JP2013001961A - α-TYPE TITANIUM MEMBER - Google Patents

α-TYPE TITANIUM MEMBER Download PDF

Info

Publication number
JP2013001961A
JP2013001961A JP2011134370A JP2011134370A JP2013001961A JP 2013001961 A JP2013001961 A JP 2013001961A JP 2011134370 A JP2011134370 A JP 2011134370A JP 2011134370 A JP2011134370 A JP 2011134370A JP 2013001961 A JP2013001961 A JP 2013001961A
Authority
JP
Japan
Prior art keywords
cutting
axis
crystal
inclination
titanium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011134370A
Other languages
Japanese (ja)
Other versions
JP5843094B2 (en
Inventor
Tetsuya Sakamoto
哲也 坂本
Yasuhiro Inagaki
育宏 稲垣
Shuhei Funamoto
周平 舩元
Yoshihisa Shirai
善久 白井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel and Sumitomo Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumitomo Metal Corp filed Critical Nippon Steel and Sumitomo Metal Corp
Priority to JP2011134370A priority Critical patent/JP5843094B2/en
Publication of JP2013001961A publication Critical patent/JP2013001961A/en
Application granted granted Critical
Publication of JP5843094B2 publication Critical patent/JP5843094B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To prevent the occurrence of a spotted pattern that can be visually observed even when cutting work is applied to an α-type titanium member which is produced by forging and has at least one external surface to which cutting work is applied.SOLUTION: In the α-type titanium member which is produced by forging and has at least one external surface to which cutting work is applied, the surface to which cutting work is applied has an inclination of the c-axis of 15° or less and 75° or more, the inclination being the angle of the direction perpendicular to a cutting surface to the c-axis of a crystal lattice, and has a crystal orientation distribution in which the number of crystals having a crystal grain size of 100 μm or more is 10 pieces/mmor less.

Description

本発明は、鍛造により製造されるとともに切削加工を行われる少なくとも一の外面を有するα型チタン部材に関する。   The present invention relates to an α-type titanium member that is manufactured by forging and has at least one outer surface on which cutting is performed.

例えば純チタン丸棒材のようなα型チタン部材(純チタン部材)からなる部材には、使用に際して、その全部又は一部の表面をバイト等により切削加工(例えば旋盤による旋削加工)されるものがある。   For example, a member made of an α-type titanium member (pure titanium member), such as a pure titanium round bar, has its entire surface or a part of its surface cut by a cutting tool (for example, turning with a lathe). There is.

この時、切削面に、無数の白い斑点から構成される目視可能なまだら模様が形成されることがある。このまだら模様は、製品の表面品質を大きく低下させ、研磨等で除去するにしても製造コストの大幅な上昇は避けられない。   At this time, a visible mottled pattern composed of countless white spots may be formed on the cutting surface. This mottled pattern greatly reduces the surface quality of the product, and even if it is removed by polishing or the like, a significant increase in manufacturing cost is inevitable.

純チタン部材に対する切削加工によって切削面にこのようなまだら模様が発生することはこれまで報告されていないが、特許文献1には、電着ドラム用チタンリングの表面に、研磨を行った場合に生じるちりめん模様に関する発明が開示されている。   Although it has not been reported so far that such a mottled pattern is generated on the cutting surface by cutting the pure titanium member, Patent Document 1 discloses that the surface of the titanium ring for electrodeposition drum is polished. An invention relating to the resulting crepe pattern is disclosed.

このちりめん模様は、上記まだら斑模様とは異なるが、チタン板表面に対してチタン結晶粒の六方晶のC軸が垂直方向に近い結晶粒の集合体となって表面硬度が局部的に異なるため、研磨によりちりめん模様が発生する。   Although this crepe pattern is different from the mottled pattern, the surface hardness is locally different because the C-axis of the hexagonal crystal grains of titanium is close to the vertical direction on the titanium plate surface. A dust pattern is generated by polishing.

また、特許文献2、3には、チタン材の結晶方位の制御に関する発明が開示されているが、いずれの発明もプレス成形性の向上を目的とするものであり、上記まだら斑模様に関するものではない。   Patent Documents 2 and 3 disclose inventions related to the control of the crystal orientation of the titanium material, but each invention is intended to improve press formability, and does not relate to the mottled pattern. Absent.

特開平9−20971号公報Japanese Patent Laid-Open No. 9-20971 特開2010−150607号公報JP 2010-150607 A 特開2011−26649号JP 2011-26649 A

本発明の目的は、鍛造により製造されるとともに切削加工を行われる少なくとも一の外面を有し、かつこの一の外面に切削加工を行っても目視可能なまだら模様が発生しないα型チタン部材を提供することである。   An object of the present invention is to provide an α-type titanium member that has at least one outer surface that is manufactured by forging and that is subjected to cutting, and that does not generate a visible mottled pattern even when the outer surface is cut. Is to provide.

本発明は、鍛造により製造されるとともに切削加工を行われる少なくとも一の外面を有するα型チタン部材であって、切削加工を行われる表面が、切削面に垂直な方向と結晶格子のc軸とのなす角度であるc軸の傾きが15°以下および75°以上を有し、かつ結晶粒径が100μm以上である結晶が10個/mm以下である結晶方位分布を有することを特徴とα型チタン部材である。 The present invention is an α-type titanium member that is manufactured by forging and has at least one outer surface to be cut, and the surface to be cut is perpendicular to the cutting surface and the c-axis of the crystal lattice A crystal orientation distribution in which the inclination of the c-axis, which is an angle formed by the above, is 15 ° or less and 75 ° or more, and the crystal grain size is 100 μm or more and 10 crystals / mm 2 or less. Type titanium member.

本発明により、鍛造により製造されるとともに切削加工を行われる少なくとも一の外面を有するα型チタン部材のこの一の外面に切削加工を行っても、目視可能なまだら模様が発生しないようにすることができる。   According to the present invention, a visible mottle pattern is not generated even when cutting is performed on this one outer surface of an α-type titanium member which is manufactured by forging and has at least one outer surface to be cut. Can do.

図1(a)及び図1(b)は、まだら模様となった部分の切削試験後のSEM表面観察結果の一例を示す金属組織写真であり、図1(b)及び図1(d)は、まだら模様となった部分を電解研磨およびエッチングした後の光学顕微鏡による表面観察結果の一例を示す金属組織写真である。1 (a) and 1 (b) are metallographic photographs showing an example of SEM surface observation results after a cutting test of a mottled pattern. FIGS. 1 (b) and 1 (d) It is a metallographic photograph showing an example of the surface observation result by an optical microscope after electropolishing and etching the mottled portion. 図2は、純チタンの結晶格子(細密六方格子)のc軸の傾きとシュミット因子(cosφ×cosλ)との関係を調査した結果を示すグラフである。FIG. 2 is a graph showing the results of investigating the relationship between the c-axis tilt of a pure titanium crystal lattice (fine hexagonal lattice) and the Schmitt factor (cosφ × cosλ). 図3は、純チタンの結晶格子のc軸の傾きとすべり発生応力σ0との関係を求めた結果を示すグラフである。FIG. 3 is a graph showing the results of determining the relationship between the c-axis inclination of the pure titanium crystal lattice and the slip generation stress σ0. 図4は、試料AのEBSD結果の結果を示すグラフである。FIG. 4 is a graph showing the results of EBSD results for Sample A. 図5は、試料BのEBSD結果の結果を示すグラフである。FIG. 5 is a graph showing the results of EBSD results for Sample B.

本発明を実施するための形態を、添付図面を参照しながら説明する。
図1(a)及び図1(b)は、まだら模様となった部分の切削試験後の光学顕微鏡による表面観察結果の一例を示す金属組織写真であり、図1(b)及び図1(d)は、まだら模様となった部分の電解研磨後の光学顕微鏡による表面観察結果の一例を示す金属組織写真である。
A mode for carrying out the present invention will be described with reference to the accompanying drawings.
1 (a) and 1 (b) are metallographic photographs showing an example of a surface observation result by an optical microscope after a cutting test of a mottled pattern. FIGS. 1 (b) and 1 (d) ) Is a metallographic photograph showing an example of a surface observation result by an optical microscope after electropolishing of a mottled portion.

図1(a)の囲み部に示すように、まだら模様となった部分は、切削によって表面がむしり取られたようになっている。電解研磨後エッチングを行って同一箇所を観察すると、図1(c)に示すように、まだら模様となった部分は、一つの結晶粒又はコロニーと呼ばれるいくつかの方位がそろった結晶粒の集合体に対応していることが判明した。   As shown in the encircled portion of FIG. 1A, the surface of the mottled pattern is stripped by cutting. When the same portion is observed after etching after electropolishing, as shown in FIG. 1C, the mottled portion is a collection of crystal grains having several orientations called one crystal grain or colony. It turns out that it corresponds to the body.

また、図1(b)及び図1(d)に示すように、目視ではまだら模様が観察されないチタン材においても、光学顕微鏡で拡大して観察すると、表面がむしり取られる現象は発生しており、結晶粒が細かいために目視で認識できなかったことが判明した。   In addition, as shown in FIGS. 1 (b) and 1 (d), even in a titanium material in which a mottled pattern is not visually observed, a phenomenon in which the surface is stripped occurs when observed with an optical microscope. It was found that the crystal grains were fine and could not be recognized visually.

さらに、切削によって表面がむしり取られて目視でまだら模様となって観察される結晶の大きさは、幾つかの目視結果及び光学顕微鏡による観察結果から、おおよそ100μm以上の結晶粒径のものであることが確認された。   Furthermore, the size of the crystal observed as a mottled pattern when the surface is peeled off by cutting is of a crystal grain size of approximately 100 μm or more from several visual results and observation results with an optical microscope. Was confirmed.

一方、切削時の切削面には、切削バイト先端より前方(未切削面)では圧縮応力が発生するとともに、切削バイト先端より後方(バイトによる切削面)では引張応力が発生することが知られている。このため、切削面の表面には、切削バイト先端より後方(バイトによる切削面)で発生する引張応力が大きく影響すると考え、α型チタンである純チタンの結晶粒(細密六方格子)のすべり変形に及ぼす結晶方位の影響をシミュレーションした。   On the other hand, it is known that compressive stress is generated in front of the cutting tool tip (uncut surface) on the cutting surface during cutting, and tensile stress is generated behind the cutting tool tip (cut surface by the tool). Yes. For this reason, it is considered that the tensile stress generated behind the cutting bit tip (cutting surface by the cutting tool) greatly affects the surface of the cutting surface, and slip deformation of pure titanium crystal grains (fine hexagonal lattice) that is α-type titanium. The effect of crystal orientation on the was simulated.

最初に、細密六方格子である純チタン粒に引張応力を負荷した場合、活動するすべり面とその方向とを検討した。
臨界分解せん断応力CRSS(Critical Resolved Shear Stress)は一定であるというシュミットの法則を用いて、α相の各すべり面のシュミット因子を算出し、文献に記載された臨界せん断応力CRSSの値からすべり変形を開始する応力(降伏応力)σ0を求めた。
First, when a tensile stress is applied to pure titanium grains, which are fine hexagonal lattices, the active slip surface and its direction are investigated.
Using Schmitt's law that the critical resolved shear stress (CRSS) is constant, the Schmid factor of each slip surface of the α phase is calculated, and the slip deformation is calculated from the value of the critical shear stress CRSS described in the literature. The stress (yield stress) σ 0 for starting the process was determined.

シュミットの法則は(1)式により表される。ここで、τ0は臨界せん断応力(CRSS、MPa)であり、φは切削方向とすべり面の垂線とのなす角度(°)であり、λは切削方向とすべり方向のなす角度(°)であり、(cosφ×cosλ)はシュミット因子である。   Schmidt's law is expressed by equation (1). Here, τ0 is the critical shear stress (CRSS, MPa), φ is the angle (°) between the cutting direction and the normal of the sliding surface, and λ is the angle (°) between the cutting direction and the sliding direction. , (Cos φ × cos λ) is a Schmitt factor.

σ0=τ0/(cosφ×cosλ)・・・・・・・・・・・(1)
α相のすべり変形が発生する面と方向は、図2に示す4つに限られている。この4つのすべり面と方向について、軸比c/a=1.58829)として、シュミット因子を計算した。計算は、シュミット因子が最も大きく変化するc軸の傾き(切削方向とc軸のなす角度θ)を変えて行い、c軸をa軸方向<11−20>に傾けた場合のシュミット因子を求めた。
σ0 = τ0 / (cosφ × cosλ) (1)
The planes and directions in which the α-phase slip deformation occurs are limited to the four shown in FIG. For these four slip planes and directions, Schmid factor was calculated as an axial ratio c / a = 1.58829). The calculation is performed by changing the inclination of the c-axis (the angle θ between the cutting direction and the c-axis) at which the Schmid factor changes the most, and the Schmitt factor when the c-axis is inclined in the a-axis direction <11-20> is obtained. It was.

図2は、純チタンの結晶格子(細密六方格子)のc軸の傾きとシュミット因子(cosφ×cosλ)との関係を調査した結果を示すグラフである。
図2にグラフで示すように、底面すべりと、a+c軸方向への錐面(錐面a+c)すべりとが大きく、a軸方向の錐面(錐面a)すべりは0.2未満と小さいことがわかる。
FIG. 2 is a graph showing the results of investigating the relationship between the c-axis tilt of a pure titanium crystal lattice (fine hexagonal lattice) and the Schmitt factor (cosφ × cosλ).
As shown in the graph of FIG. 2, the bottom slip and the conical surface (conical surface a + c) slip in the a + c axis direction are large, and the conical surface (conical surface a) slip in the a axis direction is small, less than 0.2. I understand.

α相の臨界せん断応力CRSSに関する文献Titanium and Its Alloys, Lesson5. Deformation and Recrystallization of Titanium and Its Alloy P.3(ASM International)より、τ0=107MPa、柱面τ0=90MPa、錐面aτ0=97MPaを用いた。なお、錐面a+cのτ0(臨界せん断応力CRSS)は不明であるが、ここでは通常柱面すべりの8倍程度と考えられているいために720MPaとして計算した。すべり変形を開始するすべり発生応力σ0は、シュミット因子とCRSSを(1)式に代入して求めた。   Literature on critical shear stress CRSS of α phase Titanium and Its Alloys, Lesson5. Transformation and Reclamation of Titanium and Its Alloy P. 3 (ASM International), τ0 = 107 MPa, column surface τ0 = 90 MPa, and conical surface aτ0 = 97 MPa were used. Although τ0 (critical shear stress CRSS) of the conical surface a + c is unknown, it is calculated as 720 MPa because it is considered to be about eight times the normal column surface slip here. The slip generation stress σ0 at which slip deformation starts is determined by substituting the Schmitt factor and CRSS into equation (1).

図3は、純チタンの結晶格子のc軸の傾きとすべり発生応力σ0との関係を求めた結果を示すグラフである。
活動するすべりは、すべり発生応力σ0が最も低くなるすべり面であることから、c軸の傾きθ=0〜6°では錐面a+c、θ=6〜69°では底面、θ=69〜90°では柱面の各すべり面になる。ただし、錐面a+cや錘面aは、すべり発生応力が大きく、また、柱面は69°以上で底面のすべり発生応力より低くなるが、活発に活動しにくくなることがあるため、よって底面のすべりのみを考慮すればよいことになる。
FIG. 3 is a graph showing the results of determining the relationship between the c-axis inclination of the pure titanium crystal lattice and the slip generation stress σ0.
Since the active slip is the slip surface where the slip generation stress σ0 is the lowest, the c-axis inclination θ = 0 to 6 ° is the conical surface a + c, θ = 6 to 69 ° is the bottom surface, and θ = 69 to 90 °. Then, it becomes each slip surface of the column surface. However, the conical surface a + c and the weight surface a have a large slip generation stress, and the column surface is 69 ° or more and lower than the bottom surface slip generation stress. Only slipping needs to be considered.

一方、JIS2種の純チタンの引張強度は400MPa程度であるため、それ以上の引張応力が加わった場合は、チタン材自体が破壊することになる。
よって、純チタンの結晶格子のc軸の傾きが15°以下および75°以上であれば、結晶のすべりがほとんど生じることなくチタン材が破壊することになる。
On the other hand, since the tensile strength of JIS type 2 pure titanium is about 400 MPa, the titanium material itself will be destroyed when more tensile stress is applied.
Therefore, if the inclination of the c-axis of the crystal lattice of pure titanium is 15 ° or less and 75 ° or more, the titanium material is destroyed with almost no crystal slippage.

そこで、表面がむしり取られる現象は、純チタンの結晶方位に関係する可能性があると推測し、研削面の結晶方位解析を行った。
鍛造で丸棒に成形した2種の試料A、B(材質はJIS2種相当の純チタン)を輪切りにし、切断面を切削してまだら模様の発生の有無を調査した。
Therefore, the phenomenon that the surface was stripped was assumed to be related to the crystal orientation of pure titanium, and the crystal orientation analysis of the ground surface was performed.
Two types of samples A and B (made of pure titanium equivalent to JIS type 2) formed into a round bar by forging were cut into circles, and the cut surfaces were cut to investigate the occurrence of mottled patterns.

各試験片の鍛造および熱処理は、以下に記載の条件で行った。
試料Aは、VAR溶解法によってJIS2種相当のチタン材を製造したインゴットに対し、β変態点以上の温度域で加熱および鍛造を繰り返し、トータルの断面減少率で60%以上の鍛造を行った。その後、β変態点以下での温度域で加熱、鍛造、圧延することによって直径64mmの丸棒とした。この直径64mmの丸棒に対して、630℃での歪取り焼鈍を実施した。
Forging and heat treatment of each test piece were performed under the conditions described below.
For sample A, a titanium material corresponding to JIS type 2 was manufactured by a VAR melting method, and heating and forging were repeated in a temperature range equal to or higher than the β transformation point, and forging with a total cross-section reduction rate of 60% or more was performed. Thereafter, heating, forging, and rolling were performed in a temperature range below the β transformation point to obtain a round bar having a diameter of 64 mm. This round bar having a diameter of 64 mm was subjected to strain relief annealing at 630 ° C.

試料Bは、VAR溶解法によって製造したインゴットに対し、β変態点以下の温度域で加熱、鍛造、圧延することによって直径86mmの丸棒とした。この直径86mmの丸棒に対して、705℃での歪取り焼鈍を実施した。   Sample B was formed into a round bar having a diameter of 86 mm by heating, forging, and rolling in an ingot produced by the VAR melting method in a temperature range below the β transformation point. The round bar with a diameter of 86 mm was subjected to strain relief annealing at 705 ° C.

各試験片の切断面に対して、切削を行った結果、試料Aはまだら模様が僅かに発生していたものの、合格レベルであった。これに対し、試料Bは、まだら模様が多数発生しており、不合格レベルであった。   As a result of cutting the cut surface of each test piece, Sample A was at a pass level although a mottled pattern was slightly generated. On the other hand, Sample B had a lot of mottled patterns and was at a reject level.

試料A、Bの結晶方位を測定するために、試料A、Bの切削後の表面を電解研磨によって表面の歪み層を除去して表面を平滑化した後、EBSD(electron backscatter diffraction)で結晶方位分布を測定した。観察の視野は、1.17mm×0.89mm(=1.0413mm)である。 In order to measure the crystal orientation of samples A and B, the surface after cutting of samples A and B was smoothed by removing the strain layer on the surface by electropolishing, and then the crystal orientation was measured by EBSD (electron backscatter diffraction). Distribution was measured. The field of view for observation is 1.17 mm × 0.89 mm (= 1.0413 mm 2 ).

図4は、試料AのEBSD結果の結果を示すグラフであり、図5は、試料BのEBSD結果の結果を示すグラフである。なお、この結果は、図3に結果を示す試験と同様に、純チタンの結晶格子である細密六方格子のc軸が切削面に垂直方向からの傾きで整理した。   FIG. 4 is a graph showing the result of the EBSD result of the sample A, and FIG. 5 is a graph showing the result of the EBSD result of the sample B. This result was arranged in such a manner that the c-axis of the fine hexagonal lattice, which is a crystal lattice of pure titanium, was inclined from the direction perpendicular to the cutting surface, as in the test whose result is shown in FIG.

上述した光学顕微鏡による観察結果から、表面がむしり取られる現象が発生して目視によりまだら模様であると認識できるのは、おおよそ100μm以上の結晶粒径のものであるので、この確認においても100μm以上の結晶粒に着目した。ただし、100μm以下の結晶粒であっても、同一の結晶方位を持つ結晶粒の集合体であるコロニーを形成した時には、まだら模様として目視で確認できる場合がある。   From the observation result by the optical microscope described above, the phenomenon that the surface is peeled off and it can be recognized as a mottled pattern by visual observation is the crystal grain size of about 100 μm or more. We focused on crystal grains. However, even if the crystal grain is 100 μm or less, it may be visually confirmed as a mottled pattern when a colony that is an aggregate of crystal grains having the same crystal orientation is formed.

試料Aは、c軸の傾き(切削方向とc軸のなす角度θ)が65°以上である領域で結晶粒径が100μm以上の結晶が17個存在するのに対して、試料Bはc軸の傾きが65°以上である領域において34個の結晶が存在していることが判明した。また、c軸の傾きが75°以上である場合はそれぞれ、10個、28個であった。   In the sample A, there are 17 crystals having a crystal grain size of 100 μm or more in a region where the inclination of the c-axis (the angle θ formed by the cutting direction and the c-axis) is 65 ° or more, whereas the sample B has the c-axis It was found that 34 crystals were present in a region where the inclination of 65 was 65 ° or more. Further, when the inclination of the c-axis was 75 ° or more, they were 10 and 28, respectively.

以上の結果から、以下のことが判明した。
(1)純チタン鍛造材の断面の結晶方位は、c軸の傾きが65°以上を有する結晶粒において100μm以上の粒径を有する結晶が存在し、光学顕微鏡による観察結果よりまだら模様となって目視で観察されるのは、100μm以上のチタンの結晶粒である。
From the above results, the following was found.
(1) The crystal orientation of the cross section of the pure titanium forged material is a mottled pattern from the results of observation with an optical microscope, with crystals having a grain size of 100 μm or more present in crystal grains having a c-axis inclination of 65 ° or more. What is visually observed is a crystal grain of titanium of 100 μm or more.

(2)シミュレーションの結果、c軸の傾きとすべり発生応力の間には相関関係があり、15°以下、および75°以上の領域では、チタンの引張強度を超え、切削を行った場合にはチタンの結晶が殆どすべり変形をおこさずに破壊する。   (2) As a result of the simulation, there is a correlation between the inclination of the c-axis and the slip generation stress. In the region of 15 ° or less and 75 ° or more, the tensile strength of titanium is exceeded and cutting is performed. The titanium crystal breaks with almost no slip deformation.

(3)以上の結果から、c軸の傾きが15°以下および75°以上の角度を有し、且つ100μm以上の結晶粒が10個/mm超存在すると、切削加工を行ったときにまだら模様様となって不合格レベルとなる。 (3) As a result, the inclination of the c-axis has an angle greater than or less and 75 ° 15 °, and 100μm or more crystal grains 10 / mm 2 to super present, plaques when performing cutting It becomes a pattern and becomes a reject level.

このため、鍛造により製造されるとともに切削加工を行われる少なくとも一の外面を有するα型チタン部材における、切削加工を行われる表面が、切削面に垂直な方向と結晶格子のc軸とのなす角度であるc軸の傾きが15°以下および75°以上を有し、かつ結晶粒径が100μm以上である結晶が10個/mm以下である結晶方位分布を有すれば、この一の外面に切削加工を行っても、目視可能なまだら模様が発生しない。 For this reason, in an α-type titanium member that is manufactured by forging and has at least one outer surface that is subjected to cutting, the angle between the surface to be cut and the direction perpendicular to the cutting surface and the c-axis of the crystal lattice If there is a crystal orientation distribution in which the inclination of the c-axis is 15 ° or less and 75 ° or more and the crystal grain size is 100 μm or more is 10 pieces / mm 2 or less, Even after cutting, no visible mottled pattern is generated.

Claims (1)

鍛造により製造されるとともに切削加工を行われる少なくとも一の外面を有するα型チタン部材であって、前記切削加工を行われる表面が、切削面に垂直な方向と結晶格子のc軸とのなす角度であるc軸の傾きが15°以下および75°以上を有し、かつ結晶粒径が100μm以上である結晶が10個/mm以下である結晶方位分布を有することを特徴とα型チタン部材。 An α-type titanium member manufactured by forging and having at least one outer surface on which cutting is performed, and an angle formed between a direction perpendicular to the cutting surface and a c-axis of the crystal lattice on the surface on which the cutting is performed An α-type titanium member having a crystal orientation distribution in which the inclination of the c-axis is 15 ° or less and 75 ° or more and the crystal grain size is 100 μm or more is 10 pieces / mm 2 or less .
JP2011134370A 2011-06-16 2011-06-16 α-type titanium member Active JP5843094B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011134370A JP5843094B2 (en) 2011-06-16 2011-06-16 α-type titanium member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011134370A JP5843094B2 (en) 2011-06-16 2011-06-16 α-type titanium member

Publications (2)

Publication Number Publication Date
JP2013001961A true JP2013001961A (en) 2013-01-07
JP5843094B2 JP5843094B2 (en) 2016-01-13

Family

ID=47670847

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011134370A Active JP5843094B2 (en) 2011-06-16 2011-06-16 α-type titanium member

Country Status (1)

Country Link
JP (1) JP5843094B2 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5087913A (en) * 1973-12-10 1975-07-15
JPS60116754A (en) * 1983-11-29 1985-06-24 Toshiba Corp Corrosion resistant titanium
JPS61157668A (en) * 1984-12-29 1986-07-17 Nippon Steel Corp Manufacture of titanium hot rolled plate
JPH01252747A (en) * 1987-12-23 1989-10-09 Nippon Steel Corp High strength titanium material having excellent ductility and its manufacture
JPH0222447A (en) * 1988-01-07 1990-01-25 Nippon Steel Corp Manufacture of alpha-type titanium alloy having excellent cold workability
JPH0328505B2 (en) * 1983-06-28 1991-04-19 Nippon Stainless Steel Co
JP2002012931A (en) * 2000-06-29 2002-01-15 Sumitomo Metal Ind Ltd Titanium sheet excellent in surface property and its production method
JP2002155349A (en) * 2000-11-17 2002-05-31 Sumitomo Metal Ind Ltd Method for producing titanium plate
WO2011068247A1 (en) * 2009-12-02 2011-06-09 新日本製鐵株式会社 α+β TITANIUM ALLOY PART AND METHOD OF MANUFACTURING SAME

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5087913A (en) * 1973-12-10 1975-07-15
JPH0328505B2 (en) * 1983-06-28 1991-04-19 Nippon Stainless Steel Co
JPS60116754A (en) * 1983-11-29 1985-06-24 Toshiba Corp Corrosion resistant titanium
JPS61157668A (en) * 1984-12-29 1986-07-17 Nippon Steel Corp Manufacture of titanium hot rolled plate
JPH01252747A (en) * 1987-12-23 1989-10-09 Nippon Steel Corp High strength titanium material having excellent ductility and its manufacture
JPH0222447A (en) * 1988-01-07 1990-01-25 Nippon Steel Corp Manufacture of alpha-type titanium alloy having excellent cold workability
JP2002012931A (en) * 2000-06-29 2002-01-15 Sumitomo Metal Ind Ltd Titanium sheet excellent in surface property and its production method
JP2002155349A (en) * 2000-11-17 2002-05-31 Sumitomo Metal Ind Ltd Method for producing titanium plate
WO2011068247A1 (en) * 2009-12-02 2011-06-09 新日本製鐵株式会社 α+β TITANIUM ALLOY PART AND METHOD OF MANUFACTURING SAME

Also Published As

Publication number Publication date
JP5843094B2 (en) 2016-01-13

Similar Documents

Publication Publication Date Title
Naseri et al. A new strategy to simultaneous increase in the strength and ductility of AA2024 alloy via accumulative roll bonding (ARB)
Sima et al. Modified material constitutive models for serrated chip formation simulations and experimental validation in machining of titanium alloy Ti–6Al–4V
Quadir et al. Shear banding and recrystallization texture development in a multilayered Al alloy sheet produced by accumulative roll bonding
Milton et al. Influence of finish machining on the surface integrity of Ti6Al4V produced by selective laser melting
Zhou et al. Analysis of subsurface microstructure and residual stresses in machined Inconel 718 with PCBN and Al2O3-SiCw tools
He et al. Surface formation in laser-assisted grinding high-strength alloys
Zhang et al. Fatigue life enhancement in alpha/beta Ti–6Al–4V after shot peening: An EBSD and TEM crystallographic orientation mapping study of surface layer
Fernández et al. The effect of forging texture and machining parameters on the fatigue performance of titanium alloy disc components
Zhao et al. An investigation of resolved shear stress on activation of slip systems during ultraprecision rotary cutting of local anisotropic Ti-6Al-4V alloy: Models and experiments
Liu et al. Effects of the crystallographic and spatial orientation of α lamellae on the anisotropic in-situ tensile behaviors of additive manufactured Ti–6Al–4V
Lim et al. In-situ warm shot peening on Ti-6Al-4V alloy: Effects of temperature on fatigue life, residual stress, microstructure and mechanical properties
Rajinikanth et al. Influence of scandium on an Al–2% Si alloy processed by high-pressure torsion
Mesbah et al. Nano-mechanical properties and microstructure of UFG brass tubes processed by parallel tubular channel angular pressing
Wroński et al. Effect of rolling asymmetry on selected properties of grade 2 titanium sheet
Zhao et al. Effects of grains and twins on deformation of commercial pure titanium in ultraprecision diamond turning
Robertson et al. Effect of product form and heat treatment on the crystallographic texture of austenitic Nitinol
Meng et al. Microstructure effect on the machinability behavior of additive and conventionally manufactured Inconel 718 alloys
Kawałko et al. The effect of strain path changes on texture evolution and deformation behavior of Ti6Al4V subjected to accumulative angular drawing
Nugmanov et al. Texture and anisotropy of yield strength in multistep isothermally forged Mg-5.8 Zn-0.65 Zr alloy
JP5843094B2 (en) α-type titanium member
Shi et al. Surface‐Roughness‐Induced Plasticity in a Biodegradable Zn Alloy
Davey et al. Fatigue Performance of the Novel Titanium Alloy Timetal 407
JP7307313B2 (en) α+β type titanium alloy bar and its manufacturing method
Wroński et al. Microstructure, texture and mechanical properties of titanium grade 2 processed by ECAP (route C)
Khafizova et al. Effect of severe plastic deformation on the structure and mechanical properties of Al-Cu-Mg alloy

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121011

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20121011

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130812

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20140411

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140620

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140701

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140901

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150324

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150624

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20150804

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150908

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150911

TRDD Decision of grant or rejection written
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20151016

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151022

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151104

R151 Written notification of patent or utility model registration

Ref document number: 5843094

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350