JPH09208335A - Carbon-composite member and its composite method - Google Patents

Carbon-composite member and its composite method

Info

Publication number
JPH09208335A
JPH09208335A JP8020908A JP2090896A JPH09208335A JP H09208335 A JPH09208335 A JP H09208335A JP 8020908 A JP8020908 A JP 8020908A JP 2090896 A JP2090896 A JP 2090896A JP H09208335 A JPH09208335 A JP H09208335A
Authority
JP
Japan
Prior art keywords
carbon
composition
alloy
film
members
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8020908A
Other languages
Japanese (ja)
Inventor
Hisanobu Okamura
久宣 岡村
Hiroshi Akiyama
秋山  浩
Masahiko Sakamoto
征彦 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP8020908A priority Critical patent/JPH09208335A/en
Publication of JPH09208335A publication Critical patent/JPH09208335A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/10Nuclear fusion reactors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Ceramic Products (AREA)
  • Furnace Housings, Linings, Walls, And Ceilings (AREA)

Abstract

PROBLEM TO BE SOLVED: To easily bond large-size carbonaceous member(s) of complicated shape without containing Ag at the joint, by metallically bonding carbonaceous members to each other or a carbonaceous member to another member through a composition essentially comprising Cu and Mn. SOLUTION: A composition consisting mainly of Cu and Mn and serving as an adhesive is pref. composed of 15-45wt.% Mn and the rest of Cu. If the Mn content of the composition falls within the above range, the melting point of the composition (alloy) stands at 870-950 deg.C, a range being enough to be applicable to Cu or Cu alloy bonding. Besides, incorporation of 1-10wt.% Ti in the above composition facilitates bonding operation. The composition may be of any form: i.e., Cu-Mn-Ti alloy or powder, or brazing material with the surface of a Cu-Mn alloy foil provided with Ti-film. The bonding is conducted as follows: the above composition or alloy foil with the surface of Cu-Mn alloy foil provided with Ti-film is put between carbonaceous members or between a carbonaceous member and metallic member followed by heating in a nonoxidative atmosphere at a temperature higher than the melting point of the composition.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は航空宇宙機器及び核
融合装置用や高温ガス炉用の炉壁体をはじめ、炭素部材
を使用する工業製品に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an industrial product using a carbon member, including a furnace wall for aerospace equipment, a nuclear fusion device and a high temperature gas reactor.

【0002】[0002]

【従来の技術】従来、炭素部材同士または他の材料と接
合する方法は、Ag−Cu合金またはCuにTiを添加
した活性金属法(USA特許 第2739375号),Fe−N
i−Ti合金ろう(日本特許広報:290561号),Ti−
Zr−Be合金ろう(Wel.J.,Vol 41,No.68),
Ni−Cr−Pd−Si合金ろう(特開平1−178399
号),Mo−Ni−Cr−Fe合金ろう(特開昭62−2176
8号),V−Ti合金箔(特開平2−23499号)などのろ
う材や箔によって炭素部材を他の部材に直接接合する方
法などが開示されている。
2. Description of the Related Art Conventionally, a method of joining carbon members to each other or other materials is an Ag-Cu alloy or an active metal method in which Ti is added to Cu (USA Patent No. 2739375), Fe-N.
i-Ti alloy wax (Japanese Patent Publication No. 290561), Ti-
Zr-Be alloy solder (Wel. J., Vol 41, No. 68),
Ni-Cr-Pd-Si alloy braze (JP-A-1-178399)
No.), Mo-Ni-Cr-Fe alloy brazing alloy (JP-A-62-1176).
No. 8), V-Ti alloy foil (JP-A-2-23499), and other methods for directly joining a carbon member to another member with a brazing material or foil are disclosed.

【0003】一方、炭素部材の表面に金属化層を形成後
ろう付けする方法として、特許公報平3−54182号では、
MoまたはWとZrとの共晶合金をグラファイトとの表
面に配置して、非酸化性雰囲気中で加熱する方法が開示
されている。
On the other hand, as a method of brazing after forming a metallized layer on the surface of a carbon member, Japanese Patent Laid-Open No. 3-54182 discloses a method of:
A method is disclosed in which a eutectic alloy of Mo or W and Zr is placed on the surface of graphite and heated in a non-oxidizing atmosphere.

【0004】[0004]

【発明が解決しようとする課題】前記の従来方法によっ
て炭素部材同士または炭素部材と他の部材とを接合する
方法は、次のような問題点がある。
The method of joining the carbon members to each other or the carbon member to another member by the above-mentioned conventional method has the following problems.

【0005】炭素部材を銅または銅合金に接合する場
合、AgとCuを主成分とするろう材によって接合する
方法が公知である。しかし、核融合炉部材の接合にこの
方法を採用した場合、接合部の中にAgが含まれている
と核融合炉の運転中に中性子照射を受けて接合部中のA
gはCdに変換される。Cdは融点が低く、かつ、蒸気
圧が高いため、核融合炉の運転中にプラズマ中に拡散し
てプラズマの純度を低下する。このため、プラズマ温度
が低下して核融合炉の運転が不可能になる。従って、核
融合炉内に適用される部材を接合するためには接合部に
Agを含まない接合方法が必要である。
When joining a carbon member to copper or a copper alloy, a method of joining with a brazing material containing Ag and Cu as the main components is known. However, when this method is adopted for joining the fusion reactor members, if Ag is contained in the joint, the neutron irradiation during the operation of the fusion reactor causes
g is converted to Cd. Since Cd has a low melting point and a high vapor pressure, it diffuses into the plasma during the operation of the fusion reactor and reduces the purity of the plasma. For this reason, the plasma temperature is lowered and it becomes impossible to operate the fusion reactor. Therefore, in order to join the members applied in the fusion reactor, a joining method that does not contain Ag at the joint is necessary.

【0006】一方、接合部の中にAgを含まない接合方
法として、例えば、Ni−Cr系ろう材またはCu−T
i系ろう材などで接合する方法が公知である。しかし、
前記ろう材で炭素部材をCuまたはCu合金などに接合
する場合、次のような問題点がある。
On the other hand, as a joining method in which Ag is not contained in the joint, for example, a Ni-Cr brazing material or Cu-T is used.
A method of joining with an i-based brazing material or the like is known. But,
When the carbon member is bonded to Cu or Cu alloy with the brazing material, there are the following problems.

【0007】(1)ろう材は、Cuの融点に近いか、また
は、それ以上に高いため、CuまたはCu合金の接合は
困難である。(2)ろう材は、剛性が高いために接合用の
箔にすることが困難である。(3)ろう材は、一般に剛性
が高いため、接合部の残留応力が高くなり、信頼性の高
い接合部が得られない。(4)前述のように、剛性の高い
ろう材の場合は、炭素部材が複雑形状の場合に前記ろう
材を前記炭素部材の接合面に密着できない。このため、
健全な接合体が得られない。などの問題点がある。
(1) Since the brazing material is close to or higher than the melting point of Cu, it is difficult to bond Cu or Cu alloy. (2) It is difficult to make a brazing foil because the brazing material has high rigidity. (3) Since the brazing filler metal generally has high rigidity, the residual stress in the joint becomes high, and a highly reliable joint cannot be obtained. (4) As described above, in the case of a brazing material having high rigidity, when the carbon member has a complicated shape, the brazing material cannot adhere to the joining surface of the carbon member. For this reason,
A healthy joint cannot be obtained. There are problems such as.

【0008】本発明の目的は、等方性炭素部材同士また
は炭素繊維炭素複合化部材同士及び前記炭素部材と金属
などの他の部材との信頼性の高い複合化部材並びに前記
複合化部材を得るための接合方法を提供することにあ
る。
An object of the present invention is to obtain a highly reliable composite member between isotropic carbon members or carbon fiber carbon composite members and between the carbon member and another member such as a metal, and the composite member. It is to provide a joining method for this.

【0009】[0009]

【課題を解決するための手段】前述のように、核融合炉
部材を接合するためには接合部にAgを含まない接合方
法が必要である。本発明は、接合部にAgを含まない炭
素部材同士または炭素部材と金属との接合体を得るため
の複合化方法を提供するものである。さらに、本発明で
は、接合部にAgを含まず、かつ、融点の比較的低いC
u及びCu合金に炭素部材を容易に接合するための接合
方法を提供する。
As described above, in order to join the fusion reactor members, it is necessary to use a joining method that does not contain Ag at the joint. The present invention provides a compounding method for obtaining a bonded body of carbon members that do not contain Ag at their joints or a carbon member and a metal. Further, in the present invention, C does not contain Ag in the joint and has a relatively low melting point.
A joining method for easily joining a carbon member to u and Cu alloys is provided.

【0010】接合部にAgを含まない接合用の組成物と
して、CuとMnを主成分とする合金または粉末状の混
合物が望ましいことを発明した。
It has been invented that an alloy containing Cu and Mn as main components or a powdery mixture is preferable as a composition for bonding that does not contain Ag in the joint.

【0011】CuとMnを主成分とする組成物は、15
〜45wt%のMnと残部がCuとからなる組成物が望
ましい。Mn量が15〜45wt%の範囲の組成におい
て、この合金の融点(液相線)は870〜950℃であ
り、CuまたはCu合金の接合に適用できる温度範囲で
ある。望ましくは、Cu−35wt%Mnの組成におい
て融点を870℃まで低下できる。このため、Cuの融
点に比べて200℃低いため、CuまたはCu合金と炭
素部材を容易に接合できる。
The composition containing Cu and Mn as main components is 15
A composition of ˜45 wt% Mn and the balance Cu is desirable. In the composition in which the amount of Mn is in the range of 15 to 45 wt%, the melting point (liquidus line) of this alloy is 870 to 950 ° C., which is the temperature range applicable to the bonding of Cu or Cu alloy. Desirably, the melting point can be lowered to 870 ° C. in the composition of Cu-35 wt% Mn. Therefore, since the melting point of Cu is lower by 200 ° C., Cu or a Cu alloy and the carbon member can be easily bonded.

【0012】さらに、CuとMnを主成分とする組成物
に、1〜10wt%のTiを添加することにより、炭素
部同士または炭素部材と他の部材とを容易に接合でき
る。前記組成物は、CuとMnを主成分とするCu−M
n−Tiの合金の状態でも、Cu−Mn−Tiの粉末の
状態でも本目的を達成できる。さらに、Cu−Mnから
なる合金箔の表面にTi膜を形成したろう材でも本目的
を達成できる。
Further, by adding 1 to 10 wt% of Ti to the composition containing Cu and Mn as main components, it is possible to easily bond the carbon parts or the carbon member to another member. The composition is Cu-M containing Cu and Mn as main components.
This object can be achieved either in the state of n-Ti alloy or in the state of Cu-Mn-Ti powder. Further, the present object can be achieved even with a brazing material having a Ti film formed on the surface of an alloy foil made of Cu-Mn.

【0013】一方、組成物によって炭素部材同士及び炭
素部材と金属と接合する方法を次に説明する。
On the other hand, a method for joining the carbon members and the carbon member and the metal with the composition will be described below.

【0014】(1)炭素部材同士または炭素部材と金属部
材との間にCuとMnを主成分とする組成物またはCu
とMnとの合金箔の表面にTi膜が形成された合金箔を
配置し、これを非酸化性雰囲気中で前記組成物の融点以
上に加熱する。
(1) A composition containing Cu and Mn as main components between the carbon members or between the carbon member and the metal member or Cu
An alloy foil having a Ti film formed on the surface of the alloy foil of and Mn is placed and heated in a non-oxidizing atmosphere to a temperature equal to or higher than the melting point of the composition.

【0015】(2)炭素部材の表面に予めTi膜を形成
後、その上にCuとMnからなる組成物を配置し、この
上に炭素部材または金属部材を配置して、これを非酸化
性雰囲気中で組成物の融点以上に加熱する。
(2) After forming a Ti film on the surface of the carbon member in advance, a composition consisting of Cu and Mn is arranged thereon, and a carbon member or a metal member is arranged thereon, and the composition is made non-oxidizing. Heating above the melting point of the composition in an atmosphere.

【0016】(3)炭素部材の表面に、CuとMnまたは
Cu−Mn−Tiを主成分とする組成物を印刷または塗
布する。これを非酸化性雰囲気中で組成物の融点以上に
加熱することにより、炭素部材の表面に、予め、金属化
層を形成する。金属化層が形成された炭素部材をAgを
含まないCu−P合金ろう材などで金属などと接合す
る。
(3) A composition containing Cu and Mn or Cu-Mn-Ti as main components is printed or applied on the surface of the carbon member. By heating this above the melting point of the composition in a non-oxidizing atmosphere, a metallized layer is formed in advance on the surface of the carbon member. The carbon member on which the metallized layer is formed is bonded to a metal or the like with a Cu-P alloy brazing material containing no Ag.

【0017】一方、Cu−P−Tiからなる組成物によ
っても本目的を達成できる。組成物は、Pが4〜6wt
%、Tiが1〜10wt%残部がCuからなる組成物が
望ましい。つまり、CuにPを4〜6wt%添加するこ
とにより、この組成物の融点(固相点)は約710℃と
なる。これに、1〜10wt%のTiを添加することに
より、Cu及びCu合金に炭素部材をCu及びCu合金
の融点以下で接合できる。
On the other hand, this object can also be achieved by a composition comprising Cu-P-Ti. The composition has P of 4 to 6 wt.
%, Ti is 1 to 10 wt%, and a composition in which the balance is Cu is desirable. That is, the melting point (solidus point) of this composition becomes about 710 ° C. by adding 4 to 6 wt% of P to Cu. By adding 1 to 10 wt% of Ti to this, the carbon member can be bonded to Cu and the Cu alloy at the melting point of the Cu or the Cu alloy or less.

【0018】なお、組成物はCu−P−Tiの合金の状
態でもまたは粉末の状態でも本目的を達成できる。さら
に、4〜6wt%Pと残部Cuからなる合金箔の表面に
Ti膜を形成した合金箔は加工性の点でより望ましい。
The composition can achieve this object even in the form of an alloy of Cu-P-Ti or in the form of powder. Furthermore, an alloy foil in which a Ti film is formed on the surface of an alloy foil composed of 4 to 6 wt% P and the balance Cu is more desirable in terms of workability.

【0019】組成物を利用して炭素部材同士または炭素
部材と金属と接合する方法は、(1)〜(3)と同様であ
る。
The method of joining the carbon members or the carbon member and the metal using the composition is the same as in (1) to (3).

【0020】CuとMnを主成分とした組成物を炭素部
材または金属との間に配置して非酸化性雰囲気中で組成
物の融点以上に加熱すると組成物中のMnが炭素と反応
して、その接合部にマンガン炭化物が生成され、接合層
を形成する。さらに、Cu−Mn合金または粉末中にT
iを添加した組成物の場合は、接合部にマンガン炭化物
の他にチタン炭化物が生成され、より望ましい接合層を
形成する。また、Mnは炭化物を形成するばかりでな
く、Cu−Mn組成物の融点を低下する。
When a composition containing Cu and Mn as main components is placed between a carbon member and a metal and heated above the melting point of the composition in a non-oxidizing atmosphere, Mn in the composition reacts with carbon. , Manganese carbide is generated at the joint, forming a joint layer. In addition, T in Cu-Mn alloy or powder
In the case of the composition to which i is added, titanium carbide is generated in addition to manganese carbide at the joint, and a more desirable joining layer is formed. Further, Mn not only forms carbide, but also lowers the melting point of the Cu-Mn composition.

【0021】一方、Cu−P−Tiの場合は、Pは合金
中の融点を低下する。Tiは炭素と反応して接合部にチ
タン炭化物を生成し、接合層を形成する。
On the other hand, in the case of Cu-P-Ti, P lowers the melting point in the alloy. Ti reacts with carbon to produce titanium carbide at the joint, forming a joint layer.

【0022】[0022]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

(実施例1)等方性黒鉛及び炭素繊維炭素複合材とCu
部材との接合をCuとMnとの合金ろう材により接合す
る場合の実施例について説明する。本実施例では、炭素
部材とCu部材との間に35wt%Mnと残部Cuから
なる厚さ100μmの合金ろう箔を配置し、これを非酸
化性雰囲気内でろう箔の融点より50℃高い920℃で
3分間加熱する。
(Example 1) Isotropic graphite and carbon fiber-carbon composite material and Cu
An example of joining a member with a brazing alloy of Cu and Mn will be described. In this example, an alloy brazing foil made of 35 wt% Mn and the balance Cu having a thickness of 100 μm is arranged between the carbon member and the Cu member, and this is higher than the melting point of the brazing foil by 50 ° C. in a non-oxidizing atmosphere 920. Heat at ℃ for 3 minutes.

【0023】前述の方法により接合された接合体のせん
断試験を行った結果、黒鉛部材または炭素繊維炭素複合
材の剪断強度と同等の高いせん断強度が得られ、信頼性
の高い炭素複合化部材が得られた。
As a result of the shear test of the joined body joined by the above-mentioned method, a high shear strength equivalent to the shear strength of the graphite member or the carbon fiber-carbon composite material was obtained, and a highly reliable carbon composite member was obtained. Was obtained.

【0024】(実施例2)接合面が半径15mmの円弧状
の形状を有する30mm角の等方性黒鉛及び炭素繊維炭素
複合化部材の接合面の表面にTi粉末を有機溶剤と混合
してペースト状にしたものを10〜30μmの厚さに塗
布する。この上に35wt%Mnと残部Cuからなる厚
さ100μmの合金ろう箔を、その上に直径14.8mm
の銅パイプを配置する。これを非酸化性雰囲気内でろう
箔の融点より30℃高い900℃の温度で3分間加熱す
る。
(Embodiment 2) Ti powder is mixed with an organic solvent on the surface of the joint surface of isotropic graphite and carbon fiber-carbon composite member of 30 mm square having a circular arc shape with a radius of 15 mm and paste is mixed with an organic solvent. The shaped product is applied to a thickness of 10 to 30 μm. On top of this, an alloy brazing foil consisting of 35 wt% Mn and the balance Cu and having a thickness of 100 μm, and having a diameter of 14.8 mm
Place the copper pipe. This is heated in a non-oxidizing atmosphere at 900 ° C., which is 30 ° C. higher than the melting point of the wax foil, for 3 minutes.

【0025】前述の方法により接合された接合体のせん
断試験を行った結果、黒鉛部材または炭素繊維炭素複合
材の剪断強度と同等のせん断強度が得られ、信頼性の高
い炭素複合化部材が得られた。なお、等方性黒鉛及び炭
素繊維炭素複合材の接合面の表面に蒸着法により、厚さ
5μmのTi膜を形成して上記と同様の方法で接合した
場合も同様の結果が得られた。
As a result of a shear test of the joined body joined by the above-mentioned method, a shear strength equivalent to that of the graphite member or the carbon fiber-carbon composite material was obtained, and a highly reliable carbon composite member was obtained. Was given. Similar results were obtained when a Ti film having a thickness of 5 μm was formed on the surface of the joining surface of the isotropic graphite and the carbon fiber-carbon composite material by the vapor deposition method and the Ti film was joined by the same method as described above.

【0026】(実施例3)接合面が半径15mmの円弧状
の形状を有する30mm角の等方性黒鉛及び炭素繊維炭素
複合化部材の接合面の表面にTi粉末を有機溶剤と混合
してペースト状にしたものを10〜50μmの厚さに塗
布する。この上に35wt%Mnと残部Cuからなる厚
さ100μmの合金ろう箔を、その上に厚さ1mm銅箔を
配置する。これを非酸化性雰囲気内でろう箔の融点より
40℃高い910℃の温度で3分間加熱する。これによ
って、炭素部材の接合面に厚さ約1mmからなるCuの金
属化層が形成される。
(Embodiment 3) Ti powder is mixed with an organic solvent and pasted on the surface of the joint surface of isotropic graphite and carbon fiber-carbon composite member of 30 mm square having a circular arc shape with a radius of 15 mm. The shaped product is applied to a thickness of 10 to 50 μm. On this, an alloy brazing foil having a thickness of 100 μm and composed of 35 wt% Mn and the balance Cu, and a copper foil having a thickness of 1 mm are arranged. This is heated in a non-oxidizing atmosphere at a temperature of 910 ° C., which is 40 ° C. higher than the melting point of the wax foil, for 3 minutes. This forms a Cu metallization layer having a thickness of about 1 mm on the bonding surface of the carbon member.

【0027】金属化層が形成された炭素部材の接合面に
厚さ100μmのCu−5wt%Pからなるリン銅ろう
とその上に直径14.8mm の銅パイプを配置する。これ
を大気中でろう箔の固相点より50℃高い800℃の温
度で3分間加熱する。
On the joint surface of the carbon member on which the metallized layer is formed, a copper copper braze made of Cu-5 wt% P having a thickness of 100 μm and a copper pipe having a diameter of 14.8 mm are arranged thereon. This is heated in air at a temperature of 800 ° C., which is 50 ° C. higher than the solidus point of the wax foil, for 3 minutes.

【0028】前述の方法により接合された接合体のせん
断試験を行った結果、黒鉛部材または炭素繊維炭素複合
材の剪断強度と同等のせん断強度が得られ、信頼性の高
い炭素複合化部材が得られた。
As a result of a shear test of the joined body joined by the above-mentioned method, a shear strength equivalent to that of the graphite member or the carbon fiber-carbon composite material was obtained, and a highly reliable carbon composite member was obtained. Was given.

【0029】(実施例4)35wt%Mnと残部がCu
からなる厚さ150μmの合金箔の表面に厚さ5μmの
Ti膜を物理的蒸着法によって形成する。合金箔のTi
膜の形成された面側を被接合材の炭素繊維炭素複合化部
材になるようにCu部材と間に配置する。これを非酸化
性雰囲気内で合金箔の融点より50℃高い920℃の温
度で3min間加熱する。
(Example 4) 35 wt% Mn and the balance Cu
A Ti film having a thickness of 5 μm is formed on the surface of an alloy foil having a thickness of 150 μm, which is made of, by physical vapor deposition. Alloy foil Ti
The surface side on which the film is formed is arranged between the Cu member and the carbon fiber-carbon composite member of the material to be bonded. This is heated in a non-oxidizing atmosphere at a temperature of 920 ° C., which is 50 ° C. higher than the melting point of the alloy foil, for 3 minutes.

【0030】前述の方法により接合された接合体のせん
断試験を行った結果、黒鉛部材または炭素繊維炭素複合
材の剪断強度と同等のせん断強度が得られ、信頼性の高
い炭素複合化部材が得られた。
As a result of a shear test of the joined body joined by the above-mentioned method, a shear strength equivalent to that of the graphite member or the carbon fiber-carbon composite material was obtained, and a highly reliable carbon composite member was obtained. Was given.

【0031】(実施例5)等方性黒鉛及び炭素繊維炭素
複合化部材の一方の表面にTi粉末を有機溶剤と混合し
てペースト状にしたものを10〜20μmの厚さに塗布
する。この上に5wt%Pと残部Cuからなる厚さ10
0μmの合金ろう箔を、その上に銅ブロックを配置す
る。これを非酸化性雰囲気内でろう箔の固相線より10
0℃高い800℃で3分間加熱する。
(Embodiment 5) On one surface of isotropic graphite and carbon fiber-carbon composite member, Ti powder is mixed with an organic solvent to form a paste, which is applied to a thickness of 10 to 20 μm. On top of this, a thickness of 5 wt% P and the balance of Cu is 10
A 0 μm alloy braze foil is placed with a copper block on it. This is 10% from the solidus line of the wax foil in a non-oxidizing atmosphere.
Heat at 0 ° C to 800 ° C for 3 minutes.

【0032】前述の方法により接合された接合体のせん
断試験を行った結果、黒鉛部材または炭素繊維炭素複合
材の剪断強度と同等のせん断強度が得られ、信頼性の高
い炭素複合化部材が得られた。
As a result of a shear test of the joined body joined by the above-mentioned method, a shear strength equivalent to that of the graphite member or the carbon fiber-carbon composite material was obtained, and a highly reliable carbon composite member was obtained. Was given.

【0033】(実施例6)5wt%のPと残部がCuか
らなる厚さ150mの合金箔の表面にペースト状のTi
を20μmの厚さに形成する。合金箔を被接合材の炭素
繊維炭素複合化部材とCu部材との間に配置する。これ
を非酸化製雰囲気内で合金箔の融点より50℃高い80
0℃の温度で3min 間加熱する。前述の方法により接合
された接合体のせん断試験を行った結果、黒鉛部材また
は炭素繊維炭素複合材の剪断強度と同等のせん断強度が
得られ、信頼性の高い炭素複合化部材が得られた。
(Embodiment 6) A paste-like Ti is formed on the surface of an alloy foil having a thickness of 150 m, which is composed of 5 wt% P and the balance Cu.
To a thickness of 20 μm. The alloy foil is arranged between the carbon fiber-carbon composite member of the material to be joined and the Cu member. 80% higher than the melting point of the alloy foil in a non-oxidizing atmosphere
Heat at 0 ° C for 3 min. As a result of a shear test of the joined body joined by the above-described method, a shear strength equivalent to that of the graphite member or the carbon fiber-carbon composite material was obtained, and a highly reliable carbon composite member was obtained.

【0034】(実施例7)厚さ20mm,30mm角の炭素
繊維炭素複合材の一方の面を半径10.5mm の円弧状に
加工する。この円弧状に加工された炭素複合材の面にペ
ースト状のTi粉末を厚さ20μm塗布したものを20
箇作製する。
Example 7 One side of a carbon fiber-carbon composite material having a thickness of 20 mm and a size of 30 mm is processed into an arc shape having a radius of 10.5 mm. A carbon composite material processed in the shape of an arc is coated with a paste-like Ti powder having a thickness of 20 μm to obtain 20
Make one.

【0035】次にペースト状のTi粉末が塗布された炭
素複合化部材の円弧状の部分に、外径20mm,内径16
mm,長さ1000mmの銅パイプをその間に厚さ100μ
mの65wt%Cu−35wt%Mnの合金箔を配置す
る。次にこれを非酸化性雰囲気中でろう材の融点より、
50℃高い920℃に3分間加熱する。これにより、炭
素繊維炭素複合化部材と銅パイプとの接合部には、Ti
及びMnと炭素との反応により形成されたチタン炭化物
及びマンガン炭化物によって強固に結合される。前述の
方法により、接合された接合体を核融合装置用の受熱板
とした。この受熱板の銅パイプ内面を流速2m/sの冷
却水で冷却しながら、熱流束20MW/m2 の水素イオ
ンビ−ムを周的に照射した結果、受熱板は健全であっ
た。なお、前述の方法によって炭素繊維複合材をAl2
3によって分散強化されたCu合金に接合した核融合
炉用の受熱板の場合も同様の結果が得られた。
Next, an outer diameter of 20 mm and an inner diameter of 16 are formed on the arc-shaped portion of the carbon composite member coated with the pasty Ti powder.
mm with a length of 1000 mm and a thickness of 100 μ between them
A 65 wt% Cu-35 wt% Mn alloy foil of m is placed. Next, from the melting point of the brazing filler metal in a non-oxidizing atmosphere,
Heat to 920 ° C, 50 ° C higher for 3 minutes. As a result, at the joint between the carbon fiber-carbon composite member and the copper pipe, Ti
And titanium carbide and manganese carbide formed by the reaction between Mn and carbon to form a strong bond. The joined body joined by the above method was used as a heat receiving plate for a nuclear fusion device. While the inner surface of the copper pipe of the heat receiving plate was being cooled with cooling water having a flow rate of 2 m / s, the heat receiving plate was sound as a result of being circumferentially irradiated with a hydrogen ion beam having a heat flux of 20 MW / m 2 . The carbon fiber composite material was Al 2
Similar results were obtained in the case of a heat receiving plate for a fusion reactor joined to a Cu alloy dispersion-strengthened with O 3 .

【0036】[0036]

【発明の効果】本発明によれば、複雑形状の及び大型の
炭素部材の接合が容易にできるため、核融合装置用炉壁
体などの大型構造物も容易に製作できる。
EFFECTS OF THE INVENTION According to the present invention, since it is possible to easily join a carbon member having a complicated shape and a large size, it is possible to easily manufacture a large structure such as a reactor wall for a nuclear fusion device.

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】CuとMnを主成分とする組成物によって
炭素部材同士または炭素部材と他の部材とが金属的に接
合されていることを特徴とする炭素複合化部材。
1. A carbon composite member, wherein carbon members are metallically bonded to each other or a carbon member and another member are metallically joined by a composition containing Cu and Mn as main components.
【請求項2】CuとMnを主成分とし、これに1〜10
wt%のTiを含む組成物によって炭素部材同士または
炭素部材と他の部材が金属的に接合されていることを特
徴とする炭素複合化部材。
2. Main components of Cu and Mn, in which 1 to 10 are added.
A carbon composite member, wherein the carbon members are metallically bonded to each other or the carbon member and another member are metallically bonded by a composition containing wt% Ti.
【請求項3】請求項1または2に記載のCuとMn主成
分とする組成物は、15〜45wt%のMnと残部がCu
からなる炭素複合化部材。
3. The composition containing Cu and Mn as main components according to claim 1 or 2, wherein the Mn content is 15 to 45 wt% and the balance is Cu.
A carbon composite member made of.
【請求項4】請求項1,2または3に記載の組成物によ
って炭素部材の表面に金属化層が形成されている炭素複
合化部材。
4. A carbon composite member in which a metallized layer is formed on the surface of a carbon member by the composition according to claim 1, 2, or 3.
【請求項5】Cu−P−Tiからなる組成物によって炭
素部材同士または炭素部材と他の部材が金属的に接合さ
れていることを特徴とする炭素複合化部材。
5. A carbon composite member, wherein the carbon members are metallically bonded to each other or the carbon member and another member are metallically bonded with each other by a composition comprising Cu-P-Ti.
【請求項6】請求項5に記載の組成物は、Pが4〜6w
t%,Tiが1〜5wt%残部がCuからなる組成物で
ある炭素複合化部材。
6. The composition according to claim 5, wherein P is 4 to 6 w.
The carbon composite member is a composition in which t% and Ti are 1 to 5 wt% and the balance is Cu.
【請求項7】請求項1,2,3,4,5または6に記載
の炭素複合化部材は、等方性黒鉛及び炭素繊維炭素複合
化部材である炭素複合化部材。
7. The carbon composite member according to claim 1, 2, 3, 4, 5 or 6, wherein the carbon composite member is isotropic graphite and a carbon fiber carbon composite member.
【請求項8】炭素部材の表面に予めTi膜を形成する工
程、次に前記Ti膜の表面にCuとMnまたはCuとP
を主成分とする組成物を配置する工程、次に炭素部材ま
たは金属部材を配置する工程、これを非酸化性雰囲気中
で前記組成物の融点以上に加熱する工程によって炭素部
材同士または炭素部材と他の部材とを金属的に複合化す
ることを特徴とする炭素部材の複合化方法。
8. A step of forming a Ti film on the surface of a carbon member in advance, and then Cu and Mn or Cu and P on the surface of the Ti film.
A carbon member or a carbon member by a step of disposing a composition containing as a main component, a step of disposing a carbon member or a metal member, and a step of heating this to a melting point of the composition or higher in a non-oxidizing atmosphere. A method for compounding a carbon member, which is characterized by compounding with another member metallically.
【請求項9】炭素部材の表面に予めTi膜を形成する工
程、次に前記Ti膜の表面にCuとMnまたはCuとP
を主成分とする組成物を配置する工程、次にこれを非酸
化性雰囲気中で前記組成物の融点以上に加熱する工程に
よって前記炭素部材の表面に金属化層を形成することを
特徴とする炭素部材の複合化方法。
9. A step of forming a Ti film on the surface of a carbon member in advance, and then Cu and Mn or Cu and P on the surface of the Ti film.
Forming a metallized layer on the surface of the carbon member by a step of disposing a composition containing as a main component and then a step of heating the composition above the melting point of the composition in a non-oxidizing atmosphere. Composite method of carbon member.
【請求項10】CuとMnまたはCuとPを主成分とす
る合金箔の表面に厚さ1〜10μmのTi膜が形成され
ていることを特徴とする炭素部材の接合用のろう材。
10. A brazing material for joining carbon members, wherein a Ti film having a thickness of 1 to 10 μm is formed on the surface of an alloy foil containing Cu and Mn or Cu and P as main components.
【請求項11】請求項1,2,3,4,5,6,7,
8,9または10に記載の方法によって炭素部材が冷却
機能を有する金属部材にタイル状に複数個金属的に接合
されている核融合装置用の炉壁体。
11. The method of claim 1, 2, 3, 4, 5, 6, 7,
A reactor wall for a nuclear fusion device, wherein a plurality of carbon members are metallically joined in a tile shape to a metal member having a cooling function by the method described in 8, 9, or 10.
JP8020908A 1996-02-07 1996-02-07 Carbon-composite member and its composite method Pending JPH09208335A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8020908A JPH09208335A (en) 1996-02-07 1996-02-07 Carbon-composite member and its composite method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8020908A JPH09208335A (en) 1996-02-07 1996-02-07 Carbon-composite member and its composite method

Publications (1)

Publication Number Publication Date
JPH09208335A true JPH09208335A (en) 1997-08-12

Family

ID=12040335

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8020908A Pending JPH09208335A (en) 1996-02-07 1996-02-07 Carbon-composite member and its composite method

Country Status (1)

Country Link
JP (1) JPH09208335A (en)

Similar Documents

Publication Publication Date Title
JP4375730B2 (en) Brazing material for joining copper and ceramics or carbon-based copper composite material and joining method therefor
US4117968A (en) Method for soldering metals with superhard man-made materials
US4448605A (en) Ductile brazing alloys containing reactive metals
JPS60131874A (en) Method of bonding ceramic and metal
JPH04228480A (en) Composite being stable at high temperature and preparation thereof
US4606981A (en) Ductile brazing alloys containing reactive metals
EP0555083A1 (en) Brazed X-ray tube anode manufacturing method
JPH07223090A (en) Brazing filler metal for joining aluminum alloy with copper, and composite material joined thereby
JPH10202391A (en) Method for brazing copper or copper alloy
JPH09208335A (en) Carbon-composite member and its composite method
JPS5844635B2 (en) Method of brazing metal and ultra-hard artificial material and brazing agent therefor
JP3783975B2 (en) Brazing method
JP2609328B2 (en) Method of joining cemented carbide and steel and joined body
JP2532114B2 (en) Brazing material
JPH10194860A (en) Brazing filler metal
JPH04295069A (en) Method for metallizing ceramics and production of ceramics-metal combined body by utilizing this method
JPS59212188A (en) Brazing filler metal and use thereof
JPH1112052A (en) Composite article of carbon member with copper member
JP2755455B2 (en) Brazing powder for ceramic bonding
JP2954850B2 (en) Bonding materials for carbon-based materials and carbon-based materials with hard surface layers
JPS59174581A (en) Method of bonding aluminum to alumina
JPS63169348A (en) Amorphous alloy foil for jointing ceramics
JPH06263553A (en) Joined body of carbonaceous material to metal
JPH0215874A (en) Method and material for joining metal and ceramics
JP3302807B2 (en) Joining method of ceramics and silicon