WO2003074180A1 - Material for film structure - Google Patents

Material for film structure Download PDF

Info

Publication number
WO2003074180A1
WO2003074180A1 PCT/JP2002/002148 JP0202148W WO03074180A1 WO 2003074180 A1 WO2003074180 A1 WO 2003074180A1 JP 0202148 W JP0202148 W JP 0202148W WO 03074180 A1 WO03074180 A1 WO 03074180A1
Authority
WO
WIPO (PCT)
Prior art keywords
film structure
fluororesin
photocatalyst
structure material
sample
Prior art date
Application number
PCT/JP2002/002148
Other languages
French (fr)
Japanese (ja)
Inventor
Akira Fujishima
Kazuhito Hashimoto
Kazuhiro Abe
Hiroshi Toyoda
Takayuki Nakata
Original Assignee
Taiyo Kogyo Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Kogyo Corporation filed Critical Taiyo Kogyo Corporation
Priority to AU2002236255A priority Critical patent/AU2002236255A1/en
Priority to PCT/JP2002/002148 priority patent/WO2003074180A1/en
Priority to JP2003572683A priority patent/JP3858176B2/en
Publication of WO2003074180A1 publication Critical patent/WO2003074180A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/58Fabrics or filaments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/12Layered products comprising a layer of synthetic resin next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • B01J37/0219Coating the coating containing organic compounds

Definitions

  • the present invention relates to a membrane structure material used for a roof material of a permanent membrane structure building such as a dome stadium, a gymnasium, a stadium, a multipurpose hall, etc., which has a self-cleaning function to withstand long-term use. And it has high antifouling properties.
  • a membrane structure material used for a roof material of a permanent membrane structure building such as a dome stadium, a gymnasium, a stadium, a multipurpose hall, etc.
  • a roofing material for permanent membrane structures such as dome stadiums, gymnasiums, stadiums, and multipurpose halls
  • a woven fabric mainly composed of glass fiber has been used as a base fabric, and this surface is covered with a fluororesin layer. Is used.
  • This membrane-structured material has a light-transmitting property, is nonflammable, has high mechanical strength, and is light and flexible. .
  • this membrane-structured material has a problem in that when used for many years, substances such as soot, dust and fine sand in the air adhere to the membrane surface and gradually become dirty, resulting in a poor appearance.
  • fluororesins have non-adhesive properties and are excellent in mold release properties, but their surface and volume resistances are extremely large and their dielectric constant is small, so static electricity is applied to the film material due to fluttering of wind and the like. accumulate.
  • substances such as dust and fine sand are adsorbed on the film surface by static electricity, and in urban areas, organic substances such as exhaust gas (eg, oil stains) are used as a binder to attach dirt and the like. '
  • a film structure that exhibits high antifouling properties over a long period of time by removing organic dirt adhering to the film structure material by photooxidative decomposition and hydrophilization using a photocatalyst.
  • the purpose is to provide building materials.
  • a film structure that suppresses static electricity generated and accumulated due to abrasion and reduces the adhesion of dust and fine sand that cause dirt. The purpose is to provide the material. Disclosure of the invention
  • a film structure material in which a fluororesin surface layer is provided on the surface of a base fabric mainly composed of glass fiber, and a colorless transparent or white photocatalyst powder is carried and exposed on the fluororesin surface layer It was used as a film structure material.
  • the photocatalyst used for the above is preferably anatase type titanium dioxide having high photocatalytic activity.
  • the fluororesin used for the above is preferably a tetrafluoroethylene-hexafluoropropylene copolymer.
  • a structural material comprising a fluorine resin surface layer provided on the surface of a base fabric mainly composed of glass fiber, wherein the fluororesin surface layer comprises a colorless transparent or white photocatalyst powder.
  • the film structure material was made by carrying and exposing a colorless transparent or white conductive powder.
  • the film structure material has a conductive action, and no static electricity is accumulated in the film structure material.
  • the photocatalyst used in the above invention is preferably anatase-type titanium dioxide having high photocatalytic activity.
  • the fluororesin used in the above invention is preferably a tetrafluoroethylene-hexafluoropropylene copolymer.
  • the conductive powder can be tin dioxide.
  • -Tin dioxide is white and stable even when heated in air, so there is no effect when the film structure material is joined by heat.
  • the conductive powder may be rutile titanium dioxide whose surface is coated with antimony-doped tin dioxide.
  • the conductive powder may be an anatase-type titanium dioxide whose surface is coated with tin dioxide doped with antimony.
  • the present invention is based on a woven fabric whose main material is glass fiber used as a roof material of a permanent membrane structure building, and the outermost surface of the membrane structure material obtained by coating this surface with a fluororesin layer.
  • fluororesin used in the present invention examples include polymers of fluororesin monomers, for example, tetrafluoroethylene-hexafluoropropylene copolymer (FEP), polytetrafluoroethylene (PTFE), and tetrafluoroethylene.
  • FEP tetrafluoroethylene-hexafluoropropylene copolymer
  • PTFE polytetrafluoroethylene
  • tetrafluoroethylene tetrafluoroethylene-hexafluoropropylene copolymer
  • PTFE polytetrafluoroethylene
  • PFA Polyethylene-fluoroalkyl ether copolymer
  • EPE tetrafluoroethylene-hexafluoropropylene-fluoroalkyl alkyl ether copolymer
  • EPF E 'tetrafluoroethylene Monoethylene copolymer
  • PCTFE polycloth trifluorethylene
  • ECTFE polycloth trifluoroethylene monoethylene copolymer
  • PVDF polyvinylidene fluoride
  • PVF polyvinyl fluoride Ride
  • a joining method in which heat is applied to the membrane structural material to dissolve the fluororesin and to join, in order to maintain waterproofness of a joint portion. It is preferable to select tetrafluoroethylene ethylene-hexafluoropropylene copolymer (FEP), which melts easily when a temperature higher than the melting point is applied.
  • FEP tetrafluoroethylene ethylene-hexafluoropropylene copolymer
  • Photocatalyst used it is preferred to use a colorless transparent or white powder, anatase titanium dioxide (Ti0 2, the band gap 3. 2 eV, wavelength 38 8 nm), zinc oxide (ZnO, the bandgap 3 . 2 eV, wavelength 388 nm), titanate strike strontium (SrTi0 3, bandgap 3. 2 eV, wavelength 388 nm), trioxide tungsten emissions (W0 3, bandgap 3. 2 eV, wavelength 388 nm), rutile titanium dioxide ( ⁇ 0 2 , the band gap 3. 0 eV, wavelength 414 nm), tin (Sn0 2 dioxide, the band gap 3.
  • tin dioxide has a band gap of 3.8 eV (wavelength: 326 nm), and light having a wavelength at which diacid tin exhibits a photocatalytic function hardly reaches the surface of the ground, and thus does not exhibit a photocatalytic function.
  • photocatalysts may exert a further effect when used alone or in combination depending on the performance and application.
  • the particle diameter for sufficiently exhibiting the photocatalytic function is preferably in the range of 5 to 50 nm.
  • the photocatalyst used in the present invention use the photocatalyst powder as it is ) Or as a coating agent for solutions and dispersions (dispersions).
  • -Dispersion (organosol) in which the photocatalyst is suspended or dissolved in an inorganic or organic solvent ⁇ such as water or alcohol, or a resin in an inorganic or organic solvent such as water or alcohol.
  • an inorganic or organic solvent such as water or alcohol
  • a resin in an inorganic or organic solvent such as water or alcohol.
  • at least one dispersion containing inorganic substances such as suspended dispersion, water glass, colloidal silica, polyorganosiloxane, and ammonium phosphate as a binder, taking into account the adhesion to the base fabric, as appropriate. Good to choose.
  • a synthetic resin such as an acrylic resin, a urethane resin, an epoxy resin, or a vinyl resin may be used between the base fabric and the fluororesin binder having a small surface energy.
  • an aqueous dispersion of a fluororesin and an aqueous dispersion of a photocatalyst are used in consideration of the adhesion to the base cloth.
  • the amount of photocatalyst contained in the coating agent is optional, but it is better to adjust the concentration and viscosity of the solution appropriately according to the application, performance and coating method.
  • the content is preferably 30 to 50% by weight.
  • a conductive function auxiliary substance such as Ru, Os, and Ir, or a photocatalytic function auxiliary substance is added or doped.
  • a coating method There are a coating method, a roll coating method, a flow coating method, an impregnation method, a brush coating method, a sponge coating method, and the like, and it is preferable to appropriately select an application method suitable for a base fabric to be used and a coating material.
  • a chemical vapor deposition (CVD) method As a method of supporting the photocatalyst on the surface of the fluororesin layer, a chemical vapor deposition (CVD) method, a sputtering coating method, a vacuum evaporation method, an ion plating method, a thermal spraying method, etc. can be used. It is. -(Dry)
  • the coating agent After applying the coating agent, it is preferable to dry at a temperature sufficiently lower than the firing temperature in order to maintain uniformity and finish of the coating film.
  • a temperature sufficiently lower than the firing temperature in order to maintain uniformity and finish of the coating film.
  • the material is fired at a temperature equal to or higher than the melting point of the fluororesin in order to improve the adhesion to the base fabric.
  • the firing temperature is higher than the melting point of the fluororesin
  • the coating film is fired through the process of melting the fluororesin, and each powder (particle) of the fluororesin powder and the photocatalyst fine particles Since the gaps between them are sufficiently filled, the resulting fluororesin layer has almost no pores, and is integrated with the base fabric to have excellent adhesion.
  • FEP tetrafluoroethylene-hexafluoropropylene copolymer
  • aqueous dispurgeon 28 wt% solid content
  • titanium dioxide powder ST01 manufactured by Ishihara Sangyo Co., Ltd.
  • aqueous dispurgeon composed of tetrafluoroethylene-hexafluoropropylene copolymer (FEP) (Solid content 58 wt%), 96.6 g of silicon-based surfactant and 2.5 g (total lwt%) of silicon-based surfactant, mix and stir, and add solution A (FEP / anatase type titanium dioxide (hereinafter A - the ratio of Ti0 2) was adjusted to 8 0/2 0) '.
  • FEP tetrafluoroethylene-hexafluoropropylene copolymer
  • the solution A was applied to only one surface by a bar coating method. After drying the solution A coating film at room temperature, heat-dry at 60 ° C for 5 minutes, allow it to cool naturally, then heat and bake it at 380 ° C for 10 minutes, cool it naturally, and cool the sample a of the present invention. Produced.
  • Titanium dioxide powder (ST01 manufactured by Ishihara Sangyo Co., Ltd.) (28 wt%), 50 g of purified water, 100 g of purified water, 56.3 g of an aqueous dispersion (solid content: 58 wt%) consisting of tetrafluoroethylene-hexafluoropropylene copolymer (FEP), silicon-based surfactant 2. put lg (LWT% of the total), mixed and stirred, dissolved liquid B (the ratio of FEP / A- Ti0 2 70/30) was adjusted.
  • FEP tetrafluoroethylene-hexafluoropropylene copolymer
  • the solution B was applied to only one side by a bar coating method. After drying the coating film of the solution B at room temperature, it is dried by heating at 60 ° C for 5 minutes, naturally cooled, and then calcined by heating at 380 ° C for 10 minutes, and naturally cooled to obtain the sample b of the present invention. Produced.
  • an aqueous dispurgeon solid content 28 wt%) of titanium dioxide powder (ST01 manufactured by Ishihara Sangyo Co., Ltd.), 100 g of purified water, and an aqueous dispersion composed of a tetrafluoroethylene-hexafluoropropylene copolymer (FEP) John (solid content 58 wt%) to 36.2 g, (LWT% of total) a silicone surfactant 1.7g placed, mixed, stirred, dissolved solution C (F EP / A- Ti0 2 is the ratio of 60/40) Was adjusted.
  • FEP tetrafluoroethylene-hexafluoropropylene copolymer
  • an aqueous dispersion solid content 28 wt%) of titanium dioxide powder (ST01 manufactured by Ishihara Sangyo Co., Ltd.), 100 g of purified water, and an aqueous dispersion made of tetrafluoroethylene-hexafluoropropylene copolymer (FEP) (Solid content 58wt%) 24.lg and silicon surfactant 1.8g (total lwt%), mix, stir and dissolve Liquid D (FEP ZA- Ti0 2 ratios 5 0/5 0) was adjusted.
  • FEP tetrafluoroethylene-hexafluoropropylene copolymer
  • the film structure material coated with the fluororesin used when preparing samples a to e was used as comparative sample 1.
  • the outdoor exposure test was carried out by installing an outdoor exposure stand on the roof of the first factory building in the Hirakata Plant of the Taiyo Kogyo (Hirakata, Osaka Prefecture), fixing the sample on a 45 ° slope, and exposing it for 3 months. did.
  • the evaluation of the thermal bondability of Samples a to e and Comparative sample 1 was confirmed.
  • the apparatus used for the thermal bonding was a hot plate, and the welding conditions were the same as those for the comparative sample ⁇ , which is the base material of the samples a to e, and the welding conditions were constant.
  • the evaluation was performed using the peel strength of the comparative sample (2) as the reference strength. ( ⁇ ) for those holding 80% or more of the reference strength, (() for those holding 50 to 80% of the reference strength, Those with 50% or less were designated as (X).
  • Samples a to e which are examples of the present invention, were found to be more resistant to contamination by the photocatalyst than Comparative Sample I.
  • Sample a in which the amount of the photocatalyst was small, had a very small degree of contamination, but slightly changed to a solid color.
  • Sample e which contains a large amount of photocatalyst, has a slight chokin Samples b, c, and d had good antifouling properties.
  • the mixing ratio of fluororesin / photocatalyst be 60/40 in consideration of the antifouling property and thermal bonding property.
  • the fluorine resin / photocatalyst is used. was 60/40.
  • the conductor used must be a colorless, transparent or white conductive powder (including semiconductors) so as not to affect the color and translucency of the film itself.
  • antimony-doped tin dioxide Sb de one flop Sn0 2
  • rutile type titanium dioxide coated on the surface was used as an example tin dioxide sol, these It is not limited to.
  • electrical conductors are indium oxide (In 2 0 3), oxidizing power Doniumu (CdO), it can also be selected from zinc oxide (ZnO) and the like.
  • Sample c (the ratio of FEP / ATi02: 60/40) prepared for examining the antifouling property and thermal bonding property was used as Comparative Sample No. II .
  • Samples used for the half-life measurement were samples f to k and comparative samples (1) and (2), and xenon (1)
  • Ec, irradiance 180W / m 2 , wavelength 300-400nm) for 24 hours c- measurement was performed using a honest meter (S-4104) manufactured by Nippon Statech, applying an applied voltage of 10 KV and 20 ° C-20 The test was performed under the humidity control condition of% volumes.
  • comparison sample 2 (FEP Bruno A- Ti0 6 0/4 0 compounding ratio of 2) and comparative sample 3 of (FEP Za - Ti0 2 mixing ratio rate 1 0 0/0) are better than (X) and those inferior to both comparative samples (2) and (3) were designated (X).
  • Example f 60/39/1 (SnOZ (Sb) -R-Ti02) 760 2.7 100 ⁇
  • Samples f to k which are examples of the present invention, were compared to the ruthenium-type titanium dioxide (SnO 2) coated on the surface with antimony-doped tin dioxide, as compared with the analog sample-type titanium dioxide photocatalyst alone.
  • Sb -R-Ti0 2
  • a decrease in half-life by a combination of tin dioxide was observed.
  • the half-life of FEP / A-Ti0 2 mixing ratio is 1 0 0/0 of the comparative sample 3 is at least 120 seconds, the attenuation of the voltage for conductivity there is little not very little observed.
  • sample 2 blending ratio of FEP / A-Ti0 2 is 6 as 0/4 0/0 and anatase type titanium dioxide (A- Ti0 2) is blended with a half-life completion. 5 seconds After 120 seconds, the decay rate is 74%, and the conductive effect appears.
  • Titanium dioxide powder (ST01 manufactured by Ishihara Sangyo Co., Ltd.) 28wt%), 50g of purified water, 36.2g of aqueous dispersion (solid content 58wt%) consisting of tetrafluoroethylene-hexafluoropropyl ⁇ -pyrene copolymer (F EP), silicon-based surfactant agent 2 g mixture was stirred, the solution was (FEP / A- ⁇ 0 2 ratios 6 0/4 0) was adjusted.
  • F EP tetrafluoroethylene-hexafluoropropyl ⁇ -pyrene copolymer
  • silicon-based surfactant agent 2 g mixture was stirred, the solution was (FEP / A- ⁇ 0 2 ratios 6 0/4 0) was adjusted.
  • Antimony de one ping the tin dioxide was coated on the surface rutile dioxide Ji Yun (Sn0 2 (Sb) -R- Ti0 2) powder (manufactured by Ishihara Sangyo Kaisha, Ltd. FT1000) 19.3g, purified water 7 5 g 50 g of an aqueous dispersion (58 wt% solid content) of tetrafluoroethylene-hexafluoropropylene copolymer (FEP) and 2 g of a silicon surfactant were mixed and stirred, and the solution M ( F EP / Sn0 2 (Sb) - R- Ti0 2) mixing ratio of adjusted their 6 0/4 0).
  • FEP tetrafluoroethylene-hexafluoropropylene copolymer
  • a suitable amount of ethyl alcohol is impregnated with a film structure material coated on both sides of a glass fiber with a fluororesin, and the surface of the fluororesin film structure material is wiped off with a Kim towel (manufactured by Crecia Co., Ltd.) and dried at room temperature.
  • Kisafuruoropuro pyrene copolymer to ethylene one aqueous Disconnect purge Yon solid content 58 wt%) consisting of (FEP) by (FEP ZA-TiC R- Ti0 2 ratios 1 0 0/0/0) a bar one coating only one surface Applied.
  • the coating film was dried at room temperature, heated and dried at 60 eC for 5 minutes, allowed to cool naturally, then further heated and dried at 380 ° C for 10 minutes, and allowed to cool naturally to produce Comparative Sample II of the present invention. .
  • the outdoor exposure test was carried out by installing an outdoor exposure stand on the roof of the first factory building of the Taiyo Kogyo Hirakata Plant (Hirakata I, Osaka Prefecture) and fixing the sample on a 45 ° inclined surface.
  • Photocatalytic color difference samples 1 imparted with antifouling effect by (A- Ti0 2) is a very good result and 1.54, sample n a further Sn0 2 (Sb) -R-T1O2 this dissolved solution was added in a small amount Has a color difference of 1.09, indicating a remarkable improvement in antifouling properties due to the photocatalyst + conductive effect.
  • ANATA one peptidase type titanium dioxide (A- Ti0 2) and the conductive effect and stain resistance when the photocatalytic function in combination with tin dioxide that does not express (SNQ 2)
  • Aqueous dispurgeon consisting of 100 g of titanium dioxide powder (ST01 manufactured by Ishihara Sangyo Co., Ltd.) (solid content: 28 wt%), 150 g of purified water, and tetrafluoroethylene-hexafluoropropylene copolymer (FEP) (solid content 58 wt%) to 72.4 g, 3.2 g mixture of a silicone surfactant, was stirred, a solution 0 (F EP / a-Ti 0 2 mixing ratio is 6 0/4 0) was adjusted.
  • FEP tetrafluoroethylene-hexafluoropropylene copolymer
  • the indoor exposure test was performed by installing an indoor exposure platform at the third warehouse in the Hirakata Plant of Taiyo Kogyo (Hirakata, Osaka Prefecture), fixing the sample on a 45 ° slope, and exposing it indoors for 4 months. • Dirt evaluation after outdoor exposure test
  • the conductive metal small rutile titanium dioxide down the doping photocatalytic activity (Sn0 2 (Sb) -R- Ti0 2) and a large Ana evening one peptidase type titanium dioxide of the photocatalytic activity (A- Ti0 2) a combination of
  • SnO 2 tin dioxide
  • Anatase titanium dioxide of a photocatalytic activity (A- Ti0 2) and a photocatalytic function is solely tin dioxide that does not express (Sn0 2), the antifouling property when used in combination outdoor, carried out violent exposure test indoors evaluated.
  • Indoor exposure test (ANATA one peptidase type titanium dioxide for UV is zero (A-Ti0 2) also photocatalytic function is not expressed), it was confirmed that the antifouling property is improved by improving the conductivity.
  • improvement in antifouling properties due to the photocatalytic function and the conductive effect was remarkably observed.
  • the photocatalytic fluororesin film structural material having a layer in which the photocatalyst is used alone or in combination with other conductors in the fluororesin on the outermost layer surface has a significantly improved conductivity, so that the surface of the film structural material is improved. It is difficult for dirt to adhere.
  • the dirt composed of organic substances such as oily dirt attached to the surface of the film structure material is exposed to sunlight when the surface of the film structure material is exposed to sunlight. The lost inorganic dirt is easily washed away, so that the appearance can be maintained semi-permanently.
  • N0 is malodorous substances and air pollutants present in the vicinity of the photocatalyst X, SO, by oxidation decomposition substances like, it can be removed.
  • the photocatalyst is supported and exposed on the surface, and the organic matter attached to the surface of the film structure material is decomposed by photooxidative decomposition and hydrophilization by the photocatalyst and washed away.
  • the organic matter attached to the surface of the film structure material is decomposed by photooxidative decomposition and hydrophilization by the photocatalyst and washed away.
  • it can exhibit high antifouling properties over a long period of time.
  • the material of the membrane structure has a conductive action, and static electricity is not accumulated in the material of the membrane structure. Static electricity generated due to friction and abrasion caused by contact with water is suppressed, and the adhesion of dust, fine sand, etc., which cause soiling, is reduced, so that higher antifouling properties can be exhibited.
  • the conductivity of the film forming material is improved, so that it is difficult to accumulate static electricity, and there is an effect that an electric shock accident of a worker is eliminated.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Catalysts (AREA)
  • Laminated Bodies (AREA)

Abstract

A material for a film structure having a base fabric comprising a glass fiber as a primary material and, formed on the surface of the fabric, a fluororesin surface layer, characterized in that the fluororesin surface layer contains a colorless and transparent or a white photocatalyst powder being carried thereon in an exposed state. The photocatalyst is preferably an anatase-type titanium dioxide having a high photocatalyst activity, and the fluororesin is preferably a tetrafluoroethylene-hexafluoropropylene copolymer. The material for a film structure is capable of decomposing and removing a stain comprising an organic material sticked thereto through decomposition or hydrophilization by photooxidation and thus exhibits high antifouling property for a long period of time. Further, the material allows the suppression of static electricity generated and accumulated by the friction or abrasion due to the fluttering by wind or the like or the contact with another material, which leads to the reduction of the sticking of dust, fine sands, or the like causing a stain.

Description

明 細 書 膜構造材料 技術分野  Description Membrane structural materials Technical field
この発明は、 ドーム球場、 体育館、 競技場および多目的ホール等の恒久的な膜 構造建築物の屋根材等に使用される膜構造材料に関し、 長期の使用に耐えうるよ うにセルフクリ一ニング機能を付与し、'高い防汚性をもたせたものである。 背景技術  The present invention relates to a membrane structure material used for a roof material of a permanent membrane structure building such as a dome stadium, a gymnasium, a stadium, a multipurpose hall, etc., which has a self-cleaning function to withstand long-term use. And it has high antifouling properties. Background art
近年、 ドーム球場、 体育館、 競技場および多目的ホール等の恒久的な膜構造建 築物の屋根材として、 ガラス繊維を主材とする織布を基布とし、 この表面をフッ 素樹脂層で被覆してなる膜構造材料が使用されている。 この膜構造材料は、 光透 過性を有しながら不燃で機械的強度が高く、 しかも、 軽量かつ柔軟性に富むとい う禾リ点を有しており、 建築材料としての規模を拡大してきた。  In recent years, as a roofing material for permanent membrane structures such as dome stadiums, gymnasiums, stadiums, and multipurpose halls, a woven fabric mainly composed of glass fiber has been used as a base fabric, and this surface is covered with a fluororesin layer. Is used. This membrane-structured material has a light-transmitting property, is nonflammable, has high mechanical strength, and is light and flexible. .
しかしながら、 この膜構造材料は、 長年使用すると大気中の煤煙、 ほこり、 細 砂等の物質が膜表面に付着して次第に汚れ、 外観が悪くなるという問題点がある。 この原因は、 フッ素樹脂が、 非粘着性を有しており離型性に優れるが、 表面 ·体 積抵抗値が極めて大きく、 誘電率が小さいため風等のフラッタリング等により膜 材に静電気が蓄積する。 そのため、 静電気により膜表面にほこりや細砂等の物質 を吸着し、 さらに都市部では排気ガス等の有機物 (例えば油汚れ) をバインダー とし、 ごみ等が付着するためである。 '  However, this membrane-structured material has a problem in that when used for many years, substances such as soot, dust and fine sand in the air adhere to the membrane surface and gradually become dirty, resulting in a poor appearance. This is because fluororesins have non-adhesive properties and are excellent in mold release properties, but their surface and volume resistances are extremely large and their dielectric constant is small, so static electricity is applied to the film material due to fluttering of wind and the like. accumulate. As a result, substances such as dust and fine sand are adsorbed on the film surface by static electricity, and in urban areas, organic substances such as exhaust gas (eg, oil stains) are used as a binder to attach dirt and the like. '
又、 この膜構造材料を使用した膜構造建築物を製造する工場、 施工現場では静 電気により、 施工完了前にほこりが膜表面に付着して汚れるだけでなく、 作業者 が膜構造材料に蓄積された静電気により感電するという問題点もあった。  In factories and construction sites that manufacture membrane-structured buildings using this membrane-structured material, not only does the dust adhere to the membrane surface and become dirty before the construction is completed due to static electricity, and workers accumulate in the membrane-structured material. There is also a problem that an electric shock is caused by the generated static electricity.
この発明では、 膜構造材料に付着した有機物からなる汚れを、 光触媒による光 酸化分解 ·親水化により、 分解除去し、 長期にわたり高い防汚性を発現する膜構 造材料を提供することを目的とする。 According to the present invention, a film structure that exhibits high antifouling properties over a long period of time by removing organic dirt adhering to the film structure material by photooxidative decomposition and hydrophilization using a photocatalyst. The purpose is to provide building materials.
さらなる課題として、 風等のフラッタリング、 物体 (物質) との接触による摩 擦- 摩耗により発生し蓄積される静電気を抑制し、 汚れの原因となるほこり、 細 砂等の付着を軽減する膜構造材料を提供することを目的とする。 発明の開示  Further challenges include fluttering of the wind and the like, and friction due to contact with objects (substances). A film structure that suppresses static electricity generated and accumulated due to abrasion and reduces the adhesion of dust and fine sand that cause dirt. The purpose is to provide the material. Disclosure of the invention
この発明では、 ガラス繊維を主材料とする基布の表面に、 フッ素樹脂表面層を 設けた膜構造材料であって、 フッ素樹脂表面層に無色透明若しくは白色の光触媒 粉末を坦持 ·露出させた膜構造材料とした。  In the present invention, a film structure material in which a fluororesin surface layer is provided on the surface of a base fabric mainly composed of glass fiber, and a colorless transparent or white photocatalyst powder is carried and exposed on the fluororesin surface layer It was used as a film structure material.
このようにすれば、 膜構造材料の表面に付着した有機物からなる汚れは光触媒 による光酸化分解 ·親水化により分解されて洗い流される。 また、 無色透明若し くは白色の光触媒を使用することにより、 膜構造材科に坦持 ·露出させても膜構 造材料としての透光性に影響を及ぼすことがない。  In this way, organic dirt adhering to the surface of the film structure material is decomposed by photo-oxidative decomposition and hydrophilization by a photocatalyst and washed away. In addition, by using a colorless, transparent or white photocatalyst, it does not affect the translucency of the film structure material even if it is carried and exposed to the film structure material family.
前記に使用する光触媒は、 光触媒活性の高いアナターゼ型ニ酸化チタンとする ことが好ましい。 '  The photocatalyst used for the above is preferably anatase type titanium dioxide having high photocatalytic activity. '
前記に使用するフッ素樹脂は、 テトラフルォロエチレン一へキサフルォロプロ ピレン共重合体とすることが好ましい。  The fluororesin used for the above is preferably a tetrafluoroethylene-hexafluoropropylene copolymer.
テトラフルォロエチレン一へキサフルォロプロピレン共重合体を使用すれば、 熱溶着により膜構造材料同士の接合が可能になる。  If a tetrafluoroethylene-hexafluoropropylene copolymer is used, bonding of the membrane structural materials becomes possible by heat welding.
さらに、 この発明では、 ガラス繊維を主材料とする基布の表面に、 フッ素樹月旨 表面層を設けた腠構造材料であって、 フッ素樹脂表面層に、 無色透明若しくは白 色の光触媒粉末と、 無色透明若しくは白色の導電作用を有する粉末を坦持 ·露出 させた膜構造材料とした。  Furthermore, in the present invention, a structural material comprising a fluorine resin surface layer provided on the surface of a base fabric mainly composed of glass fiber, wherein the fluororesin surface layer comprises a colorless transparent or white photocatalyst powder. The film structure material was made by carrying and exposing a colorless transparent or white conductive powder.
このようにすれば、 光触媒による光酸化分解 ·親水化作用に加え、膜構造材料 が導電作用を有するようになり、 静電気が膜構造材料に蓄積されなくなる。  In this way, in addition to the photo-oxidative decomposition and hydrophilizing actions of the photocatalyst, the film structure material has a conductive action, and no static electricity is accumulated in the film structure material.
前記の発明において使用する光触媒は、 光触媒活性の高いアナターゼ型ニ酸化 チタンとすることが好ましい。 前記の発明において使用するフッ素樹脂は、 テトラフルォロエチレン一へキサ フルォロプロピレン共重合体とすることが好ましい。 The photocatalyst used in the above invention is preferably anatase-type titanium dioxide having high photocatalytic activity. The fluororesin used in the above invention is preferably a tetrafluoroethylene-hexafluoropropylene copolymer.
テトラフルォロエチレン一へキサフルォロプロピレン共重合体を使用すれば、 熱溶着による膜構造材料同士の接合が可能になる。  If tetrafluoroethylene-hexafluoropropylene copolymer is used, bonding of the film structural materials by heat welding becomes possible.
導電作用を有する粉末は、 二酸化錫とすることができる。 - 二酸化錫は、 白色であり、 しかも空気中で加熱しても安定しているため、 膜構 造材料を熱により接合しても影響がない。  The conductive powder can be tin dioxide. -Tin dioxide is white and stable even when heated in air, so there is no effect when the film structure material is joined by heat.
導電作用を有する粉末は、 アンチモンをドーピングした二酸化錫を表面に被覆 したルチル型二酸化チタンとすることもできる。  The conductive powder may be rutile titanium dioxide whose surface is coated with antimony-doped tin dioxide.
さらに、 導電作用を有する粉末は、 アンチモンをドーピングした二酸化錫を表 面に被覆したアナタ一ゼ型ニ酸化チタンとすることもできる。 発明を実施するための形態  Further, the conductive powder may be an anatase-type titanium dioxide whose surface is coated with tin dioxide doped with antimony. BEST MODE FOR CARRYING OUT THE INVENTION
この発明は、 恒久膜構造建築物の屋根材等に使用されるガラス繊維を主材料と する織布を基布とし、 この表面をフッ素樹脂層で被覆してなる膜構造材料の最外 層表面のフッ素樹脂中に光触媒粉末を単独に、 あるいは電導体の粉末を併用した フッ素樹脂層を持つ膜構造材料である。 以下、 基布に前記のフッ素樹脂屢を形成 させるための方法について詳しく説明する。  The present invention is based on a woven fabric whose main material is glass fiber used as a roof material of a permanent membrane structure building, and the outermost surface of the membrane structure material obtained by coating this surface with a fluororesin layer. A film structure material having a fluororesin layer, in which a photocatalyst powder is used alone or in combination with a conductor powder in the fluororesin. Hereinafter, the method for forming the fluororesin on the base fabric will be described in detail.
(フッ素樹脂)  (Fluorine resin)
この発明に用いるフッ素樹脂としては、 フッ素樹脂モノマーの重合体、 例えば、 テトラフルォロエチレン一へキサフルォロプロピレン共重合体 (FEP) 、 ポリ テトラフルォロエチレン (PTFE) 、 テトラフルォロエチレン一パ一フルォロ アルキルビュルエーテル共重合体 (PFA) 、 テトラフルォロエチレン一へキサ フルォロプロピレンーパ一フルォロアルキルビュルエーテル共重合体 (EPE) 、 'テトラフルォロエチレン一エチレン共重合体 (ETF E) 、 ポリクロ口トリフル ォロエチレン (PCTFE) 、 クロ口トリフルォロエチレン一エチレン共重合体 (ECTFE) 、 ポリビニリデンフルオライ ド (PVDF) 、 ポリビニルフルォ ライド (P V F ) 等が挙げられる。 Examples of the fluororesin used in the present invention include polymers of fluororesin monomers, for example, tetrafluoroethylene-hexafluoropropylene copolymer (FEP), polytetrafluoroethylene (PTFE), and tetrafluoroethylene. Polyethylene-fluoroalkyl ether copolymer (PFA), tetrafluoroethylene-hexafluoropropylene-fluoroalkyl alkyl ether copolymer (EPE), 'tetrafluoroethylene Monoethylene copolymer (ETF E), polycloth trifluorethylene (PCTFE), polycloth trifluoroethylene monoethylene copolymer (ECTFE), polyvinylidene fluoride (PVDF), polyvinyl fluoride Ride (PVF) and the like.
膜構造材料同士を接合する場合は、 接合部分の防水性を保っために、 膜構造材 料に熱を加えてフッ素樹脂を溶かして接合する接合法を用いることが好ましく、 使用するフッ素樹脂は、 融点以上の温度をかけると容易に溶融するテトラフルォ 口エチレン一へキサフルォロプロピレン共重合体 (F E P ) を選択することが好 ましい。  When joining membrane structural materials to each other, it is preferable to use a joining method in which heat is applied to the membrane structural material to dissolve the fluororesin and to join, in order to maintain waterproofness of a joint portion. It is preferable to select tetrafluoroethylene ethylene-hexafluoropropylene copolymer (FEP), which melts easily when a temperature higher than the melting point is applied.
(光触媒)  (photocatalyst)
使用する光触媒 (光半導体) は、 無色透明若しくは白色の粉末を使用すること が好ましく、 アナターゼ型ニ酸化チタン (Ti02、 バンドギャップ 3. 2eV 、 波長 38 8nm ) 、 酸化亜鉛 (ZnO 、 バンドギャップ 3. 2eV 、 波長 388nm ) 、 チタン酸スト ロンチウム (SrTi03、 バンドギャップ 3. 2eV 、 波長 388nm ) 、 三酸化タングステ ン (W03 、 バンドギャップ 3. 2eV 、 波長 388nm ) 、 ルチル型二酸化チタン (Τί02、 バンドギャップ 3. 0eV 、 波長 414nm ) 、 二酸化錫 (Sn02、 バンドギャップ 3. 8eV 、 波長 326nra ) 、 等が挙げられる。 これらは、 光触媒のバンドギャップ以上のエネ ルギ一を持つ波長の光を照射することにより光触媒機能を発現する物質のことで ある。 但し、 二酸化錫はバンドギャップが 3. 8eV (波長 326nm ) であり、 二酸ィ匕 錫が光触媒機能を発現する波長の光は地表にはほとんど到達しないため、 光触媒 機能を発現しない。 Photocatalyst used (optical semiconductor), it is preferred to use a colorless transparent or white powder, anatase titanium dioxide (Ti0 2, the band gap 3. 2 eV, wavelength 38 8 nm), zinc oxide (ZnO, the bandgap 3 . 2 eV, wavelength 388 nm), titanate strike strontium (SrTi0 3, bandgap 3. 2 eV, wavelength 388 nm), trioxide tungsten emissions (W0 3, bandgap 3. 2 eV, wavelength 388 nm), rutile titanium dioxide (Τί0 2 , the band gap 3. 0 eV, wavelength 414 nm), tin (Sn0 2 dioxide, the band gap 3. 8 eV, wavelength 326Nra), and the like. These are substances that exhibit a photocatalytic function by irradiating light with a wavelength having energy equal to or greater than the band gap of the photocatalyst. However, tin dioxide has a band gap of 3.8 eV (wavelength: 326 nm), and light having a wavelength at which diacid tin exhibits a photocatalytic function hardly reaches the surface of the ground, and thus does not exhibit a photocatalytic function.
これら光触媒は、 性能、 用途により、 単独又は複 用いることにより、 より一 層効果を発揮することがある。  These photocatalysts may exert a further effect when used alone or in combination depending on the performance and application.
(光触媒の粒子径)  (Particle diameter of photocatalyst)
光触媒の性能効率を上げるためには、 粒子径の小さいものを用いることが望ま しい。 これは、 粒子径を小さくすることにより、 表面に露出する光触媒の表面積 を増大させることができるためである。 光触媒機能を十分に発揮させるための粒 子径は、 5〜50nmの範囲が好ましい。  In order to increase the performance efficiency of the photocatalyst, it is desirable to use one having a small particle diameter. This is because the surface area of the photocatalyst exposed on the surface can be increased by reducing the particle diameter. The particle diameter for sufficiently exhibiting the photocatalytic function is preferably in the range of 5 to 50 nm.
(光触媒の形態)  (Form of photocatalyst)
この発明に使用する光触媒は、 光触媒の粉末をそのまま用いるか (粉体塗料を 含む) 、 あるいは溶液や分散体 (ディスパ一ジョン) 等のコーティング剤として 使用する方法がある。 - コーティング剤としては、 光触媒を水やアルコール類等の無機溶媒又は有機溶 剤 Φに懸濁あるいは溶解させたデイスパージヨン (オルガノゾル) 、 樹脂を水や アルコール類等の無機溶媒あるいは有機溶剤中に懸濁させたディスパ一ジョン、 水ガラス、 コロイダルシリカ、 ポリオルガノシロキサン、 リン酸アンモニゥム等 の無機物質をバインダ一としたディスパ一ジョンを 1つ以上用い、 基布との密着 性を考慮し、 適宜選択するのがよい。 For the photocatalyst used in the present invention, use the photocatalyst powder as it is ) Or as a coating agent for solutions and dispersions (dispersions). -Dispersion (organosol) in which the photocatalyst is suspended or dissolved in an inorganic or organic solvent Φ such as water or alcohol, or a resin in an inorganic or organic solvent such as water or alcohol. Use at least one dispersion containing inorganic substances such as suspended dispersion, water glass, colloidal silica, polyorganosiloxane, and ammonium phosphate as a binder, taking into account the adhesion to the base fabric, as appropriate. Good to choose.
表面エネルギーの小さいフッ素樹脂のバインダ一として、 基布との間にァクリ ル樹脂、 ウレタン樹脂、 エポキシ樹脂、 ビニル樹脂等の合成樹脂を使用してもよ い。  A synthetic resin such as an acrylic resin, a urethane resin, an epoxy resin, or a vinyl resin may be used between the base fabric and the fluororesin binder having a small surface energy.
この発明では、 基布との密着性を考慮し、 フッ素樹脂の,水系ディスパ一ジョン と光触媒の水系ディスパ一ジョンを使用している。  In this invention, an aqueous dispersion of a fluororesin and an aqueous dispersion of a photocatalyst are used in consideration of the adhesion to the base cloth.
(コーティング剤の調整) - コ一ティング剤の中に含まれる光触媒の量は、 任意であるが、 用途、 性能、 塗 ェ方法により溶液の濃度、 粘度を適宜調整するのがよい。 製品として、 熱接合性 能が要求される場合、 光触媒機能を十分に発揮し、 尚且つ、 十分な熱接合性能を 得るための光触媒の配合量は、 コーティング剤中に含まれる固形分濃度に対して、 30〜50wt%とするのが好ましい。  (Adjustment of coating agent)-The amount of photocatalyst contained in the coating agent is optional, but it is better to adjust the concentration and viscosity of the solution appropriately according to the application, performance and coating method. When thermal bonding performance is required as a product, the photocatalyst function is fully exhibited, and the amount of the photocatalyst to obtain sufficient thermal bonding performance is based on the solid content concentration in the coating agent. Therefore, the content is preferably 30 to 50% by weight.
製造過程において、 導電性、 光触媒機能増強のため、 コ一ティング剤および粉 末には Cu、 Sn、 Al、 Sbや Ag、 Cu、 Zn、 Fe、 N Zn、 Au、 Aし Pt、 Pd、 Rh、 Ru、 Os, I rなど導電性機能補助物質、 光触媒機能補助物質を添加、 又はドーピングするこ とがある。  In the manufacturing process, Cu, Sn, Al, Sb and Ag, Cu, Zn, Fe, N Zn, Au, A and Pt, Pd, Rh are added to the coating agent and powder to enhance conductivity and photocatalytic function. In some cases, a conductive function auxiliary substance such as Ru, Os, and Ir, or a photocatalytic function auxiliary substance is added or doped.
<薄膜の作製方法 >  <Method for preparing thin film>
(塗布)  (Application)
光触媒を配合したコ一ティング剤を基布に塗布する方法としては、 バーコ一ト 法、 エアースプレー法、 静電スプレー法、 ディップコート法、 印刷法、 スピンコ —ト法、 ロールコート法、 フローコート法、 含浸法、 刷毛塗り法、 スポンジ塗り 法など,があり、 使用する基布ゃコーティング材により適した塗布方法を適宜選択 するのがよい。 Bar coating, air spraying, electrostatic spraying, dip coating, printing, spin coating, etc. There are a coating method, a roll coating method, a flow coating method, an impregnation method, a brush coating method, a sponge coating method, and the like, and it is preferable to appropriately select an application method suitable for a base fabric to be used and a coating material.
又、 フッ素樹脂層の表面に光触媒を坦持する方法として、 C V D (chemical vapor deposi ti on) 法、 スパッタ一コ一ティング法、 真空蒸着法、 イオンプレー ティング法、 溶射法などを用いることが可能である。 - (乾燥)  In addition, as a method of supporting the photocatalyst on the surface of the fluororesin layer, a chemical vapor deposition (CVD) method, a sputtering coating method, a vacuum evaporation method, an ion plating method, a thermal spraying method, etc. can be used. It is. -(Dry)
前記コーティング剤を塗布した後、 塗膜の均一性、 仕上がりを均一に保つ上で 焼成温度より十分に低い温度で乾燥させるとよい。 乾燥は、 コーティング剤の硬 化メカニズムやコーティング剤中に使用したバインダーの材質により自然乾燥 ( 室温放置、 風乾燥) あるいは装置や熱源を伴う強制乾燥をさせる方法がある。 強 制乾燥に用いる装置、 熱源としては、 加熱炉、 風乾燥、 赤外線加熱、 瑋赤外線加 熱、 熱風加熱等を用いると効率的に乾燥させることが可能である。  After applying the coating agent, it is preferable to dry at a temperature sufficiently lower than the firing temperature in order to maintain uniformity and finish of the coating film. Depending on the curing mechanism of the coating agent and the material of the binder used in the coating agent, there are methods of drying naturally (leaving at room temperature, air drying) or forced drying with equipment and heat source. Efficient drying can be achieved by using a heating furnace, air drying, infrared heating, infrared heating, hot air heating, etc. as the equipment and heat source used for forced drying.
仕上がりが綺麗で均一な厚さの塗膜を得るには、 自然乾燥で長時間かけて仕上 げる方法、 熱源装置により高温 (乾燥温度は、 雰囲気温度が 100 °c以下) で短時 間で仕上げる場合には、 その昇温過程を数段階に分ける方法がある。  In order to obtain a film with a beautiful finish and a uniform thickness, a method of finishing over a long period of time with natural drying, and using a heat source device at a high temperature (drying temperature is 100 ° C or less) and in a short time For finishing, there is a method of dividing the heating process into several stages.
(焼成)  (Fired)
上記乾燥工程を経たものは、 基布との密着性向上のためフッ素樹脂の融点以上 で焼成させる。 ここで、 焼成温度を.フッ素樹脂の融点より高い温度にすると、 フ ッ素樹脂が溶融する過程を経て塗膜が焼成されることになり、 フッ素樹脂粉末及 び光触媒微粒子の各粉末 (粒子) 間の空隙が十分に埋め尽くされるため、 得られ るフッ素樹脂層はほとんど孔がなく、 基布と一体化されて密着性に優れたものと なる。 '  After the drying step, the material is fired at a temperature equal to or higher than the melting point of the fluororesin in order to improve the adhesion to the base fabric. Here, if the firing temperature is higher than the melting point of the fluororesin, the coating film is fired through the process of melting the fluororesin, and each powder (particle) of the fluororesin powder and the photocatalyst fine particles Since the gaps between them are sufficiently filled, the resulting fluororesin layer has almost no pores, and is integrated with the base fabric to have excellent adhesion. '
この発明においては、 フッ素樹脂の融点より 50°C程度高い温度 ( 220〜380 t;、 テトラフルォロエチレン一へキサフルォロプロピレン共重合体 (F E P ) を使用 する場合は 320 °C ) で焼成するのがよい。 それ以上の高温にするとフッ素樹脂の 融点をはるかに超えてしまい、 フッ素樹脂の分解温度に達し、 フッ素樹脂の分解 及びそれに伴う基布の損傷を招く恐れがあるので、 焼成温度には十分注意を払う 必要がある。 In the present invention, a temperature about 50 ° C. higher than the melting point of the fluororesin (220 to 380 t; 320 ° C. when using tetrafluoroethylene-hexafluoropropylene copolymer (FEP)) It is good to bake with. If the temperature is higher than this, the melting point of the fluororesin will be far exceeded and the decomposition temperature of the fluororesin will be reached. Therefore, it is necessary to pay close attention to the firing temperature, as this may cause damage to the base fabric.
(冷却)  (Cooling)
上記焼成過程を経たものは、 焼成過程より低い室温レベルで急速に冷やす (急 冷する) のがよい。 可能であれば、 エアコンプレッサー等により冷風を吹き掛け るのもよい。 そうすることにより、 フッ素樹脂の結晶化が早く進み、 結晶性高分 子中における非結晶部 (非晶部) の割合が増加し、 塗膜のヘイズは減少し、 透明 で且つ緻密で強靭な塗膜を形成させることができる。  After the above-mentioned calcination process, it is better to cool rapidly (cool) at a room temperature level lower than that of the calcination process. If possible, cool air may be blown using an air compressor or the like. By doing so, the crystallization of the fluororesin proceeds rapidly, the ratio of the amorphous portion (amorphous portion) in the crystalline polymer increases, the haze of the coating film decreases, and the transparent, dense and tough film is formed. A coating can be formed.
1 . 膜構造材料における光触媒の配合比率による防汚性と熱接合性の関係につい て  1. Relationship between antifouling property and thermal bonding property by mixing ratio of photocatalyst in membrane structural material
以下により、 光触媒の配合比率の異なる試料を作製し、 膜構造材料における光 触媒の配合比率による防汚性と熱接合性の関係について確認した。  In the following, samples with different photocatalyst compounding ratios were prepared, and the relationship between the antifouling property and the thermal bonding property according to the photocatalyst compounding ratio in the film structure material was confirmed.
(試料 a )  (Sample a)
二酸化チタン粉末 (石原産業株式会社製 ST01 ) の水系ディスパージヨン (固形 分 28wt% ) を 50 g、 精製水 100 g、 テトラフルォロエチレン—へキサフルォロプ ロピレン共重合体 (F E P ) からなる水系ディスパージヨン (固形分 58wt%) を 96. 6 g、 シリコン系界面活性剤を 2. 5g (全体の l wt%) 入れ、 混合、 攪拌し、 溶 液 A ( F E P /アナターゼ型ニ酸化チタン (以下、 A- Ti02 ) の比率は 8 0 / 2 0 ) を調整した'。 50 g of aqueous dispurgeon (28 wt% solid content) of titanium dioxide powder (ST01 manufactured by Ishihara Sangyo Co., Ltd.), 100 g of purified water, and aqueous dispurgeon composed of tetrafluoroethylene-hexafluoropropylene copolymer (FEP) (Solid content 58 wt%), 96.6 g of silicon-based surfactant and 2.5 g (total lwt%) of silicon-based surfactant, mix and stir, and add solution A (FEP / anatase type titanium dioxide (hereinafter A - the ratio of Ti0 2) was adjusted to 8 0/2 0) '.
ガラス繊維からなる基布の両面をフッ素樹脂で被覆された膜構造材料の表面の フッ素樹脂.をエチルアルコールを適量染み込ませたキムタオル (株式会社クレシ ァ製の紙製ワイパー…商品名) で拭き、 常温乾燥させた後、 前記溶液 Aをバーコ —ト法により片面のみに塗布した。 溶液 Aの塗膜を常温乾燥させた後、 60°Cで 5 分間加熱乾燥し、 自然冷却させた後、 さらに 380°Cで 10分間加熱焼成し、 自然冷 却してこの発明の試料 aを作製した。  Wipe the fluororesin on the surface of the membrane structure material coated with fluororesin on both sides of a base fabric made of glass fiber with a Kimtowel (paper wiper made by Crescia Co., Ltd., trade name) impregnated with an appropriate amount of ethyl alcohol. After drying at room temperature, the solution A was applied to only one surface by a bar coating method. After drying the solution A coating film at room temperature, heat-dry at 60 ° C for 5 minutes, allow it to cool naturally, then heat and bake it at 380 ° C for 10 minutes, cool it naturally, and cool the sample a of the present invention. Produced.
(試料 b )  (Sample b)
二酸化チタン粉末 (石原産業株式会社製 ST01) の水系ディスパージヨン (固形 分 28wt%) を 50g、 精製水 100 g、 テ.トラフルォロエチレン一へキサフルォロプ ロピレン共重合体 (FEP) からなる水系ディスパ一ジョン'(固形分 58wt%) を 56.3g, シリコン系界面活性剤を 2. lg (全体の lwt%) 入れ、 混合、 攪拌し、 溶 液 B (F E P/A- Ti02の比率は 70 / 30 ) を調整した。 Titanium dioxide powder (ST01 manufactured by Ishihara Sangyo Co., Ltd.) (28 wt%), 50 g of purified water, 100 g of purified water, 56.3 g of an aqueous dispersion (solid content: 58 wt%) consisting of tetrafluoroethylene-hexafluoropropylene copolymer (FEP), silicon-based surfactant 2. put lg (LWT% of the total), mixed and stirred, dissolved liquid B (the ratio of FEP / A- Ti0 2 70/30) was adjusted.
ガラス繊維からなる基布の両面をフッ素樹脂で被覆された膜構造材料の表面の フッ素樹脂をエチルアルコールを適量染み込ませたキムタオル (株式会社クレシ ァ製) で拭き、 常温乾燥させた後、 前記溶液 Bをバーコート法により片面のみに 塗布した。 溶液 Bの塗膜を常温乾燥させた後、 60°Cで 5分間加熱乾燥し、 自然冷 却させた後、 さらに 380°Cで 10分間加熱焼成し、 自然冷却してこの発明の試料 b を作製した。  After wiping the fluororesin on the surface of the membrane material coated with fluororesin on both sides of the base fabric made of glass fiber with a Kimtowel (manufactured by Crecia Corporation) impregnated with an appropriate amount of ethyl alcohol and drying at room temperature, the solution B was applied to only one side by a bar coating method. After drying the coating film of the solution B at room temperature, it is dried by heating at 60 ° C for 5 minutes, naturally cooled, and then calcined by heating at 380 ° C for 10 minutes, and naturally cooled to obtain the sample b of the present invention. Produced.
(試料 c)  (Sample c)
二酸化チタン粉末 (石原産業株式会社製 ST01) の水系ディスパージヨン (固形 分 28wt%) を 50g、 精製水 100 g、 テトラフルォロエチレン—へキサフルォロプ ロピレン共重合体 (F EP) からなる水系ディスパ一ジョン (固形分 58wt%) を 36.2g、 シリコン系界面活性剤を 1.7g (全体の lwt%) 入れ、 混合、 攪拌し、 溶 液 C (F EP/A- Ti02の比率は 60 / 40 ) を調整した。 50 g of an aqueous dispurgeon (solid content 28 wt%) of titanium dioxide powder (ST01 manufactured by Ishihara Sangyo Co., Ltd.), 100 g of purified water, and an aqueous dispersion composed of a tetrafluoroethylene-hexafluoropropylene copolymer (FEP) John (solid content 58 wt%) to 36.2 g, (LWT% of total) a silicone surfactant 1.7g placed, mixed, stirred, dissolved solution C (F EP / A- Ti0 2 is the ratio of 60/40) Was adjusted.
ガラス繊維からなる基布の両面をフッ素樹脂で被覆された膜構造材料の表面の フッ素樹脂をエチルアルコールを適量染み込ませたキムタオル (株式会社クレシ ァ製) で、 フッ素樹脂膜構造材料の表面を拭き、 常温乾燥させた後、前記溶液 C をバーコ—ト法により片面のみ塗布した。 塗膜は常温乾燥させた後、 60°Cで 5分 間加熱乾燥し、 自然冷却させた後、 さらに 380 °Cで 10分間加熱焼成し、 自然冷却 してこの発明の試料 cを作製した。  Wipe the surface of the fluororesin structural material with Kimtowel (made by Crecia Co., Ltd.) on the surface of the film structural material in which both surfaces of the glass fabric are coated with fluororesin, and soaked with an appropriate amount of ethyl alcohol in the fluororesin. After drying at room temperature, the solution C was applied on only one side by a bar coating method. The coating film was dried at room temperature, heated and dried at 60 ° C. for 5 minutes, allowed to cool naturally, then heated and baked at 380 ° C. for 10 minutes, and cooled naturally to prepare Sample c of the present invention.
(試料 d)  (Sample d)
二酸化チタン粉末 (石原産業株式会社製 ST01) の水系ディスパ一ジョン (固形 分 28wt%) を 50g、 精製水 100 g、 テトラフルォロエチレン—へキサフルォロプ ロピレン共重合体 (FEP) からなる水系ディスパージヨン (固形分 58wt%) を 24. lg、 シリコン系界面活性剤を 1.8g (全体の lwt%) 入れ、 混合、 攪拌し、 溶 液 D ( F E P ZA- Ti02の比率は 5 0 / 5 0 ) を調整した。 50 g of an aqueous dispersion (solid content 28 wt%) of titanium dioxide powder (ST01 manufactured by Ishihara Sangyo Co., Ltd.), 100 g of purified water, and an aqueous dispersion made of tetrafluoroethylene-hexafluoropropylene copolymer (FEP) (Solid content 58wt%) 24.lg and silicon surfactant 1.8g (total lwt%), mix, stir and dissolve Liquid D (FEP ZA- Ti0 2 ratios 5 0/5 0) was adjusted.
ガラス繊維からなる基布の両面をフッ素樹脂で被覆された膜構造材料の表面の フッ素樹脂をエチルアルコールを適量染み込ませたキムタオル (株式会社クレシ ァ製) で、 フッ素樹脂膜構造材料の表面を拭き、 常温乾燥させた後、 前記溶液 D をバーコ一ト法により片面のみ塗布した。 塗膜は常温乾燥させた後、 60°Cで 5分 間加熱乾燥し、 自然冷却させた後、 さらに 380 °Cで 10分間加熱乾燥し、 自然冷却 してこの発明の試料 dを作製した。  Wipe the surface of the fluororesin structural material with Kimtowel (made by Crecia Co., Ltd.) on the surface of the film structural material in which both surfaces of the glass fabric are coated with fluororesin, and soaked with an appropriate amount of ethyl alcohol in the fluororesin. After drying at room temperature, the solution D was applied on only one side by a bar coating method. The coating film was dried at room temperature, heated and dried at 60 ° C. for 5 minutes, allowed to cool naturally, further heated and dried at 380 ° C. for 10 minutes, and cooled naturally to prepare Sample d of the present invention.
(試料 e )  (Sample e)
二酸化チタン粉末 (石原産業株式会社製 ST01 ) の水系ディスパ一ジョン (固形 分 28wt%) を 50 g、 精製水 100 g、 テトラフルォロエチレン一へキサフルォロプ ロピレン共重合体 (F E P ) からなる水系ディスパ一ジョン (固形分 58wt%) を 15. 6 g、 シリコン系界面活性剤を 1. 7g (全体の l wt%) 入れ、 混合、 攪拌し、 溶 液 E ( F E P ZA- Τί02の比率は 4 0 / 6 0 ) を調整した。 50 g of an aqueous dispersion (solid content 28 wt%) of titanium dioxide powder (ST01, manufactured by Ishihara Sangyo Co., Ltd.), 100 g of purified water, and an aqueous dispersion of tetrafluoroethylene-hexafluoropropylene copolymer (FEP) one John (solid content 58wt%) 15. 6 g, silicon-based surfactant 1. 7 g (total l wt%) were placed, mixed and stirred, dissolved solution E (FEP ZA- Τί0 2 ratio 4 0/60) was adjusted.
ガラス繊維からなる基布の両面をフッ素樹脂で被覆された膜構造材料の表面の フッ素樹脂をエチルアルコールを適量染み込ませたキムタオル (株式会社クレシ ァ製) で、 フッ素樹脂膜構造材料の表面を拭き、 常温乾燥させた後、前記溶液 Ε をバーコ一ト法により片面のみ塗布した。 塗膜は常温乾燥させた後、 60 Cで 5分 間加熱乾燥し、 自然冷却させた後、 さらに 380 °Cで 10分間加熱焼成し、 自然冷却 してこの発明の試料 eを作製した。  Wipe the surface of the fluororesin structural material with Kimtowel (made by Crecia Co., Ltd.) on the surface of the film structural material in which both surfaces of the glass fabric are coated with fluororesin, and soaked with an appropriate amount of ethyl alcohol in the fluororesin. After drying at room temperature, the solution was applied on only one side by a bar coating method. The coating film was dried at room temperature, heated and dried at 60 C for 5 minutes, allowed to cool naturally, baked at 380 ° C for 10 minutes, and allowed to cool naturally to produce Sample e of the present invention.
(比較試料①)  (Comparative sample ②)
試料 a〜 eを作製するときに用いたフッ素樹脂で被覆された膜構造材料を比較 試料①とした。  The film structure material coated with the fluororesin used when preparing samples a to e was used as comparative sample ①.
<光触媒の配合比率による防汚性と熱接合性の評価 >  <Evaluation of antifouling property and thermal bonding property by mixing ratio of photocatalyst>
実施例で作製した試料 a〜 eと比較試料①を屋外暴露試験後の汚れの評価と熱 接合性評価を行った。 評価の結果を表 1に示す。  The samples a to e produced in the examples and the comparative sample ① were evaluated for dirt after the outdoor exposure test and for thermal bonding. Table 1 shows the results of the evaluation.
尚、 屋外暴露試験は、 太陽工業枚方工場内第 1工場棟屋上 (大阪府枚方巿) に て屋外暴露架台を設置し、 試料を 45° の傾斜面に固定し、 3ヶ月間暴露して実施 した。 The outdoor exposure test was carried out by installing an outdoor exposure stand on the roof of the first factory building in the Hirakata Plant of the Taiyo Kogyo (Hirakata, Osaka Prefecture), fixing the sample on a 45 ° slope, and exposing it for 3 months. did.
•屋外暴露試験後の汚れ評価方法  • Evaluation method of dirt after outdoor exposure test
試料 a〜e及び比較試料①を屋外で 3 ヶ月間暴露した後、 試料表面の汚れ状態 を確認した。 ほとんど汚れが付着していないものを良好 (〇) 、 汚れ度合いが小 さい又は塗膜のチョーキング傾向が認められるもの (△) 、 汚れが多いも'のを不 良 (X ) とした。  After exposing Samples a to e and Comparative Sample で for 3 months outdoors, the stain condition of the sample surface was confirmed. A sample to which almost no dirt was attached was evaluated as good (〇), a sample with a low degree of dirt or a tendency to chalk the coating film (△), and a sample with much dirt was evaluated as poor (X).
-熱接合性評価方法  -Thermal bonding evaluation method
試料 a〜 e及び比較試料①の熱接合性評価を確認した。 それらの熱接合に用い る装置は熱板とし、 接合条件は、 試料 a〜eの母材である比較試料①の溶着条件 と同一とし、 溶着条件を一定とした。 評価は、 比較試料①の剥離強度を基準強度 とし、 基準強度の 80%以上保持しているものを (〇) 、 基準強度の 50〜80%保持 しているものを (Δ) 、 基準強度の 50%以下のものを (X ) とした。  The evaluation of the thermal bondability of Samples a to e and Comparative sample ① was confirmed. The apparatus used for the thermal bonding was a hot plate, and the welding conditions were the same as those for the comparative sample で, which is the base material of the samples a to e, and the welding conditions were constant. The evaluation was performed using the peel strength of the comparative sample (2) as the reference strength. (〇) for those holding 80% or more of the reference strength, (() for those holding 50 to 80% of the reference strength, Those with 50% or less were designated as (X).
【表 1 】  【table 1 】
Figure imgf000011_0001
Figure imgf000011_0001
この発明の実施例である試料 a〜eは比較試料①に比べ、 光触媒による防汚性 が認められた。  Samples a to e, which are examples of the present invention, were found to be more resistant to contamination by the photocatalyst than Comparative Sample I.
光触媒の配合量が少ない試料 aでは汚れ度合いは非常に小さいものの、 若干グ 一色に変化していた。 又、 光触媒の配合量の多い試料 eでは、 僅かにチョーキン グ傾向が認められ、 これら以外の試料 b、 試料 c、 試料 dの防汚性は良好であつ た。 Sample a, in which the amount of the photocatalyst was small, had a very small degree of contamination, but slightly changed to a solid color. Sample e, which contains a large amount of photocatalyst, has a slight chokin Samples b, c, and d had good antifouling properties.
熱接合性評価は、 光触媒の割合が 50wt%以上である試料 d、 試科 eでは熱接合 性の低下が認められ、 試料 eにおいては、 ほとんど熱接合していない状態であつ た。 これら以外の試料 a、 試料 b、 試料 cでは特に問題はなかった。  In the thermal bonding evaluation, the thermal bonding was reduced in sample d and sample e in which the proportion of the photocatalyst was 50 wt% or more, and in sample e, almost no thermal bonding was achieved. There were no particular problems with samples a, b, and c other than these.
以上のことから、 防汚性を高めるためには、 光触媒を多く配合することにより、 その性能を高めることが可能となる。 しかしながら、 それに伴い、 基布のフッ素 樹脂と光触媒を含んだコ一ティング材間の密着性、 光触媒を含んだコーティング 材を塗布したフッ素樹脂膜構造材料同士の熱接合は阻害されるようになる。 これ は、 光触媒の融点が 500°C以上と非常に高いのに対し、 フッ素樹脂の融点は 220 〜380 °Cであるためである。 万一、 500°C以上の温度で熱接合すれば、 フッ素樹 脂の融点をはるかに超えてしまい、 基布は損傷を受けるだけではなく、 熱分解に よる有害なガスが多量に発生し、 環境や人体へ悪影響を及ぼすことが懸念される。 そのため、 膜構造材料同士を熱接合をしない場合はこの限りではないが、 光触 媒の防汚性と熱接合を考慮した場合はフッ素樹脂/光触媒の配合比率は 7 0 3 0〜5 0 5 0が最適条件と考える。  From the above, in order to enhance antifouling properties, it is possible to increase the performance by adding a large amount of photocatalyst. However, with this, the adhesion between the fluororesin of the base fabric and the coating material containing the photocatalyst, and the thermal bonding between the fluororesin film structural materials coated with the coating material containing the photocatalyst come to be hindered. This is because the melting point of the photocatalyst is as high as 500 ° C or higher, whereas the melting point of the fluororesin is 220 to 380 ° C. Should thermal bonding be performed at a temperature of 500 ° C or more, the melting point of the fluororesin will be far exceeded, and not only will the base fabric be damaged, but also a large amount of harmful gases will be generated due to thermal decomposition. There is a concern that it will have an adverse effect on the environment and the human body. Therefore, this is not the case when the film structure materials are not thermally bonded, but when considering the antifouling property of the photocatalyst and the thermal bonding, the mixing ratio of fluororesin / photocatalyst is from 70 to 500. Consider 0 as the optimal condition.
以上の結果より、 防汚性と熱接合性を考慮し、 フッ素樹脂/光触媒 (金属酸化 物) の配合比率は 6 0 / 4 0とすることが好ましく、 以下に示す例ではフッ素樹 脂/光触媒の配合比率を 6 0 / 4 0とした。  From the above results, it is preferable that the mixing ratio of fluororesin / photocatalyst (metal oxide) be 60/40 in consideration of the antifouling property and thermal bonding property. In the following example, the fluorine resin / photocatalyst is used. Was 60/40.
2 . 光触媒を単独に、 あるいは電導体を併用したフッ素樹脂コ一ティング剤を塗 布することによる導電性について  2. Conductivity by applying a fluororesin coating agent using a photocatalyst alone or in combination with a conductor
次に、 光触媒を単独に、 あるいは電導体を併用したフッ素樹脂コーティング剤 を塗布することによる導電性について検証した。  Next, the conductivity by applying a photocatalyst alone or a fluororesin coating agent using a conductor together was verified.
使用する電導体は、 膜自体の色や透光性に影響を与えないように、 無色透明若 しぐは白色の導電作用 (半導体を含む) を有する粉末であることが必要であり、 この実施例では、 アンチモンをドーピングした二酸化錫 (Sbド一プ Sn02 ) を表面 に被覆したルチル型二酸化チタン、 二酸化錫ゾルを例として使用したが、 これら に限定するものではない。 例えば、 電導体は、 酸化インジウム (In203 ) 、 酸化 力ドニゥム (CdO ) 、 酸化亜鉛 (ZnO ) 等から選択することもできる。 The conductor used must be a colorless, transparent or white conductive powder (including semiconductors) so as not to affect the color and translucency of the film itself. in the example, antimony-doped tin dioxide (Sb de one flop Sn0 2) rutile type titanium dioxide coated on the surface, was used as an example tin dioxide sol, these It is not limited to. For example, electrical conductors are indium oxide (In 2 0 3), oxidizing power Doniumu (CdO), it can also be selected from zinc oxide (ZnO) and the like.
(試料 f 、 試料 g、 試料 h)  (Sample f, Sample g, Sample h)
二酸化チタン粉末 (石原産業株式会社製 ST01) の水系ディスパ一ジョン (固形 分 28wt%) を 50g、 アンチモンをド一ビングした二酸化錫を表面に被覆したルチ ル型ニ酸化チタンの粉末 (以下、 Sn02 (Sb) -R-T1O2 ) (石原産業株式会社製 FT 1000) を 0.36g、 精製水 100 g、 テトラフルォロエチレン一へキサフルォロプロ ピレン共重合体 (F EP) からなる水系ディスパージヨン (固形分 54wt%) を 39 .9g.、 シリコン系界面活性剤を 1.9g (全体の 1 wt%) 混合、 攪拌し、 溶液 F (F EP/A-Ti02/Sn02 (Sb) -R-Ti02 の比率は 6 0 / 3 9 / 1 ) を調整した。 50 g of an aqueous dispersion (solid content 28 wt%) of titanium dioxide powder (ST01 manufactured by Ishihara Sangyo Co., Ltd.) and rutile titanium dioxide powder (hereinafter referred to as Sn0 powder) coated on the surface with tin dioxide doped with antimony. 2 (Sb) -R-T1O2) (Ishihara Sangyo Co., Ltd. FT1000) 0.36g, purified water 100g, water-based dispurgeon (F EP) min 54 wt%) to 39 .9g., a silicon-based surfactant 1.9 g (1 wt% of the total) mixture, stirred, solution F (F EP / a-Ti0 2 / Sn0 2 (Sb) -R-Ti0 The ratio of 2 was adjusted to 60/39/1).
前記同様な手順で各配合量を変え、 溶液 G (F E P/A-Ti02/Sn02 (Sb) -R-T i02 の比率は 6 0 / 3 7 / 3 ) . 溶液 H (F EP/A-Ti02/Sn02 (Sb) -R-Ti02 の比率は 6 0 / 3 4 / 6 ) を調整した。 Changing the amount in the same procedure, a solution G (FEP / A-Ti0 2 / Sn0 2 (Sb) -RT i0 2 ratios 6 0/3 7/3). The solution H (F EP / A- Ti0 2 / Sn0 2 (Sb) -R-Ti0 2 ratio was adjusted to 6 0/3 4/6).
ガラス繊維の両面をフッ素樹脂で被覆された膜構造材料をエチルアルコールを 適量染み込ませたキムタオル (株式会社クレシァ製) で、 フッ素樹脂膜構造材料 の表面を拭き、 常温乾燥させた後、 前記溶液 F、 G、 Hをバ一コート法により片 面のみ塗布した。 塗膜は常温乾燥させた後、 60°Cで 5分間加熱乾燥し、 自然'冷却 させた後、 さらに 380 °Cで 10分間加熱焼成し、 自然冷却してこの発明の試料 f 、 試料 g、 試料 hを作製した。  After wiping the surface of the fluororesin film structure material with a Kim towel (manufactured by Crecia Co., Ltd.) impregnated with an appropriate amount of ethyl alcohol, the film structure material having both surfaces of the glass fiber covered with a fluororesin, and drying at room temperature, then the solution F , G and H were applied only on one side by the bulk coat method. The coating film is dried at room temperature, dried by heating at 60 ° C for 5 minutes, naturally cooled, then baked by heating at 380 ° C for 10 minutes, and naturally cooled to obtain the samples f, g, and g of the present invention. Sample h was prepared.
(試料 i、 試料 j、 試料 k)  (Sample i, Sample j, Sample k)
二酸化チタン粉末 (石原産業株式会社製 ST01) の水系ディスパージヨン (固形 分 28wt%) を 50g、 二酸化錫ゾル (固形分 7wt%、 日本化学産業株式会社製水系 ディスパ一ジョン) を 5. lg、 精製水 100 g、 テトラフルォロエチレン一へキサフ ルォロプロピレン共重合体 (F EP) からなる水系ディスパ一ジョン (固形分 54 wt%) を 39.9g、 シリコン系界面活性剤を 2.0g (全体の 1 wt%) 混合、 攪拌し、 溶液 I (FEPZA- Ti02ZSn02の比率は 6 0 / 3 9 / 1 ) を調整した。 Refining 50g of aqueous dispurgeon (solid content 28wt%) of titanium dioxide powder (ST01 manufactured by Ishihara Sangyo Co., Ltd.) and 5.lg of tin dioxide sol (solid content 7wt%, water-based dispersion manufactured by Nippon Chemical Industry Co., Ltd.) 100 g of water, 39.9 g of an aqueous dispersion (54 wt% solid content) composed of tetrafluoroethylene-hexafluoropropylene copolymer (F EP), 2.0 g of a silicon-based surfactant (total 1 wt%) mixture, stirred, solution I (FEPZA- Ti0 2 ZSn0 2 ratio was adjusted to 6 0/3 9/1).
前記同様な手順で各配合量を変え溶液 J (FEP/A- Ti02/Sn02の比率は 6 0 / 3 7 / 3 ) 、 溶液 (F E P /A- Ti02/Sn02の比率は 6 0 / 3 4 / 6 ) を調整 した。 ガラス繊維の両面をフッ素樹脂で被覆された膜構造材料をェチルアルコー ルを適量染み込ませたキムタオル (株式会社クレシァ製) で、 フッ素樹脂膜構造 材料の表面を拭き、 常温乾燥させた後、 前記溶液 I、 J、 Kをバ一コート法によ り片面のみ塗布した。 塗膜は常温乾燥させた後、 60°Cで 5分間加熱乾燥し、 自然 冷却させた後、 さらに 380 °Cで 10分間加熱焼成し、 自然冷却してこの発明の試料 i、 試料」、 試料 kを作製した。 Changing the amount in the same procedure solution J (FEP / A- Ti0 2 / Sn0 2 ratios 6 0 / 3 7/3), the solution (FEP / A- Ti0 2 / Sn0 2 ratio was adjusted to 6 0/3 4/6). After wiping the surface of the fluororesin film structure material with a Kimtowel (manufactured by Crecia Co., Ltd.) impregnated with an appropriate amount of ethyl alcohol into a film structure material whose both surfaces are coated with a fluororesin, and drying at room temperature, the solution I , J and K were applied only on one side by a vacuum coating method. The coating film is dried at room temperature, dried by heating at 60 ° C for 5 minutes, naturally cooled, and then baked by heating at 380 ° C for 10 minutes. k was prepared.
(比較試料②)  (Comparative sample ②)
前記の防汚性と熱接合性を調べるときに作製した試料 c ( F E P /A-T i 02の比 率が 6 0 / 4 0 ) を比較試料②とした。 Sample c (the ratio of FEP / ATi02: 60/40) prepared for examining the antifouling property and thermal bonding property was used as Comparative Sample No. II .
(比較試料③)'  (Comparative sample ③) '
試料 f 〜kの基布として用いたガラス繊維の両面をフッ素樹脂でネ 覆された膜 構造材料を比較試料③とした。 (F E Pのみ)  A film structure material in which both surfaces of the glass fiber used as the base fabric of the samples f to k were covered with a fluororesin was used as a comparative sample ③. (Only FEP)
<帯電評価と結果〉 <Electrification evaluation and results>
実施例で作製した試料 f 〜 k及び比較試料②③の帯電の半減期測定を行った。 半減期評価結果を表 2に示す。  The half life of the electrification of the samples f to k produced in the examples and the comparative samples 1 and 3 was measured. Table 2 shows the half-life evaluation results.
•半減期測定  • Half-life measurement
半減期測定に用いる試料は、 試料 f 〜k及び比較試料②③は、 界 ¾活性剤の影 響等を除去するために、 キセノンゥヱザ一メーター (スガ試験機株式会社製 WEL - 75X-LHP- B · Ec、 放射照度 180W/m2 、 波長 300 〜400nm ) で 24時間照射処理した c 測定は日本スタテック株式会社製ォネストメータ (S- 4104) を用い、 印加電圧 は 1 0 KVとし、 20°C— 20%冊の調湿条件で行った。 判定は、 比較試料② (F E P ノ A- Τί02の配合比率が 6 0 / 4 0 ) および比較試料③ (F E P ZA- Ti02の配合比 率が 1 0 0 / 0 ) より優れているものを (〇) 、 比較試料②及ぴ③の両方に劣る ものを ( X ) とした。 Samples used for the half-life measurement were samples f to k and comparative samples (1) and (2), and xenon (1) Xameter (WEL-75X-LHP-B · manufactured by Suga Test Instruments Co., Ltd.) Ec, irradiance 180W / m 2 , wavelength 300-400nm) for 24 hours c- measurement was performed using a honest meter (S-4104) manufactured by Nippon Statech, applying an applied voltage of 10 KV and 20 ° C-20 The test was performed under the humidity control condition of% volumes. What decision, the comparison sample ② (FEP Bruno A- Ti0 6 0/4 0 compounding ratio of 2) and comparative sample ③ of (FEP Za - Ti0 2 mixing ratio rate 1 0 0/0) are better than (X) and those inferior to both comparative samples (2) and (3) were designated (X).
【表 2】 試料 溶液 FEP/A-TiO2/Sn02 (Sb)-R-Ti02 初期 半減期 120秒後 評価 [Table 2] Sample solution FEP / A-TiO2 / Sn02 (Sb) -R-Ti02 Initial half-life After 120 seconds Evaluation
又は (Sn02ゾル) 带苗 (V) (秒) . 滅衰率 (? ί)  Or (Sn02 sol) 带 Seedling (V) (sec). Decay rate (? Ί)
実施例 f Ρ 60/39/1 (SnOZ (Sb) -R-Ti02) 760 2.7 100 ο  Example f Ρ 60/39/1 (SnOZ (Sb) -R-Ti02) 760 2.7 100 ο
g G 60/37/3 (Sn02 (Sb) -R-Ti02) 740 2.7 100 ο h H 60/34/6 (Sn02 (Sb) -R-Ti02) 690 2.2 100 ο  g G 60/37/3 (Sn02 (Sb) -R-Ti02) 740 2.7 100 ο h H 60/34/6 (Sn02 (Sb) -R-Ti02) 690 2.2 100 ο
1 I 60/39/1 (Sn02ゾル) 800 4.5 100 ο j J 60/37Z3(Sn02ゾル) 780 3.0 100 Q k K 60Z34Z6(Sn02ゾル) 720 2.0 100 Ο 比較例 ② 60/40/0 950 7.5 74.0  1 I 60/39/1 (Sn02 sol) 800 4.5 100 ο j J 60 / 37Z3 (Sn02 sol) 780 3.0 100 Q k K 60Z34Z6 (Sn02 sol) 720 2.0 100 Ο Comparative example ② 60/40/0 950 7.5 74.0
③ 100/0/0 950 >120 11.0  ③ 100/0/0 950> 120 11.0
この発明の実施例である試料 f 〜 kは、 比較試料②のアナ夕一ゼ型二酸化チ夕 ン光触媒単独に比べ、 アンチモンをドーピングした二酸化錫を表面に被覆したル チル型二酸化チタン (Sn02 (Sb) -R-Ti02 ) 、 二酸化錫を併用することによって 半減期の減少が認められた。 F E P /A-Ti02の配合比率が 1 0 0 / 0の比較試料 ③の半減期は 120秒以上であり、 導電性がほとんどないため電圧の減衰は極僅か しか認められない。 それに対し比較試料②のように F E P /A-Ti02の配合比率が 6 0 / 4 0 / 0とアナターゼ型ニ酸化チタン (A- Ti02 ) が配合されると、 半減期 は了. 5秒、 120秒後の減衰率は 7 4 %と導電性効果が発現するようになる。 さら に全体の光触媒と電導体の配合比率を一定とし、 アナターゼ型ニ酸化チタン (A - Τί02 ) の一部を Sn02 (Sb) -R-Ti02 や Sn02に置き換え、 アナターゼ型ニ酸 (匕チタ ン (A - Ti02 ) と併用することにより、 初期帯電、 半減期は小さくなり、 120秒後 の減衰率は増加することから、 導電性能が向上していることが明らかとなった。 3 . 導電性と防汚性の関係について Samples f to k, which are examples of the present invention, were compared to the ruthenium-type titanium dioxide (SnO 2) coated on the surface with antimony-doped tin dioxide, as compared with the analog sample-type titanium dioxide photocatalyst alone. (Sb) -R-Ti0 2) , a decrease in half-life by a combination of tin dioxide was observed. The half-life of FEP / A-Ti0 2 mixing ratio is 1 0 0/0 of the comparative sample ③ is at least 120 seconds, the attenuation of the voltage for conductivity there is little not very little observed. By comparison contrast sample ② blending ratio of FEP / A-Ti0 2 is 6 as 0/4 0/0 and anatase type titanium dioxide (A- Ti0 2) is blended with a half-life completion. 5 seconds After 120 seconds, the decay rate is 74%, and the conductive effect appears. The entire mixing ratio of the photocatalyst and conductor is constant In addition, anatase type titanium dioxide - replacing a portion of (A Τί0 2) to Sn0 2 (Sb) -R-Ti0 2 or Sn0 2, anatase diacid (spoon Chita emissions (a - by combination with Ti0 2), the initial charging, the half-life is reduced, since the attenuation rate after 120 seconds increases, conductive performance is revealed that increased 3. Relationship between conductivity and antifouling properties
次に、 光触媒と電導体を併用した場合の導電性と防汚性の関係について検証し た'  Next, we examined the relationship between conductivity and antifouling properties when using a photocatalyst and a conductor together. '
(試料 I )  (Sample I)
二酸化チタン粉末 (石原産業株式会社製 ST01 ) の水系ディスパージヨン (固形 分 28wt%) を 50g、 精製水 7 5 g、 テトラフルォロエチレン一へキサフルォロプ αピレン共重合体 (F EP) からなる水系ディスパ一ジョン (固形分 58wt%) を 36.2g, シリコン系界面活性剤を 2 g混合、 攪拌し、 溶液し (FEP/A- Τί02の 比率は 6 0 / 4 0 ) を調整した。 Titanium dioxide powder (ST01 manufactured by Ishihara Sangyo Co., Ltd.) 28wt%), 50g of purified water, 36.2g of aqueous dispersion (solid content 58wt%) consisting of tetrafluoroethylene-hexafluoropropyl α-pyrene copolymer (F EP), silicon-based surfactant agent 2 g mixture was stirred, the solution was (FEP / A- Τί0 2 ratios 6 0/4 0) was adjusted.
ガラス繊維の両面をフッ素樹脂で被覆された膜構造材料をエチルアルコールを 適量染み込ませたキムタオル (株式会社クレシァ製) で、 フッ素樹脂膜構造材料 の表面を拭き、 常温乾燥させた後、 前記溶液 Lをバーコ一ト法により片面のみ塗 布した。 塗膜は常温乾燥させた後、 60°Cで 5分間加熱乾燥し、 自然冷却させた後、 さらに 380 °Cで 10分間加熱焼成し、 自然冷却してこの発明の試料 1を作製した。 (試料 m)  After wiping the surface of the fluororesin film structure material with a Kimtowel (manufactured by Crecia Co., Ltd.) impregnated with an appropriate amount of ethyl alcohol on the film structure material coated on both sides of the glass fiber with a fluororesin, and drying at room temperature, the solution L Was applied on only one side by a bar coating method. The coating film was dried at room temperature, dried by heating at 60 ° C. for 5 minutes, cooled naturally, baked at 380 ° C. for 10 minutes, and cooled naturally to prepare Sample 1 of the present invention. (Sample m)
アンチモンをド一ピングした二酸化錫を表面に被覆したルチル型二酸化チ夕ン (Sn02 (Sb) -R-Ti02 ) の粉末 (石原産業株式会社製 FT1000) を 19.3g、 精製水 7 5 g、 テトラフルォロエチレン一へキサフルォロプロピレン共重合体 (FEP ) からな 水系ディスパ一ジョン (固形分 58wt%) を 50g、 シリコン系界面活性 剤を 2 g混合、 攪拌し、溶液 M (F EP/Sn02 (Sb) - R- Ti02 ) の配合比率は 6 0/4 0) を調整した。 Antimony de one ping the tin dioxide was coated on the surface rutile dioxide Ji Yun (Sn0 2 (Sb) -R- Ti0 2) powder (manufactured by Ishihara Sangyo Kaisha, Ltd. FT1000) 19.3g, purified water 7 5 g 50 g of an aqueous dispersion (58 wt% solid content) of tetrafluoroethylene-hexafluoropropylene copolymer (FEP) and 2 g of a silicon surfactant were mixed and stirred, and the solution M ( F EP / Sn0 2 (Sb) - R- Ti0 2) mixing ratio of adjusted their 6 0/4 0).
ガラス繊維の両面をフッ素樹脂で被覆された膜構造材料をエチルアルコールを 適量染み込ませたキムタオル (株式会社クレシァ製) で、 フッ素樹脂膜構造材料 の表面を拭き、 常温乾燥させた後、 前記溶液 Mをバ一コート法により片面のみ塗 布した。 塗膜は常温乾燥させた後、 60°Cで 5分間加熱乾燥し、 自然冷却させた後、 さらに 380 °Cで 10分間加熱焼成し、 自然冷却してこの発明の試料 mを作製した。 (試料 n)  After wiping the surface of the fluororesin film structure material with a Kimtowel (manufactured by Crecia Co., Ltd.) impregnated with an appropriate amount of ethyl alcohol, coat the film structure material with both surfaces of the glass fiber covered with a fluororesin, and dry at room temperature. Was applied on one side only by the bulk coat method. The coating film was dried at room temperature, heated and dried at 60 ° C. for 5 minutes, cooled naturally, baked at 380 ° C. for 10 minutes, and cooled naturally to prepare Sample m of the present invention. (Sample n)
試料 1作製に使用した溶液 Aと同様に作製した溶液に Sn02 (Sb) - R- Ti02 粉末 (石原産業株式会社製 FT1000) をさらに 4.3 g混合、 攪拌し、 溶液 N (F EP/ A-Ti02/Sn02 (Sb) - R- Ti02 ) の配合比率は 5 3 / 3 6 / 1 1 ) を調整した。 ガラス繊維の両面をフッ素樹脂で被覆された膜構造材料をエチルアルコールを 適量染み込ませたキムタオル (株式会社クレシァ製) で、 フッ素樹脂膜構造材料 の表面を拭き、 常温乾燥させた後、 前記溶液 Nをパ一コート法により片面のみ塗 布した。 塗膜は常温乾燥させた後、 60でで 5分間加熱乾燥し、 自然冷却させた後、 さらに 380 。Cで 10分間加熱焼成し、 自然冷却してこの発明の試料 nを作製した。 (比較試料④) Sample 1 Preparation Sn0 the solution prepared similarly to the solution A used in 2 (Sb) - R- Ti0 further 4.3 g mixture of two powders (manufactured by Ishihara Sangyo Kaisha, Ltd. FT1000), stirred, solution N (F EP / A -Ti0 2 / Sn0 2 (Sb) - R- Ti0 2 mixing ratio) of 5 3/3 6/1 1) was adjusted. Use a Kimtowel (made by Crecia Co., Ltd.) in which a suitable amount of ethyl alcohol is impregnated with a film structure material in which both surfaces of glass fiber are coated with fluororesin. After wiping the surface and drying at room temperature, the solution N was applied only on one side by a powder coating method. The coating film was dried at room temperature, dried by heating at 60 for 5 minutes, allowed to cool naturally, and then further dried for 380. The sample was heated and baked at C for 10 minutes and cooled naturally to prepare a sample n of the present invention. (Comparative sample ④)
ガラス繊維の両面をフッ素樹脂で被覆された膜構造材料をエチルアルコールを 適量染み込ませキムタオル (株式会社クレシァ製) で、 フッ素樹脂膜構造材料の 表面を拭き、 常温乾燥させた後、 テトラフルォロエチレン一へキサフルォロプロ ピレン共重合体 (F E P ) からなる水系ディスパージヨン (固形分 58wt%) ( F E P ZA-TiC R- Ti02の比率は 1 0 0 / 0 / 0 ) をバ一コート法により片面のみ 塗布した。 塗膜は常温乾燥させた後、 60eCで 5分間加熱乾燥し、 自然冷却させた 後、 さらに 380 °Cで 10分間加熱乾燥し、 自然冷却してこの発明の比較試料④を作 製した。 A suitable amount of ethyl alcohol is impregnated with a film structure material coated on both sides of a glass fiber with a fluororesin, and the surface of the fluororesin film structure material is wiped off with a Kim towel (manufactured by Crecia Co., Ltd.) and dried at room temperature. Kisafuruoropuro pyrene copolymer to ethylene one aqueous Disconnect purge Yon (solid content 58 wt%) consisting of (FEP) by (FEP ZA-TiC R- Ti0 2 ratios 1 0 0/0/0) a bar one coating only one surface Applied. The coating film was dried at room temperature, heated and dried at 60 eC for 5 minutes, allowed to cool naturally, then further heated and dried at 380 ° C for 10 minutes, and allowed to cool naturally to produce Comparative Sample II of the present invention. .
<導電性と防汚性の関係についての評価と結果 >  <Evaluation and results of the relationship between conductivity and antifouling properties>
作製した試料 1〜!!及び比較試料④の防汚性評価を屋外暴露試験後に色差を測 定し評価した。 その結果を表 3に示す。  Sample 1 ~! ! The antifouling property of Comparative Sample 1 was evaluated by measuring the color difference after the outdoor exposure test. The results are shown in Table 3.
•屋外暴露試験後の汚れ評価方法  • Evaluation method of dirt after outdoor exposure test
試料 1〜n及び比較試料④を屋外で 3 ヶ月間暴露した後、 色差を測定した。 比 較試料④より色差の小さいものは防汚効果が認められるとして (〇) 、 比較試料 After exposing Samples 1 to n and Comparative Sample 屋外 outdoors for 3 months, the color difference was measured. A sample having a smaller color difference than the comparative sample が has an antifouling effect (〇).
④より色差が大きいものは防汚効果がないとして (X ) とした。 屋外暴露試験は- 太陽工業枚方工場内第 1工場棟屋上 (大阪府枚方巿) にて屋外暴露架台を設置し- 試料を 45° の傾斜面に固定して実施した。 も の Those with a larger color difference had no antifouling effect and were rated (X). The outdoor exposure test was carried out by installing an outdoor exposure stand on the roof of the first factory building of the Taiyo Kogyo Hirakata Plant (Hirakata I, Osaka Prefecture) and fixing the sample on a 45 ° inclined surface.
【表 3】 試料 溶液 FEP/A-TiO2/Sn02 (Sb)-R-T i 02 色差 評価 実施例 1 L 60/40/0 1.54 〇  [Table 3] Sample solution FEP / A-TiO2 / Sn02 (Sb) -R-T i 02 Color difference Evaluation Example 1 L 60/40/0 1.54 〇
m M 60/0/40 4.22 〇 n N 53/36/1 1 1.09 ひ 比較例 ④ 1 OO/O/O 6.65 試料 1 ~mはいずれも、 比較試料④の従来のフッ素 脂膜構造材料に比べて、 色差が小さく防汚効果が認められた。 m M 60/0/40 4.22 〇 n N 53/36/1 1 1.09 比較 Comparative example ④ 1 OO / O / O 6.65 All of the samples 1 to m showed a small color difference and an antifouling effect as compared with the conventional fluororesin film structure material of the comparative sample I.
光触媒としての活 f生が小さいルチル型二酸化チタンを F EPデイスパージヨン に配合した試料 mでも、 アンチモンをドーピングした二酸化錫を表面に被覆した もの (Sn02 (Sb) -R-T1O2 ) であれば防汚効果が認められた。 このことは、 導電 性向上による汚れ付着の抑制効果によるものと考えられる。 光触媒 (A- Ti02) に よる防汚効果を付与した試料 1の色差は 1.54と非常に良好な結果であり、 この溶 液にさらに Sn02 (Sb) -R-T1O2 を微量添加した試料 nの色差は 1.09であり、 光触 媒 +導電性効果による著しい防汚性の向上が認められた。 There an active f raw small rutile titanium dioxide as a photocatalyst F EP disperser Ji in any sample m formulated, covered with tin dioxide doped with antimony surface (Sn0 2 (Sb) -R- T1O2) The antifouling effect was recognized. This is thought to be due to the effect of suppressing contamination due to the improvement in conductivity. Photocatalytic color difference samples 1 imparted with antifouling effect by (A- Ti0 2) is a very good result and 1.54, sample n a further Sn0 2 (Sb) -R-T1O2 this dissolved solution was added in a small amount Has a color difference of 1.09, indicating a remarkable improvement in antifouling properties due to the photocatalyst + conductive effect.
4. アナタ一ゼ型ニ酸化チタン (A- Ti02) と光触媒機能が発現しない二酸化錫 ( SnQ2) と併用した場合の導電効果と防汚性について 4. ANATA one peptidase type titanium dioxide (A- Ti0 2) and the conductive effect and stain resistance when the photocatalytic function in combination with tin dioxide that does not express (SNQ 2)
次に、 アナタ一ゼ型ニ酸化チタン (A- Ti02) と、 光触媒機能が発現しない二酸 化錫 (Sn02) と併用し、 電導効果と防汚性について確認した。 Next, you one peptidase type titanium dioxide (A- Ti0 2), in combination with diacid tin photocatalytic function is not expressed (Sn0 2), it was confirmed for the conductive effect and antifouling properties.
(試料 o)  (Sample o)
二酸化チタン粉末 (石原産業株式会社製 ST01) の水系ディスパージヨン (固形 分 28wt%) を 100 g、 精製水 150 g、 テトラフルォロエチレン一へキサフルォロ プロピレン共重合体 (FEP) からなる水系ディスパージヨン (固形分 58wt%) を 72.4g、 シリコン系界面活性剤を 3.2 g混合、 攪拌し、 溶液 0 (F EP/A-Ti 02の配合比率は 6 0 / 4 0 ) を調整した。 Aqueous dispurgeon consisting of 100 g of titanium dioxide powder (ST01 manufactured by Ishihara Sangyo Co., Ltd.) (solid content: 28 wt%), 150 g of purified water, and tetrafluoroethylene-hexafluoropropylene copolymer (FEP) (solid content 58 wt%) to 72.4 g, 3.2 g mixture of a silicone surfactant, was stirred, a solution 0 (F EP / a-Ti 0 2 mixing ratio is 6 0/4 0) was adjusted.
ガラス繊維の両面をフッ素樹脂で被覆された膜構造材料をエチルアルコールを. 適量染み込ませたキムタオル (株式会社クレシァ製) で、 フッ素樹脂膜構造材料 の表面を拭き、 常温乾燥させた後、 前記溶液 0 をバーコ一ト法により片面のみ塗 布した。 塗膜は常温乾燥させた後、 60°Cで 5分間加熱乾燥し、 自然冷却させた後、 さらに 380 °Cで 10分間加熱焼成し、 自然冷却してこの発明の試料 0を作製した。 (試料 P)  Wipe the surface of the fluororesin film structure material with Kimtowel (manufactured by Crecia Co., Ltd.) impregnated with an appropriate amount of ethyl alcohol on the film structure material coated on both sides of the glass fiber with a fluororesin. After drying at room temperature, the solution 0 was applied only on one side by the bar coating method. The coating film was dried at room temperature, heated and dried at 60 ° C. for 5 minutes, allowed to cool naturally, baked at 380 ° C. for 10 minutes, and cooled naturally to prepare Sample 0 of the present invention. (Sample P)
二酸化錫ゾル (固形分 7wt%、 日本化学産業株式会社製水系ディスパージヨン ) を 20g、 精製水 7.5 g、 テトラフルォロエチレン一へキサフルォロプロピレン 共重合体 (F EP) からなる水系ディスパージヨン (固形分 58wt%) を 3.6 g、 シリコン系界面活性剤を 0.31 g混合、 攪拌し、 溶液 P (F EP/SnOz (ゾル) の 配合比率は 6 0 / 4 0 ) を調整した。 20 g of tin dioxide sol (solid content 7 wt%, water-based dispurgeon manufactured by Nippon Chemical Industry Co., Ltd.), 7.5 g of purified water, tetrafluoroethylene monohexafluoropropylene 3.6 g of an aqueous dispurgeon (58 wt% solids) composed of a copolymer (F EP) and 0.31 g of a silicon surfactant were mixed and stirred, and the mixing ratio of the solution P (F EP / SnO z (sol)) was 60/40) was adjusted.
ガラス繊維の両面をフッ素樹脂で被覆された膜構造材料をエチルアルコールを 適量染み込ませたキムタオル (株式会社クレシァ製) で、 フッ素樹脂膜構造材料 の表面を拭き、 常温乾燥させた後、 前記溶液 Pをバ一コート法により片面のみ塗 布した。 塗膜は常温乾燥させた後、 60°Cで 5分間加熱乾燥し、 自然冷却させた後、 さらに 380 °Cで 10分間加熱焼成し、 自然冷却してこの発明の試料 pを作製した。 (試料 Q)  After wiping the surface of the fluororesin film structure material with a Kim towel (manufactured by Crecia Co., Ltd.) impregnated with an appropriate amount of ethyl alcohol, the film structure material coated on both sides of the glass fiber with a fluororesin, dried at room temperature, and dried at room temperature. Was applied on one side only by the bulk coat method. The coating film was dried at room temperature, heated and dried at 60 ° C. for 5 minutes, allowed to cool naturally, baked at 380 ° C. for 10 minutes, and cooled naturally to prepare a sample p of the present invention. (Sample Q)
試料 0作製に使用した溶液 0と同様に作製した溶液 16.5g に二酸化錫ゾル (固 形分 7wt%、 日本化学産業株式会社製水系ディスパ一ジョン) を 20gさらに添加、 混合、 攪拌し、 溶液 Q (F EP/A-Ti02/SnO2 (ゾル) の配合比率は 4 2/ 2 9 /2 9 ) を調整した。 20 g of tin dioxide sol (solid content: 7 wt%, water-based dispersion manufactured by Nippon Kagaku Sangyo Co., Ltd.) was further added to 16.5 g of the solution prepared in the same manner as solution 0 used for preparation of sample 0, and mixed and stirred. (F EP / a-Ti0 blending ratio of 2 / SnO 2 (sol) 4 2/2 9/2 9) was adjusted.
ガラス繊維の両面をフッ素樹脂で被覆された膜構造材料をエチルアルコールを 適量染み込ませたキムタオル (株式会社クレシァ製) で、 フッ素樹脂膜構造材料 の表面を拭き、 常温乾燥させた後、 前記溶液 Qをバーコート法により片面のみ塗 布した。 塗膜は常温乾燥させた後、 60°Cで 5分間加熱乾燥し、 自然冷却させた後、 さらに 380でで 10分間加熱焼成し、 自然冷却してこの発明の試料 qを作製した。 (比較試料⑤)  After wiping the surface of the fluororesin film structure material with Kimtowel (manufactured by Crecia Co., Ltd.) impregnated with an appropriate amount of ethyl alcohol on the film structure material coated on both sides of the glass fiber with fluororesin, and drying at room temperature, the solution Q Was applied on only one side by a bar coating method. The coating film was dried at room temperature, dried by heating at 60 ° C. for 5 minutes, cooled naturally, baked by heating at 380 for 10 minutes, and cooled naturally to prepare Sample q of the present invention. (Comparative sample ②)
テトラフルォロエチレン一へキサフルォロプロピレン共重合体 (F E P) から なる水系ディスパ一ジョン (固形分 58wt%) を 72.4g、 精製水 150 g、 シリコン 系界面活性剤を 2.2 g混合、 攪拌し、 溶液 R (F EP/A-Ti02/Sn02 (ゾル) の 配合比率は 1 0 0/O.ZO) を調整した。 72.4 g of an aqueous dispersion (58 wt% solid content) of tetrafluoroethylene-hexafluoropropylene copolymer (FEP), 150 g of purified water, and 2.2 g of a silicon-based surfactant were mixed and stirred. and the solution R (blending ratio of F EP / a-Ti0 2 / Sn0 2 ( sol) is 1 0 0 / O.ZO) was adjusted.
ガラス繊維の両面をフッ素樹脂で被覆された膜構造材料をエチルアルコールを 適量染み込ませたキムタオル (株式会社クレシァ製) で、 フッ素樹脂膜構造材料 の表面を拭き、 常温乾燥させた後、 前記溶液をバーコ一卜法により片面のみ塗布 した。 塗膜は常温乾燥させた後、 60°Cで 5分間加熱乾燥し、 自然冷却させた後、 さらに 380 °Cで 10分間加熱焼成し、 自然冷却してこの発明の比較試料⑤を作製し た。 After wiping the surface of the fluororesin film structure material with a Kimtowel (manufactured by Crecia Co., Ltd.) impregnated with an appropriate amount of ethyl alcohol, the film structure material coated on both surfaces of the glass fiber with a fluororesin, dried at room temperature, and dried. Only one side was applied by a bar coating method. After drying the coating at room temperature, heat and dry at 60 ° C for 5 minutes Further, the sample was heated and fired at 380 ° C for 10 minutes, and was naturally cooled to produce Comparative Sample No. 2 of the present invention.
<評価と結果 >  <Evaluation and results>
作製した試料 1 〜n及び比較試料⑤の防汚性評価を屋外暴露試験後の色差およ ぴ屋内暴露試験後の色差を測定した。 その結果を表 4に示す。 ,  For the antifouling property evaluation of the prepared samples 1 to n and the comparative sample 1, the color difference after the outdoor exposure test and the color difference after the indoor exposure test were measured. The results are shown in Table 4. ,
屋外暴露試験は、 太陽工業枚方工場内第 1工場棟屋上 (大阪府枚方巿) にて屋 外暴露架台を設置し、 試料を 45° の傾斜面に固定し、 屋外で 4ヶ月間暴露して実 施した。  For the outdoor exposure test, an outdoor exposure stand was installed on the rooftop of the first factory building of the Taiyo Kogyo Hirakata Plant (Hirakata I, Osaka Prefecture), the sample was fixed on a 45 ° slope, and exposed outdoors for 4 months. Carried out.
屋内暴露試験は、 太陽工業枚方工場内第 3倉庫 (大阪府枚方巿) にて屋内暴露 架台を設置し、 試料を 45° の傾斜面に固定し、 屋内で 4ヶ月間暴露して実施した。 •屋外暴露試験後の汚れ評価  The indoor exposure test was performed by installing an indoor exposure platform at the third warehouse in the Hirakata Plant of Taiyo Kogyo (Hirakata, Osaka Prefecture), fixing the sample on a 45 ° slope, and exposing it indoors for 4 months. • Dirt evaluation after outdoor exposure test
試料 0〜 q及び比較試料⑤を屋外暴露試験後、 色差を測定した。 比較試料⑤ょ り色差の小さいものは防汚効果が認められるとして (〇) 、 比較試料⑤より色差 が大きいものは防汚効果がないとして (X ) とレた。  After the outdoor exposure test of Samples 0 to q and Comparative sample ⑤, the color difference was measured. A sample with a smaller color difference than the comparative sample was regarded as having an antifouling effect (〇), and a sample with a larger color difference than Comparative Sample⑤ was judged as having no antifouling effect (X).
-屋内暴露試験後の汚れ評価  -Dirt evaluation after indoor exposure test
試料 o〜q及び比較試料⑤を屋内暴露試験後、 色差を測定した。 比較試料⑤ょ り色差の小さいものは防汚効果が認められるとして (〇) 、 比較試料⑤より色差 が大きいものは防汚効果がないとして (X ) とした。  After the indoor exposure test of Samples o to q and Comparative sample ⑤, the color difference was measured. A sample with a smaller color difference than the comparative sample was judged to have an antifouling effect (〇), and a sample with a larger color difference than Comparative Sample 比較 was judged to have no antifouling effect (X).
【表 4】 [Table 4]
Figure imgf000020_0001
試料 o〜qはいずれも、 屋外暴露試験、 屋内暴露試験後の色差は、 比較試料⑤ の従来のフッ素樹脂膜構造材料に比べて小さく、 防汚効果も認められた。 屋外暴 露試験ではアナターゼ型ニ酸化チタン (A- Ti02 ) 単独の光触媒を用いた場合でも 十分な防汚効果が認められるが、 さらに二酸化錫 (Sn02 ) を併用することにより、 さらに防汚効果が向上することが認められた。 この要因は、 二酸化錫 (Sn02 ) の バンドギャップは 3. 8eV (波長 326nm ) であり、 この光触媒を活性化させるため の波長の光は、 地上までほとんど到達していないため、 光触媒効果によるためで はなく二酸化錫 (Sn02 ) 添加による導電性向上によるものと考えられる。 このこ とは、 屋内暴露試験 (紫外線量が 0であるため光触媒による光酸化分解作用が働 かない) の結果において、 比較試料⑤に比べ光触媒を添加した試料 o〜qの防汚 性が向上していることからも明らかである。
Figure imgf000020_0001
For samples o to q, the color difference after the outdoor exposure test and indoor exposure test was It was smaller than the conventional fluororesin film structural material of Example 1 and its antifouling effect was also recognized. Outdoor violence in exposure studies anatase type titanium dioxide (A- Ti0 2) alone is sufficient antifouling effect even when a photocatalyst is observed by further combination with tin (Sn0 2) dioxide, further antifouling It was recognized that the effect was improved. This is because the band gap of tin dioxide (SnO 2 ) is 3.8 eV (wavelength 326 nm), and the light at the wavelength for activating this photocatalyst has hardly reached the ground. It is thought that this is not due to the improvement in conductivity due to the addition of tin dioxide (SnO 2 ). This means that, as a result of the indoor exposure test (the photooxidative decomposition action of the photocatalyst does not work because the amount of ultraviolet light is 0), the antifouling property of the samples o to q to which the photocatalyst was added was improved compared to the comparative sample ⑤ It is clear from that.
. [電導体を併用した場合の導電性と防汚性の関係まとめ] [Summary of the relationship between conductivity and antifouling properties when using conductors together]
以上のように、 光触媒に電導体である二酸化錫 (Sn02 ) を併用した場合、 光触 媒を単独で使用するときよりも導電性向上による防汚効果が増すことが確認され た。 As described above, it was confirmed that when tin dioxide (SnO 2 ), which is a conductor, was used in combination with the photocatalyst, the antifouling effect due to the improvement in conductivity was increased as compared with when the photocatalyst was used alone.
さらに、 導電性金属をドーピングした光触媒活性の小さいルチル型二酸化チタ ン (Sn02 (Sb) -R-Ti02 ) と光触媒活性の大きいアナ夕一ゼ型ニ酸化チタン (A- Ti02 ) を併用した場合、 二酸化錫 (Sn02 ) を使用したときよりも導電性が向上す ることにより防汚性が増すことが確認された。 Further, the conductive metal small rutile titanium dioxide down the doping photocatalytic activity (Sn0 2 (Sb) -R- Ti0 2) and a large Ana evening one peptidase type titanium dioxide of the photocatalytic activity (A- Ti0 2) a combination of In this case, it was confirmed that the antifouling property was increased by improving the conductivity as compared with the case of using tin dioxide (SnO 2 ).
光触媒であり活性の大きいアナターゼ型ニ酸化チタン (A- Ti02 ) と光触媒機能 が発現しない二酸化錫 (Sn02 ) を単独、 併用した場合の防汚性を屋外、 屋内で暴 露試験を実施し評価した。 屋内暴露試験 (紫外線がゼロであるためアナタ一ゼ型 二酸化チタン (A-Ti02 ) も光触媒機能は発現しない) では、 導電性の向上により 防汚性が向上していることが確認できた。 さらに屋外暴露試験では光触媒機能と 導電性効果による防汚性の向上が顕著に認められた。 Large anatase titanium dioxide of a photocatalytic activity (A- Ti0 2) and a photocatalytic function is solely tin dioxide that does not express (Sn0 2), the antifouling property when used in combination outdoor, carried out violent exposure test indoors evaluated. Indoor exposure test (ANATA one peptidase type titanium dioxide for UV is zero (A-Ti0 2) also photocatalytic function is not expressed), it was confirmed that the antifouling property is improved by improving the conductivity. In outdoor exposure tests, improvement in antifouling properties due to the photocatalytic function and the conductive effect was remarkably observed.
尚、 この導電性は、 塗料、 塗膜厚により大きく変化させることができる。 導電 性を重視したい場合は、 塗膜厚を厚く した 、 さらには塗料中の光触媒やその他 の電導体の割合を増加させることにより、 これら効果を増幅させることが可能で あ O Note that this conductivity can be greatly changed by the paint and the thickness of the coating film. To emphasize conductivity, these effects can be amplified by increasing the coating thickness and increasing the proportion of photocatalysts and other conductors in the paint. Oh O
このように最外層表面のフッ素樹脂中に光触媒を単独に、 あるいは他の電導体 を併用した層をもつ、 光触媒フッ素樹脂膜構造材料は、 導電性が著しく向上する ことにより、 膜構造材料の表面に汚れが付着しにく くなる。 膜構造材料の表面に 付着した油分汚れ等の有機物からなる汚れは、 膜構造材料の表面に太陽光があた ると光.触媒により汚れが光酸化分解 ·親水化され、 有機物を含むバインダーを失 つた無機物からなる汚れが容易に洗い流されるため、 半永久的に綺麗な外観を保 てるようになる。 さらに、 光触媒による抗菌、 消臭機能も発現するため、 光触媒 の近傍に存在する悪臭物質や大気汚染物質である N0X 、 SO, 等の物質を酸化分解 により、 除去が可能である。 As described above, the photocatalytic fluororesin film structural material having a layer in which the photocatalyst is used alone or in combination with other conductors in the fluororesin on the outermost layer surface has a significantly improved conductivity, so that the surface of the film structural material is improved. It is difficult for dirt to adhere. The dirt composed of organic substances such as oily dirt attached to the surface of the film structure material is exposed to sunlight when the surface of the film structure material is exposed to sunlight. The lost inorganic dirt is easily washed away, so that the appearance can be maintained semi-permanently. Moreover, for expressing antibacterial, even deodorizing function by the photocatalyst, N0 is malodorous substances and air pollutants present in the vicinity of the photocatalyst X, SO, by oxidation decomposition substances like, it can be removed.
以上のように、 この発明の膜構造材料では、 表面に光触媒を担持 ·露出させて おり、 膜構造材料の表面に付着した有機物は光触媒による光酸化分解 ·親水化に より分解されて洗い流されるため、 長期にわたり高い防汚性を発現することがで さる。  As described above, in the film structure material of the present invention, the photocatalyst is supported and exposed on the surface, and the organic matter attached to the surface of the film structure material is decomposed by photooxidative decomposition and hydrophilization by the photocatalyst and washed away. However, it can exhibit high antifouling properties over a long period of time.
さらに、 導電作用を有する粉末を光触媒と共に併用することにより、 膜構造材 料が導電作用を有するようになり、 静電気が膜構造材料に蓄積されなくなるので 、 風等のフラッ夕リング、 物体 (物質) との接触による摩擦 · 摩耗により発生し 蓄積される静電気が抑制され、 汚れの原因となるほこり、 細砂等の付着を軽減す るため、 さらに高い防汚性を発現させることができる。  Furthermore, by using a powder having a conductive action together with a photocatalyst, the material of the membrane structure has a conductive action, and static electricity is not accumulated in the material of the membrane structure. Static electricity generated due to friction and abrasion caused by contact with water is suppressed, and the adhesion of dust, fine sand, etc., which cause soiling, is reduced, so that higher antifouling properties can be exhibited.
またさらに、 導電作用を有する粉末を光触媒と共に併用することにより、 膜構 造材料の導電性が向上するため、 静電気が蓄積しにく くなり、 作業者の感電事故 がなくなるという効果がある。  Furthermore, by using a powder having a conductive action together with a photocatalyst, the conductivity of the film forming material is improved, so that it is difficult to accumulate static electricity, and there is an effect that an electric shock accident of a worker is eliminated.

Claims

請 求 の 範 囲 The scope of the claims
1 . ガラス繊維を主材料とする基布の表面に、. フッ素樹脂表面層を設けた膜構 造材料であって、 フッ素樹脂表面層に無色透明若しくは白色の光触媒粉末を坦持1. A film structure material in which a fluororesin surface layer is provided on the surface of a base fabric mainly composed of glass fiber. A colorless, transparent or white photocatalyst powder is carried on the fluororesin surface layer.
-露出させたことを特徴とする膜構造材料。 -Exposed film structure material.
2 . 光触媒が、 アナターゼ型ニ酸化チタンであることを特徴とする請求項 1記 載の膜構造材料。  2. The film structure material according to claim 1, wherein the photocatalyst is anatase type titanium dioxide.
3 . 表面のフッ素樹脂が、 テトラフルォロエチレン一へキサフルォロプロピレ ン共重合体であることを特徴とする請求項 1又は 2記載の膜構造材料。  3. The film structure material according to claim 1, wherein the fluororesin on the surface is a tetrafluoroethylene-hexafluoropropylene copolymer.
4 . · ガラス繊維を主材料とする基布の表面に、 フッ素樹脂表面層を設けた膜構 造材料であって、 フッ素樹脂表面層に、 無色透明若しくは白色の光触媒粉末と、 無色透明若しくは白色の導電作用を有する粉末を坦持 ·露出させたことを特徴と する膜構造材料。  4. A film structure material in which a fluororesin surface layer is provided on the surface of a base fabric mainly composed of glass fiber, and a colorless transparent or white photocatalyst powder and a colorless transparent or white A film structure material characterized by carrying and exposing a powder having a conductive action as described above.
5 . 光触媒が、 アナターゼ型ニ酸化チタンであることを特徴とする請求項 4記 載の膜構造材料。  5. The film structure material according to claim 4, wherein the photocatalyst is anatase type titanium dioxide.
6 . 表面のフッ素樹脂が、 テトラフルォロエチレン一へキサフルォロプロピレ ン共重合体であることを特徴とする請求項 4又は 5記載の膜構造材料。  6. The film structure material according to claim 4, wherein the fluororesin on the surface is a tetrafluoroethylene-hexafluoropropylene copolymer.
7 . 導電作用を有する粉末が、 二酸化錫であることを特徴とする請求項 4又は 5記載の膜構造材料。 .  7. The film structure material according to claim 4, wherein the powder having a conductive action is tin dioxide. .
8 . 導電作用を有する粉末が、 二酸化錫であることを特徴とする請求項 6記載 の膜構造材料。  8. The film structure material according to claim 6, wherein the conductive powder is tin dioxide.
9 . 導電作用を有する粉末が、 アンチモンをドーピングした二酸化錫を表面に 被覆したルチル型二酸化チタンであることを特徴とする請求項 4又は 5記載の膜 構造材料。  9. The film structure material according to claim 4, wherein the conductive powder is a rutile-type titanium dioxide whose surface is coated with tin dioxide doped with antimony.
1 0 . 導電作用を有する粉末が、 アンチモンをドーピングした二酸化錫を表面に 被覆したルチル型二酸化チダンであることを特徴とする請求項 6記載の膜構造材 料。 10. The film structure material according to claim 6, wherein the conductive powder is rutile-type tidan dioxide whose surface is coated with tin dioxide doped with antimony.
1 1 . 導電作用を有する粉末が、 アンチモンをドーピングした二酸化錫を表面に 被覆したアナタ一ゼ型二酸化チタンであることを特徴とする請求項 4又は 5記載 の膜構造材料。 11. The film structure material according to claim 4, wherein the conductive powder is an anatase-type titanium dioxide whose surface is coated with tin dioxide doped with antimony.
1 2 . 導電作用を有する粉末が、 アンチモンをドーピングした二酸化錫を表面に 被覆したアナタ一ゼ型ニ酸化チタンであることを特徴とする請求項 6記載の膜構 造材料。  12. The film structure material according to claim 6, wherein the conductive powder is an anatase-type titanium dioxide whose surface is coated with tin dioxide doped with antimony.
PCT/JP2002/002148 2002-03-07 2002-03-07 Material for film structure WO2003074180A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
AU2002236255A AU2002236255A1 (en) 2002-03-07 2002-03-07 Material for film structure
PCT/JP2002/002148 WO2003074180A1 (en) 2002-03-07 2002-03-07 Material for film structure
JP2003572683A JP3858176B2 (en) 2002-03-07 2002-03-07 Membrane structure material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2002/002148 WO2003074180A1 (en) 2002-03-07 2002-03-07 Material for film structure

Publications (1)

Publication Number Publication Date
WO2003074180A1 true WO2003074180A1 (en) 2003-09-12

Family

ID=27773245

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/002148 WO2003074180A1 (en) 2002-03-07 2002-03-07 Material for film structure

Country Status (3)

Country Link
JP (1) JP3858176B2 (en)
AU (1) AU2002236255A1 (en)
WO (1) WO2003074180A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005023155A (en) * 2003-06-30 2005-01-27 Taiyo Kogyo Corp Surface treating agent, substrate coated with the same, method for producing the same and method for quality inspection
JP2006198466A (en) * 2005-01-18 2006-08-03 Jsr Corp Photocatalytic sheet and illumination device using the same
JP2011214215A (en) * 2011-07-19 2011-10-27 Taiyo Kogyo Corp Method for producing photocatalyst sheet
JP5152737B2 (en) * 2003-12-25 2013-02-27 太陽工業株式会社 Photocatalyst sheet and bonding method thereof
JP2015221567A (en) * 2011-03-04 2015-12-10 サン−ゴバン パフォーマンス プラスティックス コーポレイション Composite article used as self-cleaning material
CN111233073A (en) * 2020-02-18 2020-06-05 佛山市金净创环保技术有限公司 Handheld photocatalytic fiber sewage treatment device and use method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103599735B (en) * 2013-11-25 2016-05-25 江南大学 A kind of ion doping TiO that improves fabric hydrophilic-hydrophobic wetting conversion rate2Colloidal sol preparation method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09207289A (en) * 1996-02-07 1997-08-12 Nitto Denko Corp Film structural material and its manufacture
JPH10306189A (en) * 1997-05-02 1998-11-17 Daikin Ind Ltd Fluorine-containing material
JPH10314598A (en) * 1997-05-20 1998-12-02 Hitachi Ltd Antifouling method using photocatalyst, antifouling film and antifouling product
JPH11315592A (en) * 1998-04-30 1999-11-16 Toto Ltd Conductive building material

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09207289A (en) * 1996-02-07 1997-08-12 Nitto Denko Corp Film structural material and its manufacture
JPH10306189A (en) * 1997-05-02 1998-11-17 Daikin Ind Ltd Fluorine-containing material
JPH10314598A (en) * 1997-05-20 1998-12-02 Hitachi Ltd Antifouling method using photocatalyst, antifouling film and antifouling product
JPH11315592A (en) * 1998-04-30 1999-11-16 Toto Ltd Conductive building material

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005023155A (en) * 2003-06-30 2005-01-27 Taiyo Kogyo Corp Surface treating agent, substrate coated with the same, method for producing the same and method for quality inspection
JP4626129B2 (en) * 2003-06-30 2011-02-02 太陽工業株式会社 Surface treatment agent, base material coated with the same, and production method and quality inspection method thereof
JP5152737B2 (en) * 2003-12-25 2013-02-27 太陽工業株式会社 Photocatalyst sheet and bonding method thereof
JP2006198466A (en) * 2005-01-18 2006-08-03 Jsr Corp Photocatalytic sheet and illumination device using the same
JP2015221567A (en) * 2011-03-04 2015-12-10 サン−ゴバン パフォーマンス プラスティックス コーポレイション Composite article used as self-cleaning material
JP2011214215A (en) * 2011-07-19 2011-10-27 Taiyo Kogyo Corp Method for producing photocatalyst sheet
CN111233073A (en) * 2020-02-18 2020-06-05 佛山市金净创环保技术有限公司 Handheld photocatalytic fiber sewage treatment device and use method thereof

Also Published As

Publication number Publication date
JPWO2003074180A1 (en) 2005-06-23
JP3858176B2 (en) 2006-12-13
AU2002236255A1 (en) 2003-09-16

Similar Documents

Publication Publication Date Title
TWI440505B (en) Photocatalyst coating
WO2019116859A1 (en) Optical layer, manufacturing method for optical layer, solar battery module equipped with optical layer, external wall material for construction, and structure
JP2011183390A (en) Method for protecting substrate
WO2012014877A1 (en) Photocatalyst coated body and photocatalyst coating liquid
TW201238655A (en) Photocatalyst coated body and photocatalyst coating liquid
JP3773087B2 (en) Photocatalytic functional member
WO2003074180A1 (en) Material for film structure
JP2009262153A (en) Photocatalyst-coated body and photocatalytic coating liquid therefor
CN110240817B (en) High-performance hydrophilic dust-free paint and preparation method thereof
JP4281086B2 (en) Photocatalyst sheet and method for producing the same
JP5361513B2 (en) Photocatalyst paint
JP2001064582A (en) Photocatalytic hydrophilic coating composition and preparation of photocatalytic hydrophilic composite by using the same
JP4470198B2 (en) Photocatalyst sheet, film structure, and method for producing photocatalyst sheet
KR20080094784A (en) Method for protecting base
JP2008307526A (en) Photocatalytic coated body and photocatalytic coating liquid for the same
WO2005007402A1 (en) Photocatalyst sheet and method for producing same
JP5305231B2 (en) Photocatalyst paint
WO2005014720A1 (en) Photocatalyst dispersion liquid and method for producing same
JP4868321B2 (en) Photocatalyst sheet and method for producing the same
JP5111241B2 (en) Photocatalytic sheet manufacturing method and photocatalytic sheet
JP5614945B2 (en) Photocatalyst paint
KR100425913B1 (en) Multifunctional transparent coating agent which comprises photocatalyst
JP2000071359A (en) Functional material
JP7247999B2 (en) Photocatalyst coated body
JP5007909B2 (en) Photocatalyst sheet

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2003572683

Country of ref document: JP

122 Ep: pct application non-entry in european phase