WO2004059244A1 - High-powered microscope observation device - Google Patents

High-powered microscope observation device Download PDF

Info

Publication number
WO2004059244A1
WO2004059244A1 PCT/JP2003/016203 JP0316203W WO2004059244A1 WO 2004059244 A1 WO2004059244 A1 WO 2004059244A1 JP 0316203 W JP0316203 W JP 0316203W WO 2004059244 A1 WO2004059244 A1 WO 2004059244A1
Authority
WO
WIPO (PCT)
Prior art keywords
microscope
predetermined pattern
magnification
microscopic observation
light
Prior art date
Application number
PCT/JP2003/016203
Other languages
French (fr)
Japanese (ja)
Inventor
Katsumi Yoshino
Jyunya Kobayashi
Original Assignee
Japan Science And Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science And Technology Agency filed Critical Japan Science And Technology Agency
Publication of WO2004059244A1 publication Critical patent/WO2004059244A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/34Microscope slides, e.g. mounting specimens on microscope slides
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/04Measuring microscopes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/36Microscopes arranged for photographic purposes or projection purposes or digital imaging or video purposes including associated control and data processing arrangements
    • G02B21/365Control or image processing arrangements for digital or video microscopes

Definitions

  • the present invention relates to a high-magnification microscopic observation device. More specifically, a high-magnification (400 to 20000 times) digital micro microscope, long-time Timelabs observation microscope, nanomaterial alignment device, UV laser microcutter (cell trimming) Suitable for various fields, such as chromosome force, microscopic laser traversing (capture and movement) equipment, egg cell injection equipment, DNA chip spotting equipment, and others (ink jet EL manufacturing equipment, elibuso, near field) The present invention relates to a high-magnification microscopic observation device that can be used for a microscope. Background art
  • a length measuring device using a magnetic scale, optical scale, laser interference, etc. is attached to the stage to directly grasp the movement amount of the stage and the current position.
  • Position control is almost impossible unless full-closed control, which feeds the signal from the long tool to the motion control unit, is adopted.
  • An object of the present invention is to attach a pattern with high visibility to a slide glass, a stage, or the like of a microscope to use pattern image recognition. That is, the disclosure of the invention aims at realizing a more accurate full-closed control device which does not require a conventional expensive measuring scale at all, and a work manufactured using the same.
  • a predetermined pattern formed on a microscope sample holding member stage a recognition unit for recognizing the predetermined pattern, and a recognition unit for recognizing the predetermined pattern.
  • a high-magnification microscopic observation apparatus comprising: moving means for moving the sample holding material for a microscope to a predetermined position based on position information.
  • FIG. 1 is a configuration diagram of a high magnification microscopic observation apparatus according to the present invention.
  • Fig. 2 (a) is a top view of the positioning XY stage, and (b) is a side view of the positioning XY stage.
  • FIG. 3 is a diagram showing a positioning marker.
  • FIG. 4 is a diagram showing a position detection method.
  • FIG. 5 is a diagram showing a method of scanning the liquid crystal display and specifying a position from FIGS. (A) to (g).
  • FIG. 6 is an enlarged view of the circle in FIG. 5 (f) in FIG. BEST MODE FOR CARRYING OUT THE INVENTION
  • the sample holding material for microscope is, for example, microscope slide glass, on which a predetermined pattern such as a code or a marker is formed.
  • This predetermined pattern is, for example, a mark obtained by irradiating a slide glass with a laser or the like during observation under a microscope, a chromium vapor-deposited film, a screen-printed film, a photosensitive material, or the like marked with a UV or YAG laser.
  • the pattern itself can be formed by a light emitting element.
  • the light-emitting element is a liquid crystal that generates an electro-optical effect when excited electrically, chemically, optically or magnetically, colloid particles used for an electronic vapor, and an electroluminescent element that emits fluorescence.
  • Examples include, but are not limited to, an element that emits phosphorescent light, an element that displays a light spot by a projector element such as a laser spot light shirt array, or the like.
  • the shape of the pattern itself is not particularly limited, but is preferably, for example, a lattice shape, a staggered shape, or the like. Further, by forming a predetermined pattern on a slide glass or the like and placing it on a light emitting element such as a liquid crystal panel, it is possible to use the liquid crystal panel or the like as a light source and the slide glass or the like as an aperture array.
  • liquid crystal display panel of up to 500 urn, preferably 100 to 100 / zm.
  • Replacement paper (Rule 26) 4 can be. If the distance is less than 5 m, the influence of interference of the diffracted light cannot be ignored by the Fraunhofer rule as in the case of the diffraction grating, and this becomes disturbance light, and the precise position cannot be specified. If the width is larger than 0 0 ⁇ m, the linearity characteristic of the moving position versus the output will be distorted. Further, the pitch is 5 to 500 ⁇ , preferably 10 to 10 ⁇ ⁇ . This is for the same reason as the pixel width described above.
  • a pair of transparent substrates are opposed to each other, and liquid crystal is sealed between them.
  • the transparent substrate include, but are not limited to, a glass substrate and a polyacryl substrate.
  • an ITO film is preferably used as the transparent electrode film, but is not limited thereto.
  • the transparent electrode film is formed by vapor deposition using a CVD method or the like.
  • liquid crystals include, for example, birefringent liquid crystal elements, transmission scattering liquid crystal elements, TN (twisted nematic) liquid crystals, STN (super TN) liquid crystals, ferroelectric liquid crystal elements, antiferroelectric liquid crystals, and polymers. It can be composed of any of the dispersion type liquid crystals, but is not limited thereto.
  • the distance (cell gap) between the opposing substrates is 1 to: L00 m, and preferably 1 to 20 m.
  • a known photodetector for example, a high-speed imaging device such as a charge-coupled device (CCD) camera, a discharge device (CID) camera, a video camera, a photomultiplier tube, and a parallel vision chip can be used.
  • a high-speed imaging device such as a charge-coupled device (CCD) camera, a discharge device (CID) camera, a video camera, a photomultiplier tube, and a parallel vision chip
  • the reading is performed by applying a material using an optical read head and a phase change that can be read and written.
  • a method of reading a pit formed thereon may be used.
  • a magnetic head may be used as the detection unit, and a magnetic substance may be applied on the slide glass and the pit may be read.
  • an IC chip such as an IC flash memory may be mounted and formed on glass and read by an electronic reading device.
  • the moving means for example, a combination with other actuators such as a linear motor, a stepping motor, and a piezo ultrasonic motor may be used. 5 You can.
  • the microscopes to which the present invention is applied include all microscopes such as an optical microscope, an AFM.STM microscope, and an electron microscope.
  • a pattern such as a code or a force is engraved on a slide glass or the like of a microscope, and the pattern is detected by pattern matching with a CCD or the like, and is fed back to the actuator for positioning.
  • any point of the slide glass can be specified to improve the workability of sample observation. Since the code of the slide glass is detected at an optical magnification of 10 to 50 times, the position in the slide glass can be specified with a resolution of 100 nano to 1 micron.
  • This code may have a pattern already created on the slide glass as an off-the-shelf product.
  • the printed shape and characters may be displayed on the slide glass. Not only positioning patterns but also past observation data can be stored in memory.
  • a method of performing ink jet printing on slide glass may be used.
  • a predetermined pattern formed on the microscope sample holding material, means for recognizing the predetermined pattern, and a processing apparatus for processing the sample held on the microscope sample holding material are provided.
  • a high-magnification microscopic observation apparatus is provided which includes a moving means for moving the sample holding material for microscope or the processing apparatus to a predetermined position based on the position information recognized by the recognition means. This makes it possible to perform high-speed positioning between the sample processing apparatus and the sample.
  • examples of the processing apparatus for processing a sample include a manipulator, a laser cutter, a laser marker, and the like, but are not limited thereto. Any processing machine represented by microfactory can be used. It is preferable that the processing device is installed at a location for recognizing the above-mentioned predetermined pattern.
  • FIG. 1 shows a configuration of a high-magnification microscopic observation apparatus according to the present invention.
  • Reference numeral 1 denotes a positioning XY stage, which is moved in an XY direction by an actuator such as a piezoelectric motor (not shown). Can be.
  • Slide glass 2 is placed on XY stage 1, 6 Place the sample sample S (see Fig. 2) on the glass slide 2 and cover it with a force glass (not shown).
  • a microscope lens barrel 3 is arranged at an approximate position of the specimen sample, and the microscope lens barrel 3 accommodates an optical system such as an objective lens and a condensing lens, a photoelectric element for imaging, and the like. The image observed by the microscope is displayed on the monitor 4.
  • the microscope lens barrel 3 is provided with a detector 5 which is branched and made of CCD, and this detector 5 is arranged on an approximate position of a positioning marker 1 to be described later.
  • the image of the detector 5 is displayed on the monitor 14 as a multi-window, and the signal is input to the positioning controller (CPU) 6, where the position is recognized.
  • a predetermined movement amount is calculated by the position recognition processing, and the positioning XY stage 1 moves in a work (not shown).
  • Fig. 2 shows the state of the slide glass 2 on the positioning XY stage 1.
  • Figure (a) is a top view and (b) is a side view.
  • the same members as those in FIG. 1 are denoted by the same reference numerals.
  • the slide glass 2 is disposed in contact with three positioning pins 9 provided on the positioning XY stage 1, and the sample S is covered with a cover glass (not shown) by the vacuum chuck 10.
  • a positioning marker 7 is formed on the inner surface of the slide glass 2 with a chrome evaporated film 12 (see FIG. 3) and the like.
  • the positioning marker 7 forms a pattern as shown in FIG. 3, and has an opening 11 of 15 im square.
  • a liquid crystal display module 8 is adhered to the positioning marker 7, and a specific lighting light of the liquid crystal display module 8 is transmitted through the opening 11. As a result, an arbitrary position of the positioning marker 7 can be turned on.
  • the liquid crystal display module 8 has a structure in which liquid crystal is sandwiched between an upper substrate and a lower substrate.
  • the entire size is 20 mm ⁇ 20 mm, and is 105 dots vertically and 7 dots horizontally. It consists of 4-dot pixels.
  • the size of the liquid crystal display dot is 200 to 300 microns square, since one dot is allocated to one opening of each positioning marker. Even if the opening 15 is displaced during mounting, the object can be achieved if it is within the range of 200 to 300 microns, and positioning can be tolerated.
  • Each pixel is connected by a lead 7
  • Selective energization allows the liquid crystal sandwiched between the upper and lower substrates to be driven by the energization, allowing light from a backlight (not shown) installed on the bottom of the substrate to transmit and light.
  • the pattern can be turned on.
  • marking on the slide glass 2 makes it easy to install the slide glass 2, and even if high accuracy is required, Ease remains the same. Any position between the openings on the slide glass 2 where the absolute coordinates can be specified can be divided by the number of pixels by the detector 5 which is a CCD.
  • the shape of the opening 11 is stored in advance as a pattern by a pattern matching method, and the position is specified at every pixel number depending on which coordinates on the image position the center of gravity of the shape. It becomes possible.
  • the pattern of the opening 11 represented on the image (CCD image) composed of 64 ⁇ 480 pixels captured by the detector 5 and the portion appearing at the position of the center of gravity are recorded as observation points,
  • the actuator is controlled to reproduce the image.
  • it may be formed directly on the glass panel upper surface of the liquid crystal display module 8 below the slide glass 2 by chromium vapor deposition and etching.
  • Fig. 4 shows the method of position detection.
  • FIG. 5 (a) to 5 (g) each show a liquid crystal display module, and show a method of scanning and position determination of the liquid crystal display.
  • the entire liquid crystal display module has a size of 20 mm ⁇ 20 mm, and is composed of 105 dots vertically and 74 dots horizontally.
  • FIG. 5 an enlarged view of the circle in Fig. (F) is shown in the circle in Fig. 6.
  • This circle corresponds to the liquid crystal display unit dot. This is, for example, divided into 64 ⁇ 60 (270 °) in the horizontal direction and 480 ⁇ (190 / im) in the vertical direction.
  • the resolution is 500 nm each.
  • reference numeral 15 denotes image information (640 pixels ⁇ 480 pixels) obtained from the image sensor, and 17 denotes an opening.
  • Two sheets of clean paper (Rule 26) 8 The method of specifying the position is performed based on the flow shown in Fig. 4.
  • the slide glass 2 is set on the XY stage 1 for positioning, and the sample, that is, the sample S, is observed by the microscope column 3, and the measurement point is set.
  • the specific opening 11 of the positioning marker 7 on the slide glass 2 comes into view.
  • the liquid crystal display module 8 is sequentially turned on as shown in FIGS. 5 (a) to (g). That is, first, the pixels in one column direction are displayed, and the columns are sequentially scanned (FIGS. 5A to 5C).
  • the position of the detector is indicated by a circle in the figure.
  • the columns When it enters the field of view of the detector 5, the columns are turned on one by one pixel (liquid crystal display unit dot) row by row ( Figures (d) to (f) in Figure 5).
  • the position of an opening in the field of view of the detector 5 is specified from the address of the liquid crystal display.
  • the aperture in the field of view of the detector 5 stores a pattern in advance as shown in Fig. 5 (g), and the location of the center of gravity in the field of view as coordinates on the image. Find out.
  • the pattern memory allows the size and shape of the opening to be recognized as a pattern, so as shown in Fig. 5 (g), the CPU selects the periphery of the opening and the opening in advance as a figure to the CPU. Recognize. For example, if one liquid crystal dot is further divided into 64 ⁇ 480 pixels to determine the position, the area selected to register as pattern information should be about 30% of 64 ⁇ 480 pixels. Choose from X300 pixels to the size of 300 X300 pixels. The size of the area to be selected is determined by the size of the opening. If it is less than 60 ⁇ 60, the patterning accuracy will be reduced, resulting in poor positioning accuracy.
  • the detectable effective area that can be actually detected on the image is reduced, which causes a non-measurable area in the entire liquid crystal panel.
  • the most effective size is on the order of 60 ⁇ 60 to 100 ⁇ 100 pixels.
  • the position can be specified from the address of the liquid crystal and the coordinates on the image, if the address and the coordinates on the image are stored in memory, the position can be surely reproduced.
  • the high magnification microscope according to the present invention has many effects and advantages as described below.
  • Replacement paper (Rule 2 ⁇ ) Has 9 points. That is, according to the high-magnification microscopic observation apparatus of the present invention, even if the slide glass is once detached, the observation position can be easily determined again at the 100-nanometer level. In addition, even if the slide glass or lens barrel of the stage shifts due to temperature change or vibration, the position can be quickly identified. In addition, if the image is constantly recognized and observed after pattern matching has been performed, the correction is performed autonomously in real time, so that long-time Timelabs observation and the like can be easily performed. If a high-speed parallel processing image sensor is used, an active anti-vibration function of about 1 to 10 kHz can be realized.
  • the present invention is applicable not only to slide glass but also to various positioning works.
  • finely positioning the work if such markings are printed in advance and the marking is placed on the liquid crystal display, the same positioning is possible. That is, even when moving from one processing apparatus to another, by transmitting the address of the liquid crystal and the coordinate information on the image, the positioning can be easily and accurately performed.
  • the stage is captured as an image from the observation unit, the entire optical system is very stable.
  • a manipulator for processing the sample is installed at the observation section, it is possible to perform live positioning of the manipulator and the sample.
  • an autonomous correction stage can be created by feeding back the image information of the aperture array using the light-emitting elements, so that if there is temperature fluctuation or vibration, it is possible to actively correct the position shift. Yes, this eliminates the need to install the microscope on a vibration-isolating facility such as a vibration isolation table, or to perform observation or production processing in an environment-controlled room where wind and temperature changes are suppressed, as in the past. By using this, if a high-magnification ultra-depth microscope or a long-term fluorescence observation limelabs microscope is constructed, it will be possible to obtain clearer images.
  • the visual feedback response speed will be much faster, and disturbances such as fluctuation, vibration, and sound can be completely removed. 10
  • the use of high-speed response imaging devices such as parallel vision devices will enable the removal of higher frequencies.
  • a disturbance prevention function a length measuring microscope function, a high-precision positioning function, and the like can be realized.
  • a conventional microscope has a function of performing distance measurement in the field of view of the microscope by image processing or the like, but it can also perform distance measurement including outside the field of view of the microscope.
  • the moving distance and the trajectory can be simultaneously measured and analyzed using a liquid crystal panel.
  • the stage distance is moved in the process of autonomously moving the stage position according to the moving object by pattern recognition so that the object remains in the field of view.
  • the high-magnification microscopic observation device is a high-magnification (400 to 2000 ⁇ magnification) digital micro microscope, long-time Timelabs observation microscope, nanomaterial alignment device, UV laser micro Yuichi Katsu (cell trimming chromosome cut), microscopic laser trapping (capture and movement) device, egg cell injection device, D 11

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Microscoopes, Condenser (AREA)
  • Instruments For Measurement Of Length By Optical Means (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

A highly visible marker or the like is attached to the slide glass, stage or he like of a microscope and pattern image recognition is utilized, whereby a more accurate full closed controller which does not require the conventional expensive length measuring scale, and work prepared by using the same are realized. To solve the above problem, the invention provides a high-powered microscope observation device comprising a predetermined pattern formed on a microscope sample holding member or stage, a recognition means for recognizing the predetermined pattern, and a moving means for moving the microscope sample holding member to a predetermined position on the basis of positional information recognized by the recognition means.

Description

明 細 書 高倍率顕微観測装置 技術分野  Description High-magnification microscope
本発明は高倍率顕微観測装置に関し、 詳しくは高倍率 (4 0 0〜 2 0 0 0 0 倍) デジタルマイクロ顕微鏡、 長時間タイムラブス観測顕微鏡、 ナノ材料ァラ インメント装置、 U Vレーザマイクロカッター(細胞トリミング染色体力ッ ト)、 微小物レーザトラッビング(捕捉 ·移動)装置、卵細胞ィンジェクション装置、 D N Aチップスポッティング装置、 その他 (ィンクジエツ ト E L製作装置、 ェ リブソ、 近接場) 等、 種々の分野で好適に利用することができる高倍率顕微観 測装置に関する。 背景技術  TECHNICAL FIELD The present invention relates to a high-magnification microscopic observation device. More specifically, a high-magnification (400 to 20000 times) digital micro microscope, long-time Timelabs observation microscope, nanomaterial alignment device, UV laser microcutter (cell trimming) Suitable for various fields, such as chromosome force, microscopic laser traversing (capture and movement) equipment, egg cell injection equipment, DNA chip spotting equipment, and others (ink jet EL manufacturing equipment, elibuso, near field) The present invention relates to a high-magnification microscopic observation device that can be used for a microscope. Background art
例えば、 顕微鏡等のマイクロ以下のステージ制御をする場合は、 ステージの 移動量や現在地を直接把握するために、 磁気目盛り、 光学目盛り、 レーザ干渉 等を利用した測長器をステージに取り付けて、測長器からの信号をモーション コントロール部にフィードパックするフルクローズド制御を採用しなければ、 位置制御は殆ど不可能である。  For example, when controlling a sub-micro stage such as a microscope, a length measuring device using a magnetic scale, optical scale, laser interference, etc. is attached to the stage to directly grasp the movement amount of the stage and the current position. Position control is almost impossible unless full-closed control, which feeds the signal from the long tool to the motion control unit, is adopted.
しかし、 ステージのコントロールを精密に行っても、 例えば、 ワークの熱膨 張との差による誤差が生じたりすれば、ワークの定位置を絶えず押さえること は、 フルクローズド制御といえどもできない。 そこで、 熱膨張率の近い材質を 使ったり、 温度補償を行うための環境センサを別途、 設ける等の対策が講じら れているが、 対症療法的に複雑化し、 また、 制約が生じる。  However, even if the stage is controlled precisely, if there is an error due to a difference from the thermal expansion of the work, for example, it is not possible to say that full-closed control is required to constantly hold the work at a fixed position. Therefore, measures such as using a material with a similar thermal expansion coefficient or separately providing an environmental sensor for temperature compensation have been taken, but this is complicated as a symptomatic treatment and has restrictions.
また、 ワークそれぞれの個体差が当然発生するので、 ワークの個体差に合わ せてステージの制御位置を設定する必要があり、 自動化による歩留まり上、 こ の点が最も大きい問題となる。ヮ一ク造りそのものに同等の精度が要求される 等、現実的ではない。更に、ステージ上に測長器が組み込まれたシステムでは、 ステージの精密な位置決めができても、 観測系が移動したりすると、 その誤差 を補正できなかった。 In addition, since individual differences between workpieces naturally occur, it is necessary to set the control position of the stage in accordance with individual differences between workpieces, and this is the biggest problem in terms of yield by automation. 。 It is not realistic, for example, the same accuracy is required for the perforated structure itself. Furthermore, in a system that incorporates a length measuring device on the stage, even if the stage can be precisely positioned, if the observation system moves, the error will Could not be corrected.
また、一軸駆動モータを採用すれば、 当然、 X Yの二軸のモータが必要とな り、 必然的に複数 (例えば、 X Y ®等) の測長器が必要とされる。 そのために 誤差が必然的に累積されるので、 ァライメント精度がより厳しくなり、 高コス ト化が避けられない。 従って、 本来、 直接にワークそのものを観測しながら、 そのワークの希望する位置に合わせるのが理想的であるし、その位置情報を制 御系に与えるなら、ワークの位置合わせそのものを精密に行うことが可能であ る。 従って、 歩留まりの向上が期待できる。  In addition, if a single-axis drive motor is used, a two-axis motor of XY is naturally required, and a plurality of (for example, XY®) length measuring devices are inevitably required. As a result, errors are inevitably accumulated, so that the alignment accuracy becomes stricter and higher costs cannot be avoided. Therefore, ideally, it is ideal to directly observe the work itself and adjust it to the desired position of the work, and if the position information is given to the control system, the work itself should be precisely adjusted. Is possible. Therefore, improvement in yield can be expected.
更に、 半導体やバイオチップ等の集積度の高いものを製作する場合は、 ステ ージに載せたワークを二次元的に捉えるのが最もコストパフォーマンスにす ぐれる方法であり、 かくして、 最近、 マシンビジョン方式が盛んに採りいれら れょうとしている。 対象物への照明の照射方法が工夫されたり、 目標を確認し やすいように工夫がなされているが、視認度の高い解決方法がなかった。また、 パターンをコード化して管理するというデータベースを新たに考慮しなけれ ばならなかった。  Furthermore, when fabricating highly integrated products such as semiconductors and biochips, it is the most cost-effective method to capture the work placed on the stage in two dimensions. The method is being actively adopted. The method of illuminating the target object has been devised and the target has been devised to make it easier to confirm, but there was no solution with high visibility. In addition, the database of coding and managing patterns had to be newly considered.
本発明は、視認度の高いマ一力等を顕微鏡のスライ ドガラスやステージ等に 取り付けて、 パターン画像認識を利用することを目的とする。 即ち、 従来の高 価な測長スケールを全く必要としない、より高精度なフルクローズド制御装置 とそれを用いて製作したワークを実現することを目的とする 発明の開示  An object of the present invention is to attach a pattern with high visibility to a slide glass, a stage, or the like of a microscope to use pattern image recognition. That is, the disclosure of the invention aims at realizing a more accurate full-closed control device which does not require a conventional expensive measuring scale at all, and a work manufactured using the same.
本発明によれば、 上記課題を解決するために、 顕微鏡用試料保持材ゃステ一 ジに形成された所定のパターンと、この所定のパターンを認識する認識手段と、 この認識手段によって認識された位置情報に基づいて、上記顕微鏡用試料保持 材を所定位置に移動させる移動手段とを備えていることを特徴とする高倍率 顕微観測装置を提供される。 図面の簡単な説明  According to the present invention, in order to solve the above problems, a predetermined pattern formed on a microscope sample holding member stage, a recognition unit for recognizing the predetermined pattern, and a recognition unit for recognizing the predetermined pattern. A high-magnification microscopic observation apparatus is provided, comprising: moving means for moving the sample holding material for a microscope to a predetermined position based on position information. BRIEF DESCRIPTION OF THE FIGURES
第 1図は本発明による高倍率顕微観測装置の構成図である。 第 2図 (a ) は位置決め X Yステージ上面図であり、 (b ) は位置決め X Y ステージ側面図である。 FIG. 1 is a configuration diagram of a high magnification microscopic observation apparatus according to the present invention. Fig. 2 (a) is a top view of the positioning XY stage, and (b) is a side view of the positioning XY stage.
第 3図は位置決めマーカを示す図である。  FIG. 3 is a diagram showing a positioning marker.
第 4図は位置検出の方法を示す図である。  FIG. 4 is a diagram showing a position detection method.
第 5図は図 ( a ) から図 (g ) によって液晶表示の走査と位置の特定方法を 示す図である。  FIG. 5 is a diagram showing a method of scanning the liquid crystal display and specifying a position from FIGS. (A) to (g).
第 6図は第 5図において図 ( f ) 中の円内の拡大図である。 発明を実施するための最良の形態  FIG. 6 is an enlarged view of the circle in FIG. 5 (f) in FIG. BEST MODE FOR CARRYING OUT THE INVENTION
本発明において、 顕微鏡用試料保持材とは、 例えば、 顕微鏡スライ ドガラス であり、 これにコードやマーカ等の所定のパターンを形成する。 この所定のパ ターンは、 例えば、 顕微鏡下での観察時にレーザ等をスライ ドガラスに照射し てマーキングしたもの、クロム蒸着膜ゃスクリーン印刷膜や感光性材料等を U Vや Y A Gレーザでマーキングしたもの、消去書き換えができるように電子べ ーパゃ E L材料に刻印やレーザ照射したもの、このような発光体を塗布して目 的のところにコードゃ形状を表示させたもの、電子ぺーパのように圧力でプロ ーブゃペンを押し当てて、その部分をマ一キングしたもの等を挙げることがで きるが、 これらに限定されるものではない。 また、 パターン自体を発光素子に よって形成することもできる。  In the present invention, the sample holding material for microscope is, for example, microscope slide glass, on which a predetermined pattern such as a code or a marker is formed. This predetermined pattern is, for example, a mark obtained by irradiating a slide glass with a laser or the like during observation under a microscope, a chromium vapor-deposited film, a screen-printed film, a photosensitive material, or the like marked with a UV or YAG laser. An electronic paper that is engraved or laser-irradiated on an EL material so that it can be erased and rewritten; a material that displays such a code II shape by applying such a luminous body; Examples thereof include pressing a probe pen with pressure to mark the portion, but the present invention is not limited thereto. Further, the pattern itself can be formed by a light emitting element.
発光素子は、 電気的、 化学的、 光学的又は磁気的に励起されて、 その際に電 気光学効果を生じる液晶、 電子べ一パに用いられれるコロイ ド粒子、 蛍光を発 するエレクトロルミネッセンス素子、 リン光を発する素子、 レーザスポッ トゃ 光シャツタァレー等のプロジェクタ素子によつて光のスポッ トを表示させる 素子等を挙げることができるが、 これらに限定されるものではない。  The light-emitting element is a liquid crystal that generates an electro-optical effect when excited electrically, chemically, optically or magnetically, colloid particles used for an electronic vapor, and an electroluminescent element that emits fluorescence. Examples include, but are not limited to, an element that emits phosphorescent light, an element that displays a light spot by a projector element such as a laser spot light shirt array, or the like.
尚、 パターンの形状自体は、 特に限定されないが、 例えば、 格子状、 千鳥状 等の形状が好ましい。 更に、 所定のパターンをスライ ドガラス等に形成して、 それを液晶パネル等の発光素子の上部に置けば、 液晶パネル等が光源となり、 スライ ドガラス等が開口部アレーとなるような使い方もできる。  The shape of the pattern itself is not particularly limited, but is preferably, for example, a lattice shape, a staggered shape, or the like. Further, by forming a predetermined pattern on a slide glass or the like and placing it on a light emitting element such as a liquid crystal panel, it is possible to use the liquid crystal panel or the like as a light source and the slide glass or the like as an aperture array.
発光素子として液晶を用いる場合、 複数の画素を配置し、 この画素の幅が 5  When a liquid crystal is used as the light emitting element, a plurality of pixels are arranged, and the width of the pixel is 5
差替え用紙(規則 26) 3/1 Replacement form (Rule 26) 3/1
〜 5 0 0 urn,好ましくは、 1 0 ~ 1 0 0 /zmの液晶表示パネルを用いること 差替え用紙(規則 26) 4 ができる。 5 m以下では、 回折格子と同じようにフラウンフオファー則によ つて回折光の千渉の影響が無視できなくなり、 これが外乱光となって、 精密な 位置が特定できないからであり、 また、 5 0 0 ^mより広いときは、 移動位置 対出力の直線性の特性が歪んでくるからである。 更に、 ピッチは、 5〜 5 0 0 τη, 好ましくは、 1 0 ~ 1 0 Ο μπιであ,る。 このことは、 前述した画素幅と 同じ理由による。 Use a liquid crystal display panel of up to 500 urn, preferably 100 to 100 / zm. Replacement paper (Rule 26) 4 can be. If the distance is less than 5 m, the influence of interference of the diffracted light cannot be ignored by the Fraunhofer rule as in the case of the diffraction grating, and this becomes disturbance light, and the precise position cannot be specified. If the width is larger than 0 0 ^ m, the linearity characteristic of the moving position versus the output will be distorted. Further, the pitch is 5 to 500 τη, preferably 10 to 10 ~ μπι. This is for the same reason as the pixel width described above.
また、 液晶表示パネルの場合、 一対の透明基板を対向させ、 その間に液晶を 封入して構成する。 透明基板としては、 例えば、 ガラス基板、 ポリアクリル基 板等を挙げることができるが、 これらに限定されるものではない。 また、 透明 電極膜には、 例えば、 I TO膜を用いることが好ましいが、 しかし、 これに限 定されるものではない。 透明電極膜は、 C VD法等による蒸着によって形成さ れる。  In the case of a liquid crystal display panel, a pair of transparent substrates are opposed to each other, and liquid crystal is sealed between them. Examples of the transparent substrate include, but are not limited to, a glass substrate and a polyacryl substrate. In addition, for example, an ITO film is preferably used as the transparent electrode film, but is not limited thereto. The transparent electrode film is formed by vapor deposition using a CVD method or the like.
更に、 液晶は、 例えば、 複屈折型液晶素子、 透過散乱型液晶素子、 TN (ッ イステツ ドネマチック) 液晶、 S TN (スーパー TN) 液晶、 強誘電性液晶素 子、 反強誘電性液晶、 高分子分散型液晶のいずれによっても構成することがで きるが、 これらに限定されるものではない。 対向する基板間の距離 (セルギヤ ップ) は、 1〜: L 0 0 m、 好ましくは、 1 ~ 2 0 mである。  Furthermore, liquid crystals include, for example, birefringent liquid crystal elements, transmission scattering liquid crystal elements, TN (twisted nematic) liquid crystals, STN (super TN) liquid crystals, ferroelectric liquid crystal elements, antiferroelectric liquid crystals, and polymers. It can be composed of any of the dispersion type liquid crystals, but is not limited thereto. The distance (cell gap) between the opposing substrates is 1 to: L00 m, and preferably 1 to 20 m.
認識手段としては、 公知の光検出器、 例えば、 電荷結合素子 (C CD) カメ ラ、 放電素子 (C I D) カメラ、 ビデオカメラ、 光倍増管、 並列ビジョンチッ プ等の高速撮像素子を用いることができるが、 これらに限定されない。 尚、 読 み取りは、 認識手段による直接読み取り以外に、 例えば、 DVDのリードへッ ドと同じように、光学的な読み取りへッ ドと読み書きできる相変化等を利用し た材料を塗布して、その上に形成されたピッ トを読み取る方式でもよい。また、 同様の方法で検出部が磁気へッドでスライ ドガラス上に磁性体が塗布されて いて、 そのピッ トを読み取るようなものでもよい。 また、 I C力一ドゃフラッ シュメモリ等をガラス上に I Cチップを実装、 形成し、 電子読み取り装置で読 み取ってもよい。  As a recognition means, a known photodetector, for example, a high-speed imaging device such as a charge-coupled device (CCD) camera, a discharge device (CID) camera, a video camera, a photomultiplier tube, and a parallel vision chip can be used. Yes, but not limited to. In addition to the direct reading by the recognition means, for example, in the same manner as the read head of a DVD, the reading is performed by applying a material using an optical read head and a phase change that can be read and written. Alternatively, a method of reading a pit formed thereon may be used. In a similar method, a magnetic head may be used as the detection unit, and a magnetic substance may be applied on the slide glass and the pit may be read. In addition, an IC chip such as an IC flash memory may be mounted and formed on glass and read by an electronic reading device.
また、 移動手段としては、 例えば、 リニアモータ、 ステッピングモータ、 ピ ェゾゃ超音波モータ等の他のァクチユエ一夕との組み合わせを用いることが 5 できる。 また、 本発明の対象となる顕微装置は、 光学顕微鏡、 A F M . S T M 顕微鏡、 電子顕微鏡等、 あらゆる顕微鏡を含む。 As the moving means, for example, a combination with other actuators such as a linear motor, a stepping motor, and a piezo ultrasonic motor may be used. 5 You can. In addition, the microscopes to which the present invention is applied include all microscopes such as an optical microscope, an AFM.STM microscope, and an electron microscope.
本発明によれば、顕微鏡のスライ ドガラス等にコードやマ一力等のパターン が刻まれており、 それを C C D等でパターンマッチング検出し、 ァクチユエ一 夕にフィ一ドバックして位置決めをすることによって、スライ ドガラスの任意 の点を特定して、 サンプル観察の作業性を向上させることができる。 スライ ド ガラスのコードは、 光学倍率で 1 0〜 5 0倍に拡大して検出するので、 分解能 として 1 0 0ナノ〜 1ミクロンの分解能でスライ ドガラス内の位置を特定す ることができる。  According to the present invention, a pattern such as a code or a force is engraved on a slide glass or the like of a microscope, and the pattern is detected by pattern matching with a CCD or the like, and is fed back to the actuator for positioning. In addition, any point of the slide glass can be specified to improve the workability of sample observation. Since the code of the slide glass is detected at an optical magnification of 10 to 50 times, the position in the slide glass can be specified with a resolution of 100 nano to 1 micron.
このコードは予め、既製品としてスライ ドガラス上にパターンを作成してお いてもよい。 マイクロスコープ像を観測したときに、 その印字形状や文字がス ライ ドガラス上に表示されていてもよい。 位置決めのパターンだけではなく、 過去の観測データ等をメモリしておくこともできる。 また、 スライ ドガラスに インクジエツ ト印字する方法でもよい。  This code may have a pattern already created on the slide glass as an off-the-shelf product. When observing the microscope image, the printed shape and characters may be displayed on the slide glass. Not only positioning patterns but also past observation data can be stored in memory. Alternatively, a method of performing ink jet printing on slide glass may be used.
更に、本発明によれば、顕微鏡用試料保持材に形成された所定のパターンと、 この所定のパターンを認孿する手段と、上記顕微鏡用試料保持材に保持された 試料を処理する処理装置と、上記認識手段によって認識された位置情報に基づ いて、上記顕微鏡用試料保持材又は処理装置を所定位置に移動させる移動手段 とを備えている高倍率顕微観測装置が提供される。これによつて試料の処理装 置と試料間の位置決めを高速で行うことができる。  Further, according to the present invention, a predetermined pattern formed on the microscope sample holding material, means for recognizing the predetermined pattern, and a processing apparatus for processing the sample held on the microscope sample holding material are provided. Further, a high-magnification microscopic observation apparatus is provided which includes a moving means for moving the sample holding material for microscope or the processing apparatus to a predetermined position based on the position information recognized by the recognition means. This makes it possible to perform high-speed positioning between the sample processing apparatus and the sample.
ここで、 試料を処理する処理装置としては、 例えば、 マニピュレータ、 レー ザカツ夕、 レ一ザマーカ等を挙げることができるが、 しかし、 これらに限定さ れるものではない。マイクロファク トリに代表されるあらゆる加工機を利用す ることもできる。 処理装置の設置場所としては、 前述した所定パターンを認識 する手段に付設するのが好ましい。  Here, examples of the processing apparatus for processing a sample include a manipulator, a laser cutter, a laser marker, and the like, but are not limited thereto. Any processing machine represented by microfactory can be used. It is preferable that the processing device is installed at a location for recognizing the above-mentioned predetermined pattern.
以下に本発明の好ましい態様を図面に基いて説明する。 第 1図は、 本発明に よる高倍率顕微観測装置の構成を示し、参照番号 1は位置決め X Yステージで あり、 圧電モー夕 (図示せず) 等のァクチユエ一タにて X Y方向に移動させる ことができる。 X Yステージ 1上にはスライ ドガラス 2が載置されており、 ス 6 ライ ドガラス 2上に検体サンプル S (第 2図参照) を置き、 力パーガラス (図 示せず) によって覆われている。 検体サンプルのおよその位置上に顕微鏡鏡筒 3が配置されており、顕微鏡鏡筒 3内には対物レンズ、集光レンズ等の光学系、 撮像用の光電素子等が収容されている。 顕微鏡によって観察された像は、 モニ ター 4に表示される。 Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. FIG. 1 shows a configuration of a high-magnification microscopic observation apparatus according to the present invention. Reference numeral 1 denotes a positioning XY stage, which is moved in an XY direction by an actuator such as a piezoelectric motor (not shown). Can be. Slide glass 2 is placed on XY stage 1, 6 Place the sample sample S (see Fig. 2) on the glass slide 2 and cover it with a force glass (not shown). A microscope lens barrel 3 is arranged at an approximate position of the specimen sample, and the microscope lens barrel 3 accommodates an optical system such as an objective lens and a condensing lens, a photoelectric element for imaging, and the like. The image observed by the microscope is displayed on the monitor 4.
また、 顕微鏡鏡筒 3には、 分岐して C C Dからなる検出器 5が備えられてお り、 この検出器 5は、 後述する位置決めマーカ一のおよその位置上に配置され る。検出器 5の画像は、 マルチウィンドウとしてモニタ一 4に映し出されると 共に、 その信号は位置決めコントローラ (C P U ) 6に入り、 位置認識処理が なされる。位置認識処理によって所定移動量が算出され、 図示しないァクチュ エー夕で位置決め X Yステージ 1が移動する。  Further, the microscope lens barrel 3 is provided with a detector 5 which is branched and made of CCD, and this detector 5 is arranged on an approximate position of a positioning marker 1 to be described later. The image of the detector 5 is displayed on the monitor 14 as a multi-window, and the signal is input to the positioning controller (CPU) 6, where the position is recognized. A predetermined movement amount is calculated by the position recognition processing, and the positioning XY stage 1 moves in a work (not shown).
位置決め X Yステージ 1上のスライ ドガラス 2の状態を第 2図に示す。 図 ( a ) は上面図、 (b ) は側面図である。 第 1図と同じ部材には同じ参照番号 が付してある。 スライ ドガラス 2は、 位置決め X Yステージ 1に設けた 3本の 位置決めピン 9に当接して配置されており、検体サンプル Sは真空チャック 1 0によってカバ一ガラス (図示せず) に覆われている。  Fig. 2 shows the state of the slide glass 2 on the positioning XY stage 1. Figure (a) is a top view and (b) is a side view. The same members as those in FIG. 1 are denoted by the same reference numerals. The slide glass 2 is disposed in contact with three positioning pins 9 provided on the positioning XY stage 1, and the sample S is covered with a cover glass (not shown) by the vacuum chuck 10.
スライ ドガラス 2の内面には位置決めマーカ 7がクロム蒸着膜 1 2〈第 3図 参照) 等で形成されている。 この位置決めマーカ 7は、 第 3図に示すようなパ ターンを形成しており、 1 5 i m角の開口部 1 1がある。位置決めマーカ 7に は液晶表示モジュール 8が接着されており、開口部 1 1を通して液晶表示モジ ユール 8の特定の点灯光が透過する。それによつて位置決めマーカ 7の任意の 位置を点灯させることが可能となる。  A positioning marker 7 is formed on the inner surface of the slide glass 2 with a chrome evaporated film 12 (see FIG. 3) and the like. The positioning marker 7 forms a pattern as shown in FIG. 3, and has an opening 11 of 15 im square. A liquid crystal display module 8 is adhered to the positioning marker 7, and a specific lighting light of the liquid crystal display module 8 is transmitted through the opening 11. As a result, an arbitrary position of the positioning marker 7 can be turned on.
液晶表示モジュール 8は、上部基板と下部基板の間に液晶が挟まれて構成さ れており、 例えば、 全体が 2 0 m m X 2 0 m mのサイズであり、 縦 1 0 5 ドッ ト、 横 7 4 ドッ トの画素で構成されている。 尚、 液晶表示ドットの大きさは、 各位置決めマーカの開口部 1個あたりに 1 ドッ トが割り当てられることにな り、 2 0 0〜 3 0 0ミクロン角の大きさである。 1 5 の開口部が取り付け時 にずれても、 2 0 0〜 3 0 0ミクロン角内であれば、 目的を達成することがで き、 位置決めの許容ができるようになつている。 各画素は、 リード線によって 7 選択通電させることができるようになつており、通電によって上下基板に挟ま れた液晶が駆動して、 基板の底面に設置させたバックライ ト (図示せず) の光 を透過させ、点灯させることによって、そのパターンが点灯できるようになる。 スライ ドガラス 2上の試料の位置を特定する場合は、このようにスライ ドガ ラス 2上にマーキングすることによってスライ ドガラス 2の設置が容易とな り、 高精度が要求される場合でも、 その設置の容易さは変わらない。 スライ ド ガラス 2上の絶対座標の特定が可能になる開口部と開口部の間の任意の位置 は、 C C Dである検出器 5によって画素数分で分割が可能である。 The liquid crystal display module 8 has a structure in which liquid crystal is sandwiched between an upper substrate and a lower substrate. For example, the entire size is 20 mm × 20 mm, and is 105 dots vertically and 7 dots horizontally. It consists of 4-dot pixels. Note that the size of the liquid crystal display dot is 200 to 300 microns square, since one dot is allocated to one opening of each positioning marker. Even if the opening 15 is displaced during mounting, the object can be achieved if it is within the range of 200 to 300 microns, and positioning can be tolerated. Each pixel is connected by a lead 7 Selective energization allows the liquid crystal sandwiched between the upper and lower substrates to be driven by the energization, allowing light from a backlight (not shown) installed on the bottom of the substrate to transmit and light. Thus, the pattern can be turned on. When specifying the position of the sample on the slide glass 2, marking on the slide glass 2 makes it easy to install the slide glass 2, and even if high accuracy is required, Ease remains the same. Any position between the openings on the slide glass 2 where the absolute coordinates can be specified can be divided by the number of pixels by the detector 5 which is a CCD.
位置決めの方法は、 パターンマッチング方法によって、 予め開口部 1 1の形 状をパターンとして記憶しておき、その形状重心位置を画像上のどの座標に位 置するかによって画素数刻みで位置を特定することが可能になる。即ち、 検出 器 5に捉えられる 6 4 0 X 4 8 0ピクセルで構成された画像 (C C Dの画像) 上に表現された開口部 1 1のパターンとその重心位置にあらわれるところが 観測ボイントとして記録され、再び観測位置を特定する場合にその画像を再現 するべく、 ァクチユエータを制御することとなる。 スライ ドガラス 2にはこの ような開口部を形成せずに、スライ ドガラス 2下部の液晶表示モジュール 8の ガラスパネル上面に直接クロム蒸着 · エッチングにより形成してもよい。 第 4図は位置検出の方法を示す。 第 5図は、 それぞれ液晶表示モジュールを 示す図( a)から図(g)によって、液晶表示の走査と位置の特定方法を示す。 液晶表示モジュールは、 前述したように、 例えば、 全体が 2 0 mmX 2 0 mm のサイズであり、 縦 1 0 5 ドッ ト、 横 7 4 ドッ トの画素で構成されている。 第 5図において、 図 ( f ) の円内の拡大図を第 6図に円内に示す。 この円内 が液晶表示単位ドッ トに相当する。 これは、 例えば、 横方向に 6 4 0分割 (2 7 0 ΐ ), 縦方向に 4 8 0分割 ( 1 9 0 /i m) されている。 分解能はそれぞ れ 5 0 0 n mである。 1 3は画像上のパターンの重心位置であり、 1 4は位置 決めマーカ開口部 (1 5 μ ιη角) である。 第 5図の図 (g ) において、 1 5は 撮像素子より得られた画像情報 (6 4 0画素 X 4 8 0画素) であり、 1 7は開 口部である。  As for the positioning method, the shape of the opening 11 is stored in advance as a pattern by a pattern matching method, and the position is specified at every pixel number depending on which coordinates on the image position the center of gravity of the shape. It becomes possible. In other words, the pattern of the opening 11 represented on the image (CCD image) composed of 64 × 480 pixels captured by the detector 5 and the portion appearing at the position of the center of gravity are recorded as observation points, When specifying the observation position again, the actuator is controlled to reproduce the image. Instead of forming such an opening in the slide glass 2, it may be formed directly on the glass panel upper surface of the liquid crystal display module 8 below the slide glass 2 by chromium vapor deposition and etching. Fig. 4 shows the method of position detection. 5 (a) to 5 (g) each show a liquid crystal display module, and show a method of scanning and position determination of the liquid crystal display. As described above, for example, the entire liquid crystal display module has a size of 20 mm × 20 mm, and is composed of 105 dots vertically and 74 dots horizontally. In Fig. 5, an enlarged view of the circle in Fig. (F) is shown in the circle in Fig. 6. This circle corresponds to the liquid crystal display unit dot. This is, for example, divided into 64 × 60 (270 °) in the horizontal direction and 480 × (190 / im) in the vertical direction. The resolution is 500 nm each. 13 is the position of the center of gravity of the pattern on the image, and 14 is the positioning marker opening (15 μιη angle). In FIG. 5 (g), reference numeral 15 denotes image information (640 pixels × 480 pixels) obtained from the image sensor, and 17 denotes an opening.
楚替え兩紙 (規則 26) 8 位置の特定の方法は第 4図のフローに基づいて行われる。スライ ドガラス 2 を位置決め X Yステージ 1に設置し、 顕微鏡鏡筒 3により試料、 即ち、 検体サ ンプル Sを観測し、 測定ポイントの設定を行う。鏡筒 3 と一体となった検出器 5は、スライ ドガラス 2上の位置決めマーカ 7の特定開口部 1 1が視野に入る。 そのとき液晶表示モジュール 8を第 5図の図 ( a ) から (g ) に示すように 順次、 点灯していく。 即ち、 先ず、 1列方向の画素を表示させて、 列を順次ス キャンする (第 5図の図 (a ) 〜 (c ) )。 検出器の位置を図中、 円にて示す。 検出器 5の視野に入れば、 その列を行単位に 1画素 (液晶表示単位ドッ ト) ず つ順次点灯する (第 5図の図 (d ) から図 ( f ) )。 これによつて、 検出器 5の 視野に入ったある開口部の位置を液晶表示のァドレスから特定する。検出器 5 の視野の中にある開口部は、 予め、 第 5図の図 (g ) のようにパターンを記憶 しており、その重心位置が視野の中のどこにあるかを画像上の座標として割り 出す。 Two sheets of clean paper (Rule 26) 8 The method of specifying the position is performed based on the flow shown in Fig. 4. The slide glass 2 is set on the XY stage 1 for positioning, and the sample, that is, the sample S, is observed by the microscope column 3, and the measurement point is set. In the detector 5 integrated with the lens barrel 3, the specific opening 11 of the positioning marker 7 on the slide glass 2 comes into view. At that time, the liquid crystal display module 8 is sequentially turned on as shown in FIGS. 5 (a) to (g). That is, first, the pixels in one column direction are displayed, and the columns are sequentially scanned (FIGS. 5A to 5C). The position of the detector is indicated by a circle in the figure. When it enters the field of view of the detector 5, the columns are turned on one by one pixel (liquid crystal display unit dot) row by row (Figures (d) to (f) in Figure 5). As a result, the position of an opening in the field of view of the detector 5 is specified from the address of the liquid crystal display. The aperture in the field of view of the detector 5 stores a pattern in advance as shown in Fig. 5 (g), and the location of the center of gravity in the field of view as coordinates on the image. Find out.
パターン記憶は開口部の大きさや形状をパターンとして認識させるため、第 5図の図 (g ) のように、 予め、 開口部周辺部と開口部を選択することによつ て、 図形として C P Uに認識させる。 例えば、 液晶ドッ ト 1つを更に 6 4 0 X 4 8 0分割して位置を割出す場合は、パターン情報として登録するために選択 するエリアを 6 4 0 X 4 8 0ピクセル中の約 3 0 X 3 0ピクセルから 3 0 0 X 3 0 0ピクセルの大きさになるように選択する。 開口部の大きさに伴い、 選 択するエリァの大きさが決まる。 6 0 X 6 0以下であるときは、 パタ一ンマツ チング精度が落ちるために位置決め精度が悪くなる。 3 0 0 X 3 0 0ピクセル 以上であるときは、画像上での実際に検出できる検出できる実効面積が少なく なって、 液晶パネル全体のなかで計測不可領域が発生する原因になる。 最も効 果的な大きさは、 6 0 X 6 0〜 1 0 0 X 1 0 0ピクセル程度である。  The pattern memory allows the size and shape of the opening to be recognized as a pattern, so as shown in Fig. 5 (g), the CPU selects the periphery of the opening and the opening in advance as a figure to the CPU. Recognize. For example, if one liquid crystal dot is further divided into 64 × 480 pixels to determine the position, the area selected to register as pattern information should be about 30% of 64 × 480 pixels. Choose from X300 pixels to the size of 300 X300 pixels. The size of the area to be selected is determined by the size of the opening. If it is less than 60 × 60, the patterning accuracy will be reduced, resulting in poor positioning accuracy. If the number of pixels is more than 300 × 300 pixels, the detectable effective area that can be actually detected on the image is reduced, which causes a non-measurable area in the entire liquid crystal panel. The most effective size is on the order of 60 × 60 to 100 × 100 pixels.
これによつてスライ ドガラス上のどの位置にあるかを広範囲に絞り込みが 可能となる。液晶のァドレスとこの画像上の座標から位置を特定することがで きるので、 アドレスと画像上の座標をメモリしておけば、 確実にその位置を再 現することができる。  This makes it possible to narrow down a wide range of positions on the slide glass. Since the position can be specified from the address of the liquid crystal and the coordinates on the image, if the address and the coordinates on the image are stored in memory, the position can be surely reproduced.
本発明による高倍率顕微観測装置は、以下に述べるような多くの効果乃至利  The high magnification microscope according to the present invention has many effects and advantages as described below.
差替え用紙 (規則 2β) 9 点を有する。 即ち、 本発明の高倍率顕微観測装置によれば、 たとえ、 スライ ド ガラスを一度脱着しても、再度、 1 0 0ナノレベルで容易に観察位置を割り出 すことが可能である。 また、 温度変化や振動等によって、 ステージゃスライ ド ガラスや鏡筒がずれても、 速やかに位置の特定が可能である。 また、 画像を絶 えず認識して、 パターンマッチングを行った状態で観察すれば、 実時間でその 補正を自律的に行うので、 長時間のタイムラブス観測等が容易に可能となる。 高速の並列処理撮像素子等を用いれば、 1〜 1 0 k H z程度のァクティブ除振 機能も実現可能である。 Replacement paper (Rule 2β) Has 9 points. That is, according to the high-magnification microscopic observation apparatus of the present invention, even if the slide glass is once detached, the observation position can be easily determined again at the 100-nanometer level. In addition, even if the slide glass or lens barrel of the stage shifts due to temperature change or vibration, the position can be quickly identified. In addition, if the image is constantly recognized and observed after pattern matching has been performed, the correction is performed autonomously in real time, so that long-time Timelabs observation and the like can be easily performed. If a high-speed parallel processing image sensor is used, an active anti-vibration function of about 1 to 10 kHz can be realized.
また、 本発明は、 スライ ドガラスに限らず、 種々の位置決めワークにも応用 可能である。 ワークの微小な位置決めを行うときに、 このようなマーキングを 予め、 印刷等を施しておいて、 そのマ一キングを液晶表示上に載せるように設 置すれば、 同様の位置決めが可能である。 即ち、 加工装置から加工装置へ移動 する場合にも、 液晶のァドレスと画像上の座標情報を伝えれば、 容易に正確に 位置決めすることが可能になる。  In addition, the present invention is applicable not only to slide glass but also to various positioning works. When finely positioning the work, if such markings are printed in advance and the marking is placed on the liquid crystal display, the same positioning is possible. That is, even when moving from one processing apparatus to another, by transmitting the address of the liquid crystal and the coordinate information on the image, the positioning can be easily and accurately performed.
また、 従来型のステージ上に測長器が組み込まれたシステムでは、 ステージ の精密な位置決めができても、 観測系等が移動したりすれば、 その誤差を補正 できないが、 本発明によれば、 ステージを画像として観測部から捉える方式で あるので、 光学システム全体が非常に安定する。 特に、 観測部のところに試料 を加工するマニピュレータ等を設置すれば、マニピュレータと試料間の位置決 めをライブで行うことも可能である。  Further, in a system in which a length measuring device is incorporated on a conventional stage, even if the stage can be precisely positioned, the error cannot be corrected if the observation system or the like moves, but according to the present invention, Since the stage is captured as an image from the observation unit, the entire optical system is very stable. In particular, if a manipulator for processing the sample is installed at the observation section, it is possible to perform live positioning of the manipulator and the sample.
しかも、発光素子を用いて開口部アレーの画像情報をフィードバックするこ とによって、 自律補正ステージができるので、 温度の揺らぎや振動があった場 合、 アクティブにその位置ずれを補正することが可能であり、 これによつて従 来のように顕微鏡を除振台等の防振設備上に設置したり、風や温度変化を抑え た環境調整室内での観測や生産加工等をしなくてよくなる。これを利用するこ とによつて、高倍率超深度顕微鏡や長時間蛍光観測ライムラブス顕微鏡等を構 築すれば、 一層鮮明な画像を得ることが可能となる。 更に、 並列ビジョンチッ プ等の高速撮像素子を用いれば、ビジュアルフィードバック応答速度が格段に 速くなるので、完全に揺らぎや振動や音等の外乱を除去することが可能となる。 10 将来、 並列ビジョン素子等の高速応答撮像素子を用いることによって、 より高 い周波数の除去等も可能になる。 In addition, an autonomous correction stage can be created by feeding back the image information of the aperture array using the light-emitting elements, so that if there is temperature fluctuation or vibration, it is possible to actively correct the position shift. Yes, this eliminates the need to install the microscope on a vibration-isolating facility such as a vibration isolation table, or to perform observation or production processing in an environment-controlled room where wind and temperature changes are suppressed, as in the past. By using this, if a high-magnification ultra-depth microscope or a long-term fluorescence observation limelabs microscope is constructed, it will be possible to obtain clearer images. Furthermore, if a high-speed imaging device such as a parallel vision chip is used, the visual feedback response speed will be much faster, and disturbances such as fluctuation, vibration, and sound can be completely removed. 10 In the future, the use of high-speed response imaging devices such as parallel vision devices will enable the removal of higher frequencies.
特に、 組立工程においては、 マイクロやナノという作業環境での負荷が軽減 されるので、 顕微鏡技術を応用した研究開発向けの試作装置 (レーザカツタ、 レ一ザマ一力、 マニピュレータ等を搭載)、 生産向けの検査装置、 マイクロフ ァク トリに代表される加工機等への応用も可能である。これらの特徴を総合す ると、 本発明によれば、 外乱防止機能、 測長顕微鏡機能、 高精度位置決め機能 等が可能となる。 特に、 従来の顕微鏡では、 顕微鏡の視野中での距離計測を画 像処理等で行う機能が付加されているが、顕微鏡の視野外を含めた距離計測も 行うことが可能である。  In particular, in the assembly process, the load on micro and nano working environments is reduced, so prototype equipment for research and development using microscopy technology (equipped with a laser cutter, laser power, manipulator, etc.), and production It can also be applied to inspection equipment and processing machines typified by micro factories. When these features are combined, according to the present invention, a disturbance prevention function, a length measuring microscope function, a high-precision positioning function, and the like can be realized. In particular, a conventional microscope has a function of performing distance measurement in the field of view of the microscope by image processing or the like, but it can also perform distance measurement including outside the field of view of the microscope.
また、本発明の画像認識又はパターンマッチングを用いて移動物体を顕微鏡 観測しながら、 その移動距離や軌跡を同時に液晶パネルを用いて計測 ·分析が 可能である。 即ち、 微生物は長時間の蛍光観測等において、 測定対象が移動す る場合、パターン認識によってその移動物に合わせてステージ位置を対象物を 視野にとどめるように自律移動させる過程で、その移動した距離を液晶パネル で同様にして絶対座標を時系列で読み取るようにすれば、その物体が広範囲に 移動しても、 その移動距離を高分解能で時系列で計測が可能である。  Also, while observing a moving object with a microscope using the image recognition or pattern matching of the present invention, the moving distance and the trajectory can be simultaneously measured and analyzed using a liquid crystal panel. In other words, when the measurement object moves in long-term fluorescence observation, etc., the stage distance is moved in the process of autonomously moving the stage position according to the moving object by pattern recognition so that the object remains in the field of view. By reading the absolute coordinates in a time series in the same way on a liquid crystal panel, even if the object moves over a wide range, the movement distance can be measured in a time series with high resolution.
更に、スライ ドガラス D N Aチップ等に置き換えが可能である。その場合は、 D N Aアレーがスライ ドガラス上に刻まれた横にこのようなコードが埋め込 まれた形になる。 それによつて、 蛍光識別の場合に読み取り精度を上げたり、 スループッ トを上げるために、従来の画像処理に代わる方法が出てきた場合の 精密位置決めチップとして使用が可能である。 産業上の利用可能性 本発明による高倍率顕微観測装置は、 高倍率 (4 0 0〜 2 0 0 0 0倍) デジ タルマイクロ顕微鏡、 長時間タイムラブス観測顕微鏡、 ナノ材料ァラインメン ト装置、 U Vレーザマイクロカツ夕一 (細胞トリミング染色体カッ ト)、 微小 物レーザトラッピング (捕捉 ·移動) 装置、 卵細胞インジェクション装置、 D 11 Furthermore, it can be replaced with a slide glass DNA chip or the like. In such a case, such a code is embedded in the side of a DNA array engraved on a slide glass. As a result, it can be used as a precision positioning chip when a method that replaces the conventional image processing has emerged in order to increase reading accuracy or throughput in the case of fluorescence identification. Industrial Applicability The high-magnification microscopic observation device according to the present invention is a high-magnification (400 to 2000 × magnification) digital micro microscope, long-time Timelabs observation microscope, nanomaterial alignment device, UV laser micro Yuichi Katsu (cell trimming chromosome cut), microscopic laser trapping (capture and movement) device, egg cell injection device, D 11
N Aチップスポッティング装置等、種々の分野において好適に利用することが できる。 It can be suitably used in various fields such as an NA tip spotting device.

Claims

12 請 求 の 範 囲 12 Scope of Claim
1 . 顕微鏡用試料保持材に形成された所定のパターンと、 この所定のパターン を認識する認識手段と、この認識手段によって認識された位置情報に基づいて、 上記顕微鏡用試料保持材を所定位置に移動させる移動手段とを備えているこ とを特徴とする高倍率顕微観測装置。 1. Based on a predetermined pattern formed on the microscope sample holder, a recognition unit for recognizing the predetermined pattern, and the position information recognized by the recognition unit, the microscope sample holder is positioned at a predetermined position. A high-magnification microscopic observation device, comprising: a moving means for moving.
2 .所定のパターンが発光素子によって形成されてなる請求項 1に記載の高倍 率顕微観測装置。 2. The high magnification microscopic observation device according to claim 1, wherein the predetermined pattern is formed by a light emitting element.
3 .所定のパターンが発光素子と開口部アレーによって形成されてなる請求項 1に記載の高倍率顕微観測装置。 3. The high-magnification microscopic observation apparatus according to claim 1, wherein the predetermined pattern is formed by a light-emitting element and an aperture array.
4 . 発光素子が電気的、 化学的、 光学的又は磁気的に励起されて、 その際に電 気光学効果を生じる液晶と電子べ一パに用いられるコロイ ド粒子、エレクト口 ルミネッセンス素子、有機エレクトロルミネッセンス素子若しくは発光ダイォ ―ドからなる光源と組合せた素子、又は電子ぺーパに用いられるコロイ ド粒子、 エレク トロルミネッセンス素子、有機エレク トロルミネッセンス素子又は発光 ダイォ一ドからなる光源単体、又はレーザスポッ ト若しくは光シャッタアレー からなるプロジェクタ素子によって光のスポッ トを表示させる素子からなる 請求項 2又は 3に記載の高倍率顕微観測装置。 4. Colloid particles, electroluminescent devices, and organic electroluminescent devices used in liquid crystals and electronic vapors that generate electro-optical effects when the light-emitting device is electrically, chemically, optically, or magnetically excited. An element combined with a light source consisting of a luminescence element or a light emitting diode, or a colloid particle used for an electronic paper, a light source consisting of an electroluminescence element, an organic electroluminescence element or a light emitting diode, or a laser spot or 4. The high-magnification microscopic observation device according to claim 2, wherein the device is configured to display a spot of light by a projector device including an optical shutter array.
5 . 顕微鏡用試料保持材に形成された所定のパターンと、 この所定のパターン を認識する認識手段と、上記顕微鏡用試料保持材に保持された試料を処理する 処理装置と、 上記認識手段によって認識された位置情報に基づいて、 上記顕微 鏡用試料保持材又は処理装置を所定位置に移動させる移動手段とを備えてい ることを特徴とする高倍率顕微観測装置。 5. A predetermined pattern formed on the sample holding material for microscope, a recognizing means for recognizing the predetermined pattern, a processing device for processing the sample held on the sample holding material for microscope, and a recognizing means by the recognizing means. A high-magnification microscopic observation apparatus, comprising: a moving means for moving the sample holding material for a microscope or the processing apparatus to a predetermined position based on the obtained position information.
6 . 処理装置がマニピュレータ、 レーザカツタ、 レーザマ一力、 スポッター又 13 は S TN · A FMプローブである請求項 5に記載の高倍率顕微観測装置。 6. The processing equipment is manipulator, laser cutter, laser cutter, spotter or The high magnification microscopic observation device according to claim 5, wherein 13 is an STN · A FM probe.
7. 認識手段が電荷結合素子 (C CD) カメラ、 放電素子 (C I D) カメラ、 ビデオカメラ、光倍増管又は高速応答撮像素子である請求項 1から 6のいずれ かに記載の高倍率顕微観測装置。 7. The high-magnification microscope according to any one of claims 1 to 6, wherein the recognition means is a charge-coupled device (CCD) camera, a discharge device (CID) camera, a video camera, a photomultiplier tube, or a high-speed response imaging device. .
8. 移動手段がリニアモータ、 ステッピングモータ又はこれらとピエゾ若しく は超音波モータからなるァクチユエ一夕との組み合わせからなる請求項 1乃 至 7記載の高倍率顕微観測装置。 8. The high-magnification microscope according to claim 1, wherein the moving means comprises a linear motor, a stepping motor, or a combination of the linear motor and the stepping motor, and a piezo or ultrasonic motor.
PCT/JP2003/016203 2002-12-25 2003-12-17 High-powered microscope observation device WO2004059244A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002-375251 2002-12-25
JP2002375251A JP3754958B2 (en) 2002-12-25 2002-12-25 High magnification microscope

Publications (1)

Publication Number Publication Date
WO2004059244A1 true WO2004059244A1 (en) 2004-07-15

Family

ID=32677331

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/016203 WO2004059244A1 (en) 2002-12-25 2003-12-17 High-powered microscope observation device

Country Status (2)

Country Link
JP (1) JP3754958B2 (en)
WO (1) WO2004059244A1 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100661736B1 (en) 2005-05-31 2006-12-27 주식회사 메디아나전자 Optical mesurement apparatus and method using organic light emitting diode
JP5544537B2 (en) * 2005-12-02 2014-07-09 ハプロミック テクノロジーズ プロプライエタリ リミテッド Methods for gene mapping and haplotype determination
CN101939616B (en) * 2008-01-09 2014-07-09 株式会社尼康 Measuring device, method, and program
CN101770070B (en) * 2009-12-31 2016-09-07 上海杰远环保科技有限公司 The survey meter of observation of micro object and operational approach
JP5479950B2 (en) 2010-03-03 2014-04-23 オリンパス株式会社 Microscope device and observation position reproduction method
JP5581785B2 (en) * 2010-04-07 2014-09-03 ソニー株式会社 Microscope, position control method, and position control program
JP2016009163A (en) * 2014-06-26 2016-01-18 オリンパス株式会社 Microscope system
WO2018230016A1 (en) * 2017-06-13 2018-12-20 株式会社Ihi Mobile body observation method
JP7063515B1 (en) * 2020-11-09 2022-05-09 有限会社ウィン Optical microscope system based on ergonomic field of view
KR102554224B1 (en) 2020-12-31 2023-07-12 파크시스템스 주식회사 Method and apparatus for identifing sample position in atomic force microscope

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04110810A (en) * 1990-08-30 1992-04-13 Dainippon Screen Mfg Co Ltd Image pickup system
JPH0755457A (en) * 1993-08-23 1995-03-03 Hitachi Constr Mach Co Ltd Method for positioning probe microscope device
JPH09210660A (en) * 1996-01-30 1997-08-12 Sekisui Chem Co Ltd Image pick-up inspection system
JPH09218932A (en) * 1996-02-13 1997-08-19 Olympus Optical Co Ltd Slide glass information recording medium
JP2000048599A (en) * 1998-07-24 2000-02-18 Mitsubishi Electric Corp Synchronization-type semiconductor storage device
JP2003344014A (en) * 2002-05-27 2003-12-03 Katsumi Yoshino Precision alignment apparatus
JP2004069373A (en) * 2002-08-02 2004-03-04 Japan Science & Technology Corp Liquid crystal precision position controller

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04110810A (en) * 1990-08-30 1992-04-13 Dainippon Screen Mfg Co Ltd Image pickup system
JPH0755457A (en) * 1993-08-23 1995-03-03 Hitachi Constr Mach Co Ltd Method for positioning probe microscope device
JPH09210660A (en) * 1996-01-30 1997-08-12 Sekisui Chem Co Ltd Image pick-up inspection system
JPH09218932A (en) * 1996-02-13 1997-08-19 Olympus Optical Co Ltd Slide glass information recording medium
JP2000048599A (en) * 1998-07-24 2000-02-18 Mitsubishi Electric Corp Synchronization-type semiconductor storage device
JP2003344014A (en) * 2002-05-27 2003-12-03 Katsumi Yoshino Precision alignment apparatus
JP2004069373A (en) * 2002-08-02 2004-03-04 Japan Science & Technology Corp Liquid crystal precision position controller

Also Published As

Publication number Publication date
JP2004205366A (en) 2004-07-22
JP3754958B2 (en) 2006-03-15

Similar Documents

Publication Publication Date Title
JP5269887B2 (en) Compact nanofabrication device
TW580449B (en) Deposition of soluble materials
WO2004059244A1 (en) High-powered microscope observation device
KR100909159B1 (en) Position detecting method, position detecting device, pattern drawing device and detected object
US7507957B2 (en) Probe microscope system suitable for observing sample of long body
CN101107558B (en) Tracking auto focus system
CN105793776A (en) Scanning probe nanolithography system and method
TW201120599A (en) Glass member quality control method and quality control device, and glass member with mark
JP2011513945A (en) Array and cantilever array leveling methods
US20090074966A1 (en) System and method for creating a surface pattern
JP2005014216A (en) Dot deviation detection method and dot deviation detecting device
US20090268179A1 (en) Method of aligning an exposure apparatus, method of exposing a photoresist film using the same and exposure apparatus for performing the method of exposing a photoresist film
JP7110383B2 (en) Alignment system and alignment seal
JP2008139741A (en) Substrate processing apparatus
EP3610271A1 (en) Apparatus and method for picking biological sample
JP2004069373A (en) Liquid crystal precision position controller
JP2015010910A (en) Detection method, detection device, biochip screening method, screening device and biochip
CN1782707A (en) Locating device and its locating method for biochip
KR920005446B1 (en) Telescope apparatus
US20020097371A1 (en) Position sensing device
US20090059243A1 (en) Method for determining the absolute thickness of non-transparent and transparent samples by means of confocal measurement technology
JP2003344014A (en) Precision alignment apparatus
JP2002014035A (en) Light measuring method and microplate
JP3873041B2 (en) Luminescent display reader
Weiss et al. Inkjet deposition system with computer vision-based calibration for targeting accuracy

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR US