procedure of the spacer dispersion inspection by the imaging type inspection device having the above-mentioned configuration will be described.

【0015】先ず、ホストコンピュータ25による動作
指令により電動レボルバ7を駆動して光学顕微鏡5の光
学的倍率を低倍率に設定し、ホストコンピュータ25に
よる動作指令によりXYステージ1を間欠駆動してガラ
ス板Gを光学顕微鏡5に対して走査移動させ、視野枠A
毎にCCDカメラ15によりガラス板Gを撮像する。こ
の低倍率撮像は、視野枠A毎にガラス板Gの全面、即ち
検査領域全域に亙って行われる。
First, the electric revolver 7 is driven by the operation command from the host computer 25 to set the optical magnification of the optical microscope 5 to a low magnification, and the XY stage 1 is intermittently driven by the operation command from the host computer 25 to drive the glass plate. G is moved by scanning with respect to the optical microscope 5, and the field frame A
The glass plate G is imaged by the CCD camera 15 every time. This low-magnification imaging is performed over the entire surface of the glass plate G for each field frame A, that is, the entire inspection region.

【0016】画像処理装置17は、CCDカメラ15よ
り低倍率撮像による撮像情報を入力し、欠陥候補部識別
部19によりスペーサSの凝集候補部(欠陥候補部)の
有無を識別する。このスペーサSの凝集候補部の有無識
別は、スペーサSの凝集許容個数とスペーサSの粒径に
より決まる基準画素数を有する島状のスペーサ画像が存
在するか否かにより行われる。この識別条件は予めホス
トコンピュータ25より画像処理装置17に指示されて
いる。
The image processing device 17 inputs image pickup information obtained by low-magnification image pickup from the CCD camera 15, and the defect candidate portion identifying portion 19 identifies the presence or absence of the aggregation candidate portion (defect candidate portion) of the spacer S. The presence / absence of the aggregation candidate portion of the spacer S is determined by whether or not there is an island-shaped spacer image having a reference pixel number determined by the aggregation allowable number of the spacer S and the particle size of the spacer S. The identification condition is instructed to the image processing device 17 from the host computer 25 in advance.

【0017】図3はスペーサSの凝集許容個数を5個と
した場合のスペーサSの粒径と基準画素数との関係を示
している。また図4は一つの視野枠Aにおける低倍率撮
像画像を例示しており、この撮像画像においては、符号
Eで示されている部分が基準画素数超過によるスペーサ
Sの凝集候補部として識別される。
FIG. 3 shows the relationship between the particle size of the spacer S and the reference number of pixels when the number of spacers S allowed to aggregate is five. FIG. 4 exemplifies a low-magnification imaged image in one visual field frame A. In this imaged image, the portion indicated by the symbol E is identified as an aggregation candidate portion of the spacer S due to the reference pixel number excess. .

【0018】次に凝集候補部Eの重心座標を算出し、こ
れを欠陥候補部の位置情報として記憶手段21に書き込
む。ガラス板Gの全面に亙る低倍率撮像が終了し、凝集
候補部Eが存在しない場合には欠陥部がないとして検査
を終了する。これに対し凝集候補部Eが存在する場合に
は、ホストコンピュータ25による動作指令により電動
レボルバ7を駆動して光学顕微鏡5の光学的倍率を高倍
率に設定し、画像処理装置17の記憶手段21が記憶し
ている各凝集候補部Eの位置情報を順次ホストコンピュ
ータ25へ伝送する。ホストコンピュータ25の撮像位
置制御部27は記憶手段21よりの凝集候補部Eの位置
情報により定義される位置を注目撮像位置としてCCD
カメラ15による撮像中心位置にすべくXYステージ1
の動作を制御する。
Next, the barycentric coordinates of the aggregation candidate portion E are calculated, and this is written in the storage means 21 as the position information of the defect candidate portion. When the low-magnification imaging over the entire surface of the glass plate G is finished and the aggregation candidate portion E does not exist, the inspection is finished because there is no defective portion. On the other hand, when the aggregation candidate portion E exists, the electric revolver 7 is driven by the operation command from the host computer 25 to set the optical magnification of the optical microscope 5 to a high magnification, and the storage unit 21 of the image processing apparatus 17 is set. The position information of each aggregation candidate portion E stored by is sequentially transmitted to the host computer 25. The image pickup position control unit 27 of the host computer 25 uses the position defined by the position information of the aggregation candidate portion E from the storage unit 21 as the image pickup position of interest for the CCD.
The XY stage 1 should be set to the center position of the image pickup by the camera 15.
Control the behavior of.

【0019】これによりXYステージ1が駆動され、ガ
ラス板Gの各凝集候補部Eが順次CCDカメラ15によ
る撮像位置に位置し、各凝集候補部Eが高倍率撮像され
る。図5はこの凝集候補部Eの高倍率撮像例を示してい
る。画像処理装置17は、CCDカメラ15より高倍率
撮像による撮像情報を入力し、画像解析処理により欠陥
判断部23によって凝集候補部Eにおけるスペーサ個数
を各凝集候補部E毎にカウントし、このスペーサ個数が
凝集許容個数を超えているか否かにより、欠陥の判断を
行う。
As a result, the XY stage 1 is driven, each aggregation candidate portion E of the glass plate G is successively positioned at the image pickup position by the CCD camera 15, and each aggregation candidate portion E is imaged at high magnification. FIG. 5 shows an example of high-magnification imaging of this aggregation candidate portion E. The image processing device 17 inputs the imaging information by high-magnification imaging from the CCD camera 15, and the defect determination unit 23 counts the number of spacers in the aggregation candidate portion E by the image analysis processing for each aggregation candidate portion E. The defect is judged by whether or not the number exceeds the allowable aggregation number.

【0020】上述の高倍率撮像、スペーサ個数のカウン
トは記憶手段21が記憶している位置情報により決まる
凝集候補部Eの全てについて行われ、その凝集候補部E
の全てについて欠陥判断が行われ、その結果が出力され
ることにより検査は終了する。なお、上述の実施例で
は、低倍率撮像は光学顕微鏡5が有している低倍率の対
物レンズ9を使用し、高倍率撮像は高倍率の対物レンズ
13を使用するが、これ以外に、低倍率撮像は低倍率の
対物レンズ9を使用し、高倍率撮像は中倍率の対物レン
ズ11を使用しても、また低倍率撮像は中低倍率の対物
レンズ11を使用し、高倍率撮像は高倍率の対物レンズ
13を使用してもよく、これらのことは、検査全面積と
検出すべき欠陥の大きさとの関係により適宜に設定され
ればよい。
The above-mentioned high-magnification imaging and counting of the number of spacers are performed for all the aggregation candidate portions E determined by the position information stored in the storage means 21, and the aggregation candidate portions E are obtained.
The defect determination is performed for all of the above, and the inspection is completed by outputting the result. In the above-described embodiment, the low-magnification image pickup uses the low-magnification objective lens 9 of the optical microscope 5, and the high-magnification image pickup uses the high-magnification objective lens 13. The low-magnification objective lens 9 is used for high-magnification imaging, the medium-magnification objective lens 11 is used for high-magnification imaging, and the low-magnification objective lens 11 is used for low-magnification imaging. A magnifying objective lens 13 may be used, and these may be appropriately set depending on the relationship between the entire inspection area and the size of the defect to be detected.

【0021】[0021]

【発明の効果】以上の説明から理解される如く、本発明
による撮像式検査方法および装置によれば、先ず低倍率
による被検査体の検査領域全域についての走査撮像によ
る撮像情報により欠陥候補部を識別し、この欠陥候補部
の位置情報を記憶手段に記憶し、そして記憶手段に記憶
されている欠陥候補部の位置情報により定義される位置
を注目撮像位置として高倍率にて撮像することが行わ
れ、この高倍率撮像による撮像情報より欠陥の判断が精
密に行われるから、全体検査は低倍率撮像によるものだ
けになり、検査領域の広さに対して検出すべき欠陥が微
小な場合の検査が、複数種類の検査手段を必要とするこ
となく、簡単な構成により、高速かつ確実に、しかも多
くのマニュアル操作を要することなく行われるようにな
る。
As can be understood from the above description, according to the imaging type inspection method and apparatus according to the present invention, first, the defect candidate portion is detected by the imaging information by the scanning imaging of the entire inspection region of the inspection object at a low magnification. The position information of the defect candidate portion is identified and stored in the storage unit, and the position defined by the position information of the defect candidate unit stored in the storage unit is used as a target image capturing position to perform high-magnification imaging. Since the defect is precisely judged based on the image information obtained by the high-magnification image pickup, the whole inspection is performed only by the low-magnification image pickup, and the inspection is performed when the defect to be detected is small with respect to the size of the inspection area. However, it does not require a plurality of types of inspection means, and has a simple structure, and can be performed at high speed, reliably, and without requiring many manual operations.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による撮像式検査装置の一実施例を示す
構成図。
FIG. 1 is a configuration diagram showing an embodiment of an imaging type inspection apparatus according to the present invention.

【図2】スペーサを分散されたガラス板を上方より観察
したモデル図。
FIG. 2 is a model diagram in which a glass plate in which spacers are dispersed is observed from above.

【図3】スペーサの粒径と基準画素数との関係を示すグ
ラフ。
FIG. 3 is a graph showing the relationship between the particle size of spacers and the number of reference pixels.

【図4】一つの視野枠における低倍率撮像画像を例示す
る説明図。
FIG. 4 is an explanatory diagram illustrating a low-magnification captured image in one field frame.

【図5】凝集候補部の高倍率撮像例を例示する説明図。FIG. 5 is an explanatory diagram illustrating an example of high-magnification imaging of an aggregation candidate portion.

【符号の説明】[Explanation of symbols]

1 XYステージ 5 光学顕微鏡 15 CCDカメラ 17 画像処理装置 19 欠陥候補部識別部 21 記憶手段 23 欠陥判断部 25 ホストコンピュータ 27 撮像位置制御部 G ガラス板 S スペーサ 1 XY Stage 5 Optical Microscope 15 CCD Camera 17 Image Processing Device 19 Defect Candidate Part Identification Unit 21 Storage Means 23 Defect Judgment Unit 25 Host Computer 27 Imaging Position Control Unit G Glass Plate S Spacer

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 被検査体の撮像情報より欠陥を検出する
撮像式検査方法において、 被検査体の検査領域全域に亙って低倍率にて撮像手段に
より走査撮像し、当該走査撮像による撮像情報より欠陥
候補部を識別し、当該欠陥候補部の位置情報を記憶手段
に記憶し、前記記憶手段に記憶されている欠陥候補部の
位置情報により定義される位置を注目撮像位置として高
倍率にて撮像手段により撮像し、この高倍率撮像による
撮像情報より欠陥の判断を行うことを特徴とする撮像式
検査方法。
1. An image pickup type inspection method for detecting a defect from image pickup information of an object to be inspected, wherein image pickup information is scanned by an image pickup device at a low magnification over the entire inspection region of the object to be inspected, and image pickup information by the scanning image pickup. The defect candidate portion is further identified, the position information of the defect candidate portion is stored in the storage unit, and the position defined by the position information of the defect candidate portion stored in the storage unit is set as the target imaging position at high magnification. An image-capturing type inspection method, wherein an image is captured by an image-capturing means, and a defect is determined based on image-capturing information obtained by the high-magnification imaging.
【請求項2】 被検査体の撮像情報より欠陥を検出する
撮像式検査装置において、 被検査体を撮像する光学的倍率可変の撮像手段と、 被検査体と前記撮像手段とを相対的に走査移動させる走
査移動手段と、 前記走査移動手段により被検査体と前記撮像手段とを相
対的に走査移動させて前記撮像手段により低倍率にて撮
像した被検査体の撮像情報より欠陥候補部を識別する欠
陥候補部識別部と、 前記欠陥候補部識別部により識別された欠陥候補部の位
置情報を記憶する記憶手段と、 前記撮像手段の光学的倍率を高倍率に設定し前記記憶手
段に記憶されている欠陥候補部の位置情報により定義さ
れる位置を前記撮像手段による撮像位置にすべく前記走
査移動手段の動作を制御する撮像位置制御手段と、 前記撮像手段により高倍率にて撮像した被検査体の撮像
情報より欠陥の判断を行う欠陥判断手段と、を有してい
ることを特徴とする撮像式検査装置。
2. An image pickup type inspection apparatus for detecting a defect from image pickup information of an object to be inspected, wherein an image pickup means for changing an optical magnification for picking up an image of the piece to be inspected, and an object to be inspected and the image pickup means are relatively scanned The scanning moving means for moving and the scanning moving means relatively scan-moves the inspected object and the imaging means, and the defect candidate part is identified from the imaging information of the inspected object imaged at a low magnification by the imaging means. A defect candidate portion identifying unit, a storage unit that stores position information of the defect candidate unit identified by the defect candidate unit identifying unit, and an optical magnification of the imaging unit is set to a high magnification and stored in the storage unit. Image pickup position control means for controlling the operation of the scanning movement means so as to set the position defined by the position information of the defect candidate portion to the image pickup position by the image pickup means, and the object picked up at a high magnification by the image pickup means. An image pickup type inspection apparatus, comprising: a defect determination unit that determines a defect based on image pickup information of an inspection object.
JP5873094A 1994-03-29 1994-03-29 Method and device for imaging inspection Pending JPH07270335A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5873094A JPH07270335A (en) 1994-03-29 1994-03-29 Method and device for imaging inspection

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5873094A JPH07270335A (en) 1994-03-29 1994-03-29 Method and device for imaging inspection

Publications (1)

Publication Number Publication Date
JPH07270335A true JPH07270335A (en) 1995-10-20

Family

ID=13092628

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5873094A Pending JPH07270335A (en) 1994-03-29 1994-03-29 Method and device for imaging inspection

Country Status (1)

Country Link
JP (1) JPH07270335A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999017354A1 (en) * 1997-09-30 1999-04-08 Siemens Aktiengesellschaft A system for identifying defective electronic devices
US6407404B1 (en) 1999-03-15 2002-06-18 Denso Corporation Apparatus for the examining defect of monolithic substrate and method for examining the same
JP2007024565A (en) * 2005-07-13 2007-02-01 Hitachi Kokusai Electric Inc Appearance inspection method and device
JP2007537445A (en) * 2004-05-14 2007-12-20 フォトン・ダイナミクス・インコーポレーテッド Improved inspection of TFT LCD panels using an on-demand automatic optical inspection subsystem
JP2008224303A (en) * 2007-03-09 2008-09-25 Toray Eng Co Ltd Automatic visual examination device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999017354A1 (en) * 1997-09-30 1999-04-08 Siemens Aktiengesellschaft A system for identifying defective electronic devices
US6407404B1 (en) 1999-03-15 2002-06-18 Denso Corporation Apparatus for the examining defect of monolithic substrate and method for examining the same
JP2007537445A (en) * 2004-05-14 2007-12-20 フォトン・ダイナミクス・インコーポレーテッド Improved inspection of TFT LCD panels using an on-demand automatic optical inspection subsystem
JP2007024565A (en) * 2005-07-13 2007-02-01 Hitachi Kokusai Electric Inc Appearance inspection method and device
JP2008224303A (en) * 2007-03-09 2008-09-25 Toray Eng Co Ltd Automatic visual examination device

Similar Documents

Publication Publication Date Title
US7155049B2 (en) System for creating microscopic digital montage images
KR100805486B1 (en) A system and a method of measuring a display at multi-angles
JP3378795B2 (en) Display device inspection apparatus and inspection method
CN107966836A (en) A kind of TFT-LCD defects optics automatic checkout system
JP2002277412A (en) Inspection screen displaying method and substrate inspection system
JPH07270335A (en) Method and device for imaging inspection
JPH08210987A (en) Defect detecting microscopic device
JPH0357241A (en) Automatic external-appearance inspection apparatus
JPH07280537A (en) Imaging type inspection method and apparatus
JP3408879B2 (en) Display defect extraction method for flat panel display and apparatus therefor
JP2007285868A (en) Luminance gradient detection method, flaw detection method, luminance gradient detector and flaw detector
JP3357968B2 (en) Lenticular lens sheet defect inspection method
JP2003177371A (en) Apparatus and method for inspecting liquid crystal display unit
JP3270336B2 (en) Image quality inspection apparatus for liquid crystal display and inspection method therefor
JP3311628B2 (en) Defect location device for thin display devices
JPH09210660A (en) Image pick-up inspection system
JP2004108902A (en) Method and system for classifying defect of color display screen
KR100505219B1 (en) The apparatus of inspection for flat panel display
US9164043B2 (en) Detecting method and detecting device
JP2911619B2 (en) Surface defect inspection method and apparatus for periodic pattern
CN116879319A (en) Spherical vision detection system
JP3397937B2 (en) Optical fiber image processing method
JP2017156517A (en) Defect mode classification system of display device
KR100272240B1 (en) Testing method and pattern testing apparatus of image device with reqular minuteness pattern
JPH10318880A (en) Method and device for inspecting liquid-crystal display device