JP2002155349A - Method for producing titanium plate - Google Patents
Method for producing titanium plateInfo
- Publication number
- JP2002155349A JP2002155349A JP2000350568A JP2000350568A JP2002155349A JP 2002155349 A JP2002155349 A JP 2002155349A JP 2000350568 A JP2000350568 A JP 2000350568A JP 2000350568 A JP2000350568 A JP 2000350568A JP 2002155349 A JP2002155349 A JP 2002155349A
- Authority
- JP
- Japan
- Prior art keywords
- titanium
- phase temperature
- titanium plate
- temperature range
- polishing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Forging (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、優れた表面性状
(平滑性)を必要とするチタン板、特に、電解析出法に
よる銅箔、ニッケル箔等の金属箔の製造に用いるドラム
の表面に使用される表面性状(平滑性)に優れたチタン
板の製造方法に関する。The present invention relates to a titanium plate requiring excellent surface properties (smoothness), in particular, to the surface of a drum used for producing metal foil such as copper foil and nickel foil by an electrolytic deposition method. The present invention relates to a method for producing a titanium plate having excellent surface properties (smoothness).
【0002】[0002]
【従来の技術】電子機器などに用いられる銅箔、ニッケ
ル箔等の金属箔は、硫酸銅、硫酸ニッケル等の溶液から
銅、ニッケル等の金属を回転するドラム(以下、電着ド
ラムという)上に析出させて箔とし、これを連続的に巻
き取り回収することにより製造されている。2. Description of the Related Art A metal foil such as a copper foil and a nickel foil used for electronic equipment is formed on a drum (hereinafter referred to as an electrodeposition drum) for rotating a metal such as copper or nickel from a solution such as copper sulfate or nickel sulfate. To produce a foil, which is continuously wound and collected.
【0003】この電着ドラムは耐食性が良好であること
が必要であるため、鋼製のドラム基材(インナードラ
ム)の上に板状のチタン材が巻き付けられたものが使用
されている。すなわち、電着ドラムは、板状のチタン材
(チタン板)を円筒状に曲げ加工し、端部を溶接により
接合してリング状とし、これをインナードラムに焼きば
め等の方法によりはめ込むことにより製造される。[0003] Since this electrodeposition drum needs to have good corrosion resistance, a plate-shaped titanium material wound around a steel drum base material (inner drum) is used. That is, the electrodeposition drum is formed by bending a plate-shaped titanium material (titanium plate) into a cylindrical shape, joining the ends by welding to form a ring, and fitting this into the inner drum by shrink fitting or the like. It is manufactured by
【0004】一方、電子機器などの小型・高密度化に伴
い、平滑な表面を有する金属箔への要求がますます高ま
っている。金属箔の表面状態は電着ドラムの表面に使用
されるチタン板の表面状態により決定されるので、電着
ドラムの組み立て後、その表面、すなわちチタン板の表
面は研削および研磨により仕上げられるが、研磨工程に
おいて、以下に述べるように、チタン材の組織上の不均
一に起因すると推定される研磨ムラが生じ、そのため金
属箔の表面品質が不良となるという問題が生じている。[0004] On the other hand, with the miniaturization and high density of electronic devices and the like, there is an increasing demand for metal foils having a smooth surface. Since the surface condition of the metal foil is determined by the surface condition of the titanium plate used for the surface of the electrodeposition drum, after assembling the electrodeposition drum, its surface, that is, the surface of the titanium plate is finished by grinding and polishing, In the polishing step, as described below, polishing unevenness presumed to be caused by the non-uniformity of the structure of the titanium material occurs, and therefore, there is a problem that the surface quality of the metal foil becomes poor.
【0005】前記チタン板の製造工程では、消耗式のア
ーク溶解炉または電子ビーム溶解炉で製造された鋳塊に
熱間で粗鍛造が施され、β相温度域で加熱する熱処理が
施された後、最終板厚に至るまで再加熱を繰り返しつつ
圧延される。この工程において、粗鍛造後にβ相温度域
で加熱される際、結晶粒の粗大化が進む。特にチタン
は、β相温度域における結晶粒の成長速度がα相温度域
におけるよりも速く、β相温度域での熱処理で結晶粒の
配向をランダム化することは可能であるが、結晶粒が粗
大化することとなる。[0005] In the titanium plate manufacturing process, the ingot manufactured in a consumable arc melting furnace or an electron beam melting furnace is subjected to hot rough forging and heat treatment for heating in a β phase temperature range. Thereafter, rolling is performed while repeating reheating until the final sheet thickness is reached. In this step, when heated in the β-phase temperature range after the rough forging, the crystal grains are coarsened. In particular, titanium has a faster growth rate of crystal grains in the β phase temperature range than in the α phase temperature range, and it is possible to randomize the orientation of the crystal grains by heat treatment in the β phase temperature range. It becomes coarse.
【0006】β相温度域での熱処理後の圧延加工では、
この熱処理により生成した結晶粒が再結晶する。その
際、圧延加工後のチタン材にはβ相温度域での熱処理後
の結晶粒の影響が残り、結晶方位がほぼ揃った再結晶粒
の領域が熱処理後の結晶粒の大きさに比例して存在する
こととなる。この再結晶粒の領域では、領域ごとに結晶
方位がわずかずつ異なるため、研磨仕上げの際、領域ご
とに研磨性が異なる。すなわち、領域ごとに研磨面の表
面粗さが異なり、研磨ムラが生じる。In the rolling process after the heat treatment in the β phase temperature range,
The crystal grains generated by this heat treatment are recrystallized. At this time, the effect of the crystal grains after the heat treatment in the β phase temperature region remains in the titanium material after rolling, and the region of the recrystallized grains having substantially the same crystal orientation is proportional to the size of the crystal grains after the heat treatment. Will exist. In the region of the recrystallized grains, the crystal orientation is slightly different in each region. That is, the surface roughness of the polished surface differs for each region, and polishing unevenness occurs.
【0007】また、特に鋳塊の内部側(特に中央部)で
は加工の影響が小さくなるために鋳塊の時点で存在して
いた粗大結晶粒が残存する。そのため、電着ドラムの使
用に伴いその表面(つまり、チタン板の表面)の研磨を
繰り返し行って鋳塊の中央部に相当する部分が表面に現
出した場合、研磨ムラが発生しやすくなる。[0007] In particular, on the inner side of the ingot (particularly at the center), the influence of processing is reduced, so that coarse crystal grains existing at the time of the ingot remain. Therefore, when the surface (that is, the surface of the titanium plate) is repeatedly polished with the use of the electrodeposition drum and a portion corresponding to the center of the ingot appears on the surface, polishing unevenness is likely to occur.
【0008】さらに、チタンの結晶構造は稠密六方構造
(hcp)であるが、hcp構造のc軸方向にはすべり
成分をもたないために、この方向への変形が困難であ
る。その結果、結晶ごとにc軸の配向が乱れていると表
面の硬さが不均一となり、研磨中に砥石の受ける抵抗が
微少に変化し、良好な研磨表面が得られず、研磨ムラの
発生を招く。[0008] Further, the crystal structure of titanium is a dense hexagonal structure (hcp), but since it does not have a slip component in the c-axis direction of the hcp structure, it is difficult to deform in this direction. As a result, if the orientation of the c-axis is disturbed for each crystal, the surface hardness becomes non-uniform, the resistance applied to the grindstone during polishing slightly changes, a good polished surface cannot be obtained, and polishing unevenness occurs. Invite.
【0009】この研磨むらが発生するという問題の解決
を目的として、本出願人は、特開平9−20971号公
報で、チタンの鋳塊に内在する粗大結晶粒を破壊して組
織の不均一をなくするために、熱間加工時に1000℃
/h以上の冷却速度でβ変態点を通過させ、その後、β
変態点以下の温度域で加工し、熱処理する方法を提案し
た。さらに、特開平9−20990号公報では、前記の
熱履歴を与えた後にβ変態点以下の温度域で加工を繰り
返すことにより、表面でのビッカース硬さ(荷重9.8
07N以下)のばらつきを10以下とする方法が開示さ
れている。In order to solve the problem of uneven polishing, the present applicant disclosed in Japanese Unexamined Patent Application Publication No. 9-20971 a method for destroying coarse crystal grains inherent in a titanium ingot to reduce the structure unevenness. 1000 ° C during hot working to eliminate
/ H is passed through the β transformation point at a cooling rate of
A method of processing and heat-treating in the temperature range below the transformation point was proposed. Further, in Japanese Patent Application Laid-Open No. 9-20990, the Vickers hardness on the surface (load 9.8) is obtained by repeating the processing in the temperature range below the β transformation point after giving the above-mentioned heat history.
(07N or less) is disclosed.
【0010】しかしながら、これら公報に記載された方
法では、粗大結晶粒を破壊し得るが、近年要求されてい
る金属箔の製造に必要な表面性状に優れたチタン板とす
るためには上記熱処理前の加工条件を十分に制御しなけ
ればならず、また、内部まで均質な組織にすることはで
きないので、特に電着ドラムとして使用した場合、その
表面の研磨を繰り返し行ってチタン材の中央部が表面に
現出した際に、組織上の不均一に起因する研磨ムラが生
じる。However, in the methods described in these publications, coarse crystal grains can be destroyed. However, in order to obtain a titanium plate having excellent surface properties required for the production of metal foil, which has been required in recent years, the above-mentioned heat treatment is required. Processing conditions must be sufficiently controlled, and it is not possible to obtain a homogeneous structure up to the inside.Therefore, especially when used as an electrodeposition drum, the surface of the titanium material is repeatedly polished to reduce the center of the titanium material. When it appears on the surface, uneven polishing occurs due to unevenness on the structure.
【0011】また、特開平6−93400号公報では、
チタン素材を熱間でリングロール圧延し、このリング状
のチタン素材に加工率が20〜70%の冷間加工を加
え、さらに特定の条件、すなわち、冷間における圧下の
合計の加工率が35〜70%の場合は、570≦T≦6
70、5≦t≦120、−T+610≦t≦−T+72
0を、同じく加工率が20%以上35%未満の場合は、
600≦T≦670、30≦t≦−T+720(Tは焼
鈍温度、tは焼鈍時間)を満たす条件で焼鈍することに
よって微細な結晶粒を生成させ、互いに隣接する結晶粒
間における大きな段差に起因してドラム表面に生じる段
差をなくし、金属箔の品質を向上させる方法が提案され
ている。In Japanese Patent Application Laid-Open No. 6-93400,
The titanium material is hot-roll-rolled, cold-worked at a working rate of 20 to 70% to this ring-shaped titanium material, and further processed under specific conditions, that is, a total working rate of 35% under cold rolling. In the case of ~ 70%, 570≤T≤6
70, 5 ≦ t ≦ 120, −T + 610 ≦ t ≦ −T + 72
0, when the processing rate is also 20% or more and less than 35%,
Annealing under conditions satisfying 600 ≦ T ≦ 670 and 30 ≦ t ≦ −T + 720 (T is annealing temperature, t is annealing time) generates fine crystal grains, and is caused by a large step between crystal grains adjacent to each other. There has been proposed a method for eliminating a step on a drum surface and improving the quality of a metal foil.
【0012】しかし、この方法では、前記隣接する結晶
粒における段差に起因する表面欠陥をなくすることはで
きるが、リング状のチタン素材を得るための熱間での加
熱、加工工程で起こる、前述した結晶粒の粗大化と再結
晶領域毎の結晶方位の差異の改善については何ら言及さ
れておらず、この結晶方位の差異に起因する研磨ムラの
発生の問題を解消することはできない。However, this method can eliminate the surface defects caused by the steps in the adjacent crystal grains, but it involves the heating and processing steps to obtain a ring-shaped titanium material. No mention is made of the coarsening of the crystal grains and the improvement of the difference in crystal orientation for each recrystallization region, and the problem of uneven polishing caused by this difference in crystal orientation cannot be solved.
【0013】[0013]
【発明が解決しようとする課題】本発明の課題は、この
ような研磨ムラの生じにくい平滑な表面を有するチタン
板、特に電着ドラムの素材として使用されるチタン板の
製造方法を提供することにある。SUMMARY OF THE INVENTION An object of the present invention is to provide a method for producing a titanium plate having a smooth surface which is unlikely to cause such polishing unevenness, particularly a titanium plate used as a material for an electrodeposition drum. It is in.
【0014】[0014]
【課題を解決するための手段】本発明の要旨は、下記の
チタン板の製造方法にある。The gist of the present invention resides in the following method for producing a titanium plate.
【0015】鋳塊の鍛造工程において、α相温度域でチ
タン板の表面となる面に対して垂直方向に10%以上の
圧縮加工を加えた後、β相温度域で加熱し、次いで下記
(1)式を満たす条件で冷却するチタン板の製造方法。 R/t≧0.01 ・・・(1) ただし、 R:β変態点から800℃までの間の平均冷却速度(℃
/秒) t:冷却時のチタン素材の肉厚(mm) である。In the forging process of the ingot, a compression process of 10% or more is applied in the direction perpendicular to the surface of the titanium plate in the α-phase temperature range, and then the titanium plate is heated in the β-phase temperature range. 1) A method for producing a titanium plate that is cooled under conditions satisfying the expression. R / t ≧ 0.01 (1) where, R: average cooling rate from the β transformation point to 800 ° C. (° C.)
/ Sec) t: Thickness (mm) of the titanium material at the time of cooling.
【0016】[0016]
【発明の実施の形態】以下、本発明のチタン板の製造方
法について詳細に説明する。BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, a method for manufacturing a titanium plate according to the present invention will be described in detail.
【0017】研磨ムラのないチタン板を製造するために
は、β相温度域での加熱処理を終えた段階で結晶粒が細
かく、かつ内部(板厚方向中央部をいう)まで均一であ
ることが必要である。In order to produce a titanium plate without polishing unevenness, it is necessary that crystal grains are fine at the stage after completion of the heat treatment in the β-phase temperature range and uniform inside (in the thickness direction center). is necessary.
【0018】そのためには、上記のように、鋳塊の鍛造
工程において、α相温度域で10%以上の圧縮加工を加
えて鋳塊に予歪みを与えることが必要で、その後β相温
度域で加熱する。すなわち、β相温度域での加熱前の最
終鍛造段階でα相温度域において鋳塊の内部(中央部)
まで圧縮加工を加えることによりチタン素材に歪みを蓄
積させ、この歪みを駆動力として次の工程においてβ相
温度域で加熱したときに再結晶を素材内部まで進展さ
せ、結晶粒を細かく、かつ内部まで均一にすることがで
きる。For that purpose, as described above, in the forging process of the ingot, it is necessary to apply a compression process of 10% or more in the α-phase temperature range to give a pre-strain to the ingot, and thereafter, to perform the β-phase temperature range. Heat with. That is, in the final forging stage before heating in the β phase temperature range, the inside of the ingot (center part) in the α phase temperature range
Strain is accumulated in the titanium material by applying compression processing until the recrystallization proceeds to the inside of the material when heated in the β phase temperature region in the next step using this strain as a driving force, making the crystal grains fine and internal Can be made uniform.
【0019】前記β相温度域での加熱前の鍛造時の温度
(鍛造材の表面温度)はα相温度域であることが必要で
あり、望ましくは850℃以下である。β相温度域であ
ると鍛造後に再び結晶粒の粗大化が生じる。The temperature during forging before heating in the β phase temperature range (the surface temperature of the forged material) must be in the α phase temperature range, and is preferably 850 ° C. or less. If the temperature is in the β phase temperature range, the crystal grains become coarse again after forging.
【0020】圧縮加工は、10%未満では素材内部にお
ける再結晶の駆動力が不足し、鋳塊の中央部まで均一に
再結晶させることが不可能なので、10%以上とする。
なお、10%以上の圧縮加工とは、製造されるチタン板
の表面となる面に対して垂直方向に10%以上の圧縮が
加えられるような加工、すなわち圧下率が10%以上の
加工である。圧縮加工は、20%以上であれば一層望ま
しい。If the compression processing is less than 10%, the driving force for recrystallization inside the raw material is insufficient, and it is impossible to uniformly recrystallize up to the center of the ingot.
The compression processing of 10% or more is processing in which compression of 10% or more is applied in a direction perpendicular to a surface to be a surface of a titanium plate to be manufactured, that is, processing in which a draft is 10% or more. . The compression processing is more preferably at least 20%.
【0021】鍛造終了後にβ相温度域で加熱する。鍛造
工程で上記のように圧縮加工を加えているので、β相温
度域での加熱工程で素材の内部まで均一に再結晶させ、
結晶粒を細かく、かつ中央部まで均一にすることが可能
となる。After completion of forging, heating is performed in the β phase temperature range. Because the compression process is applied in the forging process as described above, in the heating process in the β phase temperature range, the material is uniformly recrystallized to the inside of the material,
The crystal grains can be made fine and uniform up to the center.
【0022】次いで下記(1)式を満たす条件で冷却す
る。なお、(1)式において、Rはβ変態点から800
℃までの間の平均冷却速度(℃/秒)であり、tは冷却
時のチタン素材の肉厚(mm)である。 R/t≧0.01 ・・・(1) 平均冷却速度が(1)式の条件から外れると、チタン素
材の中央部における冷却効果が不十分となり、素材中央
部の結晶粒が粗大化する。その結果、チタン板中央部の
研磨性が劣化し、電着ドラムの表面の研磨を繰り返し行
ってチタン板中央部が表面に現出した際に、研磨ムラが
生じることとなる。なお、平均冷却速度の上限について
特に制限はない。Next, cooling is performed under the condition satisfying the following equation (1). In the equation (1), R is 800 from the β transformation point.
The average cooling rate up to ° C. (° C./sec), and t is the thickness (mm) of the titanium material at the time of cooling. R / t ≧ 0.01 (1) If the average cooling rate deviates from the condition of equation (1), the cooling effect at the center of the titanium material becomes insufficient, and the crystal grains at the center of the material become coarse. . As a result, the polishing property of the central portion of the titanium plate is deteriorated, and when the polishing of the surface of the electrodeposition drum is repeated to expose the central portion of the titanium plate on the surface, polishing unevenness occurs. There is no particular upper limit for the average cooling rate.
【0023】このように、本発明のチタン板の製造方法
の特徴は、β相温度域での加熱前にα相温度域で鋳塊に
所定量の圧縮加工を加え、次いでβ相温度域で加熱し、
さらにその後、上記所定の冷却速度で冷却する三つの工
程の最適な組み合わせにあり、この方法によって、結晶
粒が細かく、かつ板厚方向中央部まで均一な、研磨ムラ
の生じにくい平滑な表面を有するチタン板を製造するこ
とができる。As described above, a feature of the method for producing a titanium plate of the present invention is that a predetermined amount of compression processing is performed on an ingot in an α-phase temperature range before heating in a β-phase temperature range, and then in a β-phase temperature range. Heating,
After that, there is an optimal combination of the three steps of cooling at the above-mentioned predetermined cooling rate, and by this method, the crystal grains are fine, and even to the center in the thickness direction, having a smooth surface that is unlikely to cause polishing unevenness. A titanium plate can be manufactured.
【0024】冷却後は、通常の方法で圧延および熱処理
を施し、所定の厚みのチタン板とすればよい。After cooling, rolling and heat treatment may be performed by a usual method to form a titanium plate having a predetermined thickness.
【0025】[0025]
【実施例】純チタンの鋳塊(直径300mm)を加熱温
度1100℃で厚み150mmまで鍛造加工した後、9
50℃で再加熱し、さらに表1に示す中間厚まで加工を
加えた。EXAMPLE A pure titanium ingot (diameter 300 mm) was forged to a thickness of 150 mm at a heating temperature of 1100 ° C.
It was reheated at 50 ° C. and further processed to the intermediate thickness shown in Table 1.
【0026】次いで、表1に示す温度(鍛造温度)まで
素材が冷却された時点で前記中間厚から厚み100mm
まで仕上げ鍛造を行った。この工程が本発明の方法にお
ける「α相温度域で10%以上の圧縮加工を加える工
程」で、このときの圧下率は表1に示すとおりである。
圧縮加工は、いずれもチタン板の表面となる面に対して
垂直方向に加えた。表1の No.1および No.2は圧下率
が本発明の方法で規定する条件から外れている比較例で
ある。Next, at the time when the material was cooled to the temperature (forging temperature) shown in Table 1, the intermediate thickness was reduced to 100 mm.
Finish forging was performed. This step is the “step of applying a compression process of 10% or more in the α-phase temperature range” in the method of the present invention, and the rolling reduction at this time is as shown in Table 1.
Each of the compression processes was performed in a direction perpendicular to the surface to be the surface of the titanium plate. No. 1 and No. 2 in Table 1 are comparative examples in which the rolling reduction was out of the conditions specified by the method of the present invention.
【0027】[0027]
【表1】 上記の鍛造加工により、板幅200mm×厚み100m
mのチタン素材を得た。[Table 1] By the above forging process, the board width 200mm x thickness 100m
m of titanium material was obtained.
【0028】続いて、前記鍛造後のチタン素材をβ相温
度域である950℃で2時間加熱した。この工程が本発
明の方法における「β相温度域で加熱する工程」であ
る。なお、この純チタンのβ変態点は910℃である。Subsequently, the titanium material after the forging was heated at 950 ° C. which is a β phase temperature range for 2 hours. This step is the “step of heating in the β-phase temperature range” in the method of the present invention. The β transformation point of this pure titanium is 910 ° C.
【0029】さらに続いて、表1に示す冷却条件で冷却
した。この工程が本発明の方法における「R/t≧0.
01を満たす条件で冷却する工程]で、No.7はこの条件
が満たされていない比較例である。Subsequently, cooling was performed under cooling conditions shown in Table 1. This step corresponds to “R / t ≧ 0.
No. 7 is a comparative example in which this condition is not satisfied.
【0030】その後、前記冷却後の素材を850℃に加
熱し、厚み10mmまで圧延し、700℃で1時間熱処
理してJIS−H4600の1種に規定されるチタン板
とした。Thereafter, the cooled material was heated to 850 ° C., rolled to a thickness of 10 mm, and heat-treated at 700 ° C. for 1 hour to obtain a titanium plate specified by JIS-H4600.
【0031】このチタン板(厚み10mm)から5cm
角の試験片を切り出し、表面から深さ1mmまたは5m
mまで切削し、切削面を1200番の研磨紙で研磨した
後、バフ研磨により仕上げを行った。5 cm from this titanium plate (10 mm thick)
Cut out a square test piece, 1mm or 5m deep from the surface
m, and the cut surface was polished with a # 1200 abrasive paper, and then finished by buffing.
【0032】研磨後の試験片の表面を20倍の顕微鏡で
観察し、研磨ムラの発生の有無を調査した。The surface of the polished test piece was observed with a microscope of 20 times, and the occurrence of uneven polishing was investigated.
【0033】調査結果を表1に併せて示す。表1の「研
磨性」の欄の「表面部」とは、表面から深さ1mmまで
切削した試験片であり、「中心部」とは表面から深さ5
mmまで切削した試験片である。「研磨性」の欄の○印
は研磨ムラが発生しなかったことを、△印は研磨ムラが
わずかに認められたことを、また、×印は研磨ムラが発
生したことを表す。「総合評価」の欄には、「表面部」
および「中心部」についての評価のうち低い方の評価を
記載し、「総合評価」が○印または△印であれば良好と
した。The results of the investigation are shown in Table 1. "Surface" in the column of "Abrasiveness" in Table 1 is a test piece cut from the surface to a depth of 1 mm, and "center" is a depth of 5 mm from the surface.
This is a test piece cut to the nearest mm. In the column of “Polishability”, a mark “な か っ” indicates that polishing unevenness did not occur, a mark “△” indicates that polishing unevenness was slightly observed, and a mark “X” indicates that polishing unevenness occurred. In the column of “Comprehensive evaluation”, “Surface part”
And the lower one of the evaluations for the “center” was described. If the “overall evaluation” was “O” or “△”, the evaluation was “good”.
【0034】この結果から明らかなように、本発明で規
定する条件を満たす No.3〜6のチタン板では、良好な
結果が得られ、特に、α相温度域で20%以上の圧縮加
工を施した(つまり、圧下率を20%以上とした) No.
4〜6のチタン板では、「中心部」でも研磨ムラは全く
認められなかった。As is clear from these results, good results were obtained with the titanium plates Nos. 3 to 6 satisfying the conditions specified in the present invention. In particular, compression processing of 20% or more in the α-phase temperature region was performed. No. (that is, the rolling reduction was 20% or more)
In the titanium plates of Nos. 4 to 6, no polishing unevenness was observed at the "center".
【0035】[0035]
【発明の効果】本発明の方法によれば、電着ドラムの素
材として好適な研磨ムラの生じにくい表面性状に優れた
チタン板を製造することができる。これによって、平滑
な表面を有する金属箔の製造が可能となる。このチタン
板は板厚方向中央部まで均質な組織を有するので、研磨
を繰り返しても研磨ムラを生じることがなく、高価なチ
タンを無駄なく(いわば、歩留まりよく)使うことがで
きる。また、それによって電着ドラムの長寿命化が可能
となるので、金属箔の製造コストの低減にも寄与し得
る。According to the method of the present invention, it is possible to produce a titanium plate excellent in surface properties which is less likely to cause polishing unevenness and is suitable as a material for an electrodeposition drum. This makes it possible to produce a metal foil having a smooth surface. Since this titanium plate has a uniform structure up to the center in the plate thickness direction, polishing unevenness does not occur even if polishing is repeated, and expensive titanium can be used without waste (in a good yield). In addition, this makes it possible to extend the life of the electrodeposition drum, which can contribute to a reduction in the manufacturing cost of the metal foil.
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C22F 1/00 630 C22F 1/00 630J 631 631B 683 683 691 691B 692 692A 694 694A 694B ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C22F 1/00 630 C22F 1/00 630J 631 631B 683 683 691 691B 692 692A 694 694A 694B
Claims (1)
タン板の表面となる面に対して垂直方向に10%以上の
圧縮加工を加えた後、β相温度域で加熱し、次いで下記
(1)式を満たす条件で冷却することを特徴とするチタ
ン板の製造方法。 R/t≧0.01 ・・・(1) ただし、 R:β変態点から800℃までの間の平均冷却速度(℃
/秒) t:冷却時のチタン素材の肉厚(mm) である。In a forging process of an ingot, after performing compression processing of 10% or more in a direction perpendicular to a surface to be a surface of a titanium plate in an α phase temperature range, heating is performed in a β phase temperature range, A method for producing a titanium plate, comprising cooling under conditions satisfying the following expression (1). R / t ≧ 0.01 (1) where, R: average cooling rate from the β transformation point to 800 ° C. (° C.)
/ Sec) t: Thickness (mm) of the titanium material at the time of cooling.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000350568A JP2002155349A (en) | 2000-11-17 | 2000-11-17 | Method for producing titanium plate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000350568A JP2002155349A (en) | 2000-11-17 | 2000-11-17 | Method for producing titanium plate |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2002155349A true JP2002155349A (en) | 2002-05-31 |
Family
ID=18823771
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000350568A Pending JP2002155349A (en) | 2000-11-17 | 2000-11-17 | Method for producing titanium plate |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2002155349A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013001961A (en) * | 2011-06-16 | 2013-01-07 | Nippon Steel & Sumitomo Metal Corp | α-TYPE TITANIUM MEMBER |
CN114101556A (en) * | 2021-09-30 | 2022-03-01 | 中国航发北京航空材料研究院 | Processing method for preparing TB8 titanium alloy sheet in short process |
-
2000
- 2000-11-17 JP JP2000350568A patent/JP2002155349A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013001961A (en) * | 2011-06-16 | 2013-01-07 | Nippon Steel & Sumitomo Metal Corp | α-TYPE TITANIUM MEMBER |
CN114101556A (en) * | 2021-09-30 | 2022-03-01 | 中国航发北京航空材料研究院 | Processing method for preparing TB8 titanium alloy sheet in short process |
CN114101556B (en) * | 2021-09-30 | 2023-01-13 | 中国航发北京航空材料研究院 | Processing method for preparing TB8 titanium alloy sheet in short process |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH07150274A (en) | Titanium alloy and its production | |
EP2253730A2 (en) | Tantalum sputtering target | |
WO2016152935A1 (en) | Titanium plate, plate for heat exchanger, and separator for fuel cell | |
EP2077949A2 (en) | Manufacturing process to produce litho sheet | |
JP5197076B2 (en) | Medium and high carbon steel sheet with excellent workability and manufacturing method thereof | |
JP6027823B2 (en) | Hot-rolled copper plate and hot-rolled copper plate shape adjustment method | |
JP3500072B2 (en) | Titanium material for drum for producing electrolytic metal foil and method for producing the same | |
JP2001040462A (en) | Production of titanium or titanium alloy fine diameter wire | |
CN113710825B (en) | Titanium plate, titanium roll and copper foil manufacturing roller | |
WO2017175569A1 (en) | Titanium plate, heat exchanger plate, and fuel cell separator | |
JPH08311594A (en) | Al-mg alloy sheet excellent in bendability and its production | |
JP2002155349A (en) | Method for producing titanium plate | |
CN113718110B (en) | Preparation method of high-quality niobium plate adopting accumulated energy to control plate structure | |
JP4094244B2 (en) | Titanium for copper foil production drum excellent in surface layer structure and production method thereof | |
JP2017190480A (en) | Titanium sheet | |
JP2003183730A (en) | Material with ultrafine granular surface | |
JP3488076B2 (en) | Method for producing titanium for Cu foil production drum and titanium slab used for the production | |
JPH0693400A (en) | Production of electrodeposition drum made of titanium | |
US20090120544A1 (en) | Strengthened Alpha Brass and Method for Manufacturing the Same | |
EP3577247B1 (en) | A process for producing copper-nickel-tin alloys | |
JP2964920B2 (en) | Titanium material for electrodeposition drum for electrodeposition foil production | |
JP3951564B2 (en) | Hot rolled titanium plate for surface member of electrolytic deposition drum and method for producing the same | |
JP2651761B2 (en) | Manufacturing method of carbon steel wire with excellent mechanical descaling for cold heading | |
JP4964437B2 (en) | Aluminum alloy material for electrolytic capacitor and method for producing the same, anode material for electrolytic capacitor, method for producing electrode material for electrolytic capacitor, and aluminum electrolytic capacitor | |
JPH06335769A (en) | Manufacture of titanium electrodeposited face plate drum |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD02 | Notification of acceptance of power of attorney |
Effective date: 20040311 Free format text: JAPANESE INTERMEDIATE CODE: A7422 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20040607 |
|
A131 | Notification of reasons for refusal |
Effective date: 20040622 Free format text: JAPANESE INTERMEDIATE CODE: A131 |
|
A02 | Decision of refusal |
Effective date: 20041102 Free format text: JAPANESE INTERMEDIATE CODE: A02 |