JPH09207289A - Film structural material and its manufacture - Google Patents

Film structural material and its manufacture

Info

Publication number
JPH09207289A
JPH09207289A JP2109196A JP2109196A JPH09207289A JP H09207289 A JPH09207289 A JP H09207289A JP 2109196 A JP2109196 A JP 2109196A JP 2109196 A JP2109196 A JP 2109196A JP H09207289 A JPH09207289 A JP H09207289A
Authority
JP
Japan
Prior art keywords
fine particles
titanium oxide
oxide fine
photocatalytic titanium
fluororesin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2109196A
Other languages
Japanese (ja)
Other versions
JP3540884B2 (en
Inventor
Tadanori Domoto
忠憲 道本
Nobuo Onishi
伸夫 大西
Akira Torii
晃 鳥居
Akira Fujishima
昭 藤嶋
Kazuhito Hashimoto
和仁 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP02109196A priority Critical patent/JP3540884B2/en
Publication of JPH09207289A publication Critical patent/JPH09207289A/en
Application granted granted Critical
Publication of JP3540884B2 publication Critical patent/JP3540884B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Application Of Or Painting With Fluid Materials (AREA)
  • Laminated Bodies (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a film structural material in which a surface contamination scarcely occurs by forming at least one surface layer of the structural material containing fiber cloth made of glass fiber and fluorine resin as main materials as a fluorine resin layer exposed at the photocatalytic titanium oxide fine particles. SOLUTION: The method for manufacturing a film structural material comprises the steps of repeating the steps of forming silicone resin layers 2 on both side surfaces of a glass fiber cloth 1, coating the surface of the layer 2 with dispersion containing PTFE powder, drying it and baking it to form a PTFE layer 3, and coating the surface of the layer 3 with dispersion containing the PTFE powder and glass beads. The method further comprises the steps of repeating the steps of coating the surface of the layer 4 with dispersion containing the PTFE powder and photocatalytic titanium oxide fine particles, drying it and baking it, and forming the PTFE layer 5 exposed at the fine particles.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は巨大建築物の屋根材
等に使用されるガラス繊維等を構成材料とする繊維布を
基材とする膜構造材及びその製造方法に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a membrane structure material having a base material of a fiber cloth made of glass fiber or the like, which is used as a roof material of a huge building, and a method for producing the same.

【0002】[0002]

【従来の技術】近年、体育館、競技場及び多目的ホール
等の巨大建築物の屋根材として、例えばガラス繊維(ガ
ラスクロス)等からなる繊維布を基材としこれをフッ素
樹脂層で被覆してなる膜構造材が使用されている。この
膜構造材は、不燃で機械的強度が高く、しかも、軽量か
つ柔軟性に富むという利点を有しており、建築材料とし
ての規模を拡大してきたものである。しかしながら、こ
の膜構造材は大気中のばい煙、ほこり、細砂等の物質が
膜表面に付着して外観が汚れるという問題を抱えてい
る。この原因はフッ素樹脂が非粘着性を有し、離型性に
優れるものではあるが、有機物をバインダーとするゴミ
等の付着を防止できるにはいたらず、かつ撥水性を有す
るために水洗い効率が悪いということにある。
2. Description of the Related Art In recent years, as a roofing material for huge buildings such as gymnasiums, stadiums and multipurpose halls, a fiber cloth made of, for example, glass fiber (glass cloth) is used as a base material and coated with a fluororesin layer. Membrane structural material is used. This membrane structural material has the advantages of being non-combustible, having high mechanical strength, being lightweight and rich in flexibility, and has expanded in scale as a building material. However, this membrane structure material has a problem that substances such as dust, dust, and fine sand in the atmosphere adhere to the membrane surface to stain the appearance. The reason for this is that the fluororesin has non-adhesiveness and is excellent in releasability, but it cannot prevent the adhesion of dust or the like using an organic substance as a binder, and since it has water repellency, the washing efficiency is low. It's bad.

【0003】[0003]

【発明が解決しようとする課題】このため前記膜構造材
の表面を清浄化するための種々のクリーニング方法も検
討されてきたが、膜構造材が大面積で、高所といった場
所に配置されることが多いものであることから、クリー
ニングには大がかりな人件費と材料が必要であるばかり
でなく危険性を伴うため、クリーニングを必要としな
い、すなわち、表面汚染が生じにくい膜構造材の開発が
強く要望されている。
For this reason, various cleaning methods for cleaning the surface of the membrane structure material have been investigated, but the membrane structure material has a large area and is arranged at a high place. Since cleaning often requires a large labor cost and materials as well as risks, it is necessary to develop a membrane structure material that does not require cleaning, that is, does not easily cause surface contamination. There is a strong demand.

【0004】本発明は前記課題に鑑みてなされたもので
あり、表面汚染が生じにくい膜構造材及びその製造方法
を提供することを目的とするものである。
The present invention has been made in view of the above problems, and an object of the present invention is to provide a film structure material which is less likely to cause surface contamination and a method for manufacturing the same.

【0005】[0005]

【課題を解決するための手段】前記目的を達成するため
に、本発明の膜構造材は、ガラス繊維、金属繊維、及び
鉱物繊維から選ばれる少くとも1つを構成材料とする繊
維布とフッ素樹脂とを主材とする膜構造材であって、そ
の少くとも一方の最外表面層が光触媒酸化チタン微粒子
を含むフッ素樹脂層からなることを特徴とする。このよ
うな構成にしたことにより膜構造材表面が汚染しにくく
なり、かつ、膜構造材表面に微量の汚れが生じたとして
も光触媒酸化チタン微粒子の光分解触媒反応によって微
量の汚れは分解または洗浄される。
[Means for Solving the Problems] In order to achieve the above object, the membrane structure material of the present invention comprises a fiber cloth and a fluorine containing at least one selected from glass fiber, metal fiber and mineral fiber as a constituent material. A film structure material mainly composed of a resin, characterized in that at least one outermost surface layer thereof comprises a fluororesin layer containing photocatalytic titanium oxide fine particles. With such a structure, the surface of the membrane structure material is less likely to be contaminated, and even if a small amount of dirt is generated on the surface of the membrane structure material, a minute amount of dirt is decomposed or washed by the photolytic catalytic reaction of the photocatalytic titanium oxide fine particles. To be done.

【0006】前記構成からなる本発明の膜構造材におい
ては、光触媒酸化チタン微粒子を含むフッ素樹脂層が非
多孔性であるのが好ましい。このような構成にしたこと
により、膜構造材表面の耐汚染性が一層向上し、しか
も、膜構造材の強度も向上する。ここで、「非多孔性」
とは、層内に孔が実質的に存在せず(孔が存在したとし
ても層全体での気孔率が1%以下の極微量)、層を構成
する材料(光触媒酸化チタン微粒子、フッ素樹脂)が緻
密に詰まった状態であって、ばい煙、ほこり、細砂等の
空気中の浮遊物と層表面との接触面積をできる限り小さ
くした状態である。
In the film structure material of the present invention having the above structure, it is preferable that the fluororesin layer containing the photocatalytic titanium oxide fine particles is non-porous. With such a structure, the stain resistance of the surface of the film structure material is further improved, and the strength of the film structure material is also improved. Where "non-porous"
Means that there are substantially no pores in the layer (even if there are pores, the porosity of the layer as a whole is 1% or less), the materials constituting the layer (photocatalytic titanium oxide fine particles, fluororesin) Is a densely packed state in which the contact area between airborne matter such as soot, dust and fine sand and the layer surface is made as small as possible.

【0007】また前記構成からなる本発明の膜構造材に
おいては、光触媒酸化チタン微粒子を含むフッ素樹脂層
の前記光触媒酸化チタン微粒子が層表面から露出してい
るのが好ましい。このような構成にすることにより、層
表面にて光触媒酸化チタン微粒子の光分解触媒反応が積
極的に起こり、汚れの分解または洗浄が効率良く行われ
る。
In the film structure material of the present invention having the above-mentioned constitution, it is preferable that the photocatalytic titanium oxide fine particles of the fluororesin layer containing the photocatalytic titanium oxide fine particles are exposed from the layer surface. With such a structure, the photodecomposition catalytic reaction of the photocatalytic titanium oxide fine particles positively takes place on the surface of the layer, and the decomposition or cleaning of the dirt is efficiently performed.

【0008】また前記構成からなる本発明の膜構造材に
おいては、光触媒酸化チタン微粒子を含むフッ素樹脂層
の下にガラスビーズを含有するフッ素樹脂層が形成され
ているのが好ましい。このような構成にしたことによ
り、膜構造材の光透過性を向上させることができる。
Further, in the film structure material of the present invention having the above-mentioned constitution, it is preferable that a fluororesin layer containing glass beads is formed below the fluororesin layer containing photocatalytic titanium oxide fine particles. With such a structure, the light transmittance of the film structure material can be improved.

【0009】本発明の膜構造材の製造方法は、ガラス繊
維、金属繊維、及び鉱物繊維から選ばれる少くとも1つ
を構成材料とする繊維布の表面を光触媒酸化チタン微粒
子とフッ素樹脂粉を含有する液状物の塗膜で被覆し、こ
の塗膜を前記フッ素樹脂粉の融点以上の温度で焼成して
光触媒酸化チタン微粒子を含むフッ素樹脂層を形成する
ようにした。このような構成にしたことにより、前記し
た本発明の耐表面汚染性に優れた膜構造材を合理的に製
造することができる。また、光触媒酸化チタン微粒子を
露出させたフッ素樹脂層を非多孔性の樹脂層に形成する
ことができる。
In the method for producing a membrane structure material of the present invention, the surface of a fiber cloth made of at least one selected from glass fiber, metal fiber, and mineral fiber contains photocatalytic titanium oxide fine particles and fluororesin powder. Then, the coating film was coated with a liquid coating film, and the coating film was baked at a temperature equal to or higher than the melting point of the fluororesin powder to form a fluororesin layer containing photocatalytic titanium oxide fine particles. With such a structure, it is possible to rationally manufacture the above-mentioned film structure material having excellent surface contamination resistance of the present invention. Further, the fluororesin layer in which the photocatalytic titanium oxide fine particles are exposed can be formed as a non-porous resin layer.

【0010】また、本発明の膜構造材の製造方法は、ガ
ラス繊維、金属繊維、及び鉱物繊維から選ばれる少くと
も1つを構成材料とする繊維布の表面をガラスビーズと
フッ素樹脂粉を含有する第1の液状物の塗膜で被覆し、
この塗膜を前記フッ素樹脂粉の融点以上の温度で焼成し
てガラスビーズが分散したフッ素樹脂層を形成し、次に
前記ガラスビーズが分散したフッ素樹脂層上に光触媒酸
化チタン微粒子とフッ素樹脂粉を含有する第2の液状物
の塗膜を形成し、この塗膜を前記フッ素樹脂粉の融点以
上の温度で焼成して光触媒酸化チタン微粒子を露出させ
たフッ素樹脂層を形成する。このような構成にしたこと
により、前記した耐表面汚染性及び光透過性に優れた本
発明の膜構造材を合理的に製造することができる。
Further, in the method for producing a membrane structure material of the present invention, the surface of a fiber cloth composed of at least one selected from glass fiber, metal fiber and mineral fiber contains glass beads and fluororesin powder. Coating with the first liquid coating film
This coating film is baked at a temperature not lower than the melting point of the fluororesin powder to form a fluororesin layer in which glass beads are dispersed, and then photocatalytic titanium oxide fine particles and fluororesin powder are formed on the fluororesin layer in which the glass beads are dispersed. A coating film of a second liquid material containing is formed, and the coating film is baked at a temperature equal to or higher than the melting point of the fluororesin powder to form a fluororesin layer in which the photocatalytic titanium oxide fine particles are exposed. With such a structure, it is possible to rationally manufacture the above-mentioned film structure material of the present invention having excellent resistance to surface contamination and light transmission.

【0011】[0011]

【発明の実施の形態】本発明の膜構造材はガラス繊維、
金属繊維、及び鉱物繊維から選ばれる少くとも1つを構
成材料とする繊維布を基材とするが、この繊維布として
は市販されているものを使用することができる。金属繊
維の具体例としてはステンレス、チタン合金等の繊維を
挙げることができ、鉱物繊維の具体例としてはアスベス
トを挙げることができる。取り扱いが容易である点及び
軽量である点等から、ガラス繊維からなる繊維布(ガラ
スクロス)を用いるのが一般的である。
BEST MODE FOR CARRYING OUT THE INVENTION The membrane structure material of the present invention is glass fiber,
A fiber cloth having at least one selected from metal fibers and mineral fibers as a constituent material is used as a base material, and commercially available fiber cloth can be used. Specific examples of the metal fibers include fibers such as stainless steel and titanium alloys, and specific examples of the mineral fibers include asbestos. A fiber cloth (glass cloth) made of glass fibers is generally used because it is easy to handle and lightweight.

【0012】膜構造材の強度及び耐水性を向上させる観
点からは、繊維布の繊維間に撥水性物質を(含浸)充填
するのが好ましい。この撥水性物質としては、シリコー
ンオイル、シリコーン樹脂、ステアリン酸等の飽和炭化
水素部分のある化合物、フッ素樹脂等を挙げることがで
き、このうちシリコーンオイルまたはシリコーン樹脂を
用いるのが好ましい。市販されているガラス繊維布(ガ
ラスクロス)は、通常コーンスターチ等のサイジング剤
が付着しており、このサイジング剤が撥水性物質の含浸
を疎外するため、繊維布の繊維間に撥水性物質を(含
浸)充填させるに先立ち、ガラス繊維布を約350℃以
上の温度に曝してサイジング剤を揮散除去するのが好ま
しい。
From the viewpoint of improving the strength and water resistance of the membrane structural material, it is preferable to fill (impregnate) a water-repellent substance between the fibers of the fiber cloth. Examples of the water-repellent substance include silicone oil, silicone resin, compounds having a saturated hydrocarbon moiety such as stearic acid, and fluororesin. Of these, it is preferable to use silicone oil or silicone resin. Commercially available glass fiber cloth (glass cloth) usually has a sizing agent such as cornstarch attached thereto, and this sizing agent disperses the impregnation of the water-repellent substance. Prior to (impregnation) filling, the glass fiber cloth is preferably exposed to a temperature of about 350 ° C. or higher to volatilize and remove the sizing agent.

【0013】光触媒酸化チタン微粒子を露出させたフッ
素樹脂層に使用される光触媒酸化チタン微粒子として
は、アナターゼ型、ルチル型、含水型等の各種光触媒酸
化チタン微粒子を挙げることができるが、光活性の点か
らアナターゼ型光触媒酸化チタン微粒子を使用するのが
好ましい。また、光触媒酸化チタン微粒子の平均粒子径
は0.007〜0.5μmの範囲にあるのが好ましい。
これは、光触媒酸化チタン微粒子の平均粒子径が0.0
07μmより小さくなると、微粒子をフッ素樹脂層表面
に充分に露出させることが困難になる傾向を示し、0.
5μmより大きくなると比表面積が小さくなることによ
り光触媒効果が減少する傾向を示すためでる。また、フ
ッ素樹脂としては、ポリテトラフルオロエチレン(PT
FE)、テトラフルオロエチレン−ヘキサフルオロプロ
ピレン共重合体(FEP)、テトラフルオロエチレン−
パーフルオロアルキルビニルエーテル共重合体(PF
A)、ポリクロロトリフルオロエチレン(PCTF
E)、ポリビニリデンフルオライド(PVDF)、ポリ
ビニルフルオライド(PVF)、テトラフルオロエチレ
ン−エチレン共重合体(PETFE)等が使用される。
光触媒酸化チタン微粒子を露出させたフッ素樹脂層の形
成は、例えば撥水性樹脂層表面に光触媒酸化チタン微粒
子とフッ素樹脂粉を含有する液状物(エマルジョン、デ
ィスパージョン)の塗膜を形成し、この塗膜をフッ素樹
脂粉の融点以上の温度で加熱して焼成することにより行
われる。光触媒酸化チタン微粒子とフッ素樹脂の配合量
は、光触媒酸化チタン微粒子の層表面への露出や下層の
撥水性樹脂層への密着性の点から、重量比(光触媒酸化
チタン微粒子:フッ素樹脂)で一般に1:9〜6:4、
好ましくは3:7〜5:5にするのがよい。この範囲を
越えて光触媒酸化チタン微粒子の配合量が多くなると下
層の撥水性樹脂層への密着性が低下する傾向を示し、少
くなると光触媒酸化チタン微粒子を層表面に充分に露出
させることが困難になる傾向を示す。
As the photocatalytic titanium oxide fine particles used in the fluororesin layer in which the photocatalytic titanium oxide fine particles are exposed, various photocatalytic titanium oxide fine particles such as anatase type, rutile type and hydrous type can be mentioned. From this point, it is preferable to use the anatase type photocatalytic titanium oxide fine particles. The average particle size of the photocatalytic titanium oxide fine particles is preferably in the range of 0.007 to 0.5 μm.
This is because the average particle size of the photocatalytic titanium oxide fine particles is 0.0
If it is smaller than 07 μm, it tends to be difficult to sufficiently expose the fine particles to the surface of the fluororesin layer.
This is because if it is larger than 5 μm, the specific surface area becomes smaller and the photocatalytic effect tends to decrease. Further, as the fluororesin, polytetrafluoroethylene (PT
FE), tetrafluoroethylene-hexafluoropropylene copolymer (FEP), tetrafluoroethylene-
Perfluoroalkyl vinyl ether copolymer (PF
A), polychlorotrifluoroethylene (PCTF
E), polyvinylidene fluoride (PVDF), polyvinyl fluoride (PVF), tetrafluoroethylene-ethylene copolymer (PETFE) and the like are used.
The formation of the fluororesin layer in which the photocatalytic titanium oxide fine particles are exposed is performed, for example, by forming a coating film of a liquid substance (emulsion, dispersion) containing the photocatalytic titanium oxide fine particles and the fluororesin powder on the surface of the water-repellent resin layer, and applying the coating. It is performed by heating the film at a temperature equal to or higher than the melting point of the fluororesin powder and baking the film. The photocatalytic titanium oxide fine particles and the fluororesin are generally mixed in a weight ratio (photocatalytic titanium oxide fine particles: fluororesin) in terms of the exposure of the photocatalytic titanium oxide fine particles to the layer surface and the adhesion to the lower water-repellent resin layer. 1: 9 to 6: 4,
Preferably, it is 3: 7 to 5: 5. If the content of the photocatalytic titanium oxide fine particles exceeds this range, the adhesion to the lower water-repellent resin layer tends to decrease, and if it is too small, it becomes difficult to sufficiently expose the photocatalytic titanium oxide fine particles to the layer surface. Shows a tendency to become.

【0014】図1は本発明の好適な実施形態を示す膜構
造材の断面図であり、図において、1は基材としてのガ
ラス繊維布、2はシリコーン樹脂層、3はPTFE層、
4はガラスビーズを含有するPTFE層、5は光触媒酸
化チタン微粒子を露出させたフッ素樹脂層である。以
下、この膜構造材の構成及び製造工程を詳しく説明す
る。
FIG. 1 is a sectional view of a membrane structure material showing a preferred embodiment of the present invention. In the figure, 1 is a glass fiber cloth as a base material, 2 is a silicone resin layer, 3 is a PTFE layer,
Reference numeral 4 is a PTFE layer containing glass beads, and 5 is a fluororesin layer exposing the photocatalytic titanium oxide fine particles. Hereinafter, the configuration and manufacturing process of this membrane structure material will be described in detail.

【0015】ガラス繊維布1は加熱処理によりサイジン
グ剤が揮散除去されたもので、通常厚みが0.3〜0.
8mmであり、この表面にシリコーン樹脂層2が薄層状
に形成されている。シリコーン樹脂の量が少な過ぎると
膜構造材の柔軟性が低下する傾向となり、多すぎるとP
TFE層3との密着性が低下する傾向となるため、シリ
コーン樹脂の付着量は1〜10g/m2 、好ましくは4
〜6g/m2 である。このシリコーン樹脂層2は、例え
ばガラス繊維布1をシリコーン樹脂を含有するエマルジ
ョン中に浸漬して引き上げ、これを加熱することによ
り、シリコーン樹脂がガラス繊維布に含浸すると同時
に、ガラス繊維布の表面に薄層状に付着することにより
形成される。
The glass fiber cloth 1 has a sizing agent volatilized and removed by heat treatment, and usually has a thickness of 0.3 to 0.
The thickness is 8 mm, and the silicone resin layer 2 is formed in a thin layer on this surface. If the amount of silicone resin is too small, the flexibility of the membrane structural material tends to decrease, and if it is too large, P
Since the adhesion with the TFE layer 3 tends to decrease, the adhesion amount of the silicone resin is 1 to 10 g / m 2 , preferably 4
~ 6 g / m 2 . The silicone resin layer 2 is obtained by, for example, immersing the glass fiber cloth 1 in an emulsion containing the silicone resin, pulling it up, and heating it to impregnate the glass fiber cloth with the silicone resin and, at the same time, to the surface of the glass fiber cloth. It is formed by depositing in a thin layer.

【0016】PTFE層3は通常その付着量が約100
〜500g/m2 であり、これは例えばシリコーン樹脂
層2表面にPTFE粉末(粒径0.1〜0.4μm)を
30〜60重量%含有するディスパージョンを塗布し、
得られた塗膜を乾燥、焼成する工程を繰り返し行うこと
により形成される。
The PTFE layer 3 usually has an adhesion amount of about 100.
˜500 g / m 2 , which is applied, for example, to the surface of the silicone resin layer 2 by applying a dispersion containing 30 to 60% by weight of PTFE powder (particle size 0.1 to 0.4 μm),
It is formed by repeating the steps of drying and baking the obtained coating film.

【0017】ガラスビーズを含有するPTFE層4は膜
構造材の光透過性を向上させるため層で、通常その付着
量が約100〜500g/m2 である。これは例えばP
TFE層3表面に前記したPTFE粉末(粒径0.1〜
0.4μm)を30〜60重量%含有するディスパージ
ョンに更にガラスビーズを混合分散したものを塗布し、
得られた塗膜を乾燥、焼成する工程を繰り返し行うこと
により形成される。ここで、ガラスビーズは中空または
中身の詰まったもののいずれでもよく、その粒径は通常
1〜100μmであり、また、配合量はPTFEの固形
分に対して1〜10重量%、好ましくは3〜5重量%で
ある。
The PTFE layer 4 containing glass beads is a layer for improving the light-transmitting property of the membrane structure material, and the adhesion amount thereof is usually about 100 to 500 g / m 2 . This is for example P
On the surface of the TFE layer 3, the above-mentioned PTFE powder (particle size 0.1 to 0.1
0.4 μm) is added to a dispersion containing 30 to 60% by weight of glass beads and further mixed and dispersed with glass beads,
It is formed by repeating the steps of drying and baking the obtained coating film. Here, the glass beads may be hollow or packed, and their particle size is usually 1 to 100 μm, and the compounding amount is 1 to 10% by weight, preferably 3 to 10% based on the solid content of PTFE. It is 5% by weight.

【0018】光触媒酸化チタン微粒子を露出させたフッ
素樹脂層5は、通常その付着量が約1〜50g/m2
好ましくは10〜30g/m2 であり、これはガラスビ
ーズを含むPTFE層4表面に、前記したPTFE粉末
(粒径0.1〜0.4μm)を30〜60重量%含有す
るディスパージョンに更に光触媒酸化チタン微粒子を混
合分散したものを塗布し、得られた塗膜を乾燥、焼成す
る工程を繰り返し行うことにより形成される。ここで焼
成温度をPTFEの融点(327℃)よりも高い温度に
すると、PTFE粉末及び光触媒酸化チタン微粒子の各
粉(粒子)間の空隙が充分に埋め尽くされるようにPT
FE粉末が溶融する過程を経て塗膜が焼成されることと
なり、得られる層は孔が殆どなく、樹脂成分と光触媒酸
化チタン微粒子が緻密に詰まったものとなる。
The fluororesin layer 5 on which the photocatalytic titanium oxide fine particles are exposed usually has an adhesion amount of about 1 to 50 g / m 2 ,
It is preferably 10 to 30 g / m 2 , which is further added to the dispersion containing 30 to 60% by weight of the above-mentioned PTFE powder (particle size 0.1 to 0.4 μm) on the surface of the PTFE layer 4 containing glass beads. The photocatalytic titanium oxide fine particles are mixed and dispersed, and the resulting coating film is formed by repeating the steps of drying and baking. Here, if the firing temperature is set to a temperature higher than the melting point of PTFE (327 ° C.), the PT will be filled so that the voids between the PTFE powder and the photocatalytic titanium oxide fine particles (particles) are sufficiently filled.
The coating film is fired through the process in which the FE powder is melted, and the obtained layer has almost no pores, and the resin component and the photocatalyst titanium oxide fine particles are densely packed.

【0019】このような構成の膜構造材は、表面に太陽
光が当たると光触媒酸化チタンの光分解触媒反応による
強い酸化力によって、表面に付着した有機物からなる汚
染物質が分解され脱色されるだけでなく、有機物を含む
バインダーを失った無機物からなる汚染物質が容易に洗
い流されるため、半永久的にきれいな外観が保たれる。
また、図1では膜構造材の両側の表面層を光触媒酸化チ
タン微粒子を露出させたフッ素樹脂層にしたが、膜構造
材の片側の表面の耐汚染性だけを向上させる場合には、
片側の表面層だけを光触媒酸化チタン微粒子を露出させ
たフッ素樹脂層にしてもよい。
When the surface of the film structure material having such a structure is exposed to sunlight, the strong oxidizing power of the photocatalytic titanium oxide photocatalytic reaction causes decomposition and decolorization of pollutants consisting of organic substances adhering to the surface. Not only that, but contaminants made of inorganic substances that have lost the binder containing organic substances are easily washed away, so that a semi-permanently clean appearance is maintained.
Further, in FIG. 1, the surface layers on both sides of the membrane structure material are fluororesin layers in which the photocatalytic titanium oxide fine particles are exposed, but in the case of improving only the stain resistance of the surface on one side of the membrane structure material,
Only one surface layer may be a fluororesin layer in which the photocatalytic titanium oxide fine particles are exposed.

【0020】[0020]

【実施例】【Example】

(実施例1)厚み0.5mmのガラス繊維布(米国ケミ
カルファブリック社製、商品名ガラスクロス#153)
を370℃にて150秒間加熱し、サイジング剤及び異
物の除去をした。この繊維布をシリコーン樹脂濃度3重
量%のエマルジョン(ダウコーニング社製、商品名ET
−4327)中に浸漬して引き上げ、290℃で150
秒間加熱し、該繊維布にシリコーン樹脂を含浸させると
ともにその表面にシリコーン樹脂層を形成した。なお、
この時、シリコーン樹脂の繊維布に対する付着量は5g
/m2 にした。
(Example 1) Glass fiber cloth having a thickness of 0.5 mm (trade name: glass cloth # 153, manufactured by US Chemical Fabric Co.)
Was heated at 370 ° C. for 150 seconds to remove the sizing agent and foreign matters. An emulsion of this fiber cloth with a silicone resin concentration of 3% by weight (made by Dow Corning, trade name ET
-4327) soaked in and pulled up at 290 ° C for 150
The fiber cloth was heated for 2 seconds to impregnate the fiber cloth with a silicone resin, and a silicone resin layer was formed on the surface. In addition,
At this time, the amount of silicone resin attached to the fiber cloth is 5 g
/ M 2 .

【0021】次に、PTFE粉末濃度40重量%のディ
スパージョン(三井デュポンフロロケミカル社製、商品
名TE−3313J)をシリコーン樹脂層上に塗布し、
370℃で3時間加熱した。更に、ディスパージョンの
塗布及び加熱をもう一度繰り返し、PTFEの付着量3
50g/m2 のPTFE層を形成した。
Next, a dispersion having a PTFE powder concentration of 40% by weight (TE-3313J, trade name, manufactured by Mitsui DuPont Fluorochemical Co., Ltd.) was applied on the silicone resin layer,
Heated at 370 ° C. for 3 hours. Furthermore, the application of the dispersion and the heating are repeated once more, and the amount of PTFE attached 3
A 50 g / m 2 PTFE layer was formed.

【0022】その後、PTFE粉末100重量部に対し
てガラスビーズ(球径10〜15μm)3重量部を含む
ディスパージョン(三井デュポンフロロケミカル社製、
商品名TE−3481J)をPTFE層上に塗布し、3
70℃で3分間加熱した。この塗布及び加熱を更に2回
繰り返し、付着量390g/m2 のガラスビーズを含む
PTFE層を形成した。
Thereafter, a dispersion (manufactured by Mitsui DuPont Fluorochemical Co., Ltd.) containing 3 parts by weight of glass beads (spherical diameter: 10 to 15 μm) relative to 100 parts by weight of PTFE powder.
Apply the product name TE-3481J) on the PTFE layer and apply 3
Heated at 70 ° C. for 3 minutes. This coating and heating were repeated twice more to form a PTFE layer containing glass beads having an adhesion amount of 390 g / m 2 .

【0023】次に、PTFE粉末及びアナターゼ型光触
媒酸化チタン微粒子を含むディスパージョンをガラスビ
ーズを含むPTFE層上に塗布し、370℃で3分間加
熱した。この塗布及び加熱をもう一度繰り返し、表面に
付着量20g/m2 の光触媒酸化チタン微粒子を含むP
TFE層をもつ目的の膜構造材を得た。
Next, a dispersion containing PTFE powder and anatase type photocatalytic titanium oxide fine particles was applied onto the PTFE layer containing glass beads, and heated at 370 ° C. for 3 minutes. This coating and heating are repeated once more, and P containing photocatalytic titanium oxide fine particles with an adhesion amount of 20 g / m 2 is formed on the surface.
A target film structure material having a TFE layer was obtained.

【0024】上記酸化チタンを含むPTFE層形成用の
ディスパージョンはPTFE粉末濃度60重量%のディ
スパージョン(三井デュポンフロロケミカル社製、商品
名TE−3313J)100重量部中にアナターゼ型光
触媒酸化チタン微粒子(石原産業社製、商品名ST−4
1)40重量部及び蒸留水40重量部を攪拌しながら分
散せしめ、さらに全重量に対して1重量%のシリコーン
系界面活性剤(日本ユニカー社製、商品名L−77)を
攪拌しながら加えることによって調整した。なお、この
光触媒酸化チタン微粒子を含むPTFE層の光触媒酸化
チタン微粒子とPTFE粉末との重量比(光触媒酸化チ
タン微粒子:PTFE粉末)は4:6であった。
The dispersion for forming the PTFE layer containing titanium oxide is anatase-type photocatalytic titanium oxide fine particles in 100 parts by weight of a PTFE powder concentration dispersion of 60% by weight (manufactured by Mitsui DuPont Fluorochemical Co., Ltd., trade name TE-3313J). (Product name ST-4 manufactured by Ishihara Sangyo Co., Ltd.
1) 40 parts by weight and 40 parts by weight of distilled water are dispersed with stirring, and 1% by weight of the total weight of a silicone-based surfactant (manufactured by Nippon Unicar, trade name L-77) is added with stirring. Adjusted by The weight ratio of the photocatalytic titanium oxide fine particles to the PTFE powder in the PTFE layer containing the photocatalytic titanium oxide fine particles (photocatalytic titanium oxide fine particles: PTFE powder) was 4: 6.

【0025】このようにして得られた膜構造材の最外層
の表面を走査式電子顕微鏡で観察すると、光触媒酸化チ
タン微粒子が表面に露出した孔のない緻密な膜構造をし
ており、この膜構造を屋外にて3か月暴露試験を行った
ところ、表面には汚染が認めらず、島津製作所製の分光
分析装置UV−240を用いて光波長555nmにおけ
る表面の反射率を測定したところ88%で良好であっ
た。
When the surface of the outermost layer of the film structure material thus obtained is observed with a scanning electron microscope, it has a dense film structure with no holes in which the photocatalytic titanium oxide fine particles are exposed on the surface. When the structure was subjected to an exposure test for 3 months outdoors, no contamination was found on the surface, and the reflectance of the surface at a light wavelength of 555 nm was measured using a spectroscopic analyzer UV-240 manufactured by Shimadzu. 88 % Was good.

【0026】(実施例2)光触媒酸化チタン微粒子の配
合量を6.7重量部とした以外は実施例1と同様にして
膜構造材を得た。なお、この光触媒酸化チタン微粒子を
含むPTFE層の光触媒酸化チタン微粒子とPTFE粉
末との重量比(光触媒酸化チタン微粒子:PTFE粉
末)は1:9であった。このようにして得られた膜構造
材を屋外にて3か月暴露試験を行ったところ、表面には
汚染がやや認められたが、表面の反射率は75%で良好
であった。
(Example 2) A film structure material was obtained in the same manner as in Example 1 except that the amount of the fine particles of photocatalytic titanium oxide was 6.7 parts by weight. The weight ratio of the photocatalytic titanium oxide fine particles to the PTFE powder in the PTFE layer containing the photocatalytic titanium oxide fine particles (photocatalytic titanium oxide fine particles: PTFE powder) was 1: 9. When the film structural material thus obtained was subjected to an outdoor exposure test for 3 months, the surface was found to be slightly contaminated, but the surface reflectance was 75%, which was good.

【0027】(実施例3)光触媒酸化チタン微粒子の配
合量を90重量部とした以外は実施例1と同様にして膜
構造材を得た。なお、この光触媒酸化チタン微粒子を含
むPTFE層の光触媒酸化チタン微粒子とPTFE粉末
との重量比(光触媒酸化チタン微粒子:PTFE粉末)
は6:4であった。このようにして得られた膜構造材は
酸化チタン微粒子が少し脱落しやすい表面であったが、
屋外にて3か月暴露試験を行ったところ、表面には汚染
が認めらず、表面の反射率は87%で良好であった。
Example 3 A film structure material was obtained in the same manner as in Example 1 except that the amount of the photocatalyst titanium oxide fine particles was 90 parts by weight. The weight ratio of the photocatalytic titanium oxide fine particles and the PTFE powder in the PTFE layer containing the photocatalytic titanium oxide fine particles (photocatalytic titanium oxide fine particles: PTFE powder)
Was 6: 4. The film structure material thus obtained had a surface on which the titanium oxide fine particles were a little likely to fall off,
When an exposure test was conducted outdoors for 3 months, no contamination was found on the surface and the surface reflectance was good at 87%.

【0028】(実施例4)光触媒酸化チタン微粒子の配
合量を3.2重量部とした以外は実施例1と同様にして
膜構造材を得た。なお、この光触媒酸化チタン微粒子を
含むPTFE層の光触媒酸化チタン微粒子とPTFE粉
末との重量比(光触媒酸化チタン微粒子:PTFE粉
末)は0.5:9.5であった。このようにして得られ
た膜構造材を屋外にて3か月暴露試験を行ったところ、
表面には汚染が認めらたが、表面の反射率は50%であ
った。
Example 4 A film structure material was obtained in the same manner as in Example 1 except that the amount of the photocatalytic titanium oxide fine particles was 3.2 parts by weight. The weight ratio of the photocatalytic titanium oxide fine particles to the PTFE powder in the PTFE layer containing the photocatalytic titanium oxide fine particles (photocatalytic titanium oxide fine particles: PTFE powder) was 0.5: 9.5. When the membrane structure material thus obtained was subjected to an outdoor exposure test for 3 months,
Contamination was observed on the surface, but the reflectance on the surface was 50%.

【0029】(実施例5)光触媒酸化チタン微粒子の配
合量を140重量部とした以外は実施例1と同様にして
膜構造材を得た。なお、この光触媒酸化チタン微粒子を
含むPTFE層の光触媒酸化チタン微粒子とPTFE粉
末との重量比(光触媒酸化チタン微粒子:PTFE粉
末)は7:3であった。このようにして得られた膜構造
材は酸化チタン微粒子がかなり脱落しやすい表面であっ
たが、屋外にて3か月暴露試験を行ったところ、表面に
は汚染が認めらず、表面の反射率は88%で良好であっ
た。
Example 5 A film structure material was obtained in the same manner as in Example 1 except that the amount of the photocatalyst titanium oxide fine particles was 140 parts by weight. The weight ratio of the photocatalytic titanium oxide fine particles to the PTFE powder in the PTFE layer containing the photocatalytic titanium oxide fine particles (photocatalytic titanium oxide fine particles: PTFE powder) was 7: 3. The film structure material thus obtained had a surface on which the titanium oxide fine particles were quite likely to fall off, but when subjected to an outdoor exposure test for 3 months, no contamination was found on the surface and the surface reflection The rate was 88%, which was good.

【0030】(比較例1)実施例1の光触媒酸化チタン
微粒子を含むPTFE層の代わりにFEP層を設けた以
外は実施例と同様に膜構造材を得た。
Comparative Example 1 A film structure material was obtained in the same manner as in Example 1 except that an FEP layer was provided instead of the PTFE layer containing the photocatalytic titanium oxide fine particles of Example 1.

【0031】FEP層はガラスビーズを含むPTFE上
にFEP粉末濃度40重量%のディスパージョン(三井
デュポンフロロケミカル社製、商品名TE−9503
J)を塗布し、350℃で2分間加熱し、この塗布及び
加熱をもう一度繰り返して、FEPの付着量50g/m
2 となるようにして設けた。
The FEP layer is a dispersion containing 40% by weight of FEP powder (made by Mitsui DuPont Fluorochemicals, trade name TE-9503) on PTFE containing glass beads.
J) is applied and heated at 350 ° C. for 2 minutes, and this application and heating are repeated once more, and the amount of FEP deposited is 50 g / m 2.
It was set to be 2 .

【0032】このようにして得られた膜構造材を屋外に
て3か月暴露試験を行ったところ、表面には汚染が顕著
に認められ、表面の反射率は45%であった。
When the film structure material thus obtained was subjected to an outdoor exposure test for 3 months, the surface was markedly contaminated and the surface reflectance was 45%.

【0033】これらの結果を以下の表1に示す。なお、
表中の密着性は光触媒酸化チタン微粒子を含むPTFE
層のガラスビーズを含むPTFE層への密着性である。
The results are shown in Table 1 below. In addition,
The adhesion in the table is PTFE containing photocatalytic titanium oxide fine particles.
The adhesion of the layer to the PTFE layer containing the glass beads.

【0034】[0034]

【表1】 [Table 1]

【0035】本実施例及び比較例により、膜構造材の最
外層に光触媒酸化チタン微粒子を露出させたフッ素樹脂
層を形成することにより、膜構造材表面の耐汚染性を大
きく向上させることを確認できた。
According to the present example and the comparative example, it was confirmed that the contamination resistance of the surface of the membrane structure material is greatly improved by forming the fluororesin layer exposing the photocatalytic titanium oxide fine particles on the outermost layer of the membrane structure material. did it.

【0036】[0036]

【発明の効果】以上説明したように、本発明の膜構造材
によれば、ガラス繊維、金属繊維、及び鉱物繊維から選
ばれる少くとも1つを構成材料とする繊維布とフッ素樹
脂とを主材とする膜構造材であって、その少くとも一方
の最外表面層を光触媒酸化チタン微粒子を含むフッ素樹
脂層からなるものとすることにより、柔軟性、耐候性及
び機械的強度に優れるだけでなく、耐表面汚染性に優
れ、長期間きれいな外観を保つことができる膜構造材を
提供することができる。また、本発明の膜構造材の製造
方法によれば、ガラス繊維、金属繊維、及び鉱物繊維か
ら選ばれる少くとも1つを構成材料とする繊維布の表面
を光触媒酸化チタン微粒子とフッ素樹脂粉を含有する液
状物の塗膜で被覆し、この塗膜を前記フッ素樹脂粉の融
点以上の温度で焼成して光触媒酸化チタン微粒子を含む
フッ素樹脂層を形成することにより、優れた諸特性を有
する膜構造材を合理的に製造することができる。
As described above, according to the membrane structure material of the present invention, a fiber cloth mainly composed of at least one selected from glass fiber, metal fiber, and mineral fiber and a fluororesin are mainly used. A film structure material as a material, and at least one of the outermost surface layers is made of a fluororesin layer containing photocatalytic titanium oxide fine particles, so that it is excellent in flexibility, weather resistance and mechanical strength. In addition, it is possible to provide a film structure material having excellent surface contamination resistance and capable of maintaining a clean appearance for a long period of time. Further, according to the method for producing a membrane structure material of the present invention, the surface of a fiber cloth made of at least one selected from glass fiber, metal fiber, and mineral fiber is treated with photocatalytic titanium oxide fine particles and fluororesin powder. A film having excellent properties by coating with a coating film of a liquid containing and baking the coating film at a temperature equal to or higher than the melting point of the fluororesin powder to form a fluororesin layer containing photocatalytic titanium oxide fine particles. The structural material can be reasonably manufactured.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の好適な実施形態を示す膜構造材の概
念断面図である。
FIG. 1 is a conceptual cross-sectional view of a membrane structure material showing a preferred embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 ガラス繊維布 2 シリコーン樹脂層 3 PTFE層 4 ガラスビーズを含むPTFE層 5 光触媒酸化チタン微粒子を含むPTFE層 1 glass fiber cloth 2 silicone resin layer 3 PTFE layer 4 PTFE layer containing glass beads 5 PTFE layer containing photocatalytic titanium oxide fine particles

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 B32B 27/04 B32B 27/04 Z 27/30 27/30 D (72)発明者 道本 忠憲 大阪府茨木市下穂積1丁目1番2号 日東 電工株式会社内 (72)発明者 大西 伸夫 大阪府茨木市下穂積1丁目1番2号 日東 電工株式会社内 (72)発明者 鳥居 晃 大阪府茨木市下穂積1丁目1番2号 日東 電工株式会社内 (72)発明者 藤嶋 昭 神奈川県川崎市中原区中丸子710番地5 (72)発明者 橋本 和仁 神奈川県横浜市栄区飯島町2073番地2 ニ ューシティ本郷台D213号─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification number Reference number within the agency FI Technical display area B32B 27/04 B32B 27/04 Z 27/30 27/30 D (72) Inventor Tadanori Michimoto Osaka 1-1-2 Shimohozumi, Ibaraki, Ibaraki Prefecture Nitto Denko Corporation (72) Inventor Nobuo Ohnishi 1-2-1 Shimohozumi, Ibaraki City, Osaka Prefecture Nitto Denko Corporation (72) Inventor Akira Torii Ibaraki, Osaka Prefecture Hozumi Ichimo 1-2-2 Nitto Denko Corporation (72) Inventor Akira Fujishima 710 Nakamaruko, Nakahara-ku, Kawasaki-shi, Kanagawa 5 (72) Kazuhito Hashimoto 2073 Iijima-cho, Sakae-ku, Yokohama, Kanagawa Prefecture 2 New City Hongodai D213

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 ガラス繊維、金属繊維、及び鉱物繊維か
ら選ばれる少くとも1つを構成材料とする繊維布とフッ
素樹脂とを主材とする膜構造材であって、その少くとも
一方の最外表面層が光触媒酸化チタン微粒子を含むフッ
素樹脂層からなることを特徴とする膜構造材。
1. A membrane structure material mainly composed of a fiber cloth and a fluororesin, which comprises at least one selected from glass fiber, metal fiber and mineral fiber as a constituent material, and at least one of A film structural material, wherein the outer surface layer is composed of a fluororesin layer containing photocatalytic titanium oxide fine particles.
【請求項2】 光触媒酸化チタン微粒子を含むフッ素樹
脂層が非多孔性である請求項1に記載の膜構造材。
2. The film structure material according to claim 1, wherein the fluororesin layer containing the photocatalytic titanium oxide fine particles is non-porous.
【請求項3】 光触媒酸化チタン微粒子を含むフッ素樹
脂層の前記光触媒酸化チタン微粒子が層表面から露出し
ている請求項1に記載の膜構造材。
3. The film structure material according to claim 1, wherein the photocatalytic titanium oxide fine particles of the fluororesin layer containing the photocatalytic titanium oxide fine particles are exposed from the layer surface.
【請求項4】 光触媒酸化チタン微粒子を含むフッ素樹
脂層における光触媒酸化チタン微粒子とフッ素樹脂との
配合比(重量比)が光触媒酸化チタン微粒子:フッ素樹
脂で1:9〜6:4の範囲にある請求項1に記載の膜構
造材。
4. The compounding ratio (weight ratio) of the photocatalytic titanium oxide fine particles to the fluororesin in the fluororesin layer containing the photocatalytic titanium oxide fine particles is in the range of 1: 9 to 6: 4 for the photocatalytic titanium oxide fine particles: the fluororesin. The membrane structure material according to claim 1.
【請求項5】 光触媒酸化チタン微粒子の粒径が0.0
07〜0.5μmである請求項1に記載の膜構造材。
5. The photocatalytic titanium oxide fine particles have a particle size of 0.0.
The film structure material according to claim 1, having a thickness of 07 to 0.5 μm.
【請求項6】 光触媒酸化チタン微粒子がアナターゼ型
酸化チタン微粒子である請求項1に記載の膜構造材。
6. The film structure material according to claim 1, wherein the photocatalytic titanium oxide fine particles are anatase type titanium oxide fine particles.
【請求項7】 光触媒酸化チタン微粒子を含むフッ素樹
脂層の下にガラスビーズを含有するフッ素樹脂層が形成
されている請求項1に記載の膜構造材。
7. The film structure material according to claim 1, wherein a fluororesin layer containing glass beads is formed below the fluororesin layer containing photocatalytic titanium oxide fine particles.
【請求項8】 ガラス繊維、金属繊維、及び鉱物繊維か
ら選ばれる少くとも1つを構成材料とする繊維布の表面
を光触媒酸化チタン微粒子とフッ素樹脂粉を含有する液
状物の塗膜で被覆し、この塗膜を前記フッ素樹脂粉の融
点以上の温度で焼成して光触媒酸化チタン微粒子を含む
フッ素樹脂層を形成する膜構造材の製造方法。
8. A surface of a fiber cloth having at least one selected from glass fiber, metal fiber and mineral fiber as a constituent material is coated with a coating film of a liquid containing fine particles of photocatalytic titanium oxide and fluororesin powder. A method for producing a film structure material, wherein the coating film is baked at a temperature not lower than the melting point of the fluororesin powder to form a fluororesin layer containing photocatalytic titanium oxide fine particles.
【請求項9】 ガラス繊維、金属繊維、及び鉱物繊維か
ら選ばれる少くとも1つを構成材料とする繊維布の表面
をガラスビーズとフッ素樹脂粉を含有する第1の液状物
の塗膜で被覆し、この塗膜を前記フッ素樹脂粉の融点以
上の温度で焼成してガラスビーズが分散したフッ素樹脂
層を形成し、次に、前記ガラスビーズが分散したフッ素
樹脂層上に光触媒酸化チタン微粒子とフッ素樹脂粉を含
有する第2の液状物の塗膜を形成し、この塗膜を前記フ
ッ素樹脂粉の融点以上の温度で焼成して光触媒酸化チタ
ン微粒子を含むフッ素樹脂層を形成する膜構造材の製造
方法。
9. A surface of a fiber cloth having at least one selected from glass fiber, metal fiber and mineral fiber as a constituent material is coated with a coating film of a first liquid containing glass beads and fluororesin powder. Then, this coating film is baked at a temperature equal to or higher than the melting point of the fluororesin powder to form a fluororesin layer in which glass beads are dispersed, and then photocatalytic titanium oxide fine particles are formed on the fluororesin layer in which the glass beads are dispersed. A film structure material for forming a coating film of a second liquid material containing fluororesin powder and firing the coating film at a temperature equal to or higher than the melting point of the fluororesin powder to form a fluororesin layer containing photocatalytic titanium oxide fine particles. Manufacturing method.
JP02109196A 1996-02-07 1996-02-07 Manufacturing method of membrane structural material Expired - Lifetime JP3540884B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02109196A JP3540884B2 (en) 1996-02-07 1996-02-07 Manufacturing method of membrane structural material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02109196A JP3540884B2 (en) 1996-02-07 1996-02-07 Manufacturing method of membrane structural material

Publications (2)

Publication Number Publication Date
JPH09207289A true JPH09207289A (en) 1997-08-12
JP3540884B2 JP3540884B2 (en) 2004-07-07

Family

ID=12045207

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02109196A Expired - Lifetime JP3540884B2 (en) 1996-02-07 1996-02-07 Manufacturing method of membrane structural material

Country Status (1)

Country Link
JP (1) JP3540884B2 (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09249871A (en) * 1996-03-14 1997-09-22 Toli Corp Ltd Stainproofing and deodorizing structure and interior material utilizing the same structure
JPH1110802A (en) * 1997-06-26 1999-01-19 Achilles Corp Laminated sheet
JP2001199014A (en) * 1999-11-08 2001-07-24 Hiraoka & Co Ltd Antistaining sheet
WO2003074180A1 (en) * 2002-03-07 2003-09-12 Taiyo Kogyo Corporation Material for film structure
JP2004001502A (en) * 1999-11-08 2004-01-08 Hiraoka & Co Ltd Stainproof sheet
JP2004058672A (en) * 1999-11-08 2004-02-26 Hiraoka & Co Ltd Stainproof sheet
JP2004058673A (en) * 1999-11-08 2004-02-26 Hiraoka & Co Ltd Stainproof sheet
WO2005007402A1 (en) * 2003-07-22 2005-01-27 Taiyo Kogyo Corporation Photocatalyst sheet and method for producing same
JP2005280267A (en) * 2004-03-30 2005-10-13 National Institute Of Advanced Industrial & Technology Environment cleaning membrane material
JP2008043949A (en) * 2007-09-04 2008-02-28 Nippon Soda Co Ltd Photocatalyst-carrying structure manufacturing method and photocatalyst-carrying structure obtained by the same
JP2009056809A (en) * 2008-12-01 2009-03-19 Taiyo Kogyo Corp Photocatalyst sheet
JP2009056808A (en) * 2008-12-01 2009-03-19 Taiyo Kogyo Corp Photocatalyst sheet and method for producing this sheet
JP4531120B1 (en) * 2009-07-31 2010-08-25 カンボウプラス株式会社 Antifouling sheet
WO2013161293A1 (en) * 2012-04-27 2013-10-31 日東電工株式会社 Adhesive tape substrate, adhesive tape, and method for manufacturing same
JP2015129081A (en) * 2009-08-17 2015-07-16 日本板硝子株式会社 Glass article having photocatalyst film
JP2016221454A (en) * 2015-05-29 2016-12-28 太陽工業株式会社 Manufacturing method of fluororesin sheet
CN106284894B (en) * 2015-06-01 2019-02-05 陕西专壹知识产权运营有限公司 A kind of preparation method of magnesite hollow decorative board
JPWO2018190408A1 (en) * 2017-04-14 2020-03-05 Hoya株式会社 Optical element and optical thin film
CN113502661A (en) * 2021-07-05 2021-10-15 无锡富仕德高科特材制造有限公司 Preparation method of fireproof and windproof fabric suitable for roller shutters and ceiling shutters

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5763791B2 (en) * 2011-03-04 2015-08-12 サン−ゴバン パフォーマンス プラスティックス コーポレイション Composite articles for use as self-cleaning materials

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09249871A (en) * 1996-03-14 1997-09-22 Toli Corp Ltd Stainproofing and deodorizing structure and interior material utilizing the same structure
JPH1110802A (en) * 1997-06-26 1999-01-19 Achilles Corp Laminated sheet
JP2004058673A (en) * 1999-11-08 2004-02-26 Hiraoka & Co Ltd Stainproof sheet
JP2001199014A (en) * 1999-11-08 2001-07-24 Hiraoka & Co Ltd Antistaining sheet
JP2004001502A (en) * 1999-11-08 2004-01-08 Hiraoka & Co Ltd Stainproof sheet
JP2004058672A (en) * 1999-11-08 2004-02-26 Hiraoka & Co Ltd Stainproof sheet
WO2003074180A1 (en) * 2002-03-07 2003-09-12 Taiyo Kogyo Corporation Material for film structure
WO2005007402A1 (en) * 2003-07-22 2005-01-27 Taiyo Kogyo Corporation Photocatalyst sheet and method for producing same
US7998562B2 (en) 2003-07-22 2011-08-16 Taiyo Kogyo Corporation Photocatalyst sheet and method of producing same
JP2005280267A (en) * 2004-03-30 2005-10-13 National Institute Of Advanced Industrial & Technology Environment cleaning membrane material
JP2008043949A (en) * 2007-09-04 2008-02-28 Nippon Soda Co Ltd Photocatalyst-carrying structure manufacturing method and photocatalyst-carrying structure obtained by the same
JP2009056809A (en) * 2008-12-01 2009-03-19 Taiyo Kogyo Corp Photocatalyst sheet
JP2009056808A (en) * 2008-12-01 2009-03-19 Taiyo Kogyo Corp Photocatalyst sheet and method for producing this sheet
JP4531120B1 (en) * 2009-07-31 2010-08-25 カンボウプラス株式会社 Antifouling sheet
WO2011013176A1 (en) * 2009-07-31 2011-02-03 カンボウプラス株式会社 Antifouling sheet
JP2015129081A (en) * 2009-08-17 2015-07-16 日本板硝子株式会社 Glass article having photocatalyst film
WO2013161293A1 (en) * 2012-04-27 2013-10-31 日東電工株式会社 Adhesive tape substrate, adhesive tape, and method for manufacturing same
JP2013231110A (en) * 2012-04-27 2013-11-14 Nitto Denko Corp Adhesive tape base material, adhesive tape, and method for producing these
CN104302722A (en) * 2012-04-27 2015-01-21 日东电工株式会社 Adhesive tape substrate, adhesive tape, and method for manufacturing same
US10435591B2 (en) 2012-04-27 2019-10-08 Nitto Denko Corporation Adhesive tape substrate, adhesive tape, and methods for producing same
US11834761B2 (en) 2012-04-27 2023-12-05 Nitto Denko Corporation Adhesive tape substrate with glass cloth and fluorine resin, and adhesive tape
JP2016221454A (en) * 2015-05-29 2016-12-28 太陽工業株式会社 Manufacturing method of fluororesin sheet
CN106284894B (en) * 2015-06-01 2019-02-05 陕西专壹知识产权运营有限公司 A kind of preparation method of magnesite hollow decorative board
JPWO2018190408A1 (en) * 2017-04-14 2020-03-05 Hoya株式会社 Optical element and optical thin film
CN113502661A (en) * 2021-07-05 2021-10-15 无锡富仕德高科特材制造有限公司 Preparation method of fireproof and windproof fabric suitable for roller shutters and ceiling shutters

Also Published As

Publication number Publication date
JP3540884B2 (en) 2004-07-07

Similar Documents

Publication Publication Date Title
JPH09207289A (en) Film structural material and its manufacture
CA2155822C (en) Multi-functional material with photocatalytic functions and method of manufacturing same
JP2003182000A (en) Low-temperature coalescing fluoropolymer coating
JPH1043069A (en) Stain preventing plate
JP4281086B2 (en) Photocatalyst sheet and method for producing the same
JP4165941B2 (en) Composite material capable of controlling wettability with surface water, method for controlling wettability with surface water, and functional coating liquid
JP4470198B2 (en) Photocatalyst sheet, film structure, and method for producing photocatalyst sheet
JP3797743B2 (en) Method for producing antifouling film
JP3523787B2 (en) Outdoor building materials with photocatalytic layers
JP4785217B2 (en) Water repellent substrate
JP3274078B2 (en) Fluorine-containing resin hydrophilic architectural membrane material and method for producing the same
WO2005014720A1 (en) Photocatalyst dispersion liquid and method for producing same
WO2005007402A1 (en) Photocatalyst sheet and method for producing same
JP3858176B2 (en) Membrane structure material
JP6298428B2 (en) Composite articles for use as self-cleaning materials
JP5111241B2 (en) Photocatalytic sheet manufacturing method and photocatalytic sheet
JP4990509B2 (en) Photocatalyst sheet manufacturing method
JP2006162711A (en) Self-cleaning coating film having antireflection function and its constitution body
JP4868321B2 (en) Photocatalyst sheet and method for producing the same
JPH0568351B2 (en)
JP2001226516A (en) Photocatalyst film and its manufacturing method
JPH02258248A (en) Filmy structural material and manufacture thereof
JP2005068185A (en) Photocatalyst-supported structure and method for producing the same
JP2004057912A (en) Photocatalyst composite material and its production method
JP5007909B2 (en) Photocatalyst sheet

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20031201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040113

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040302

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040323

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040326

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S201 Request for registration of exclusive licence

Free format text: JAPANESE INTERMEDIATE CODE: R314201

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S201 Request for registration of exclusive licence

Free format text: JAPANESE INTERMEDIATE CODE: R314201

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 9

S201 Request for registration of exclusive licence

Free format text: JAPANESE INTERMEDIATE CODE: R314201

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160402

Year of fee payment: 12

EXPY Cancellation because of completion of term