JPH0920990A - Titanium material for electrodeposition drum for producing electrodeposited metal foil - Google Patents

Titanium material for electrodeposition drum for producing electrodeposited metal foil

Info

Publication number
JPH0920990A
JPH0920990A JP19111195A JP19111195A JPH0920990A JP H0920990 A JPH0920990 A JP H0920990A JP 19111195 A JP19111195 A JP 19111195A JP 19111195 A JP19111195 A JP 19111195A JP H0920990 A JPH0920990 A JP H0920990A
Authority
JP
Japan
Prior art keywords
titanium
hardness
titanium material
less
hardness distribution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19111195A
Other languages
Japanese (ja)
Other versions
JP2964920B2 (en
Inventor
Shigeji Ishiyama
成志 石山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP19111195A priority Critical patent/JP2964920B2/en
Priority to US08/675,482 priority patent/US5712046A/en
Publication of JPH0920990A publication Critical patent/JPH0920990A/en
Application granted granted Critical
Publication of JP2964920B2 publication Critical patent/JP2964920B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Metal Rolling (AREA)

Abstract

PROBLEM TO BE SOLVED: To stably and surely obtain the material in which any irregular surface polishing marks are inhibited from being generated by specifying thickness of the material and the hardness distribution of its surface that is polished and finished to have a specified roughness. SOLUTION: The thickness of the material is adjusted to 4 to 30mm and in the surface of the material, that is polished and finished so as to have a <=0.3μm average roughness (Ra), the maximum and minimum of Vickers hardness measured values with a <=1kg load at positions of points of >=10, which are selected at intervals of 0.3 to 1mm in an arbitrary direction on the surface are adjusted to <=10. The titanium material having this hardness distribution is obtained by cooling it at an about >=1,000 deg.C/hr cooling rate so as to pass the temp. through the β-transformation point in the process from the casting of a molten titanium material into an ingot to the forming of the ingot into a platelike or ringlike shape and thereafter, performing working treatment, etc., of the resulting formed material in a temp. region lower than the β-transformation point. Thus, the objective titanium material in which even very slight visual irregular polishing marks such as simple bright and dark marks are inhibited from being generated can be obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、電解析出金属箔(電
析箔)の製造に用いられる電着ドラム用チタン材に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a titanium material for an electrodeposition drum used for producing electrolytically deposited metal foil (electrodeposited foil).

【0002】[0002]

【従来技術とその課題】近年、電子機器類の目ざましい
進展に伴って電析箔の需要が急増しており、特に銅箔の
需要は益々増大する兆しを見せている。ところで、この
ような用途に供せられる銅箔等の電析箔は、現在、生産
性等の面からロ−ル状の電解析出用電極(電着ドラム)
に析出させて製造する手段が一般的に採用されている
が、この電着ドラムは電解液にさらされる環境で用いら
れることから十分な耐食性が必要であり、そのため通常
は外表面に高耐食性導電材料であるチタン製リングを複
合させたものが適用されている。
2. Description of the Related Art In recent years, the demand for electrodeposited foils has rapidly increased with the remarkable progress of electronic devices, and the demand for copper foils in particular has shown signs of increasing. By the way, electrodeposited foils such as copper foils used for such applications are currently in the form of roll-shaped electrolytic deposition electrodes (electrodeposition drums) from the viewpoint of productivity and the like.
Generally, the method of depositing on the electrode is used, but this electrodeposition drum is required to have sufficient corrosion resistance because it is used in the environment where it is exposed to the electrolytic solution. A composite of titanium rings, which is the material, is applied.

【0003】このチタン製リングは a) 板状チタン材を所定の外径となるように丸めてその
突き合わせ端を溶接継ぎする, b) 鋳塊の鍛造によって得られたチタンの孔あき素材を
リングロ−リングミルによって所定の外径となるよう環
状圧延する, という2つの方法の何れかによって作成されるのが一般
的であり、電析箔製造用の電着ドラムは、このようにし
て作成されたチタン製リングを炭素鋼等のインナ−ドラ
ムに焼き嵌めして組み立てられ、表面研磨工程を経て電
析箔の製造に供される。
The titanium ring is a) a plate-shaped titanium material is rolled to have a predetermined outer diameter, and the abutting ends thereof are welded together. B) A titanium perforated material obtained by forging an ingot is used as a ring ring. -It is generally prepared by one of two methods of ring rolling to a predetermined outer diameter by a ring mill, and an electrodeposition drum for producing electrodeposited foil is prepared in this way. The titanium ring is assembled by shrink fitting on an inner drum made of carbon steel or the like, and subjected to a surface polishing step to be used for producing an electrodeposited foil.

【0004】ところが、電析箔の製造に供するために上
述の如くチタン製リングの表面を研磨すると、研磨仕上
げされたチタン製リング表面には大なり小なり目視的に
不規則な研磨模様(明暗模様)が出現する傾向があり、
この研磨模様が電析箔にプリントされてしまうという問
題があった。
However, when the surface of the titanium ring is polished as described above for use in the production of electrodeposited foil, the surface of the titanium ring that has been polished to a greater or lesser degree has a visually irregular polishing pattern (brightness and darkness). Pattern) tends to appear,
There was a problem that this polishing pattern was printed on the electrodeposited foil.

【0005】なお、チタン材の組織的不均一に起因して
比較的顕著な不規則研磨模様が現れることは特開昭60
−9866号公報にも記述されているように良く知られ
ており、従って、これまでも電着ドラム用チタン製リン
グ材にはマクロ組織やミクロ組織が極力均一で微細なも
のが選ばれて研磨模様の改善が図られてきた。そのた
め、従来のチタンリングも、目視的研磨模様は皆無では
ないものの極めて軽微であり、電着ドラム用として実用
的に十分満足できるものとして使用されてきた。
Incidentally, it is known that a relatively remarkable irregular polishing pattern appears due to the structural nonuniformity of the titanium material.
It is well known as described in Japanese Patent Publication No. 9866, and therefore, a titanium ring material for an electrodeposition drum has been selected so far that a macro structure or a micro structure is as uniform and fine as possible. The pattern has been improved. For this reason, the conventional titanium ring, though not completely free of visual polishing patterns, is extremely slight and has been used as a practically satisfactory one for electrodeposition drums.

【0006】しかるに、最近では製品品質に対する需要
者の目は一段と厳しくなってきており、従来は問題とさ
れることがなかった“極めて軽微で僅かに目視される程
度の単なる明暗模様”でも電着ドラム用チタン製リング
材としての価値評価を大きく落とす要因になる懸念が出
始めてきた。
Recently, however, the consumers' eyes on the product quality have become more severe, and even the "extremely slight and slightly visible light-dark pattern" which has not been a problem in the past, is electrodeposited. There is a growing concern that it will cause a significant decline in the value of titanium ring materials for drums.

【0007】このようなことから、本発明が目的とした
のは、表面研磨を行っても前述したような“単なる明暗
模様程度の極めて軽微な目視的不規則研磨模様”すら生
じない電着ドラム用チタンリング材を提供することであ
る。
In view of the above, the object of the present invention is to provide an electrodeposition drum which does not even generate the above-mentioned "very slight visually irregular polishing pattern such as a mere light and dark pattern" even if the surface is polished. It is to provide a titanium ring material for use.

【0008】[0008]

【課題を解決するための手段】本発明者は、上記目的を
達成すべく鋭意研究を行った結果、次に示すような一連
の知見を得ることができた。 (a) 再結晶焼鈍等の組織的な調整によってマクロ組織や
ミクロ組織を十分に均一微細化しても、電着ドラム用チ
タンリング材には表面研磨を施すと極く軽微な目視的不
規則研磨模様が生じることがあるが、この目視的研磨模
様は材料表面における光沢度の違いから生じる光沢模様
であり、表面研磨の際にこのような模様が生じる理由
は、チタン材に“六方晶のC軸方向が板面垂直に近い方
向に向いた結晶粒の集合体”が存在していて、この部位
が他の部位に比べて硬いことに起因して研磨性に僅かな
差が生じる点にある,
As a result of intensive studies to achieve the above object, the present inventor was able to obtain the following series of findings. (a) Even if the macrostructure and microstructure are made sufficiently uniform and fine by structural adjustment such as recrystallization annealing, the titanium ring material for electrodeposition drum is subjected to surface polishing, resulting in very slight visual irregular polishing. A pattern may occur, but this visually polished pattern is a glossy pattern caused by the difference in glossiness on the surface of the material. The reason why such a pattern occurs during surface polishing is that "hexagonal C There is an aggregate of crystal grains whose axial direction is close to the direction perpendicular to the plate surface, and there is a slight difference in polishability due to the fact that this part is harder than other parts. ,

【0009】(b) しかし、様々な加工履歴,熱履歴を経
た種々のチタン材について一定条件下で表面の硬さ分布
を測定すると、“上記目視的研磨模様発生の有無”と
“硬さ分布”との間には明瞭な関係があり、硬さ分布に
おける最大硬さと最小硬さの差が10以下では実質的に
研磨模様は生じなくなる。 (c) しかも、硬さ分布における最大硬さと最小硬さの差
が10以下のチタン材を安定・確実に実現することがで
きる処理方法が存在する。
(B) However, when the surface hardness distributions of various titanium materials that have undergone various processing and heat histories are measured under certain conditions, "the presence or absence of the above-mentioned visual polishing pattern" and "hardness distribution" are measured. , And there is a clear relationship with ", and when the difference between the maximum hardness and the minimum hardness in the hardness distribution is 10 or less, the polishing pattern is substantially absent. (c) Moreover, there is a treatment method capable of stably and reliably realizing a titanium material having a difference between the maximum hardness and the minimum hardness in the hardness distribution of 10 or less.

【0010】本発明は、上記知見事項等に基づいてなさ
れたものであり、「電析箔製造のための電着ドラム用チ
タン材を、 厚さが4〜30mmで、 かつ表面を平均粗さ(R
a):0.3μm以下にまで研磨仕上げしたときの“該表面の
任意方向に0.3〜1mmピッチで10点以上の位置におい
て実施した荷重1kg以下でのビッカ−ス硬さ測定値”の
最大硬さと最小硬さの差が10以下である如くに構成す
ることにより、 極く軽微な不規則表面研磨模様すら生じ
ない良好な表面性状を付与し得るようにした点」に大き
な特徴を有している。
The present invention has been made on the basis of the above findings and the like. "A titanium material for an electrodeposition drum for producing an electrodeposited foil has a thickness of 4 to 30 mm and an average surface roughness. (R
a): the maximum hardness of "Vickers hardness measurement value under a load of 1 kg or less carried out at a position of 10 points or more at 0.3 to 1 mm pitch in an arbitrary direction on the surface" when polished to 0.3 μm or less By configuring the difference in the minimum hardness to be 10 or less, it is possible to impart a good surface property that does not cause even a very slight irregular surface polishing pattern ”. .

【0011】なお、本発明でいうチタンとは、JIS規
格のH4600に規定される工業用純チタンのほか、数
重量%又はそれ以下のPd,Ru,Pt,Ta,Ni,Co,Mo,W
等を添加したα型チタン合金を総称したものであり、チ
タン材は板状であってもリング状であっても構わない。
The titanium referred to in the present invention means not only industrial pure titanium specified in JIS H4600 but also Pd, Ru, Pt, Ta, Ni, Co, Mo and W of several wt% or less.
This is a general term for α-type titanium alloys added with, and the titanium material may be plate-shaped or ring-shaped.

【0012】[0012]

【作用】続いて、本発明に係る電着ドラム用チタン材の
厚さ,表面粗度並びに表面の硬さ分布を前記の如くに限
定した理由を、その作用と共に説明する。まず、チタン
材の厚さを4〜30mmと限定した理由は、その厚さが4
mm未満であると発熱等のために電析時に十分な電流密度
を与えられないので効率的な電析を行うことができず、
一方、厚さが30mmを超えると十分な加工度が取れない
ために組織不均一に基づく不均一研磨模様の防止が困難
となり、従って何れも電着ドラム材として不適切である
と判断されたからである。
Next, the reason why the thickness, surface roughness and surface hardness distribution of the titanium material for electrodeposition drum according to the present invention are limited as described above will be explained together with its operation. First, the reason for limiting the thickness of the titanium material to 4 to 30 mm is that the thickness is 4 mm.
If it is less than mm, sufficient current density cannot be given during electrodeposition due to heat generation, etc., and efficient electrodeposition cannot be performed.
On the other hand, if the thickness exceeds 30 mm, sufficient workability cannot be obtained, and it becomes difficult to prevent the uneven polishing pattern due to the uneven structure, and therefore it is judged that they are all unsuitable as electrodeposition drum materials. is there.

【0013】次に、本発明に係る電着ドラム用チタン材
表面の硬さ分布については、表面を平均粗さ(Ra):0.3μ
m以下にまで研磨仕上げした条件下で、“該表面の任意
方向に 0.3〜1mmピッチで10点以上の位置において実
施した荷重1kg以下でのビッカ−ス硬さ測定値”の最大
硬さと最小硬さの差が10以下となるように調整される
が、これは、前記“最大硬さと最小硬さの差が10以
下”となって初めて極く軽微な表面の不規則明暗研磨模
様までもが安定して抑制され、実質的に研磨模様は生じ
なくなるからである。
Next, regarding the hardness distribution of the titanium material for an electrodeposition drum according to the present invention, the surface has an average roughness (Ra): 0.3 μm.
Maximum and minimum hardness of "Vickers hardness measurement value under load of 1 kg or less carried out at 10 or more points at 0.3 to 1 mm pitch on the surface in an arbitrary direction on the surface" The difference in hardness is adjusted to be 10 or less, but this is only when the difference between the maximum hardness and the minimum hardness is 10 or less, and even an extremely slight irregular light-dark polishing pattern on the surface is generated. This is because it is stably suppressed and a polishing pattern is substantially not generated.

【0014】なお、表面硬さ分布の測定条件を上記の如
くに規定したのは次の理由による。即ち、チタン材の表
面粗度が平均粗さ(Ra)で 0.3μmを超えると粗さの影響
で測定誤差が大きくなり、また測定点のピッチが 0.3mm
未満ではビッカ−ス硬さ測定時の圧痕同士が重なったり
圧痕同士が接近しすぎて加工硬化の影響が出たりするた
め正確な測定ができず、一方、測定点のピッチが1mmを
超えたり、あるいは測定点(測定位置)数が10未満で
あると硬い前記“結晶粒の集合体”の部位を避けて測定
してしまう確立が高まるため、やはり正確な測定ができ
ないからである。また、測定荷重が1kgを超えると圧痕
が大きくなり過ぎて硬い“結晶粒の集合体”の部位と他
の部位を同時に測定してしまう結果となりがちで、この
場合も硬さ分布の正確な測定ができなくなる。
The conditions for measuring the surface hardness distribution are defined as above for the following reason. That is, when the surface roughness of the titanium material exceeds 0.3 μm in average roughness (Ra), the measurement error increases due to the influence of the roughness, and the pitch of the measurement points is 0.3 mm.
If it is less than 1, the indentations during Vickers hardness measurement may overlap with each other or the indentations may be too close to each other, resulting in work hardening, resulting in inaccurate measurement. On the other hand, the pitch of measurement points may exceed 1 mm, Alternatively, if the number of measurement points (measurement positions) is less than 10, the probability of avoiding the hard “aggregate of crystal grains” is increased, and accurate measurement cannot be performed. In addition, if the measured load exceeds 1 kg, the indentation will become too large, and it will tend to result in the simultaneous measurement of the hard “grain aggregate” part and other parts. In this case as well, the hardness distribution can be accurately measured. Can not be.

【0015】ところで、上記硬さ分布測定方法により求
めた最大硬さと最小硬さの差が10以下となる“硬さ分
布の極めて均一な本発明に係るチタン材”は、「鋳塊の
鋳込みから板状あるいはリング状チタン材を製造する工
程の間に1000℃/h以上の冷却速度でβ変態点(添加
元素の存在や種別によっても異なるが通常は950〜8
50℃)を通過させる冷却工程を確保し、 該冷却工程後
の処理(加工処理や熱処理)をβ変態点未満の温度域で
実施する方法」により安定して製造することができる。
By the way, the "titanium material according to the present invention having an extremely uniform hardness distribution" in which the difference between the maximum hardness and the minimum hardness determined by the above-mentioned hardness distribution measuring method is 10 or less is "from the casting of the ingot. During the process of manufacturing the plate-shaped or ring-shaped titanium material, the β transformation point (depending on the existence and type of the additional element, usually 950 to 8 at a cooling rate of 1000 ° C / h or more)
(50 ° C.) is ensured and a treatment (processing or heat treatment) after the cooling step is carried out in a temperature range below the β transformation point. ”

【0016】例えば、鋳塊から鍛造によってスラブ又は
孔あき素材とされた中間材をβ変態点以上に加熱後水冷
し、その後はβ変態点未満のα温度域での板圧延又は環
状圧延及び熱処理によって板状又はリング状チタン材を
製造する工程は、前記条件を満足し実製造で採用され得
る具体的な手法として推奨できるものである。
For example, an intermediate material formed into a slab or a perforated material by forging from an ingot is heated to a β transformation point or higher and then water-cooled, and thereafter, plate rolling or annular rolling and heat treatment in an α temperature range lower than the β transformation point. The step of producing a plate-shaped or ring-shaped titanium material by the above method can be recommended as a specific method that satisfies the above conditions and can be adopted in actual production.

【0017】ここで、前記条件を満足する製造工程によ
り表面の硬さ分布が均一な板状又はリング状チタン材が
得られる理由の全ては十分に明らかではないが、最も大
きな理由として考えられるのは、β変態点通過時の冷却
速度を1000℃/h以上とすることによりチタンがマル
テンサイト変態し、これに伴って結晶方位がランダム化
され、前述した“六方晶のC軸方向が板面垂線に近い方
向に向いた結晶粒の集合体”の形成が抑制されるのでは
ないかということである。
Here, all the reasons why a plate-shaped or ring-shaped titanium material having a uniform hardness distribution on the surface can be obtained by a manufacturing process satisfying the above-mentioned conditions are not fully clear, but it is considered to be the largest reason. Is a martensitic transformation of titanium when the cooling rate when passing through the β transformation point is 1000 ° C / h or more, and the crystal orientation is randomized accordingly, and the above-mentioned "hexagonal C-axis direction is the plate surface". It means that the formation of aggregates of crystal grains "oriented in the direction close to the perpendicular may be suppressed.

【0018】次いで、本発明を実施例により比較例と対
比しながら更に具体的に説明する。
Next, the present invention will be described in more detail with reference to Examples and comparison with Comparative Examples.

【実施例】【Example】

〔実施例1〕まず、C:0.01%以下(成分割合を表す%
は重量%とする),H:0.001 %以下,N:0.01%以
下,O:0.03〜0.07%,Fe:0.02〜0.05%を含み残部が
実質的にTiであるJIS H4600に規定の1種相当純チ
タン板(板厚:4.5〜18mm)について、表面硬さ分布と
表面不規則研磨模様との関係を調査した。
[Example 1] First, C: 0.01% or less (% representing a component ratio)
%), H: 0.001% or less, N: 0.01% or less, O: 0.03 to 0.07%, Fe: 0.02 to 0.05%, and the balance being substantially equivalent to JIS H4600 specified by JIS H4600. The relationship between the surface hardness distribution and the surface irregular polishing pattern was investigated for a pure titanium plate (plate thickness: 4.5 to 18 mm).

【0019】なお、この調査に当っては、次の製造工程
を経た“本発明チタン板”と“比較チタン板”を試験材
として用いた。 本発明チタン板:鋳塊→分塊鍛造(1000℃加熱)→ 150
mm厚スラブ→ 950℃加熱・水冷→圧延(800℃加熱)→熱
処理(670℃×15分保持), 比較チタン板: 鋳塊→分塊鍛造(1000℃加熱)→ 150
mm厚スラブ→圧延(800℃加熱)→熱処理(670℃×15分保
持) 。
In this investigation, the "inventive titanium plate" and the "comparative titanium plate" which had undergone the following manufacturing steps were used as test materials. The titanium plate of the present invention: ingot → slab forging (heating at 1000 ° C) → 150
mm thick slab → 950 ℃ heating / water cooling → rolling (800 ℃ heating) → heat treatment (670 ℃ x 15 minutes hold), comparative titanium plate: ingot → slab forging (1000 ℃ heating) → 150
mm thick slab → rolling (heating at 800 ℃) → heat treatment (holding at 670 ℃ for 15 minutes).

【0020】つまり、本発明チタン板にはスラブの段階
で950℃に加熱した後水冷(平均冷却速度:1100
℃/h)の熱処理が実施されているのに対して、比較チタ
ン板ではこの処理が適用されておらず、この点のみが両
者の製造工程での相違点である。
That is, the titanium plate of the present invention was heated to 950 ° C. in the slab stage and then water-cooled (average cooling rate: 1100).
C./h) is heat-treated while the comparative titanium plate is not subjected to this treatment, and this is the only difference between the two manufacturing processes.

【0021】そして、硬さ分布の測定は、各々のチタン
板から30mm×30mmの試験片を切り出し、湿式研磨に
より表面を平均粗さ(Ra)で 0.2μm程度に仕上げた後、
荷重1kgのビッカ−ス硬度計にて測定ピッチ 0.5mm,測
定点数20の条件で実施し、硬さ分布における最大値と
最小値の差を求めた。そして、これに続いて各々の板の
表面を約150mm×300mmの面積だけPVA砥石によ
り#600まで研磨した後、目視により不規則研磨模様
の有無をも観察した。この結果を表1に示す。
The hardness distribution is measured by cutting a 30 mm × 30 mm test piece from each titanium plate and finishing the surface by wet polishing to an average roughness (Ra) of about 0.2 μm.
A Vickers hardness tester with a load of 1 kg was used under the conditions of a measurement pitch of 0.5 mm and 20 measurement points, and the difference between the maximum value and the minimum value in the hardness distribution was obtained. Then, following this, the surface of each plate was polished by a PVA grindstone to an area of about 150 mm × 300 mm up to # 600, and then the presence or absence of an irregular polishing pattern was visually observed. Table 1 shows the results.

【0022】[0022]

【表1】 [Table 1]

【0023】表1から明らかなように、硬さ分布におけ
る最大値と最小値の差が10を超える比較チタン板(試
験番号5,6,7,8)では目視的な不規則研磨模様が
発生するのに対し、この差が10以下の本発明チタン板
(試験番号1,2,3,4)では不規則研磨模様は全く
発生しない。
As is clear from Table 1, the comparative titanium plates (test numbers 5, 6, 7 and 8) in which the difference between the maximum value and the minimum value in the hardness distribution exceeds 10 have a visually irregular polishing pattern. On the other hand, in the titanium plate of the present invention having a difference of 10 or less (test numbers 1, 2, 3, 4), no irregular polishing pattern occurs at all.

【0024】〔実施例2〕実施例1と同様の試験を、
C:0.01%以下,H:0.002 %以下,N:0.01%以下,
O:0.04〜0.06%,Fe:0.04〜0.07%,Pd:0.16〜0.18
%を含み残部が実質的にTiであるJIS H4605に規定
の11種相当チタン合金板(板厚:8〜16mm)、及びC:0.
01%以下,H:0.001 %以下,N:0.01%以下,O:0.
10〜0.12%,Fe:0.07〜0.09%,Mo:0.26〜0.30%,N
i:0.70〜0.80%を含み残部が実質的にTiであるAST
Mの Gr.12相当チタン合金板(板厚:5〜16mm)につ
いて実施した。なお、適用した“本発明チタン板”及び
“比較チタン板”とも製造工程は実施例1の場合と全く
同様である。
Example 2 A test similar to that of Example 1 was conducted.
C: 0.01% or less, H: 0.002% or less, N: 0.01% or less,
O: 0.04 to 0.06%, Fe: 0.04 to 0.07%, Pd: 0.16 to 0.18
% Titanium alloy plate (plate thickness: 8 to 16 mm) specified in JIS H4605 with the balance being substantially Ti, and C: 0.
01% or less, H: 0.001% or less, N: 0.01% or less, O: 0.
10 to 0.12%, Fe: 0.07 to 0.09%, Mo: 0.26 to 0.30%, N
i: AST containing 0.70 to 0.80% and the balance being substantially Ti
It was carried out on a titanium alloy plate (plate thickness: 5 to 16 mm) equivalent to M. Gr.12. The manufacturing steps of the applied "titanium plate of the present invention" and "comparison titanium plate" are exactly the same as in the case of Example 1.

【0025】そして、ここでの試験では硬さ分布の測定
以外は実施例1と全く同じ条件を採用したが、硬さ分布
の測定については、実施例1と同様に試験片の調整を行
うと共に、ビッカ−ス硬度計の荷重を500gとし、測
定ピッチ1mm,測定点数15の条件で実施した。このよ
うにして測定した硬さ分布における最大値と最小値の差
と、目視による不規則研磨模様の有無の判定結果を表2
に示す。
In this test, exactly the same conditions as in Example 1 were adopted except for the measurement of hardness distribution, but for the measurement of hardness distribution, the test piece was adjusted in the same manner as in Example 1. The load of the Vickers hardness tester was 500 g, and the measurement pitch was 1 mm and the number of measurement points was 15. Table 2 shows the difference between the maximum value and the minimum value in the hardness distribution measured in this manner and the result of the visual judgment for the presence or absence of the irregular polishing pattern.
Shown in

【0026】[0026]

【表2】 [Table 2]

【0027】表2に示される結果からも、硬さ分布にお
ける最大値と最小値の差が10を境に、これを超える比
較例(試験番号13,14,15,16)では不規則研磨模様が
発生し、上記差が10以下の本発明例(試験番号9,1
0,11,12)では不規則研磨模様が発生しないことが分
かる。
From the results shown in Table 2, the difference between the maximum value and the minimum value in the hardness distribution is 10 and the irregular polishing pattern is exceeded in the comparative examples (Test Nos. 13, 14, 15, 16) that exceed this value. Of the present invention (test number 9, 1)
It can be seen that the irregular polishing pattern does not occur in 0, 11, 12).

【0028】〔実施例3〕ここでは、実施例1と同様成
分組成のJIS H4600に規定の1種に相当する肉厚:
7.5〜28mmの純チタン環状圧延材について、表面硬さ
分布と表面不規則研磨模様の関係を調査した。
[Embodiment 3] Here, the wall thickness corresponding to one kind specified in JIS H4600 having the same composition as in Embodiment 1 is as follows:
The relationship between the surface hardness distribution and the surface irregular polishing pattern was investigated for 7.5 to 28 mm pure titanium annular rolled material.

【0029】なお、この調査に当っては、次の製造工程
を経た“本発明チタン環状圧延材”と“比較チタン環状
圧延材”を試験材として用いた。 本発明チタン環状圧延材:鋳塊→鍛造(1050℃加熱)→
孔明き素材(外径:580mm,肉厚:95mm )→ 950℃加熱・
水冷→環状圧延(700℃加熱)→熱処理(670℃×15分保
持), 比較チタン環状圧延材:鋳塊→鍛造(1050℃加熱)→孔
明き素材(外径:580mm,肉厚:95mm )→環状圧延(700℃
加熱)→熱処理(670℃×15分保持) 。
In this investigation, the “annular rolled material of the present invention” and the “comparative titanium annular rolled material” which have undergone the following manufacturing processes were used as test materials. The titanium annular rolled material of the present invention: ingot → forging (heating at 1050 ° C) →
Perforated material (outer diameter: 580 mm, wall thickness: 95 mm) → heated at 950 ° C
Water-cooled → annular rolling (700 ℃ heating) → heat treatment (670 ℃ × 15 minutes hold), comparative titanium annular rolling material: ingot → forging (1050 ℃ heating) → perforated material (outer diameter: 580mm, wall thickness: 95mm) → Annular rolling (700 ℃
Heating) → heat treatment (670 ℃ x 15 minutes hold).

【0030】つまり、本発明チタン環状圧延材では、鋳
塊から鍛造により造られた孔あき素材(外径:580mm,肉
厚:95mm )に関し950℃に加熱した後水冷(平均冷却
速度:1500℃/h)の熱処理が実施されているのに対
して、比較チタン環状圧延材ではこの処理が適用されて
おらず、この点のみが両者の製造工程での相違点であ
る。
That is, in the titanium annular rolled material of the present invention, the perforated material (outer diameter: 580 mm, wall thickness: 95 mm) forged from the ingot was heated to 950 ° C. and then water-cooled (average cooling rate: 1500 ° C.). While the heat treatment of / h) is carried out, this treatment is not applied to the comparative titanium annular rolled material, and this is the only difference between the manufacturing processes.

【0031】そして、硬さ分布の測定は、各々のチタン
環状圧延材から30mm×30mmの試験片を切り出して行
ったが、測定方法は実施例1と全く同じとした。そし
て、これに続いてやはり実施例1の場合と同様に各々の
チタン環状圧延材表面を約150mm×300mmの面積だ
けPVA砥石により#600まで研磨した後、目視によ
り不規則研磨模様の有無を観察した。この結果を表3に
示す。
The hardness distribution was measured by cutting out a 30 mm × 30 mm test piece from each titanium annular rolled material, and the measuring method was exactly the same as in Example 1. Then, subsequently, similarly to the case of Example 1, the surface of each titanium annular rolled material was polished up to # 600 with a PVA grindstone by an area of about 150 mm × 300 mm, and then visually observed for the presence or absence of an irregular polishing pattern. did. Table 3 shows the results.

【0032】[0032]

【表3】 [Table 3]

【0033】表3に示される結果から、環状圧延材も板
圧延材と同様に硬さ分布における最大値と最小値の差が
10を超える比較チタン環状圧延材(試験番号21,22,
23,24)では不規則研磨模様が発生するのに対して、こ
の差が10以下の本発明チタン環状圧延材(試験番号1
9,20,21,22)では研磨模様は発生しないことが分か
る。
From the results shown in Table 3, as with the strip rolled material, the rolled rolled material has a difference in hardness distribution between the maximum value and the minimum value of more than 10, which is a comparative titanium annular rolled material (test numbers 21, 22,
23, 24) an irregular polished pattern is generated, whereas the difference between the present invention is 10 or less.
It can be seen that the polishing pattern does not occur in 9, 20, 21, 22).

【0034】[0034]

【効果の総括】以上に説明した如く、この発明によれ
ば、表面研磨を行っても極く軽微な目視的不規則研磨模
様すら生じない、極めて高品質の電析箔製造のための電
着ドラム用チタン材を安定・確実に供給することができ
るなど、産業上有用な効果がもたらされる。
[Summary of Effects] As described above, according to the present invention, electrodeposition for the production of extremely high-quality electrodeposited foils in which even a very slight visual irregular polishing pattern does not occur even if surface polishing is performed. Industrially useful effects such as stable and reliable supply of titanium material for drums can be achieved.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 厚さが4〜30mmで、かつ表面を平均粗
さ(Ra):0.3μm以下にまで研磨仕上げしたときの“該表
面の任意方向に 0.3〜1mmピッチで10点以上の位置に
おいて実施した荷重1kg以下でのビッカ−ス硬さ測定
値”の最大硬さと最小硬さの差が10以下であることを
特徴とする、不規則な表面研磨模様を生じない電析箔製
造のための電着ドラム用チタン材。
1. When the surface has a thickness of 4 to 30 mm and the surface is polished to an average roughness (Ra) of 0.3 μm or less, “a position of 10 points or more at 0.3 to 1 mm pitch in an arbitrary direction of the surface” Of the Vickers hardness measurement value under a load of 1 kg or less, the difference between the maximum hardness and the minimum hardness being 10 or less, Titanium material for electrodeposition drums.
JP19111195A 1995-07-04 1995-07-04 Titanium material for electrodeposition drum for electrodeposition foil production Expired - Lifetime JP2964920B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP19111195A JP2964920B2 (en) 1995-07-04 1995-07-04 Titanium material for electrodeposition drum for electrodeposition foil production
US08/675,482 US5712046A (en) 1995-07-04 1996-07-03 Titanium ring for an electrodeposition drum and a method for its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19111195A JP2964920B2 (en) 1995-07-04 1995-07-04 Titanium material for electrodeposition drum for electrodeposition foil production

Publications (2)

Publication Number Publication Date
JPH0920990A true JPH0920990A (en) 1997-01-21
JP2964920B2 JP2964920B2 (en) 1999-10-18

Family

ID=16269047

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19111195A Expired - Lifetime JP2964920B2 (en) 1995-07-04 1995-07-04 Titanium material for electrodeposition drum for electrodeposition foil production

Country Status (1)

Country Link
JP (1) JP2964920B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002339094A (en) * 2001-05-18 2002-11-27 Akahoshi Kogyo Kk Method of manufacturing titanium ring of drum for manufacturing electrolytic metallic foil and apparatus for the same
JP2012052213A (en) * 2010-09-03 2012-03-15 Nippon Steel Corp High corrosion-resistance titanium alloy large in 0.2%-proof stress in rolling direction, and its manufacturing method
CN107208293A (en) * 2015-09-05 2017-09-26 株式会社Uacj The manufacture method of electrolytic aluminum foil

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002339094A (en) * 2001-05-18 2002-11-27 Akahoshi Kogyo Kk Method of manufacturing titanium ring of drum for manufacturing electrolytic metallic foil and apparatus for the same
JP4532017B2 (en) * 2001-05-18 2010-08-25 赤星工業株式会社 Method and apparatus for manufacturing titanium ring of drum for manufacturing electrolytic metal foil
JP2012052213A (en) * 2010-09-03 2012-03-15 Nippon Steel Corp High corrosion-resistance titanium alloy large in 0.2%-proof stress in rolling direction, and its manufacturing method
CN107208293A (en) * 2015-09-05 2017-09-26 株式会社Uacj The manufacture method of electrolytic aluminum foil
US10590555B2 (en) 2015-09-05 2020-03-17 Uacj Corporation Method for producing electrolytic aluminum foil

Also Published As

Publication number Publication date
JP2964920B2 (en) 1999-10-18

Similar Documents

Publication Publication Date Title
JP4754617B2 (en) Method for manufacturing tantalum sputtering target
TWI732529B (en) Titanium alloy plate, titanium alloy plate manufacturing method, copper foil manufacturing roller, and copper foil manufacturing roller manufacturing method
JP2013174019A (en) Tantalum sputtering target
US20230151474A1 (en) Metal rings formed from beryllium-copper alloys
KR20010049633A (en) Litho strip and method for its manufacture
TWI485272B (en) Pure copper plate manufacturing methods and pure copper plate
JP2009242843A (en) Aluminum alloy substrate for magnetic disk and method for producing the same
US5562784A (en) Aluminum alloy substrate for electrolytically grainable lithographic printing plate and process for producing same
JP4094395B2 (en) Titanium plate for electrolytic Cu foil production drum and production method thereof
TWI747237B (en) Titanium plate, titanium rolled coil and drum for manufacturing copper foil
JP2964920B2 (en) Titanium material for electrodeposition drum for electrodeposition foil production
JP2000045091A (en) Titanium material for electrolytic metal foil producing drum, and its production
US5712046A (en) Titanium ring for an electrodeposition drum and a method for its manufacture
JP3115982B2 (en) Method for producing titanium ring for electrodeposition drum
JP2002285267A (en) Titanium for copper foil production drum having excellent surface layer part structure and production method therefor
JP4267284B2 (en) Al-Mg alloy rolled sheet tempered material with excellent bending workability
JP4094292B2 (en) Method for producing titanium for copper foil production drum having fine and uniform metal structure
JP3951564B2 (en) Hot rolled titanium plate for surface member of electrolytic deposition drum and method for producing the same
JP2002322526A (en) Titanium for copper foil production drum having uniform metallic structure and production method therefor
JP3738468B2 (en) Method for manufacturing titanium ring for electrodeposition drum
JPH11140609A (en) Production of aluminum alloy for building material excellent in surface treatment property and workability by using continuously cast coil
JPH06335769A (en) Manufacture of titanium electrodeposited face plate drum
JP2005298853A (en) TITANIUM PLATE FOR DRUM IN MANUFACTURING ELECTROLYTIC Cu FOIL, AND MANUFACTURING METHOD THEREFOR
JP2002155349A (en) Method for producing titanium plate
JPH03128108A (en) Control method for hardness of austenite alloy

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070813

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080813

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080813

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090813

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090813

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100813

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110813

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110813

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120813

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120813

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130813

Year of fee payment: 14

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130813

Year of fee payment: 14

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130813

Year of fee payment: 14

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130813

Year of fee payment: 14

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term