JPH09204611A - Magnetoresistance effect type head - Google Patents

Magnetoresistance effect type head

Info

Publication number
JPH09204611A
JPH09204611A JP1322896A JP1322896A JPH09204611A JP H09204611 A JPH09204611 A JP H09204611A JP 1322896 A JP1322896 A JP 1322896A JP 1322896 A JP1322896 A JP 1322896A JP H09204611 A JPH09204611 A JP H09204611A
Authority
JP
Japan
Prior art keywords
film
magnetic field
magnetic
head
magnetic film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1322896A
Other languages
Japanese (ja)
Inventor
Junichi Sugawara
淳一 菅原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP1322896A priority Critical patent/JPH09204611A/en
Publication of JPH09204611A publication Critical patent/JPH09204611A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a magnetoresistance effect type head in which a bias magnetic field is not affected by a sense current. SOLUTION: A soft magnetic film bias type magnetoresistance effect type head 10 has a magnetoresistance effect element 4 constituted by laminating a magnetic film 1 and a soft magnetic film 3 to hold a non-magnetic film 2 therebetween, thereby having a magnetoresistance effect and two shield members 11, 13 disposed on the upper and lower sides of the magnetoresistance effect element 4. In that case, when a distance between the magnetic film 1 having the magnetoresistance effect and one of the shield members 11 is expressed by g2 and a distance between the soft magnetic film 3 and the other shield member 13 is expressed by g3 , the values of g2 and g3 are set so as to satisfy 1.5×g2 <=g3 <=2×g2 within the range of g2 <=0.3μm.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、例えばハードディ
スク等の磁気記録媒体に用いて有用な磁気抵抗効果型ヘ
ッドに係わる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetoresistive head useful for a magnetic recording medium such as a hard disk.

【0002】[0002]

【従来の技術】近年、磁気記録の分野においては高記録
密度化がますます進み、記録媒体とともに磁気ヘッドに
おいても高記録密度化に対応することが強く求められて
おり、従来のバルクヘッドに代わり薄膜ヘッドが実用化
されてきた。
2. Description of the Related Art In recent years, in the field of magnetic recording, the recording density has been increasing more and more, and it is strongly demanded that the recording head as well as the recording medium be compatible with the recording density. Thin film heads have been put to practical use.

【0003】この薄膜ヘッドにおいても、より高密度化
に対応するため、記録動作を従来の誘導型薄膜ヘッドで
行い、再生動作を磁気抵抗効果を利用した磁気抵抗効果
型ヘッド(以下、MRヘッドとする)で行う記録再生分
離型磁気ヘッドが実用化され始めている。
Also in this thin film head, in order to cope with higher density, a recording operation is performed by a conventional inductive thin film head and a reproducing operation is performed by a magnetoresistive head (hereinafter referred to as an MR head). The recording / reproducing separated type magnetic head, which is described in (1) above, has been put to practical use.

【0004】通常、MRヘッドに用いられる磁気抵抗効
果素子(以下、MR素子とする)は、図6に示すよう
に、磁化容易軸方向Mk が素子の長手方向となるように
短冊状に加工した、一軸異方性を有する強磁性薄膜31
が用いられ、この強磁性薄膜31の長手方向の両端上に
形成した電極32を通じて、素子の長手方向に一定のセ
ンス電流Isが流される。このMR素子40の磁化困難
軸方向すなわち磁化容易軸方向に直交する方向に外部磁
界Hext が印加されると、磁化Mが回転されて、これに
より電気抵抗値が変化する。
Usually, a magnetoresistive effect element (hereinafter referred to as an MR element) used for an MR head is processed into a strip shape so that the easy magnetization axis direction M k becomes the longitudinal direction of the element, as shown in FIG. The ferromagnetic thin film 31 having uniaxial anisotropy
Is used, and a constant sense current Is is flowed in the longitudinal direction of the device through the electrodes 32 formed on both ends of the ferromagnetic thin film 31 in the longitudinal direction. When the external magnetic field H ext is applied in the direction of the hard axis of the MR element 40, that is, in the direction perpendicular to the easy axis of magnetization, the magnetization M is rotated, and the electric resistance value is changed accordingly.

【0005】このMR素子40の動作特性は次のように
説明される。図7にMR素子に印加される外部印加磁界
と抵抗との関係を示すように、外部印加磁界Hext の変
化により抵抗Rが変化し、外部印加磁界Hext が0のと
き抵抗Rが最大値R0 をとる。そして、抵抗Rの最大値
0 と最小値との差をΔRとし、ΔR/R0 を抵抗変化
率として、これにより磁気抵抗効果素子の特性値の1つ
としている。
The operating characteristics of the MR element 40 are explained as follows. As shown the relationship between the externally applied magnetic field and the resistance applied to the MR element in Figure 7, the resistance R is changed by a change in externally applied magnetic field H ext, resistor R is maximum when the external applied magnetic field H ext is 0 Take R 0 . The difference between the maximum value R 0 and the minimum value of the resistance R is ΔR, and ΔR / R 0 is the rate of resistance change, which is one of the characteristic values of the magnetoresistive effect element.

【0006】このような磁気抵抗効果素子を実際に用い
る場合には、図7に示すように、バイアス磁界Hb を印
加して、抵抗が最大の点R0 からずらした動作点Bにお
いて動作させる。そして、図7に示すように、外部印加
磁界Hext を動作点Bに相当する磁界Hb を中心とした
入力磁界信号波形により印加すれば、これに応じて抵抗
Rも変化し、図中右に示す出力波形が得られる。
When such a magnetoresistive effect element is actually used, as shown in FIG. 7, a bias magnetic field Hb is applied to operate at an operating point B where the resistance is deviated from the maximum point R 0 . . Then, as shown in FIG. 7, if the externally applied magnetic field H ext is applied by the input magnetic field signal waveform centered on the magnetic field H b corresponding to the operating point B, the resistance R also changes accordingly, and the right side in the figure. The output waveform shown in is obtained.

【0007】通常は、動作点Bにおいて、入力磁界信号
波形と出力波形とが線形の関係にあり、かつ同じ振幅の
入力磁界信号波形に対して、より大きな振幅の出力波形
が得られるように、バイアス磁界Hb の大きさが選定さ
れる。最も大きな振幅の出力波形が得られるのは、強磁
性薄膜の磁化Mの方向とセンス電流Isの方向とのなす
角度をθとするとき、θ=45°のときである。従っ
て、θ=45°となるように、バイアス磁界Hb を印加
するのが好ましい。
Usually, at the operating point B, the input magnetic field signal waveform and the output waveform have a linear relationship, and an output waveform having a larger amplitude can be obtained for an input magnetic field signal waveform having the same amplitude. The magnitude of the bias magnetic field Hb is selected. The output waveform having the largest amplitude is obtained when θ = 45 °, where θ is the angle between the direction of the magnetization M of the ferromagnetic thin film and the direction of the sense current Is. Therefore, it is preferable to apply the bias magnetic field H b so that θ = 45 °.

【0008】バイアス磁界Hb の付与の方法としては、
電流バイアス法、シャントバイアス法、バーバーポール
法、ハード膜バイアス法、ソフト膜(Soft Adjacent La
yer、以下SALとする。材料的には軟磁性膜に相当す
る)バイアス法等がこれまで提案されているが、構造が
単純で作製が容易で、かつ安定なバイアス磁界Hb が得
られることからSALバイアス法が主流となっている。
As a method of applying the bias magnetic field H b ,
Current bias method, shunt bias method, barber pole method, hard film bias method, soft film (Soft Adjacent La
yer, hereinafter SAL. A bias method and the like have been proposed so far (corresponding to a soft magnetic film in terms of material), but the SAL bias method is predominant because the structure is simple, the fabrication is easy, and a stable bias magnetic field H b can be obtained. Has become.

【0009】SALバイアス法のMR素子は、図8に概
略構成図を示すように、磁気抵抗効果を有するMR膜2
1と、これに隣接して非磁性の磁気的分離膜(非磁性
膜)22と軟磁性膜(SAL)23とが積層してMR素
子30が形成された構造を有し、MR素子30の上にセ
ンス電流Isを流すための電極24が形成されてなる。
The MR element of the SAL bias method has an MR film 2 having a magnetoresistive effect as shown in the schematic diagram of FIG.
1 and a non-magnetic magnetic separation film (non-magnetic film) 22 and a soft magnetic film (SAL) 23 which are adjacent thereto are laminated to form an MR element 30. An electrode 24 for passing the sense current Is is formed thereon.

【0010】そして、このMR素子30は、MR膜21
とSAL23との磁気的な結合を利用して、MR素子3
0に流れるセンス電流Isにより生じるセンス電流磁界
iによりSAL23を磁化し、その漏洩磁界によりバ
イアス磁界Hb を印加するものである。このときSAL
23の磁化Msの向きはセンス電流の方向に垂直な方向
となる。
The MR element 30 includes the MR film 21.
MR element 3 using the magnetic coupling between SAL23 and
The SAL 23 is magnetized by the sense current magnetic field H i generated by the sense current Is flowing in 0, and the bias magnetic field H b is applied by the leakage magnetic field. At this time SAL
The direction of the magnetization Ms of 23 is perpendicular to the direction of the sense current.

【0011】このMR素子30をMRヘッドに用いる場
合においては、MR膜21に印加されるバイアス磁界H
b が飽和した状態、すなわちSAL23が飽和した状態
で使用するため、SAL23は使用時のセンス電流Is
により飽和されるような磁気特性が要求される。
When the MR element 30 is used in an MR head, a bias magnetic field H applied to the MR film 21 is used.
Since b is used in a saturated state, that is, in a state in which SAL23 is saturated, SAL23 is a sense current Is during use.
Magnetic properties that are saturated by

【0012】また、SAL23にセンス電流Isが分流
すると、再生出力が低下するため、SAL23はMR膜
21に比して大きな抵抗率を有し、前述の抵抗変化率
(ΔR/R0 )はほぼ0であることが望ましい。
Further, when the sense current Is is shunted to the SAL 23, the reproduction output is lowered, so that the SAL 23 has a larger resistivity than the MR film 21, and the above-mentioned resistance change rate (ΔR / R 0 ) is almost the same. It is preferably 0.

【0013】MRヘッドには大別して、ノンシールド型
ヘッド、シールド型ヘッド、ヨーク型ヘッドの3種類が
ある。MR素子を軟磁性シールド部材にて挟持したシー
ルド型ヘッドは、ノンシールド型ヘッドに比べて周波数
特性が良好で高い分解能が得られる。さらに、シールド
型ヘッドは、ヨーク材で磁束をMR素子に導きMR素子
を非露出型としたヨーク型ヘッドに比べて再生出力が高
く作製が容易であることから広く実用化されている。
MR heads are roughly classified into three types: non-shield type heads, shield type heads, and yoke type heads. The shield type head in which the MR element is sandwiched by the soft magnetic shield members has better frequency characteristics and higher resolution than the non-shield type head. Further, the shield type head has been widely put into practical use because it has a high reproduction output and is easy to manufacture as compared with a yoke type head in which a magnetic flux is guided to an MR element by a yoke material and the MR element is not exposed.

【0014】[0014]

【発明が解決しようとする課題】MR素子を単独で用い
る場合には、上述のSALバイアス法を適用することに
より、安定したバイアス磁界Hb を得ることができる。
When the MR element is used alone, a stable bias magnetic field Hb can be obtained by applying the above-mentioned SAL bias method.

【0015】しかしながら、このSALバイアス法のM
R素子を、シールド型ヘッドに適用した場合には、一般
的に両シールド間の中央にMR素子が配置されるため、
センス電流Isによってできるセンス電流磁界Hi がシ
ールドを介してMR素子に印加され、バイアス磁界Hb
がセンス電流Isにより変化する。
However, the M of the SAL bias method is
When the R element is applied to a shield type head, the MR element is generally arranged in the center between both shields,
A sense current magnetic field H i generated by the sense current Is is applied to the MR element via the shield, and the bias magnetic field H b is applied.
Changes depending on the sense current Is.

【0016】この問題は、分解能を上げるために両シー
ルド間の距離gを狭くすると、より顕著になる。
This problem becomes more remarkable when the distance g between both shields is narrowed in order to improve the resolution.

【0017】上述した問題の解決のために、本発明にお
いては、バイアス磁界がセンス電流により影響されない
磁気抵抗効果型ヘッドを提供するものである。
In order to solve the above problems, the present invention provides a magnetoresistive head in which the bias magnetic field is not affected by the sense current.

【0018】[0018]

【課題を解決するための手段】本発明の磁気抵抗効果型
ヘッドは、非磁性膜を挟んで磁気抵抗効果を有する磁性
膜と軟磁性膜とが積層されてなる磁気抵抗効果素子と、
磁気抵抗効果素子の上下に配置された2つのシールド部
材とを有する軟磁性膜バイアス方式の磁気抵抗効果型ヘ
ッドにおいて、磁気抵抗効果を有する磁性膜と一方のシ
ールド部材との距離をg2 、軟磁性膜と他方のシールド
部材との距離をg3 とするとき、g2 ≦0.3μmの範
囲において、1.5×g2 ≦g3 ≦2×g2 を満たすよ
うにg2,g3 の値が選定されて成る構成をとるもので
ある。
A magnetoresistive head according to the present invention comprises a magnetoresistive element comprising a nonmagnetic film sandwiched between a magnetic film having a magnetoresistive effect and a soft magnetic film.
In a magnetoresistive head of a soft magnetic film bias system having two shield members arranged above and below the magnetoresistive element, the distance between the magnetic film having the magnetoresistive effect and one shield member is g 2 , Assuming that the distance between the magnetic film and the other shield member is g 3 , g 2 and g 3 should satisfy 1.5 × g 2 ≦ g 3 ≦ 2 × g 2 in the range of g 2 ≦ 0.3 μm. The value of is selected.

【0019】上述の本発明の構成によれば、1.5×g
2 ≦g3 ≦2×g2 とすることにより、g3 をg2 より
大きく、すなわち磁気抵抗効果を有する磁性膜の方を一
方のシールド部材に近く、軟磁性膜の方を他方のシール
ド部材から遠い配置として、これによりバイアス磁界の
センス電流依存性を低減することができる。
According to the above-mentioned constitution of the present invention, 1.5 × g
By setting 2 ≦ g 3 ≦ 2 × g 2 , g 3 is larger than g 2 , that is, the magnetic film having the magnetoresistive effect is closer to one shield member, and the soft magnetic film is the other shield member. With this arrangement, it is possible to reduce the dependency of the bias magnetic field on the sense current.

【0020】[0020]

【発明の実施の形態】図面を参照して本発明の磁気抵抗
効果型ヘッドの実施例について説明する。本発明のSA
Lバイアス方式の磁気抵抗効果型ヘッド(MRヘッド)
は、図1に示すように、軟磁性基板からなる下層シール
ド部材11の上に、磁気ギャップ膜12(第1の非磁性
絶縁膜12a)を介して、非磁性膜2を挟んでMR膜1
と軟磁性膜(SAL)3とが積層形成されてなるMR素
子4を有し、このMR素子4の上に軟磁性膜(SAL)
3の上にセンス電流Isを流すための電極5が形成さ
れ、これらMR素子4と電極5を覆って磁気ギャップ膜
12(第2の非磁性絶縁膜12b)が形成され、これを
覆って軟磁性基板からなる上層シールド部材13が形成
されてMRヘッド10を構成している。電極5は、MR
素子4の側面を覆って堆積され、この側面からMR膜1
との接続がなされる。磁気抵抗効果を感知するセンス電
流Isは、この電極5を通じてMR素子4にその長手方
向に平行に流される。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a magnetoresistive head of the present invention will be described with reference to the drawings. SA of the present invention
L-bias type magnetoresistive head (MR head)
As shown in FIG. 1, the MR film 1 is sandwiched on the lower shield member 11 made of a soft magnetic substrate with the magnetic gap film 12 (first non-magnetic insulating film 12a) interposed therebetween.
And a soft magnetic film (SAL) 3 are laminated to form an MR element 4, and the soft magnetic film (SAL) is formed on the MR element 4.
3, an electrode 5 for flowing a sense current Is is formed, a magnetic gap film 12 (second non-magnetic insulating film 12b) is formed so as to cover the MR element 4 and the electrode 5, and a magnetic gap film 12 is formed so as to cover the MR element 4 and the electrode 5. The MR shield 10 is formed by forming the upper shield member 13 made of a magnetic substrate. The electrode 5 is MR
The MR film 1 is deposited so as to cover the side surface of the element 4 and from this side surface.
Is connected with. A sense current Is for sensing the magnetoresistive effect is passed through the electrode 5 to the MR element 4 in parallel with its longitudinal direction.

【0021】そして、本例のMRヘッド10は、特に図
2に断面図を示すように、MR素子4と下層シールド部
材11との距離g2 が、g2 ≦0.3μmの範囲で、M
R素子4と上層シールド部材13との距離g3 に対し
て、1.5×g2 ≦g3 ≦2×g2 を満たすように、M
R素子4が両シールド部材11,13の中央からずらし
て配置形成された構造を有する。
As shown in the sectional view of FIG. 2, the MR head 10 of this embodiment has a distance M 2 between the MR element 4 and the lower shield member 11 in the range of g 2 ≦ 0.3 μm.
In order for the distance g 3 between the R element 4 and the upper shield member 13 to satisfy 1.5 × g 2 ≦ g 3 ≦ 2 × g 2 ,
The R element 4 has a structure in which it is arranged and formed so as to be displaced from the center of both shield members 11 and 13.

【0022】このようなSALバイアス方式のシールド
型MRヘッドでは、図3に示すように、センス電流Is
によってできる磁界(センス電流磁界)Hi により、3
つの磁界のループHi1,Hi2,Hi3が生じる。
In such a shield type MR head of the SAL bias system, as shown in FIG.
3 due to the magnetic field (sense current magnetic field) H i generated by
Two magnetic field loops H i1 , H i2 and H i3 occur.

【0023】このうち1つは、MR膜1→SAL3→M
R膜1というループHi1であるが、このループHi1はS
AL3が飽和してしまうとMR素子4にかかる磁界の強
さはほとんど変わらず、センス電流Isへの依存性はな
い。
One of these is MR film 1 → SAL3 → M
This is a loop H i1 called R film 1, but this loop H i1 is S
When AL3 is saturated, the strength of the magnetic field applied to the MR element 4 remains almost unchanged, and there is no dependence on the sense current Is.

【0024】残りの2つは、MR膜1→下層シールド部
材11または上層シールド部材13→MR膜1という下
層シールド部材11または上層シールド部材13を介す
るループHi2,Hi3である。下層シールド部材11およ
び上層シールド部材13は体積が大きいために飽和する
ことがない。
The remaining two are loops H i2 and H i3 through the lower shield member 11 or the upper shield member 13 of the MR film 1 → the lower shield member 11 or the upper shield member 13 → the MR film 1, respectively. The lower shield member 11 and the upper shield member 13 do not saturate because of their large volumes.

【0025】従って、通常SALバイアス方式のシール
ド型MRヘッドでは、これらのループHi2,Hi3によ
り、MR素子4にかかる磁界が前述のようにセンス電流
Isへの依存性を有している。
Therefore, in the shield type MR head of the normal SAL bias system, the magnetic field applied to the MR element 4 has a dependency on the sense current Is as described above due to these loops H i2 and H i3 .

【0026】両シールド部材11,13間の距離gが大
きい場合には、これらシールド部材11,13による影
響は少なく、従来のように両シールド部材11,13間
の中央にMR素子4を配置してもほとんど問題がない。
しかし、分解能を上げるために両シールド部材11,1
3間の距離gを小さくし、MR素子4と下層シールド部
材11との距離g2 またはMR素子4と上層シールド部
材13との距離g3 が小さくなると、シールド部材1
1,13の影響が大きくなる。
When the distance g between the shield members 11 and 13 is large, the effect of these shield members 11 and 13 is small, and the MR element 4 is arranged at the center between the shield members 11 and 13 as in the conventional case. But there is almost no problem.
However, in order to increase the resolution, both shield members 11, 1
The distance g between 3 and reduced, when the distance g 3 between the distance g 2 or MR element 4 and the upper shield member 13 with the MR element 4 and the lower shield member 11 is reduced, the shielding member 1
The influence of 1 and 13 becomes large.

【0027】図4に両シールド部材間の中央にMR素子
がある場合、すなわちg2 =g3 である場合の、センス
電流IsとMR素子の磁化Mとのなす角θのg2 依存性
を示す。図4より、g2 が0.3μmより大きい範囲で
はセンス電流Isが6〜14mAでθが45°±5°以
内の許容範囲内にあるが、g2 が0.3μm以下ではセ
ンス電流Isの増加に伴いθが大きくなって、バイアス
が過剰になってしまう。
[0027] If in FIG. 4 is an MR element in the middle between the two shield members, i.e. when it is g 2 = g 3, the g 2 dependence of the angle θ between the magnetization M of the sense current Is and the MR element Show. From FIG. 4, the sense current Is is 6 to 14 mA and θ is within the allowable range of 45 ° ± 5 ° in the range where g 2 is larger than 0.3 μm, but the sense current Is is smaller when g 2 is 0.3 μm or less. With the increase, θ becomes large and the bias becomes excessive.

【0028】次に、g2 を0.1μmに固定して、g3
を変えていった場合の角θのg3 依存性を図5に示す。
図5より、g3 が大きくなるに従いθは小さくなる。g
3 が0.15μm以下ではセンス電流Isが増えるとθ
も大きくなるが、g3 が0.2μm以上では、センス電
流Isが増えるとθは小さくなる。この間の0.15μ
m≦g3 ≦0.2μmでは、θのセンス電流Is依存性
は非常に小さい。ただし、θの値が25°〜30°と4
5°より幾分小さく、バイアス磁界Hb がやや過小であ
る。
Next, g 2 is fixed at 0.1 μm, and g 3
FIG. 5 shows the g 3 dependence of the angle θ when the angle is changed.
From FIG. 5, θ decreases as g 3 increases. g
When 3 is 0.15 μm or less, if the sense current Is increases, θ
However, when g 3 is 0.2 μm or more, θ decreases when the sense current Is increases. 0.15μ during this period
When m ≦ g 3 ≦ 0.2 μm, the dependence of θ on the sense current Is is very small. However, the value of θ is 25 ° to 30 ° and 4
Somewhat smaller than 5 °, the bias magnetic field H b is slightly too small.

【0029】通常、SALの飽和磁化がMR素子の飽和
磁化の1/√2(約71%)となるように設定すると、
θ=45°となるが、本実施例ではこの値よりもSAL
の飽和磁化を増やしてやる必要がある。g2 の値が変わ
ってもこの傾向はあり、1.5×g2 ≦g3 ≦2×g2
の範囲では、θのセンス電流Is依存性は非常に小さ
い。
Normally, when the saturation magnetization of SAL is set to be 1 / √2 (about 71%) of the saturation magnetization of the MR element,
θ = 45 °, but in this embodiment, SAL is larger than this value.
It is necessary to increase the saturation magnetization of. This tendency tends to occur even if the value of g 2 changes, and 1.5 × g 2 ≦ g 3 ≦ 2 × g 2
In the range of, the dependence of θ on the sense current Is is very small.

【0030】本実施例により、バイアス磁界Hb のセン
ス電流Is依存性が非常に小さくなり、安定したバイア
ス磁界Hb が得られる。
According to this embodiment, the dependency of the bias magnetic field Hb on the sense current Is is extremely reduced, and a stable bias magnetic field Hb can be obtained.

【0031】図1に示した本実施例の磁気抵抗効果型ヘ
ッド(MRヘッド)10の製造は、例えば次のようにし
て行うことができる。
The magnetoresistive head (MR head) 10 of this embodiment shown in FIG. 1 can be manufactured, for example, as follows.

【0032】まず、フェライト等の軟磁性材からなる基
板を用意し、これを下層シールド部材11とする。次に
下層シールド部材11である基板上に磁気ギャップ膜1
2となるAl2 3 ,SiO2 等の第1の非磁性絶縁膜
12aを形成する。この第1の非磁性絶縁膜12aの厚
さがg2 に相当する。このときg2 が0.3μm以下と
なるように形成する。
First, a base made of a soft magnetic material such as ferrite
A plate is prepared, and this is used as the lower shield member 11. next
The magnetic gap film 1 is formed on the substrate which is the lower shield member 11.
Al that becomes 2TwoO Three, SiOTwoFirst non-magnetic insulating film such as
12a is formed. Thickness of the first non-magnetic insulating film 12a
Is gTwoIs equivalent to At this time gTwoIs 0.3 μm or less
To be formed.

【0033】次に、これの上にスパッタなどにより、N
i−Fe等からなるMR膜1、Al 2 3 等からなる非
磁性膜2、Ni−Fe−Rh等からなるSAL3を順次
積層形成する。続いて、これの上に感光性レジスト材を
塗布し、露光・現像して、その後形成すべき、短冊形状
のMR素子4に対応するように短冊形状にパターニング
する。これをマスクとして用いて、イオンミリングによ
り、先に形成したMR膜1、非磁性膜2、SAL3から
なる積層膜にエッチング加工をして、短冊形状のMR素
子4を形成する。
Next, N is sputtered on this by sputtering or the like.
MR film 1 made of i-Fe, Al TwoOThreeNon-consisting of etc.
Magnetic film 2 and SAL3 consisting of Ni-Fe-Rh
Form a stack. Then, apply a photosensitive resist material on top of this.
Strip shape that should be applied, exposed and developed, and then formed
Patterned in strip shape corresponding to MR element 4
I do. Using this as a mask, ion milling
From the previously formed MR film 1, non-magnetic film 2 and SAL3
The laminated MR film is etched into a strip-shaped MR element.
Form the child 4.

【0034】次に、MR素子4の上に、感光性レジスト
材を塗布し、これを電極5の形状にパターニングする。
このとき、電極5が形成される領域のみレジストがない
ようにする。これを用いてTi,Cu等の導体膜をスパ
ッタ等により成膜する。その後、ケトン系有機溶剤(ア
セトン等)によりレジストを溶解除去し、レジスト上の
導体膜を剥離することにより電極5を形成する。
Next, a photosensitive resist material is applied on the MR element 4 and patterned into the shape of the electrode 5.
At this time, there is no resist only in the region where the electrode 5 is formed. Using this, a conductor film of Ti, Cu or the like is formed by sputtering or the like. After that, the resist is dissolved and removed with a ketone organic solvent (acetone or the like), and the conductor film on the resist is peeled off to form the electrode 5.

【0035】次に、これの上に磁気ギャップ膜12とな
るAl2 3 ,SiO2 等の第2の非磁性絶縁膜12b
をスパッタ等により形成する。この第2の非磁性絶縁膜
12bの厚さがg3 に相当する。このとき、g3 が1.
5×g2 ≦g3 ≦2×g2 を満たすようにする。
Next, a second non-magnetic insulating film 12b such as Al 2 O 3 or SiO 2 to be the magnetic gap film 12 is formed thereon.
Are formed by sputtering or the like. The thickness of the second nonmagnetic insulating film 12b corresponds to g 3 . At this time, g 3 is 1.
5 × g 2 ≦ g 3 ≦ 2 × g 2 is satisfied.

【0036】そして、これの上にフェライトなどの軟磁
性基板を接着剤により貼り合わせ、これを上層シールド
部材13とする。こうして形成した薄膜ヘッドを各ヘッ
ドチップ毎に切断した後、記録媒体との摺動面となる面
を研磨してMR素子4を摺動面に露出させる。以上の工
程を経て、MRヘッド10が完成する。
Then, a soft magnetic substrate made of ferrite or the like is bonded onto this with an adhesive to form the upper shield member 13. After the thin film head thus formed is cut into individual head chips, the surface to be the sliding surface with respect to the recording medium is polished to expose the MR element 4 to the sliding surface. The MR head 10 is completed through the above steps.

【0037】上述の実施例およびその製造工程では、M
Rヘッド10においてそのMR素子4を、MR膜1,非
磁性膜2,軟磁性膜3の順序に積層形成した構成であっ
たが、各層を軟磁性膜,非磁性膜,MR膜の順序に積層
形成する構成としても、同様に本発明のMRヘッドを構
成することができる。この場合も、MR素子と上下のシ
ールド部材との位置関係が、前述のg2 ,g3 の関係式
を満たすようにすることにより、センス電流の影響を受
けることなく安定したバイアス磁界が得られる。
In the above-mentioned embodiment and its manufacturing process, M
In the R head 10, the MR element 4 has a structure in which the MR film 1, the non-magnetic film 2 and the soft magnetic film 3 are laminated in this order, but each layer is formed in the order of the soft magnetic film, the non-magnetic film and the MR film. The MR head of the present invention can be similarly configured even when the MR heads are laminated. Also in this case, by making the positional relationship between the MR element and the upper and lower shield members satisfy the above relational expression of g 2 and g 3, a stable bias magnetic field can be obtained without being affected by the sense current. .

【0038】本発明の磁気抵抗効果型ヘッドは、上述の
実施例に限定されるものではなく、本発明の要旨を逸脱
しない範囲でその他様々な構成が取り得る。
The magnetoresistive head of the present invention is not limited to the above-mentioned embodiment, and various other structures can be adopted without departing from the gist of the present invention.

【0039】[0039]

【発明の効果】上述の本発明による磁気抵抗効果型ヘッ
ドによれば、バイアス磁界がセンス電流の影響を受ける
ことがほとんどなく、安定したバイアス磁界が得られ
る。従って本発明により、動作特性が安定して良好な磁
気抵抗効果型ヘッドを構成することができる。
According to the magnetoresistive head of the present invention described above, the bias magnetic field is hardly affected by the sense current, and a stable bias magnetic field can be obtained. Therefore, according to the present invention, a magnetoresistive head having stable operation characteristics and good performance can be constructed.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の磁気抵抗効果型ヘッドの一例の概略構
成図である。
FIG. 1 is a schematic configuration diagram of an example of a magnetoresistive head of the present invention.

【図2】本発明の磁気抵抗効果型ヘッドの一例の概略断
面図である。
FIG. 2 is a schematic sectional view of an example of a magnetoresistive head of the present invention.

【図3】磁気抵抗効果型ヘッドにおけるセンス電流によ
ってできる磁界を説明する図である。
FIG. 3 is a diagram illustrating a magnetic field generated by a sense current in a magnetoresistive head.

【図4】センス電流の向きとMR素子の磁化の向きとの
なす角度とg2 との関係を示す図である。
FIG. 4 is a diagram showing a relationship between an angle formed by a direction of a sense current and a direction of magnetization of an MR element and g 2 .

【図5】センス電流の向きとMR素子の磁化の向きとの
なす角度とg3 との関係を示す図である。
FIG. 5 is a diagram showing a relationship between an angle formed by a sense current direction and a magnetization direction of the MR element and g 3 .

【図6】従来のMR素子の概略構成図である。FIG. 6 is a schematic configuration diagram of a conventional MR element.

【図7】MR素子における外部印加磁界と抵抗との関係
および動作特性を示す図である。
FIG. 7 is a diagram showing a relationship between an externally applied magnetic field and a resistance and operation characteristics in the MR element.

【図8】SALバイアス法によるMR素子の概略構成図
である。
FIG. 8 is a schematic configuration diagram of an MR element by a SAL bias method.

【符号の説明】[Explanation of symbols]

1、21 MR膜 2、22 非磁性膜 3、23 軟磁性膜(SAL) 4、30、40 MR素子 5、24、32 電極 10 MRヘッド 11 下層シールド部材 12 磁気ギャップ膜 12a 第1の非磁性絶縁膜 12b 第2の非磁性絶縁膜 13 上層シールド部材 31 強磁性薄膜 Is センス電流 Hi センス電流磁界 Hb バイアス磁界 M 磁化 Mk 磁化容易軸方向 Hext 外部印加磁界1, 21 MR film 2, 22 Non-magnetic film 3, 23 Soft magnetic film (SAL) 4, 30, 40 MR element 5, 24, 32 Electrode 10 MR head 11 Lower shield member 12 Magnetic gap film 12a First non-magnetic Insulating film 12b Second non-magnetic insulating film 13 Upper shield member 31 Ferromagnetic thin film Is Sense current H i Sense current magnetic field H b Bias magnetic field M Magnetization M k Magnetization easy axis direction H ext Externally applied magnetic field

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 非磁性膜を挟んで磁気抵抗効果を有する
磁性膜と軟磁性膜とが積層されてなる磁気抵抗効果素子
と、 上記磁気抵抗効果素子の上下に配置された2つのシール
ド部材とを有する軟磁性膜バイアス方式の磁気抵抗効果
型ヘッドにおいて、 上記磁気抵抗効果を有する磁性膜と上記一方のシールド
部材との距離をg2 、 上記軟磁性膜と上記他方のシールド部材との距離をg3
とするとき、 g2 ≦0.3μmの範囲において、1.5×g2 ≦g3
≦2×g2 を満たすようにg2 ,g3 の値が選定されて
成ることを特徴とする磁気抵抗効果型ヘッド。
1. A magnetoresistive effect element comprising a nonmagnetic film sandwiched between a magnetic film having a magnetoresistive effect and a soft magnetic film, and two shield members disposed above and below the magnetoresistive effect element. In the magnetoresistive head of the soft magnetic film bias system having the following, the distance between the magnetic film having the magnetoresistive effect and the one shield member is g 2 , and the distance between the soft magnetic film and the other shield member is g 3
In the range of g 2 ≦ 0.3 μm, 1.5 × g 2 ≦ g 3
A magnetoresistive head, wherein the values of g 2 and g 3 are selected so as to satisfy ≦ 2 × g 2 .
JP1322896A 1996-01-29 1996-01-29 Magnetoresistance effect type head Pending JPH09204611A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1322896A JPH09204611A (en) 1996-01-29 1996-01-29 Magnetoresistance effect type head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1322896A JPH09204611A (en) 1996-01-29 1996-01-29 Magnetoresistance effect type head

Publications (1)

Publication Number Publication Date
JPH09204611A true JPH09204611A (en) 1997-08-05

Family

ID=11827332

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1322896A Pending JPH09204611A (en) 1996-01-29 1996-01-29 Magnetoresistance effect type head

Country Status (1)

Country Link
JP (1) JPH09204611A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6061210A (en) * 1997-09-22 2000-05-09 International Business Machines Corporation Antiparallel pinned spin valve with high magnetic stability

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6061210A (en) * 1997-09-22 2000-05-09 International Business Machines Corporation Antiparallel pinned spin valve with high magnetic stability

Similar Documents

Publication Publication Date Title
US5898546A (en) Magnetoresistive head and magnetic recording apparatus
JPH1091920A (en) Magneto-resistance effect type head
US5959809A (en) Magnetoresistive head and method of manufacturing the same and magnetic recording apparatus
JPS6275924A (en) Unified thin film magnetic head
JPH09204611A (en) Magnetoresistance effect type head
EP0482642B1 (en) Composite magnetoresistive thin-film magnetic head
JP2002216317A (en) Thin film magnetic recording head and its manufacturing method
JPH09270105A (en) Thin film magnetic head and its production
JPS6032885B2 (en) thin film magnetic head
JP2000076629A (en) Magnetoresistive effect type head, its manufacture and magnetic storage device
JPS61134913A (en) Magnetoresistance type thin film head
JPS63129511A (en) Magnetoresistance effect type thin film magnetic head
JP2755186B2 (en) Magnetoresistive head
JP2001250205A (en) Thin film magnetic head and of its manufacturing method
JPS63138515A (en) Thin film magnetic head and its reproduction system
JPS6371914A (en) Reproducing head
JP2001084531A (en) Magnetoresistance effect type thin film magnetic head
JPH05242433A (en) Magnetic head
JPS6050607A (en) Vertical magnetic recording and reproducing head
JP2000285423A (en) Thin film magnetic head
JPH08203033A (en) Magnetoresistance effect head
JPS58185019A (en) Magneto-resistance effect type head
JPH03189914A (en) Magneto-resistance effect type head
JPH06119620A (en) Magneto-resistance effect head
JP2001067624A (en) Magnetic head and its production