JPH09205178A - Semiconductor device and its manufacture - Google Patents

Semiconductor device and its manufacture

Info

Publication number
JPH09205178A
JPH09205178A JP1168796A JP1168796A JPH09205178A JP H09205178 A JPH09205178 A JP H09205178A JP 1168796 A JP1168796 A JP 1168796A JP 1168796 A JP1168796 A JP 1168796A JP H09205178 A JPH09205178 A JP H09205178A
Authority
JP
Japan
Prior art keywords
semiconductor device
upper layer
spiral inductor
polyimide resin
lower layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1168796A
Other languages
Japanese (ja)
Other versions
JP3509362B2 (en
Inventor
Kazuhiko Shirakawa
一彦 白川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP01168796A priority Critical patent/JP3509362B2/en
Publication of JPH09205178A publication Critical patent/JPH09205178A/en
Application granted granted Critical
Publication of JP3509362B2 publication Critical patent/JP3509362B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Semiconductor Integrated Circuits (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

PROBLEM TO BE SOLVED: To make it possible to stereoscopically stack elements while excellent characteristics are maintained by disposing a support member for supporting an upper layer on the lower layer, and disposing a hollow region between the lower layer and the upper layer to reduce the influence of crosstalk. SOLUTION: A polyimide resin 7 is uniformly laminated as an insulating film on a semi-insulating GaAs substrate 1, and a photo resist pattern 8 is formed thereon. With the pattern 8 as a mask the resin 7 is anisotropically etched, and a plurality of polyimide resin posts 7a are formed as the support members. Via various steps, a metal film 11 for interconnection of spiral inductor is formed on the entire surface. The metal interconnection 11a of the spiral inductor is formed on the post 7a of the polyimide resin. Thus, since a hollow region exists between the MESFET and the inductor, high radiating effect is obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は半導体装置、特にG
aAs基板を用いたモノリシックマイクロ波集積回路の
半導体装置とその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device, particularly G
The present invention relates to a semiconductor device of a monolithic microwave integrated circuit using an aAs substrate and a manufacturing method thereof.

【0002】[0002]

【従来の技術】従来例としてメタル・インシュレータ・
メタルキャパシタ(以下、MIMキャパシタと記す。)
上にスパイラルインダクタを積層する構造が、特開平6
−169064号公報に示されている。同公報に記載の
半導体装置を図7に示す。従来の半導体装置は、半絶縁
性のGaAs基板表面に下層電極、キャパシタ絶縁膜、
上層電極からなるMIMキャパシタを形成し、その上に
絶縁膜を積層し、その絶縁膜上にスパイラルインダクタ
を形成している。図中に示すバイアホールは、基板表面
のMIMキャパシタと裏面メタルとを接続する役割を果
たす。又、半導体抵抗、金属抵抗は、整合回路やFET
間結合回路として用いている。
2. Description of the Related Art As a conventional example, a metal insulator
Metal capacitor (hereinafter referred to as MIM capacitor)
A structure in which a spiral inductor is laminated on top is disclosed in Japanese Patent Laid-Open No.
No. 1669064. FIG. 7 shows the semiconductor device described in the publication. Conventional semiconductor devices consist of a semi-insulating GaAs substrate surface with a lower electrode, a capacitor insulating film,
An MIM capacitor composed of an upper layer electrode is formed, an insulating film is laminated on the MIM capacitor, and a spiral inductor is formed on the insulating film. The via hole shown in the figure plays a role of connecting the MIM capacitor on the front surface of the substrate to the back surface metal. Also, semiconductor resistors and metal resistors are used for matching circuits and FETs.
It is used as an inter-coupling circuit.

【0003】[0003]

【発明が解決しようとする課題】従来の半導体装置で
は、MIMキャパシタとスパイラルインダクタの間の絶
縁膜の厚さは、通常1μm程度であり、MIMキャパシ
タの上部電極とスパイラルインダクタとの距離が狭く、
スパイラルインダクタは十分なインダクタンスを得るこ
とが難しい。十分なインダクタンスを得るために絶縁膜
を厚くすると、絶縁膜が剥離し易い、あるいは絶縁膜に
クラックが入り易い等の問題が生じ、実用的ではない。
In the conventional semiconductor device, the thickness of the insulating film between the MIM capacitor and the spiral inductor is usually about 1 μm, and the distance between the upper electrode of the MIM capacitor and the spiral inductor is narrow,
It is difficult for a spiral inductor to obtain sufficient inductance. If the insulating film is thickened to obtain a sufficient inductance, problems such as easy peeling of the insulating film and easy cracking of the insulating film occur, which are not practical.

【0004】更に、スパイラルインダクタ配線間の底部
に存在する絶縁膜が容量成分となり、スパイラルインダ
クタ配線間の電磁気結合が強くなり、十分なインダクタ
ンスを得ることが難しい。
Furthermore, the insulating film existing at the bottom between the spiral inductor wires serves as a capacitance component, the electromagnetic coupling between the spiral inductor wires is strengthened, and it is difficult to obtain a sufficient inductance.

【0005】インダクタンスが十分に得られないこと
は、共振周波数が低くなり、マイクロ波帯の周波数領域
での使用が難しくなるという問題があった。
If the inductance is not sufficiently obtained, there is a problem that the resonance frequency becomes low and it becomes difficult to use in the microwave frequency range.

【0006】また、上部層の素子がスパイラルインダク
タの時に限らず、上部層の素子と下部層の素子が近いこ
とはクロストークの作用が働き、素子の特性を悪化させ
るという問題もあった。
Further, not only when the element of the upper layer is a spiral inductor, but when the element of the upper layer and the element of the lower layer are close to each other, there is a problem that the action of crosstalk works and the characteristics of the element are deteriorated.

【0007】本発明の目的は、上記問題点を解決する半
導体装置とその製造方法を提供することである。
An object of the present invention is to provide a semiconductor device and a method of manufacturing the same which solve the above problems.

【0008】[0008]

【課題を解決するための手段】本発明に係る半導体装置
は、能動素子及び受動素子を備え、前記能動素子及び受
動素子から任意のものを複数個組み合わせて、これらを
積層するマイクロ波集積回路の半導体装置において、能
動素子あるいは受動素子が形成された下部層を有し、
受動素子が形成された上部層を有し、該上部層を支持す
る支持部材を前記下部層の上に有し、前記下部層と前記
上部層の間に中空を有することを特徴とする。
A semiconductor device according to the present invention is provided with an active element and a passive element, and a plurality of arbitrary active elements and passive elements are combined and laminated in a microwave integrated circuit. In a semiconductor device, having a lower layer on which an active element or a passive element is formed,
It is characterized in that it has an upper layer on which a passive element is formed, a support member for supporting the upper layer is provided on the lower layer, and a hollow is provided between the lower layer and the upper layer.

【0009】本発明に係る半導体装置は上部層の上に、
更に別の上部層を支持するための支持部材を有し、受動
素子が形成された前記別の上部層を有し、該別の上部層
と前記上部層との間に中空領域を有する多層構造を特徴
とする。
The semiconductor device according to the present invention comprises:
A multi-layer structure having a support member for supporting another upper layer, having the other upper layer on which a passive element is formed, and having a hollow region between the other upper layer and the upper layer. Is characterized by.

【0010】本発明に係る請求項1〜3の半導体装置の
製造方法は、能動素子あるいは受動素子が形成された下
部層の上に、支持部材を形成する工程と、該支持部材の
高さまで樹脂にて埋め込む工程と、前記支持部材及び前
記樹脂の上に受動素子が形成された上部層を作製する工
程と、前記樹脂を除去し、前記支持部材を残存させる工
程とを有することを特徴とする。
The method for manufacturing a semiconductor device according to claims 1 to 3 according to the present invention comprises a step of forming a support member on a lower layer on which an active element or a passive element is formed, and a resin up to the height of the support member. And a step of forming an upper layer in which a passive element is formed on the support member and the resin, and a step of removing the resin and leaving the support member. .

【0011】[0011]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

(実施の形態1)本発明の実施の形態1として、半絶縁
性GaAs基板表面に形成されたMESFET(Met
al Semiconductor Field Ef
fectTransisitor)上にスパイラルイン
ダクタを積層した例を図1に示す。
(Embodiment 1) As Embodiment 1 of the present invention, a MESFET (Met) formed on the surface of a semi-insulating GaAs substrate.
al Semiconductor Field Ef
FIG. 1 shows an example in which a spiral inductor is stacked on the (FactTransistor).

【0012】まず、通常のGaAs系MESFETのプ
ロセスにて半絶縁性GaAs基板1にMESFET2を
形成する。ここで、3はソース、ドレイン及びチャネル
の不純物層、4aはソース電極、4bはドレイン電極、
5はゲート電極、6は表面保護用の絶縁膜である。この
構造の表面に絶縁膜としてポリイミド樹脂7を回転塗布
法により均一に5μm程度積層する。以上の工程終了後
の半導体装置の断面図を図1(a)に示す。
First, the MESFET 2 is formed on the semi-insulating GaAs substrate 1 by a normal GaAs MESFET process. Here, 3 is a source, drain and channel impurity layer, 4a is a source electrode, 4b is a drain electrode,
Reference numeral 5 is a gate electrode, and 6 is an insulating film for surface protection. Polyimide resin 7 is uniformly laminated on the surface of this structure as an insulating film by a spin coating method to a thickness of about 5 μm. A cross-sectional view of the semiconductor device after the above steps are shown in FIG.

【0013】次に、通常のフォトリソグラフィ法によっ
て、ポリイミド樹脂7の上にフォトレジストパターン8
を形成する。以上の工程終了後の半導体装置の断面図を
図1(b)に示す。
Next, a photoresist pattern 8 is formed on the polyimide resin 7 by a normal photolithography method.
To form A cross-sectional view of the semiconductor device after the above steps are shown in FIG.

【0014】次に、フォトレジストパターン8をマスク
としてポリイミド樹脂7を反応性イオンエッチング法
(以下、RIE法と記す)によって異方性エッチングを
行い、支持部材として複数のポリイミド樹脂の柱7aを
形成する。ここで、ポリイミド樹脂の柱7aの間隔は5
0μmとした。以上の工程終了後の半導体装置の断面図
を図1(c)に示す。異方性エッチングが行えるエッチ
ング方法であれば、他の電子サイクロトロンエッチング
法等でも構わない。
Next, using the photoresist pattern 8 as a mask, the polyimide resin 7 is anisotropically etched by a reactive ion etching method (hereinafter referred to as RIE method) to form a plurality of polyimide resin columns 7a as supporting members. To do. Here, the distance between the pillars 7a of polyimide resin is 5
It was set to 0 μm. A cross-sectional view of the semiconductor device after the above steps are shown in FIG. Other electron cyclotron etching methods or the like may be used as long as they are anisotropic etching methods.

【0015】図1(c)に示される構造の表面全面にフ
ォトレジスト9を回転塗布法により、均一に塗布を行
い、ポリイミド樹脂の柱7aを完全に埋めこんで平坦化
する。以上の工程終了後の半導体装置の断面図を図1
(d)に示す。
Photoresist 9 is uniformly applied to the entire surface of the structure shown in FIG. 1 (c) by a spin coating method, and the pillars 7a of polyimide resin are completely embedded and planarized. FIG. 1 is a sectional view of the semiconductor device after the above steps are completed.
It shows in (d).

【0016】次に、埋め込み平坦化に用いたフォトレジ
スト9をRIE法によってエッチバックを行い、ポリイ
ミド樹脂の柱7aの表面が露出するまで、エッチングを
行う。以上の工程終了後の半導体装置の断面図を図1
(e)に示す。
Next, the photoresist 9 used for the buried flattening is etched back by the RIE method, and is etched until the surface of the pillar 7a of the polyimide resin is exposed. FIG. 1 is a sectional view of the semiconductor device after the above steps are completed.
(E).

【0017】次に、スパイラルインダクタの配線用のフ
ォトレジストパターン10を形成する。以上の工程終了
後の半導体装置の断面図を図1(f)に示す。尚、図示
はしていないがMESFETとスパイラルインダクタを
接続する方法は、この工程においてフォトレジスト9と
保護膜6にコンタクトホールをあけることで行う。
Next, a photoresist pattern 10 for wiring the spiral inductor is formed. A cross-sectional view of the semiconductor device after the above steps are shown in FIG. Although not shown, the method of connecting the MESFET and the spiral inductor is performed by making contact holes in the photoresist 9 and the protective film 6 in this step.

【0018】次に、スパイラルインダクタの配線用の金
属膜11を蒸着法により全面に約2μm成膜する。以上
の工程終了後の半導体装置の断面図を図1(g)に示
す。
Next, a metal film 11 for wiring the spiral inductor is formed on the entire surface by vapor deposition to a thickness of about 2 μm. A cross-sectional view of the semiconductor device after the above steps are shown in FIG.

【0019】最後に、埋め込み平坦化に使用したフォト
レジスト9と配線用のフォトレジストパターン10を有
機溶剤で溶解し、ポリイミド樹脂の柱7aを残存させ、
フォトレジストパターン10上の金属膜をリフトオフす
ることで、ポリイミド樹脂の柱7aの支柱の上にスパイ
ラルインダクタの金属配線11aを形成する。以上の工
程終了後の半導体装置の断面図を図1(h)に示す。ま
た、この半導体装置のの斜視図を図1(i)に示す。
Finally, the photoresist 9 used for the filling and planarization and the photoresist pattern 10 for wiring are dissolved with an organic solvent to leave the pillars 7a of polyimide resin.
By lifting off the metal film on the photoresist pattern 10, the metal wiring 11a of the spiral inductor is formed on the pillar of the polyimide resin pillar 7a. A sectional view of the semiconductor device after the above steps are shown in FIG. A perspective view of this semiconductor device is shown in FIG.

【0020】本発明の半導体装置の構造では、MESF
ETとスパイラルインダクタとの間に中空を有するので
高い放熱効果が得られる。
In the structure of the semiconductor device of the present invention, the MESF
Since there is a hollow between the ET and the spiral inductor, a high heat dissipation effect can be obtained.

【0021】また、スパイラルインダクタの下は中空と
なっており、誘電率が低いので、十分なインダクタンス
を得ることができる。また、ポリイミドの樹脂の柱の高
さを変えるだけで、上部層の素子と下部層の素子との距
離を長くすることができ、スパイラルインダクタは十分
なインダクタンスを得ることができる。
Further, since the spiral inductor is hollow below and has a low dielectric constant, a sufficient inductance can be obtained. In addition, the distance between the upper layer element and the lower layer element can be lengthened only by changing the height of the polyimide resin column, and the spiral inductor can obtain a sufficient inductance.

【0022】(実施の形態2)本発明の実施の形態2と
して、半絶縁性GaAs基板表面に形成されたMESF
ET上にスパイラルインダクタを2層積層した例を図2
に示す。
(Embodiment 2) As Embodiment 2 of the present invention, MESF formed on the surface of a semi-insulating GaAs substrate.
An example of stacking two layers of spiral inductors on ET Fig. 2
Shown in

【0023】まず、図1(h)の工程まで実施例1と同
様に作製し、この構造の表面全面にフォトレジスト9を
回転塗布法により均一に塗布を行い、実施の形態1に記
載の半導体装置を完全に埋めこんで平坦化する。以上の
工程終了後の半導体装置の断面図を図2(a)に示す。
First, the process up to the step of FIG. 1 (h) was prepared in the same manner as in Example 1, and the photoresist 9 was uniformly applied to the entire surface of this structure by the spin coating method, and the semiconductor described in Embodiment 1 was used. Fully embed the device and planarize. A cross-sectional view of the semiconductor device after the above steps are shown in FIG.

【0024】次に、埋め込み平坦化に用いたフォトレジ
スト9をRIEによってエッチバックを行い、第1のス
パイラルインダクタの金属配線11aの表面が露出する
まで、エッチングを行う。以上の工程終了後の半導体装
置の断面図を図2(b)に示す。
Next, the photoresist 9 used for the buried flattening is etched back by RIE, and is etched until the surface of the metal wiring 11a of the first spiral inductor is exposed. A cross-sectional view of the semiconductor device after the above steps are shown in FIG.

【0025】これ以降、実施の形態1の図1(a)〜
(h)と同様の製造方法にて、第2のスパイラルインダ
クタを絶縁体の柱上に作製する。これらの工程の半導体
装置の断面図を図2(c)〜(h)に示す。
After this, FIG. 1A of the first embodiment will be described.
The second spiral inductor is manufactured on the pillar of the insulator by the same manufacturing method as in (h). 2C to 2H are sectional views of the semiconductor device in these steps.

【0026】以上の工程にて、半絶縁性GaAs基板表
面に形成されたMESFET上にスパイラルインダクタ
を2層積層した半導体装置を作製できる。また、この半
導体装置の斜視図を図2(i)に示す。
Through the above steps, a semiconductor device in which two layers of spiral inductors are laminated on the MESFET formed on the surface of the semi-insulating GaAs substrate can be manufactured. A perspective view of this semiconductor device is shown in FIG.

【0027】本実施の形態のように、本発明の製造方法
で多層に積層することができる。
As in the present embodiment, it can be laminated in multiple layers by the manufacturing method of the present invention.

【0028】また、第2のスパイラルインダクタは、実
施の形態1と同様にコンタクトホールをあけることでM
ESFETや第1のスパイラルインダクタと接続を行
う。
Further, the second spiral inductor is formed by forming a contact hole as in the first embodiment.
Connect with ESFET and the first spiral inductor.

【0029】(実施の形態3)本発明の実施の形態3と
して、半絶縁性GaAs基板表面に形成されたMESF
ET上にMIMキャパシタを積層した例を図3に示す。
(Embodiment 3) As Embodiment 3 of the present invention, MESF formed on the surface of a semi-insulating GaAs substrate.
An example of stacking the MIM capacitor on the ET is shown in FIG.

【0030】まず、実施の形態1の図1(a)〜図1
(h)の工程と同様に作製する。ただし、図1(f)に
示される配線用のフォトレジストパターン10の代わり
にMIMキャパシタの下層電極形成用のフォトレジスト
パターンとし、スパイラルインダクタとしての金属膜1
1の代わりにMIMキャパシタの下層電極用の金属膜1
2とする。以上の工程終了後の半導体装置の断面図を図
3(a)に示す。
First, FIG. 1A to FIG. 1 of the first embodiment.
It is produced in the same manner as the step (h). However, instead of the photoresist pattern 10 for wiring shown in FIG. 1F, a photoresist pattern for forming the lower layer electrode of the MIM capacitor is used, and the metal film 1 as the spiral inductor is used.
Metal film 1 for lower electrode of MIM capacitor instead of 1
Let it be 2. A cross-sectional view of the semiconductor device after the above steps are shown in FIG.

【0031】次に、この構造の表面全面にMIMキャパ
シタの誘電膜としてSIN膜13をプラズマCVDによ
って成膜する。以上の工程終了後の半導体装置の断面図
を図3(b)に示す。
Next, a SIN film 13 is formed as a dielectric film of the MIM capacitor on the entire surface of this structure by plasma CVD. A cross-sectional view of the semiconductor device after the above steps are shown in FIG.

【0032】次に、この構造を形成した側の表面全面に
フォトレジスト9を回転塗布法により均一に塗布を行
い、この工程までに作製された半導体装置を完全に埋め
込んで平坦化する。以上の工程終了後の半導体装置の断
面図を図3(c)に示す。
Next, a photoresist 9 is uniformly applied to the entire surface on the side where this structure is formed by a spin coating method, and the semiconductor device manufactured up to this step is completely embedded and planarized. A cross-sectional view of the semiconductor device after the above steps are shown in FIG.

【0033】次に、埋め込み平坦化に用いたフォトレジ
スト9をRIEによってエッチバックを行い、MIMキ
ャパシタの絶縁膜としてSIN膜13の表面が露出する
まで、エッチングを行う。以上の工程終了後の半導体装
置の断面図を図3(d)に示す。
Next, the photoresist 9 used for the buried flattening is etched back by RIE, and is etched until the surface of the SIN film 13 is exposed as an insulating film of the MIM capacitor. A cross-sectional view of the semiconductor device after the above steps are shown in FIG.

【0034】次に、MIMキャパシタの上部電極形成用
のフォトレジストパターン14を形成する。以上の工程
終了後の半導体装置の断面図を図3(e)に示す。
Next, a photoresist pattern 14 for forming the upper electrode of the MIM capacitor is formed. A cross-sectional view of the semiconductor device after completion of the above steps is shown in FIG.

【0035】次に、MIMキャパシタの上部電極用の金
属膜15を蒸着法により全面に成膜する。以上の工程終
了後の半導体装置の断面図を図3(f)に示す。
Next, a metal film 15 for the upper electrode of the MIM capacitor is formed on the entire surface by vapor deposition. A cross-sectional view of the semiconductor device after the above steps are shown in FIG.

【0036】最後に、埋め込み平坦化に使用したフォト
レジスト9とMIMキャパシタの上部電極用のフォトレ
ジストパターン14を有機溶剤で溶解し、ポリイミド樹
脂の柱7aを残存させ、MIMキャパシタの上部電極用
のフォトレジストパターン14上の金属膜15をリフト
オフすることで、MIMキャパシタの上部電極の金属膜
15aが形成できる。以上の工程を経て、ポリイミド樹
脂の柱7aを支柱としてMIMキャパシタを積層した半
導体装置を作製した。実施の形態3で作製した半導体装
置の断面図を図3(g)に示す。また、この半導体装置
の斜視図を図3(h)に示す。
Finally, the photoresist 9 used for the filling and planarization and the photoresist pattern 14 for the upper electrode of the MIM capacitor are dissolved with an organic solvent to leave the pillars 7a of the polyimide resin, and the upper electrode for the MIM capacitor is left. By lifting off the metal film 15 on the photoresist pattern 14, the metal film 15a of the upper electrode of the MIM capacitor can be formed. Through the above steps, a semiconductor device in which MIM capacitors are stacked using the polyimide resin pillars 7a as pillars is manufactured. A cross-sectional view of the semiconductor device manufactured in Embodiment Mode 3 is shown in FIG. A perspective view of this semiconductor device is shown in FIG.

【0037】図示しないがMIMキャパシタとMESF
ETは、実施の形態1と同様にコンタクトホールをあけ
ることで接続を行う。
Although not shown, MIM capacitor and MESF
The ET is connected by opening a contact hole as in the first embodiment.

【0038】(実施の形態4)本発明の実施の形態4と
して、半絶縁性GaAs基板表面に形成されたMESF
ET上にMIMキャパシタを2層積層した例を図4、図
5に示す。
(Embodiment 4) As Embodiment 4 of the present invention, MESF formed on the surface of a semi-insulating GaAs substrate.
An example in which two layers of MIM capacitors are laminated on the ET is shown in FIGS.

【0039】まず、実施の形態3の図3(h)までの工
程と同様に作製する。以上の工程終了後の半導体装置の
断面図を図4(a)に示す。
First, the steps similar to those of the third embodiment up to FIG. A cross-sectional view of the semiconductor device after the above steps are shown in FIG.

【0040】次に、実施の形態2の図2(a)〜(h)
と同様な方法で作製する。ただし、実施の形態2でのス
パイラルインダクタの代わりに、実施の形態3に記載の
作製方法でMIMキャパシタを作製する。それらの工程
における断面図を図4(b)〜(j)、図5(k)〜
(m)に示す。
Next, FIGS. 2A to 2H of the second embodiment will be described.
It is manufactured by the same method as. However, instead of the spiral inductor in the second embodiment, the MIM capacitor is manufactured by the manufacturing method described in the third embodiment. Cross-sectional views in those steps are shown in FIGS.
It shows in (m).

【0041】以上の工程終了後、半絶縁性GaAs基板
表面に形成されたMESFET上にMIMキャパシタを
2層積層した半導体装置を作製できる。また、この半導
体装置の斜視図を図5(n)に示す。
After the above steps are completed, a semiconductor device in which two layers of MIM capacitors are laminated on the MESFET formed on the surface of the semi-insulating GaAs substrate can be manufactured. A perspective view of this semiconductor device is shown in FIG.

【0042】(実施の形態5)本発明の実施の形態5と
して、半絶縁性GaAs基板表面に形成されたMESF
ET上にMIMキャパシタを積層し、更にその上にスパ
イラルインダクタを積層した例を図6に示す。
(Embodiment 5) As Embodiment 5 of the present invention, a MESF formed on the surface of a semi-insulating GaAs substrate.
FIG. 6 shows an example in which the MIM capacitor is laminated on the ET and the spiral inductor is further laminated thereon.

【0043】本実施の形態5の製造方法は、実施の形態
3の図3(h)の工程までと同様に作製し、MIMキャ
パシタを積層した後、図2(a)〜(h)と同様な方法
でMIMキャパシタの上にスパイラルインダクタを形成
する。実施の形態5の半導体装置の製造工程の断面図は
図6(a)〜図6(j)に示し、この半導体装置の斜視
図を図6(k)に示す。
The manufacturing method of the fifth embodiment is the same as the manufacturing method of the third embodiment up to the step of FIG. 3H, and after stacking the MIM capacitors, the same as the steps of FIGS. 2A to 2H. Forming a spiral inductor on the MIM capacitor by various methods. 6A to 6J are cross-sectional views of the manufacturing process of the semiconductor device according to the fifth embodiment, and FIG. 6K is a perspective view of the semiconductor device.

【0044】本実施の形態では絶縁体の柱としてポリイ
ミド樹脂を用いたが、比較的低温で成膜できて、埋め込
み平坦化に使用するフォトレジスト9と配線用のフォト
レジスト10、更にこれらの溶解させる有機溶剤に対し
て、耐溶解性を有する膜を選択するのであれば、例えば
SiN膜、SiO2膜、SiON膜、PSG膜、BPS
G膜等を使用しても構わない。更に、整合回路として必
要なインダクタンスを得るために絶縁体の柱の誘電率は
低い方が望ましい。
In this embodiment, the polyimide resin is used as the pillar of the insulator, but it is possible to form a film at a relatively low temperature. If a film having dissolution resistance is selected for the organic solvent to be used, for example, SiN film, SiO 2 film, SiON film, PSG film, BPS
A G film or the like may be used. Furthermore, in order to obtain the inductance required for the matching circuit, it is desirable that the dielectric pillar has a low dielectric constant.

【0045】また、本実施例では、能動素子としてME
SFETを使用したが他のHEMT(High Ele
ctron Mobility Transisito
r)やHBT(Hetero Bipolar Tra
nsisitor)でも本発明の方法が適用できる。本
実施の形態では上部層に受動素子を形成し、一番下の下
部層にMESFETを形成した層を用いたが、下部層も
上部層も受動素子を形成した層でもかまわない。
In this embodiment, the ME is used as the active element.
Although SFET was used, other HEMT (High Ele
ctron Mobility Transisito
r) and HBT (Hetero Bipolar Tra)
The method of the present invention can also be applied to the above. In this embodiment, a passive element is formed on the upper layer and a MESFET is formed on the lowermost layer, but the lower layer and the upper layer may be layers on which passive elements are formed.

【0046】また、本実施の形態の積層構造ではMES
FETを形成した層の上に2層まで積層したが、本発明
の方法のくり返しによって更に3層、4層と重ねること
も可能である。そのため、3次元的にマイクロ波集積回
路が構成できるので回路構成の自由度が高くなる。
In the laminated structure of this embodiment, the MES
Although up to two layers are stacked on the layer on which the FET is formed, it is possible to stack three or four layers by repeating the method of the present invention. Therefore, since the microwave integrated circuit can be configured three-dimensionally, the degree of freedom in circuit configuration is increased.

【0047】[0047]

【発明の効果】本発明によれば、素子を形成した上部層
と下部層との間が中空であることからクロストークの影
響が少なく、良好な素子特性のまま立体的に積層するこ
とができる。そのため、半導体装置の小型化に寄与す
る。
According to the present invention, since the space between the upper layer and the lower layer on which the element is formed is hollow, the influence of crosstalk is small, and it is possible to stack three-dimensionally with good element characteristics. . Therefore, it contributes to downsizing of the semiconductor device.

【0048】特に、スパイラルインダクタを積層する際
には、十分なインダクタンスを得ることができる。
In particular, a sufficient inductance can be obtained when stacking spiral inductors.

【0049】また、素子を形成した上部層と下部層との
間に中空を有することは、放熱効果を高めることができ
る利点を有している。
Further, having a hollow between the upper layer and the lower layer on which the element is formed has an advantage that the heat radiation effect can be enhanced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係るMESFETの上にスパイラルイ
ンダクタを積層する半導体装置の製造工程を示す図であ
る。
FIG. 1 is a diagram showing a manufacturing process of a semiconductor device in which a spiral inductor is stacked on a MESFET according to the present invention.

【図2】本発明に係るMESFETの上にスパイラルイ
ンダクタを2層積層する半導体装置の製造工程を示す図
である。
FIG. 2 is a diagram showing a manufacturing process of a semiconductor device in which two layers of spiral inductors are laminated on a MESFET according to the present invention.

【図3】本発明に係るMESFETの上にMIMキャパ
シタを積層する半導体装置の製造工程を示す図である。
FIG. 3 is a diagram showing a manufacturing process of a semiconductor device in which an MIM capacitor is stacked on a MESFET according to the present invention.

【図4】本発明に係るMESFETの上にMIMキャパ
シタを2層積層する半導体装置の製造工程を示す図であ
る。
FIG. 4 is a diagram showing a manufacturing process of a semiconductor device in which two layers of MIM capacitors are laminated on a MESFET according to the present invention.

【図5】本発明に係るMESFETの上にMIMキャパ
シタを2層積層する半導体装置の図4に示す工程から続
く製造工程を示す図である。
FIG. 5 is a diagram showing a manufacturing process subsequent to the process shown in FIG. 4 of the semiconductor device in which two layers of MIM capacitors are laminated on the MESFET according to the present invention.

【図6】本発明に係るMESFETの上にMIMキャパ
シタを積層し、その上にスパイラルインダクタを積層す
る半導体装置の製造工程を示す図である。
FIG. 6 is a diagram showing a manufacturing process of a semiconductor device in which an MIM capacitor is laminated on a MESFET according to the present invention, and a spiral inductor is laminated thereon.

【図7】従来の半導体装置を示す図である。FIG. 7 is a diagram showing a conventional semiconductor device.

【符号の説明】[Explanation of symbols]

1 半絶縁性のGaAs基板 2 MESFET 3 ソース・ドレイン及びチャネルの不純物拡散層 4a ソース電極 4b ドレイン電極 5 ゲート電極 6 表面保護ための絶縁膜 7 ポリイミド樹脂 7a ポリイミド樹脂の柱 8,10,14 フォトレジストパターン 9 フォトレジスト 11,12,15 金属膜 11a スパイラルインダクタの金属配線 13 SiN膜 15a MIMキャパシタの上部電極 1 Semi-insulating GaAs substrate 2 MESFET 3 Source / drain and channel impurity diffusion layer 4a Source electrode 4b Drain electrode 5 Gate electrode 6 Insulating film for surface protection 7 Polyimide resin 7a Polyimide resin pillar 8, 10, 14 Photoresist Pattern 9 Photoresist 11, 12, 15 Metal film 11a Metal wiring of spiral inductor 13 SiN film 15a Upper electrode of MIM capacitor

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 能動素子及び受動素子を備え、前記能動
素子及び受動素子から任意のものを複数個組み合わせ
て、これらを積層するマイクロ波集積回路の半導体装置
において、 能動素子あるいは受動素子が形成された下部層を有し、 受動素子が形成された上部層を有し、 該上部層を支持する支持部材を前記下部層の上に有し、 前記下部層と前記上部層の間に中空領域を有することを
特徴とする半導体装置。
1. A semiconductor device of a microwave integrated circuit, comprising an active element and a passive element, combining a plurality of arbitrary ones of the active element and the passive element, and laminating the active element and the passive element, wherein an active element or a passive element is formed. A lower layer, an upper layer having a passive element formed thereon, a support member for supporting the upper layer is provided on the lower layer, and a hollow region is provided between the lower layer and the upper layer. A semiconductor device having.
【請求項2】 上部層の上に、受動素子が形成された前
記別の上部層を有し、 前記別の上部層を支持するための別の支持部材を有し、 前記別の上部層と前記上部層との間に中空領域を有する
ことを特徴とする請求項1に記載の半導体装置。
2. An upper layer having the another upper layer on which a passive element is formed, further having another supporting member for supporting the other upper layer, The semiconductor device according to claim 1, further comprising a hollow region between the upper layer and the upper layer.
【請求項3】 前記受動素子はスパイラルインダクタを
形成する金属配線であることを特徴とする請求項1、2
に記載の半導体装置。
3. The passive element is a metal wiring forming a spiral inductor.
3. The semiconductor device according to claim 1.
【請求項4】 能動素子あるいは受動素子が形成された
下部層の上に、支持部材を形成する工程と、 該支持部材の高さまで樹脂にて埋め込む工程と、 前記支持部材及び前記樹脂の上に受動素子が形成された
上部層を作製する工程と、 前記樹脂を除去し、前記支持部材を残存させる工程とを
有することを特徴とする請求項1〜3に記載の半導体装
置の製造方法。
4. A step of forming a support member on a lower layer on which an active element or a passive element is formed, a step of embedding resin up to the height of the support member, and the step of forming a support member and the resin on the lower layer. The method of manufacturing a semiconductor device according to claim 1, further comprising: a step of forming an upper layer on which a passive element is formed; and a step of removing the resin and leaving the supporting member.
JP01168796A 1996-01-26 1996-01-26 Semiconductor device and manufacturing method thereof Expired - Fee Related JP3509362B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01168796A JP3509362B2 (en) 1996-01-26 1996-01-26 Semiconductor device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01168796A JP3509362B2 (en) 1996-01-26 1996-01-26 Semiconductor device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH09205178A true JPH09205178A (en) 1997-08-05
JP3509362B2 JP3509362B2 (en) 2004-03-22

Family

ID=11784943

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01168796A Expired - Fee Related JP3509362B2 (en) 1996-01-26 1996-01-26 Semiconductor device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3509362B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000011585A (en) * 1998-07-28 2000-02-25 윤덕용 Semiconductor device and method for manufacturing the same
US6285069B1 (en) 1998-04-10 2001-09-04 Nec Corporation Semiconductor device having improved parasitic capacitance and mechanical strength
KR100331226B1 (en) * 2000-02-23 2002-04-26 이상헌 microwave electric elements of using porous oxidized silicon pole
KR100348250B1 (en) * 1999-10-11 2002-08-09 엘지전자 주식회사 fabrication method for micro passive element
KR100477547B1 (en) * 2002-08-09 2005-03-18 동부아남반도체 주식회사 Method for forming inductor of semiconductor device
CN100411135C (en) * 2004-05-05 2008-08-13 Atmel德国有限公司 Method for producing a spiral inductance on a substrate, and a device fabricated according to such a method
JP2009088163A (en) * 2007-09-28 2009-04-23 Fujitsu Media Device Kk Electronic component
JP2009146996A (en) * 2007-12-12 2009-07-02 Fujitsu Media Device Kk Electronic component
US7579553B2 (en) * 2000-07-27 2009-08-25 Fujitsu Limited Front-and-back electrically conductive substrate
US20110308072A1 (en) * 1999-02-26 2011-12-22 Ahn Kie Y Open pattern inductor
JP2020088058A (en) * 2018-11-20 2020-06-04 太陽誘電株式会社 Inductor, filter, and multiplexer

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007049115A (en) 2005-07-13 2007-02-22 Seiko Epson Corp Semiconductor device

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6285069B1 (en) 1998-04-10 2001-09-04 Nec Corporation Semiconductor device having improved parasitic capacitance and mechanical strength
US6383889B2 (en) 1998-04-10 2002-05-07 Nec Corporation Semiconductor device having improved parasitic capacitance and mechanical strength
KR100390594B1 (en) * 1998-04-10 2003-07-07 엔이씨 일렉트로닉스 코포레이션 A cavity structure and semiconductor device
KR20000011585A (en) * 1998-07-28 2000-02-25 윤덕용 Semiconductor device and method for manufacturing the same
US9929229B2 (en) * 1999-02-26 2018-03-27 Micron Technology, Inc. Process of manufacturing an open pattern inductor
US20110308072A1 (en) * 1999-02-26 2011-12-22 Ahn Kie Y Open pattern inductor
KR100348250B1 (en) * 1999-10-11 2002-08-09 엘지전자 주식회사 fabrication method for micro passive element
KR100331226B1 (en) * 2000-02-23 2002-04-26 이상헌 microwave electric elements of using porous oxidized silicon pole
US7579553B2 (en) * 2000-07-27 2009-08-25 Fujitsu Limited Front-and-back electrically conductive substrate
KR100477547B1 (en) * 2002-08-09 2005-03-18 동부아남반도체 주식회사 Method for forming inductor of semiconductor device
CN100411135C (en) * 2004-05-05 2008-08-13 Atmel德国有限公司 Method for producing a spiral inductance on a substrate, and a device fabricated according to such a method
JP2009088163A (en) * 2007-09-28 2009-04-23 Fujitsu Media Device Kk Electronic component
JP2009146996A (en) * 2007-12-12 2009-07-02 Fujitsu Media Device Kk Electronic component
JP2020088058A (en) * 2018-11-20 2020-06-04 太陽誘電株式会社 Inductor, filter, and multiplexer

Also Published As

Publication number Publication date
JP3509362B2 (en) 2004-03-22

Similar Documents

Publication Publication Date Title
US6395637B1 (en) Method for fabricating a inductor of low parasitic resistance and capacitance
US20050124131A1 (en) Method of forming an inductor with continuous metal deposition
US5973910A (en) Decoupling capacitor in an integrated circuit
JP3509362B2 (en) Semiconductor device and manufacturing method thereof
JP2006512787A (en) Capacitor and manufacturing method thereof
US6383889B2 (en) Semiconductor device having improved parasitic capacitance and mechanical strength
US6177716B1 (en) Low loss capacitor structure
US5915188A (en) Integrated inductor and capacitor on a substrate and method for fabricating same
JP2003528469A (en) Die attachment and method
JP2002118173A (en) High capacitance damask capacitor
JPH10303474A (en) Low inductance superconducting integrated circuit, and its manufacture
US20010020731A1 (en) Semiconductor devices
JPH11330230A (en) Semiconductor device and its manufacture
JP4135564B2 (en) Semiconductor substrate and manufacturing method thereof
JP3164025B2 (en) Semiconductor integrated circuit device and method of manufacturing the same
KR100198804B1 (en) Manufacturing method of spiral inductor
KR100331226B1 (en) microwave electric elements of using porous oxidized silicon pole
JP2001223331A (en) Semiconductor device and manufacturing method therefor
KR100741874B1 (en) Method for Fabricating a MIM Capacitor
JPH10144552A (en) Forming method of thin film conducting pattern and thin film inductor using the method
JP2001339048A (en) Semiconductor device and its manufacturing method
US20020070453A1 (en) Semiconductor device and method of producing thereof
JPH1117108A (en) Mim capacitor, manufacture thereof, and high-frequency integrated circuit
JPH09162285A (en) Semiconductor device and manufacture thereof
KR100288776B1 (en) Inductor of a semiconductor device and method for fabricating the same

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20031216

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20031222

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20080109

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090109

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20100109

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20110109

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20120109

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20130109

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20130109

LAPS Cancellation because of no payment of annual fees