JPH07104287B2 - Inspection method for minute defects of transparent object with curved surface - Google Patents

Inspection method for minute defects of transparent object with curved surface

Info

Publication number
JPH07104287B2
JPH07104287B2 JP5091876A JP9187693A JPH07104287B2 JP H07104287 B2 JPH07104287 B2 JP H07104287B2 JP 5091876 A JP5091876 A JP 5091876A JP 9187693 A JP9187693 A JP 9187693A JP H07104287 B2 JPH07104287 B2 JP H07104287B2
Authority
JP
Japan
Prior art keywords
transparent object
curved surface
lens
inspected
focus correction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP5091876A
Other languages
Japanese (ja)
Other versions
JPH06281588A (en
Inventor
征喜 栗林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Glass Co Ltd
Original Assignee
Toyo Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Glass Co Ltd filed Critical Toyo Glass Co Ltd
Priority to JP5091876A priority Critical patent/JPH07104287B2/en
Publication of JPH06281588A publication Critical patent/JPH06281588A/en
Publication of JPH07104287B2 publication Critical patent/JPH07104287B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Image Processing (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、曲面を有する透明物体
に微小欠点が存在するか否かを検査する、透明物体の微
小欠点検査方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of inspecting a transparent object having a curved surface for the presence of microdefects.

【0002】[0002]

【従来の技術】大量生産のために、研磨によらずに型に
よるプレス成形のみで目的の光学ガラスレンズを作る場
合、その成形過程で不純物混入や熱歪みなどによる微小
の欠点(例えば大きさが5μm〜100μm程度)が表
面に生ずることがあるが、このような微小欠点は肉眼で
は識別できない。従来、その検査は顕微鏡による目視観
察で行われているが、大量生産された光学ガラスレンズ
の全てについて目視検査を行うことは生産性から見て間
尺に合わないため、抜取検査とならざるを得ない。しか
し、これは品質管理上好ましいことではない。
2. Description of the Related Art For mass production, when a desired optical glass lens is manufactured only by press molding with a mold without polishing, minute defects (for example, size 5 μm to 100 μm) may occur on the surface, but such minute defects cannot be visually identified. Conventionally, the inspection is performed by visual observation with a microscope, but it is inconvenient to perform visual inspection for all mass-produced optical glass lenses from the viewpoint of productivity, so it must be a sampling inspection. I don't get it. However, this is not preferable for quality control.

【0003】そこで、自動検査を図るため、半導体の異
物検査で行われているようなレーザ光走査による検査方
法が考えられるが、光学ガラスレンズの場合、それ自体
のレンズ作用及び表面が曲面になっているため、レーザ
光走査による方法では困難である。
Therefore, in order to carry out an automatic inspection, an inspection method by laser light scanning, which is used in the inspection of foreign substances on a semiconductor, can be considered. However, in the case of an optical glass lens, its own lens action and the surface are curved. Therefore, it is difficult to use the method using laser light scanning.

【0004】[0004]

【発明が解決しようとする課題】本発明の目的は、光学
ガラスレンズのようなレンズ効果をもった曲面を有する
透明物体の微小欠点を、簡単な手法で精度良くしかも広
い面積について効率良く自動検査できるようにすること
にある。
SUMMARY OF THE INVENTION An object of the present invention is to automatically inspect a small defect of a transparent object having a curved surface having a lens effect such as an optical glass lens by a simple method with high precision and efficiently over a large area. To be able to do it.

【0005】[0005]

【課題を解決するための手段】本発明による方法では、
図1に示すように、レンズ効果を有する検査対象の透明
物体3の曲面3aの近傍に、その曲率とほぼ同じ曲率で
同等のレンズ効果を有する焦点補正レンズ6を設置し、
その反対側から透明物体3に拡散光を照射し、透明物体
3のレンズ効果を受けて透過した光を、透明物体3の近
傍で更に焦点補正レンズ6により同様のレンズ効果をも
って透過させ、その透過光を拡大光学系8で拡大して固
体撮像素子カメラ7で受光し、その画素出力をデジタル
処理して暗部を検出することにより微小欠点の有無を検
査する。
In the method according to the invention,
As shown in FIG. 1, in the vicinity of the curved surface 3a of the transparent object 3 to be inspected having a lens effect, a focus correction lens 6 having the same curvature and a similar lens effect is installed,
The transparent object 3 is irradiated with diffused light from the opposite side, and the light that has been transmitted by receiving the lens effect of the transparent object 3 is further transmitted in the vicinity of the transparent object 3 by the focus correction lens 6 with the same lens effect, and the transmitted light. Light is magnified by the magnifying optical system 8 and is received by the solid-state image sensor camera 7, and the pixel output thereof is digitally processed to detect a dark portion, thereby inspecting for the presence or absence of micro defects.

【0006】検査対象が光学ガラスレンズである場合に
は、欠点のないそれと同様の光学ガラスレンズを焦点補
正レンズとして使用すれば良い。
When the object to be inspected is an optical glass lens, an optical glass lens similar to that having no defect may be used as the focus correction lens.

【0007】固体撮像素子カメラ7からの画素出力の2
値化に当たっては、その閾値を曲面の曲率に応じて画素
ごとに変える。その曲率は、画素出力の走査方向に並ぶ
画素群の階調差から求めることができる。
Two pixel outputs from the solid-state image sensor camera 7
In the binarization, the threshold value is changed for each pixel according to the curvature of the curved surface. The curvature can be obtained from the gradation difference between pixel groups arranged in the scanning direction of pixel output.

【0008】[0008]

【作用】検査対象の透明物体の表面は曲面であるため、
その表面を固体撮像素子カメラでそのまま撮像した場
合、表面の中央部と周辺部では固体撮像素子カメラの受
光部中心までの距離が異なるため、曲面の中央部にカメ
ラの焦点を合わせると周辺部がぼける。従って、一度に
検査できる範囲は固体撮像素子カメラの被写界深度によ
り自ずと制限され、固体撮像素子カメラの被写界深度に
のみ依存した撮像では、微小欠点を検出しようとする
と、1個の透明物体の曲面の検査領域を分割してその部
分ごとに焦点調整しながら検査を繰り返さなければなら
ず、非常に能率が悪い。
[Function] Since the surface of the transparent object to be inspected is a curved surface,
When the surface is imaged as it is with a solid-state image sensor camera, the distance from the center of the surface to the center of the light-receiving part of the solid-state image sensor camera is different, so if you focus the camera on the center of the curved surface, the peripheral part will appear. Blur. Therefore, the range that can be inspected at one time is naturally limited by the depth of field of the solid-state image sensor, and in the imaging that depends only on the depth of field of the solid-state image sensor, if one attempts to detect a minute defect, one transparent The inspection area of the curved surface of the object must be divided and the inspection must be repeated while adjusting the focus for each part, which is very inefficient.

【0009】そこで、本発明では、検査対象の透明物体
のレンズ効果を受けて透過した光を、この透明物体の近
傍で更に焦点補正レンズにより同様のレンズ効果をもっ
て透過させる。ここで、焦点補正レンズを検査対象の透
明物体の曲面の近傍に設置するのは、透明物体からの透
過光がレンズ効果により屈折して方向を大きく変える前
に、焦点補正レンズに当てて透明物体からの透過光の全
てを焦点補正レンズに透過させることで、焦点補正を確
実に行うためである。また、焦点補正レンズとして、透
明物体の曲率とほぼ同じ曲率で同等のレンズ効果を有す
るレンズを使用するのは、焦点補正を効果的に行うため
である。すなわち、今、検査対象の透明物体が図1に示
すように光学ガラスレンズ(凸レンズ)3で、焦点補正
レンズ6もこれと同じ光学ガラスレンズ(但し、欠点は
無い)であるとする。固体撮像素子カメラ7の焦点は光
学ガラスレンズ3の曲面の中央に合わせるので、焦点補
正を実際に必要とする部分は光学ガラスレンズ3の曲面
の周辺部である。また、光学上、レンズを透過する光の
速度はレンズの屈折率に反比例し、同じレンズを透過し
た光でもカメラの撮像面に到達する速度の違いから、カ
メラの撮像面上において焦点が合ったところと合わない
ところとが生ずる。光学ガラスレンズ3の中央部を透過
した光は、光学ガラスレンズ3の近傍に設置された焦点
補正レンズ6においても、その中央部を屈折少なく透過
するので、焦点補正レンズ6を設置しても、中央部の透
過光については、カメラの撮像面上における焦点にほと
んど影響はない。しかし、光学ガラスレンズ3の周辺部
を透過した光が焦点補正レンズ6を透過するときは、光
学ガラスレンズ3を透過したときよりも中央部側へ寄っ
たところを、より大きく屈折するので、光の速度が遅く
なる度合いが大きく、中央部からの透過光との光の速度
の差が縮まる。このことにより、カメラの撮像面上にお
いて光学ガラスレンズ3の曲面の周辺部に対する焦点か
補正される。この場合、焦点補正レンズ6は光学ガラス
レンズ3と同じものであるため、焦点補正を平均に行う
ことができる。そして、このように焦点補正した像を拡
大してから固体撮像素子カメラで画素分割して撮像す
る。
Therefore, in the present invention, the light transmitted by the lens effect of the transparent object to be inspected is transmitted in the vicinity of the transparent object with the same lens effect by the focus correction lens. Here, the focus correction lens is installed in the vicinity of the curved surface of the transparent object to be inspected so that the transparent light is applied to the focus correction lens before the transmitted light from the transparent object is refracted by the lens effect to largely change the direction. This is because the focus correction is surely performed by transmitting all the transmitted light from the focus correction lens. Further, as the focus correction lens, a lens having substantially the same curvature as the curvature of the transparent object and having the same lens effect is used for effective focus correction. That is, it is assumed that the transparent object to be inspected is the optical glass lens (convex lens) 3 as shown in FIG. 1, and the focus correction lens 6 is the same optical glass lens (however, there is no defect). Since the focus of the solid-state imaging device camera 7 is set at the center of the curved surface of the optical glass lens 3, the portion where the focus correction is actually required is the peripheral portion of the curved surface of the optical glass lens 3. Optically, the speed of light that passes through the lens is inversely proportional to the refractive index of the lens, and even the light that passes through the same lens has a different focus speed on the imaging surface of the camera due to the difference in the speed at which it reaches the imaging surface of the camera. There are some places that do not match. The light transmitted through the central portion of the optical glass lens 3 is also transmitted through the central portion of the focus correction lens 6 near the optical glass lens 3 with little refraction, so that even if the focus correction lens 6 is installed, The transmitted light in the central portion has almost no influence on the focus on the image pickup surface of the camera. However, when the light transmitted through the peripheral portion of the optical glass lens 3 is transmitted through the focus correction lens 6, the light closer to the central portion is refracted more than the light transmitted through the optical glass lens 3 The speed at which the light is slowed is large, and the difference in the speed of the light transmitted from the central portion is reduced. This corrects the focus on the peripheral portion of the curved surface of the optical glass lens 3 on the imaging surface of the camera. In this case, since the focus correction lens 6 is the same as the optical glass lens 3, the focus correction can be performed evenly. Then, the focus-corrected image is magnified and then divided into pixels by the solid-state image sensor camera to be imaged.

【0010】検査対象の透明物体が曲面を有するため、
該曲面を固体撮像素子カメラで撮影した場合、その像が
曲面の曲率に応じたシェーディングを生ずる。つまり、
固体撮像素子カメラの光軸を曲面の中心に合わせた場
合、曲面が凸面であると中央部から周辺部に行くに従い
輝度が低くなる。その補償、つまりシェーディング補正
を光学的に行うことが考えられるが、光学系が複雑にな
るため、本発明では、固体撮像素子カメラの画素出力の
2値化閾値を、曲面の曲率に応じて画素ごとに変えると
いう画像処理によってシェーディング補正を行う。
Since the transparent object to be inspected has a curved surface,
When the curved surface is photographed by a solid-state image sensor, the image produces shading according to the curvature of the curved surface. That is,
When the optical axis of the solid-state imaging device camera is aligned with the center of the curved surface, if the curved surface is convex, the brightness decreases from the central portion to the peripheral portion. It is conceivable to optically perform the compensation, that is, the shading correction, but since the optical system becomes complicated, in the present invention, the binarization threshold value of the pixel output of the solid-state imaging device camera is set to the pixel according to the curvature of the curved surface. Shading correction is performed by image processing that is changed every time.

【0011】2値化処理前の画素出力は、曲面の位置の
違いによりその曲率に応じた階調差を示すので、その階
調差を比較することで、撮像された曲面の曲率を求める
ことができる。そして、その求めた曲率に従って2値化
閾値を調整する変動2値化方式を採れば、すなわち2値
化を行う良否判定レベルを固定するのではなく、シェー
ディング特性に沿うように変化させれば、透明物体の位
置ズレなどに影響されない欠点検査ができる。
Since the pixel output before the binarization process shows a gradation difference according to the curvature due to the difference in the position of the curved surface, the curvature of the imaged curved surface is obtained by comparing the gradation difference. You can Then, if a variable binarization method of adjusting the binarization threshold value according to the obtained curvature is adopted, that is, if the pass / fail judgment level for binarization is not fixed, but changed according to the shading characteristics, Defect inspection can be performed without being affected by the positional deviation of transparent objects.

【0012】[0012]

【実施例】次に、本発明の一実施例について説明する。
図1に本発明による方法を実施する装置の概要を示す。
この装置は検出・ハンドリング装置1と検査処理装置2
とに大別される。検出・ハンドリング装置1は、検査対
象の透明物体、例えばプレス成形された光学ガラスレン
ズ(凸レンズ)3を所定の検査位置にセットし、その検
査位置の下方より拡散光源4から拡散光を光学ガラスレ
ンズ3に照射する。この拡散光源4としては、例えば、
安定化電源5により高周波点灯する蛍光灯からの光を拡
散板で拡散する構造のものを使用する。
Next, an embodiment of the present invention will be described.
FIG. 1 shows an overview of a device for carrying out the method according to the invention.
This device is a detection / handling device 1 and an inspection processing device 2.
Is roughly divided into The detection / handling apparatus 1 sets a transparent object to be inspected, for example, a press-molded optical glass lens (convex lens) 3 at a predetermined inspection position, and diffuses light from the diffused light source 4 from below the inspection position. Irradiate 3. As the diffused light source 4, for example,
A structure having a diffusing plate for diffusing light from a fluorescent lamp that is turned on at a high frequency by the stabilized power supply 5 is used.

【0013】検査対象の光学ガラスレンズ3を透過した
光は、その上方の近傍に配置された焦点補正レンズ6を
透過し、更にその上方の拡大鏡付きCCDカメラ7の拡
大鏡(例えばズーム顕微鏡)8を通してCCDカメラ7
の二次元イメージセンサに入光する。すなわち、光学ガ
ラスレンズ3の被検査面である曲面(上面)3a を、焦
点補正レンズ6で焦点補正しかつ拡大鏡8で所望の倍率
に拡大してから、CCDカメラ7で撮像する。焦点補正
レンズ6には、検査対象の光学ガラスレンズ3と同じ光
学ガラスレンズのうちから欠点の無いものを選んで使用
すれば、専用のレンズを用意しなくともすむ。
The light transmitted through the optical glass lens 3 to be inspected is transmitted through the focus correction lens 6 disposed in the vicinity above the optical glass lens 3 and further above the magnifying glass of the CCD camera 7 with a magnifying glass (for example, a zoom microscope). CCD camera 7 through 8
Light enters the 2D image sensor. That is, the curved surface (upper surface) 3a which is the surface to be inspected of the optical glass lens 3 is subjected to focus correction by the focus correction lens 6 and magnified to a desired magnification by the magnifying glass 8, and then imaged by the CCD camera 7. As the focus correction lens 6, if an optical glass lens having no defects is selected from the same optical glass lenses as the optical glass lens 3 to be inspected and used, it is not necessary to prepare a dedicated lens.

【0014】検査処理装置2は、入力・演算・制御手段
であるパーソナルコンピュータ2aと画像処理回路9と
信号入出力回路10とモニタ切替器11とで構成され
る。この検査処理装置2は、検出・ハンドリング装置1
から信号入出力回路10へ入力される検査タイミング信
号に従って検査を行い、その検査の結果、欠点有りと判
定した場合には、信号入出力回路10から検出・ハンド
リング装置1へ排除信号を出力する。CCDカメラ7の
二次元イメージセンサからの画素出力は、検出・ハンド
リング装置1から信号入出力回路10へ入力される画像
取込タイミング信号に従い画像処理回路9へ取り込ま
れ、後述のように画像処理される。また、モニタ切替器
11を切り替えることで、画像処理しないCCDカメラ
7の撮影像をパーソナルコンピュータ2a のCRT12
に画面表示できるようにもなっている。なお、本例では
操作性などの面からパーソナルコンピュータを使用した
が、入力・演算・制御を他の手段で行っても良いこと勿
論である。
The inspection processing apparatus 2 comprises a personal computer 2a which is an input / arithmetic / control means, an image processing circuit 9, a signal input / output circuit 10 and a monitor switch 11. The inspection processing device 2 is a detection / handling device 1.
The inspection is performed according to the inspection timing signal input from the signal input / output circuit 10 to the detection / handling apparatus 1 when the inspection result indicates that there is a defect. The pixel output from the two-dimensional image sensor of the CCD camera 7 is taken into the image processing circuit 9 in accordance with the image taking timing signal inputted from the detection / handling device 1 to the signal input / output circuit 10, and is subjected to image processing as described later. It Further, by switching the monitor switching device 11, the captured image of the CCD camera 7 which is not image-processed is displayed on the CRT 12 of the personal computer 2a.
It can also be displayed on the screen. Although the personal computer is used in this example in terms of operability, it goes without saying that the input / calculation / control may be performed by other means.

【0015】検査対象である光学ガラスレンズ3が凸レ
ンズで、その被検査面3a が図2に示すように球面であ
る場合、この球面をCCDカメラ7で直接撮像すると、
この球面上の欠点の検査可能範囲φ1 は該カメラ7自体
の被写界深度D1によって決まってしまう。今、検査目
標範囲を検査可能範囲φ1 より広いφ2 (φ1 >φ2)
とした場合、この検査目標範囲φ2 内の欠点を一度に検
査しようとすると、CCDカメラ7自体の被写界深度D
1に依存したのでは、φ1 からφ2 の間の部分がぼけて
しまい、この範囲の欠点を検出できない。
When the optical glass lens 3 to be inspected is a convex lens and the surface 3a to be inspected is a spherical surface as shown in FIG. 2, when this spherical surface is directly imaged by the CCD camera 7,
The inspectable range φ1 of the defect on the spherical surface is determined by the depth of field D1 of the camera 7 itself. Now, the inspection target range is wider than the inspectable range φ1 φ2 (φ1> φ2)
In this case, if the defects within the inspection target range φ2 are to be inspected at one time, the depth of field D of the CCD camera 7 itself
If it depends on 1, the portion between φ1 and φ2 will be blurred, and defects in this range cannot be detected.

【0016】ところが、本発明では、光学ガラスレンズ
3の被検査面3a の近傍に焦点補正レンズ6を設置して
焦点補正しているため、これよって被写界深度をD1か
らD2へ拡げることができるので、検査目標範囲φ2 内
の欠点を一度に検査することが可能となる。
However, in the present invention, since the focus correction lens 6 is installed near the surface 3a to be inspected of the optical glass lens 3 to correct the focus, the depth of field can be expanded from D1 to D2. As a result, defects within the inspection target range φ2 can be inspected at once.

【0017】図3は、焦点補正レンズ6を使用した場合
と、使用しない場合との被写界深度の差を実験により調
べた測定結果のグラフである。この実験では、検査対象
の光学ガラスレンズ3として、直径が約12mm、厚さ
が約6.7mm、両面が曲率の異なる球面で、その一方
の球面に50μmほどの異物が付いたプレス成形ガラス
レンズをサンプルとし、またこれと同じように成形した
欠点の無いプレス成形ガラスレンズをもって焦点補正レ
ンズ6とした。そして、拡大鏡付CCDカメラ7の位置
を被検査面3a に向かって0.5mmずつ移動させなが
ら、被検査面3a におけるS/N比を調べた。その結
果、焦点補正レンズ6が無い場合には、S/N比が1.
5以下となるCCDカメラ7の移動距離は約1.5mm
であったのに対し、焦点補正レンズ6が有る場合には、
S/N比が1.5以下となるCCDカメラ7の移動距離
は約3mmと倍増した。
FIG. 3 is a graph of measurement results obtained by experimentally examining the difference in depth of field between when the focus correction lens 6 is used and when the focus correction lens 6 is not used. In this experiment, the optical glass lens 3 to be inspected is a press-molded glass lens having a diameter of about 12 mm, a thickness of about 6.7 mm, and spherical surfaces with different curvatures on both sides, and one of the spherical surfaces having a foreign substance of about 50 μm. Was used as a sample, and a press-molded glass lens molded in a similar manner to this was used as the focus correction lens 6. Then, the S / N ratio on the surface 3a to be inspected was examined while moving the position of the CCD camera 7 with the magnifying glass toward the surface 3a to be inspected by 0.5 mm. As a result, when the focus correction lens 6 is not provided, the S / N ratio is 1.
The movement distance of the CCD camera 7 that is 5 or less is about 1.5 mm
On the other hand, when the focus correction lens 6 is provided,
The moving distance of the CCD camera 7 having an S / N ratio of 1.5 or less is doubled to about 3 mm.

【0018】図4は、上記サンプルと同様の光学ガラス
レンズ3の一方の球面を、倍率25倍に設定した拡大鏡
8を通してCCDカメラ7で撮像してCRT12上に映
し出した図で、矢印で示す点が約25μmほどの大きさ
の欠点を示す。この欠点を図5に示すように横切る線に
沿って、CCDカメラ7の二次元イメージセンサからの
画素出力を走査し、その輝度分布を計測したところ図6
の如くであった。この図から分かるように、欠点部分は
暗部となって輝度階調値が急激に低下し、また光学ガラ
スレンズ3の曲面(凸面)3a の中央部から周辺部へ行
くに従い曲面の曲率に応じて輝度階調値が低下(シェー
ディング)している。図7は欠点を中心としてその周辺
部分の輝度分布を拡大したものである。
FIG. 4 is a diagram in which one spherical surface of the optical glass lens 3 similar to the above sample is imaged by the CCD camera 7 through the magnifying glass 8 set at a magnification of 25 and projected on the CRT 12, and is indicated by an arrow. The dots show defects with a size of about 25 μm. As shown in FIG. 5, the pixel output from the two-dimensional image sensor of the CCD camera 7 was scanned along the line crossing this defect, and the luminance distribution was measured.
It was like. As can be seen from this figure, the defect portion becomes a dark portion and the brightness gradation value sharply decreases, and as the curved surface (convex surface) 3a of the optical glass lens 3 moves from the central portion to the peripheral portion, the curvature of the curved surface changes according to the curvature. The brightness gradation value is decreasing (shading). FIG. 7 is an enlarged view of the luminance distribution in the peripheral portion around the defect.

【0019】そこで、本発明では、取り込んだ画素出力
を画像処理回路9で2値化処理するに当たり、画素出力
の走査方向に並ぶ画素群の階調差から曲面3a の曲率を
求め、その曲率に従って2値化閾値を設定する。すなわ
ち、図7において輝度分布から曲面の線形LNを求め、
この線形LNを形成する輝度より所定レベル低い線に沿
って2値化閾値SHを設定することでシェーディング補
正を行う。そして、階調値がこの2値化閾値SH以下の
画素は欠点画素とし、設定面積中における欠点画素数が
所定個数以上のとき欠点有りと判定し、排除信号を出力
する。
Therefore, in the present invention, when the captured pixel output is binarized by the image processing circuit 9, the curvature of the curved surface 3a is obtained from the gradation difference of the pixel groups arranged in the scanning direction of the pixel output, and according to the curvature. Set a binarization threshold. That is, in FIG. 7, the curved surface linear LN is obtained from the luminance distribution,
The shading correction is performed by setting the binarization threshold value SH along a line that is lower than the luminance forming the linear LN by a predetermined level. Then, a pixel whose gradation value is equal to or less than this binarization threshold value SH is a defective pixel, and when the number of defective pixels in the set area is a predetermined number or more, it is determined that there is a defect and an exclusion signal is output.

【0020】以上、プレス成形された光学ガラスレンズ
を検査対象とした実施例について説明したが、本発明は
このようなレンズに限らず、曲面を有する他の光学レン
ズやガラス製品、又は精密加工された曲面を有する透明
プラスチック製品の微小欠点の検査に広範に適用でき
る。また、上記実施例では変動2値化方式を採ったが、
固定2値化方式としても良い。更に、固体撮像素子カメ
ラ以外の光電変換手段を用いても良く、またその出力を
アナログ処理して欠点検出しても良く、光源も拡散光源
に限らない。
Although the examples in which the press-molded optical glass lens is the object of inspection have been described above, the present invention is not limited to such a lens, and other optical lenses having curved surfaces, glass products, or precision-processed. It can be widely applied to the inspection of minute defects in transparent plastic products having curved surfaces. Further, although the variable binarization method is adopted in the above embodiment,
A fixed binarization method may be used. Furthermore, photoelectric conversion means other than the solid-state image sensor camera may be used, and the output thereof may be subjected to analog processing to detect defects, and the light source is not limited to the diffused light source.

【0021】[0021]

【発明の効果】以上述べたとおり本発明によれば次のよ
うな効果がある。 焦点補正レンズを検査対象の透明物体の曲面の近傍
に設置し、透明物体からの透過光がレンズ効果により屈
折して方向を大きく変える前に、焦点補正レンズに当て
て透明物体からの透過光の全てを焦点補正レンズに透過
させるので、焦点補正を確実に行うことができる。 焦点補正レンズとして、透明物体の曲率とほぼ同じ
曲率で同等のレンズ効果を有するレンズを使用するの
で、焦点補正を効果的に行うことができるとともに、広
い面積について平均した焦点補正を行える。 上記のように焦点補正した像を拡大してから固体撮
像素子カメラで画素分割して撮像するので、微小欠点を
精度良くしかも広い面積について効率良く検出できる。
As described above, the present invention has the following effects. A focus correction lens is installed near the curved surface of the transparent object to be inspected, and before the transmitted light from the transparent object is refracted by the lens effect to change the direction significantly, Since all the light is transmitted through the focus correction lens, focus correction can be surely performed. As the focus correction lens, a lens having the same curvature as that of the transparent object and having the same lens effect is used, so that the focus correction can be effectively performed, and the focus correction averaged over a wide area can be performed. Since the image whose focus has been corrected as described above is enlarged and then pixel-divided by the solid-state image pickup device camera to pick up an image, a minute defect can be detected accurately and efficiently over a large area.

【0022】請求項2のように、検査対象が光学ガラス
レンズである場合、欠点のないそれと同様の光学ガラス
レンズを焦点補正レンズとして使用すれば、専用の焦点
補正レンズを別に用意しなくともすむので、経済的であ
るとともに、焦点補正を適切に行える。
When the object to be inspected is an optical glass lens as in claim 2, if an optical glass lens similar to that having no defect is used as the focus correction lens, it is not necessary to separately prepare a dedicated focus correction lens. Therefore, it is economical and the focus can be properly corrected.

【0023】請求項3のように、画素出力の2値化閾値
を、曲面の曲率に応じて画素ごとに変えれば、シェーデ
ィング補正を光学系によらずに画像処理により簡単に行
える。
If the binarization threshold value of the pixel output is changed for each pixel according to the curvature of the curved surface as in claim 3, shading correction can be easily performed by image processing without using an optical system.

【0024】請求項4のように、画素出力の走査方向に
並ぶ画素群の階調差から曲面の曲率を求め、その曲率に
従って2値化閾値を調整する変動2値化方式を採れば、
検査対象の位置ズレなどに影響されない欠点検査ができ
る。
According to the fourth aspect, if the variable binarization method is adopted in which the curvature of the curved surface is obtained from the gradation difference between the pixel groups arranged in the pixel output scanning direction and the binarization threshold value is adjusted according to the curvature,
Defect inspection can be performed without being affected by displacement of the inspection target.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の方法を実施する装置の概要構成図であ
る。
FIG. 1 is a schematic block diagram of an apparatus for carrying out the method of the present invention.

【図2】検査対象の光学ガラスレンズの曲面に対する検
査可能範囲がCCDカメラの被写界深度により決まるこ
とを説明する図である。
FIG. 2 is a diagram illustrating that an inspectable range for a curved surface of an optical glass lens to be inspected is determined by a depth of field of a CCD camera.

【図3】焦点補正レンズを使用した場合と、使用しない
場合との被写界深度の差を実験により調べた測定結果の
グラフである。
FIG. 3 is a graph of measurement results obtained by experimentally examining a difference in depth of field between when a focus correction lens is used and when the focus correction lens is not used.

【図4】欠点のある光学ガラスレンズの球面を拡大鏡付
きCCDカメラで撮像してCRT上に映し出した図であ
る。
FIG. 4 is a diagram in which a spherical surface of an optical glass lens having a defect is imaged by a CCD camera with a magnifying glass and displayed on a CRT.

【図5】同上において欠点を横切る線に沿って画素出力
を走査することを示す図である。
FIG. 5 is a diagram showing scanning pixel outputs along a line that crosses a defect as above.

【図6】同走査により輝度分布を計測したグラフであ
る。
FIG. 6 is a graph in which a luminance distribution is measured by the same scanning.

【図7】図6の一部を拡大して2値化閾値の設定手法を
説明する図である。
FIG. 7 is a diagram for explaining a method of setting a binarization threshold value by enlarging a part of FIG. 6;

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】レンズ効果を有する検査対象の透明物体の
曲面の近傍に、その曲率とほぼ同じ曲率で同等のレンズ
効果を有する焦点補正レンズを設置し、その反対側から
透明物体に拡散光を照射し、透明物体のレンズ効果を受
けて透過した光を、透明物体の近傍で更に焦点補正レン
ズにより同様のレンズ効果をもって透過させ、その透過
光を拡大光学系で拡大して固体撮像素子カメラで受光
し、その画素出力をデジタル処理して暗部を検出するこ
とにより微小欠点の有無を検査することを特徴とする、
曲面を有する透明物体の微小欠点検査方法。
1. A focus correction lens having the same curvature and a similar lens effect is installed in the vicinity of a curved surface of a transparent object to be inspected having a lens effect, and diffused light is transmitted from the opposite side to the transparent object. Light radiated and transmitted by the lens effect of the transparent object is further transmitted in the vicinity of the transparent object with a similar lens effect by the focus correction lens, and the transmitted light is magnified by the magnifying optical system to be used by the solid-state image sensor camera. It is characterized by inspecting the presence or absence of micro defects by receiving light and digitally processing the pixel output to detect dark areas.
A method for inspecting minute defects in a transparent object having a curved surface.
【請求項2】検査対象の透明物体が光学ガラスレンズで
ある場合、焦点補正レンズとして欠点の無い同じ光学ガ
ラスレンズを使用することを特徴とする請求項1に記載
の、曲面を有する透明物体の微小欠点検査方法。
2. When the transparent object to be inspected is an optical glass lens, the same optical glass lens having no defects is used as the focus correction lens, and the transparent object having a curved surface according to claim 1 is used. Micro defect inspection method.
【請求項3】固体撮像素子カメラの画素出力の2値化閾
値を、検査対象の透明物体の曲面の曲率に応じて画素ご
とに変えることを特徴とする請求項1又は2に記載の、
曲面を有する透明物体の微小欠点検査方法。
3. The binarization threshold value of the pixel output of the solid-state imaging device camera is changed for each pixel according to the curvature of the curved surface of the transparent object to be inspected.
A method for inspecting minute defects in a transparent object having a curved surface.
【請求項4】画素出力の操作方向に並ぶ画素群の階調値
から被検査面である曲面の曲率を求め、その曲率に従っ
て2値化閾値を調整することを特徴とする請求項3に記
載の、曲面を有する透明物体の微小欠点検査方法。
4. The curvature of a curved surface, which is the surface to be inspected, is calculated from the gradation values of the pixel groups arranged in the operation direction of pixel output, and the binarization threshold value is adjusted according to the curvature. The method for inspecting minute defects of a transparent object having a curved surface.
JP5091876A 1993-03-29 1993-03-29 Inspection method for minute defects of transparent object with curved surface Expired - Lifetime JPH07104287B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5091876A JPH07104287B2 (en) 1993-03-29 1993-03-29 Inspection method for minute defects of transparent object with curved surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5091876A JPH07104287B2 (en) 1993-03-29 1993-03-29 Inspection method for minute defects of transparent object with curved surface

Publications (2)

Publication Number Publication Date
JPH06281588A JPH06281588A (en) 1994-10-07
JPH07104287B2 true JPH07104287B2 (en) 1995-11-13

Family

ID=14038767

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5091876A Expired - Lifetime JPH07104287B2 (en) 1993-03-29 1993-03-29 Inspection method for minute defects of transparent object with curved surface

Country Status (1)

Country Link
JP (1) JPH07104287B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6047082A (en) * 1997-11-14 2000-04-04 Wesley Jessen Corporation Automatic lens inspection system
US6089830A (en) * 1998-02-02 2000-07-18 Ford Global Technologies, Inc. Multi-stage compressor with continuous capacity control
US6079952A (en) * 1998-02-02 2000-06-27 Ford Global Technologies, Inc. Continuous capacity control for a multi-stage compressor
JP2002216136A (en) * 2001-01-23 2002-08-02 Sony Corp Distance calculating method and imaging system
JP4693581B2 (en) * 2005-10-11 2011-06-01 株式会社日立ハイテクノロジーズ Substrate inspection apparatus and substrate inspection method
CN114023249A (en) * 2021-10-29 2022-02-08 卡莱特云科技股份有限公司 LED display screen image light point extraction method and device and LED display screen correction method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63163137A (en) * 1986-12-25 1988-07-06 Hitachi Electronics Eng Co Ltd Lens surface defect inspecting device
JPH0740165Y2 (en) * 1988-07-25 1995-09-13 大日本印刷株式会社 Defect inspection equipment
JP2878763B2 (en) * 1990-03-12 1999-04-05 富士通株式会社 Appearance inspection device

Also Published As

Publication number Publication date
JPH06281588A (en) 1994-10-07

Similar Documents

Publication Publication Date Title
US6011620A (en) Method and apparatus for the automatic inspection of optically transmissive planar objects
US7907270B2 (en) Inspection apparatus and method, and production method for pattern substrates
US8040502B2 (en) Optical inspection of flat media using direct image technology
JPH0736001B2 (en) Bottle defect inspection method
CN109827974B (en) Resin optical filter film crack detection device and detection method
CN105791691A (en) Automatic focusing device and real-time automatic focusing method thereof
JP2008198966A (en) Wafer defect inspection device
JPH07104287B2 (en) Inspection method for minute defects of transparent object with curved surface
KR20090107314A (en) Apparatus for inspecting surface and method for inspecting surface
JPH1062354A (en) Device and method of inspecting transparent plate for defect
CN205622736U (en) Automatic focusing arrangement
CN111198190A (en) Optical detection system
JPH11248643A (en) Detection device for foreign matter in transparent film
JP2922250B2 (en) Shape measuring device
JP2004212353A (en) Optical inspection apparatus
KR102528464B1 (en) Vision Inspecting Apparatus
CN104677918B (en) Detector for CCD image sensor of display screen backlight plate
KR100243219B1 (en) Method for inspecting the light-receiving face of a charge coupled device
JPH03225264A (en) Method for inspecting inside of container
JP2007010640A (en) Surface defect inspection device
JPH11183151A (en) Transparent sheet inspecting equipment
JPH05175312A (en) Wire bonding inspecting apparatus
JPH0731135B2 (en) Defect detection device for bottle body
JPH0412256A (en) Mirror inspecting device
JPH01313743A (en) Method for inspecting colored periodic pattern