JPH09203609A - Distance measuring circuit using cmos structure - Google Patents

Distance measuring circuit using cmos structure

Info

Publication number
JPH09203609A
JPH09203609A JP3009396A JP3009396A JPH09203609A JP H09203609 A JPH09203609 A JP H09203609A JP 3009396 A JP3009396 A JP 3009396A JP 3009396 A JP3009396 A JP 3009396A JP H09203609 A JPH09203609 A JP H09203609A
Authority
JP
Japan
Prior art keywords
current
signal
pair
light
transistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP3009396A
Other languages
Japanese (ja)
Inventor
Seisuke Matsuda
成介 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP3009396A priority Critical patent/JPH09203609A/en
Publication of JPH09203609A publication Critical patent/JPH09203609A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Measurement Of Optical Distance (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent a light projecting time from being increased and to prevent a current in a light projection section from being increased by a constitution in which a signal current is amplified by utilizing a current amplifying operation of an NPN transistor. SOLUTION: A light of an LED is projected to an object 2 of which distance is measured from a light projection section 1 and the reflection light is received by a PSD (semiconductor position detection element) 4 so that a pair of signal currents corresponding to the distance of the object 2 are outputted. The pair of signal currents are inputted to base terminals of PNP transistor 21, 121 for amplifying the currents to obtain a pair of signal amplified currents amplified by current amplification factor from emitter terminals. The pair of amplified currents are inputted to respective emitter terminals of two parasitic PNP transistor 41, 141 for signal compression in a MOS structure. An emitter voltage difference of the transistors 41, 141 is determined by a ratio if signal currents outputted from output terminals 5, 6 of the PSD. A relationship of the emitter voltage difference and the distance to the object 2 is obtained beforehand to be saved to a calculation section 7. Thereby, the distance to the object 2 is obtained in accordance with the emitter voltage difference of the transistors 41, 141.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、CMOS構造に
形成された寄生トランジスタを利用した対数圧縮回路な
どを用いたアクティブ型測距回路に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an active distance measuring circuit using a logarithmic compression circuit using a parasitic transistor formed in a CMOS structure.

【0002】[0002]

【従来の技術】距離を測定するには、発光ダイオード
(LED)の光をレンズで集光させた指向性の強い光束
を測距対象物に投光し、その反射光をLEDより一定の
基線長だけ光軸と直角方向に離れた場所に設置された半
導体位置検出素子(PSD)で受光し、その受光位置に
従った出力電流から測距対象物までの距離を検出するア
クティブ三角測距方式が、一般的に用いられている。
2. Description of the Related Art In order to measure a distance, a light beam having a strong directivity obtained by condensing light from a light emitting diode (LED) with a lens is projected onto an object to be measured, and the reflected light is fixed by a fixed baseline from the LED. An active triangulation method that detects the distance from the output current according to the light receiving position to the distance measuring object by receiving light with a semiconductor position detection element (PSD) installed at a place that is separated from the optical axis by a length Is commonly used.

【0003】図2は、特開平6−347263号に示さ
れているCMOS構造に形成された寄生トランジスタを
利用した測距回路を示す図である。この測距回路の構成
を説明する前に、まず、CMOS構造に生じる寄生トラ
ンジスタに関し、P型基板を用いた場合について図3を
用いて説明する。P型基板を用いたCMOS構造では、
図3に示すようにPMOSトランジスタのドレイン・ソ
ース領域のP+ 拡散層がエミッタに、PMOSトランジ
スタのN−Well 層がベースに、P型基板がコレクタに
なる寄生PNPトランジスタが生じる。この寄生PNP
トランジスタは、電流増幅率βが20程度と小さく、コレ
クタが最低電位に固定されているという制約をもってい
る。
FIG. 2 is a diagram showing a distance measuring circuit utilizing a parasitic transistor formed in a CMOS structure disclosed in Japanese Patent Laid-Open No. 6-347263. Before describing the configuration of this distance measuring circuit, first, regarding a parasitic transistor occurring in a CMOS structure, a case of using a P-type substrate will be described with reference to FIG. In the CMOS structure using the P-type substrate,
As shown in FIG. 3, a parasitic PNP transistor is formed in which the P + diffusion layer in the drain / source region of the PMOS transistor serves as the emitter, the N-Well layer of the PMOS transistor serves as the base, and the P-type substrate serves as the collector. This parasitic PNP
The transistor has a current amplification factor β as small as about 20 and has a constraint that the collector is fixed at the lowest potential.

【0004】図2に示した測距回路は、測距対象物2に
LEDの光パルスを投光する投光部1と、その反射光を
レンズ3を通して受光し、受光位置に応じた1対の電流
成分を出力する半導体位置検出素子(PSD)4と、回
路に電力を供給する電源電位15及び接地電位16と、それ
ぞれがPMOSトランジスタ61〜62,NMOSトランジ
スタ63,抵抗64〜65,電流源66〜68及びPMOSトラン
ジスタ161 〜162 ,NMOSトランジスタ163 ,抵抗16
4 〜165 ,電流源166 〜168 からなり、PSD出力端子
5及び6の電位をそれぞれVDD−VGS(61)及びVDD−V
GS(161) に固定する帰還部11及び12と、NMOSトラン
ジスタ63及び163 と同一のNMOSトランジスタを100
個並列接続することにより、PSD出力端子5及び6よ
り出力される信号電流を100 倍に増幅する電流増幅用N
MOSトランジスタ71及び171 と、増幅電流をエミッタ
に流し込み対数圧縮電圧を得るMOS構造に形成された
信号圧縮用寄生PNPトランジスタ41及び141 と、信号
圧縮用寄生PNPトランジスタ41及び141 のエミッタに
付加される寄生容量42及び142 と、オペアンプ51,基準
電位用寄生PNPトランジスタ52,電流源53,NMOS
トランジスタ54,ホールド容量55,抵抗56,スイッチ57
及びオペアンプ151 ,基準電位用寄生PNPトランジス
タ152 ,電流源153 ,NMOSトランジスタ154 ,ホー
ルド容量155,抵抗156 ,スイッチ157 からなりPSD
出力端子5及び6より出力される背景光成分を除去する
ための背景光除去部13及び14と、信号圧縮用寄生PNP
トランジスタ41と141 のそれぞれのエミッタ電位を入力
端子8及び9に入力し出力端子10より距離情報を算出す
る演算部7とから構成されている。なお、VDDは電源電
位15の値、VGS(61)及びVGS(161) はPMOSトランジ
スタ61及び161 のゲート・ソース間電圧である。
The distance measuring circuit shown in FIG. 2 receives a reflected light through a lens 3 and a light projecting portion 1 for projecting an LED light pulse onto a distance measuring object 2 and a pair corresponding to a light receiving position. Position detecting element (PSD) 4 for outputting the current component of the power source, power source potential 15 and ground potential 16 for supplying power to the circuit, and PMOS transistors 61 to 62, NMOS transistors 63, resistors 64 to 65, current sources, respectively. 66-68 and PMOS transistors 161-162, NMOS transistor 163, resistor 16
4 to 165 and current sources 166 to 168, and sets the potentials of the PSD output terminals 5 and 6 to V DD -V GS (61) and V DD -V, respectively.
The feedback sections 11 and 12 fixed to GS (161) and the same NMOS transistor as the NMOS transistors 63 and 163 are 100 transistors.
N for current amplification that amplifies the signal current output from PSD output terminals 5 and 6 by 100 times by connecting in parallel
The MOS transistors 71 and 171 are added to the emitters of the signal-compressing parasitic PNP transistors 41 and 141, which are formed in a MOS structure for flowing an amplified current into the emitter to obtain a logarithmic compression voltage. Parasitic capacitors 42 and 142, operational amplifier 51, reference potential parasitic PNP transistor 52, current source 53, NMOS
Transistor 54, Hold capacity 55, Resistor 56, Switch 57
And an operational amplifier 151, a reference potential parasitic PNP transistor 152, a current source 153, an NMOS transistor 154, a hold capacitor 155, a resistor 156, and a switch 157.
Background light removing sections 13 and 14 for removing background light components output from the output terminals 5 and 6, and a signal compression parasitic PNP.
It comprises an arithmetic unit 7 which inputs the emitter potentials of the transistors 41 and 141 to input terminals 8 and 9 and calculates distance information from an output terminal 10. Note that V DD is the value of the power supply potential 15, and V GS (61) and V GS (161) are the gate-source voltages of the PMOS transistors 61 and 161.

【0005】ここで、帰還部11と電流増幅用NMOSト
ランジスタ71と信号圧縮用寄生PNPトランジスタ41と
寄生容量42と背景光除去部13から構成されPSD出力端
子5からの信号電流を処理する部分をAch側とし、帰還
部12と電流増幅用NMOSトランジスタ171 と信号圧縮
用寄生PNPトランジスタ141 と寄生容量142 と背景光
除去部14から構成されPSD出力端子6からの信号電流
を処理する部分をBch側とする。Ach側とBch側の動作
は全く等しいので、Ach側を例にして動作説明を行う。
Here, the feedback section 11, the current amplification NMOS transistor 71, the signal compression parasitic PNP transistor 41, the parasitic capacitance 42, and the background light removing section 13 are used to process the signal current from the PSD output terminal 5. On the Bch side, the Ach side is defined and the feedback unit 12, the current amplification NMOS transistor 171, the signal compression parasitic PNP transistor 141, the parasitic capacitance 142, and the background light removal unit 14 are used to process the signal current from the PSD output terminal 6. And The operations on the Ach side and the Bch side are exactly the same, so the operation will be described using the Ach side as an example.

【0006】始めに、測距対象物2にLED光を投光す
る前に、スイッチ57を閉じて、オペアンプ51の+端子を
−端子と等しい電位にするような帰還回路を構成する。
これにより、信号圧縮用寄生PNPトランジスタ41には
電流源53と等しい電流しか流れ込まないようになり、P
SD出力端子5から出力される電流に含まれる背景光成
分電流ICONT(A) (不要な電流)をNMOSトランジス
タ54のドレインより吸い込む。このような構成の帰還回
路において、オペアンプ51の+端子の電位が−端子の電
位より高い場合、オペアンプ51の出力は上昇するから、
NMOSトランジスタ54のコレクタより多くの電流を吸
い込むようになる。そのため、NMOSトランジスタ63
に流れ込む電流が小さくなり、それにつれて信号圧縮用
寄生PNPトランジスタ41に流れ込む電流も小さくな
り、オペアンプ51の+端子の電位は低下する。オペアン
プ51の+端子の電位が−端子の電位より低くなった場合
には、全く逆の動作となる。このように、信号圧縮用寄
生PNPトランジスタ41に電流源53と等しい電流が流れ
るように帰還がかかる。
First, before the LED light is projected onto the object 2 to be measured, the switch 57 is closed to form a feedback circuit for setting the + terminal of the operational amplifier 51 to the same potential as the-terminal.
As a result, only a current equal to that of the current source 53 flows into the signal compression parasitic PNP transistor 41, and P
The background light component current I CONT (A) (unnecessary current) included in the current output from the SD output terminal 5 is absorbed from the drain of the NMOS transistor 54. In the feedback circuit having such a configuration, when the positive terminal of the operational amplifier 51 has a higher potential than the negative terminal, the output of the operational amplifier 51 rises.
It will draw more current than the collector of the NMOS transistor 54. Therefore, the NMOS transistor 63
The current flowing into the signal compressing parasitic PNP transistor 41 also decreases and the potential of the + terminal of the operational amplifier 51 decreases. When the potential of the + terminal of the operational amplifier 51 becomes lower than the potential of the-terminal, the operation is completely reversed. In this way, feedback is applied so that the same current as the current source 53 flows through the signal compression parasitic PNP transistor 41.

【0007】ここで、電流増幅用NMOSトランジスタ
71にはNMOSトランジスタ63の100 倍の電流が流れ、
NMOSトランジスタ63と電流増幅用NMOSトランジ
スタ71の電流和が、電流源53と電流源68の電流和と等し
くなるから、電流源53と電流源68の電流値をそれぞれI
BIAS(53)とIBIAS(68)とすれば、このときのNMOSト
ランジスタ63のドレイン電流ID(63) は、次式(1)で
表される。 ID(63) =IBIAS(53)/101 +IBIAS(68)/101 ・・・・・・・・(1)
Here, an NMOS transistor for current amplification
A current 100 times that of the NMOS transistor 63 flows through 71,
Since the current sum of the NMOS transistor 63 and the current amplification NMOS transistor 71 becomes equal to the current sum of the current source 53 and the current source 68, the current values of the current source 53 and the current source 68 are respectively I
Assuming that BIAS (53) and I BIAS (68) , the drain current I D (63) of the NMOS transistor 63 at this time is expressed by the following equation (1). I D (63) = I BIAS (53) / 101 + I BIAS (68) / 101 ・ ・ ・ ・ ・ ・ (1)

【0008】この動作は背景光除去動作と呼ばれ、背景
光成分電流に埋もれた微少な信号電流を正確に検出する
ために行う。なぜなら、測距対象物2に光パルスを投光
した時に、PSD出力端子5から出力される信号電流I
SIG(A)が1nA〜1μA程度なのに対し、周囲が明るい
場合の背景光成分電流ICONT(A) は数μAと大きく、背
景光除去動作をしない場合、微少な信号電流ISIG(A)
背景光成分電流ICONT(A) に埋もれて検出不可能となる
からである。なお、微少な信号電流ISIG(A)を検出する
ため、電流源53はPSD出力端子5から出力される最小
信号電流(〜1nA)の10倍(10nA)以下とするのが
望ましい。このとき、PSD出力端子5は、PMOSト
ランジスタ61〜62,NMOSトランジスタ63,抵抗64〜
65,電流源66〜68により一定値(VDD−VGS(61))に保
つように帰還がかかっている。なお、VDDは電源電位15
の値、VGS(61)はPMOSトランジスタ61のゲート・ソ
ース間電圧である。
This operation is called a background light removing operation, and is performed in order to accurately detect the minute signal current buried in the background light component current. This is because the signal current I output from the PSD output terminal 5 when a light pulse is projected on the object 2 to be measured.
Whereas SIG (A) is about 1 nA to 1 μA, the background light component current I CONT (A) when the surroundings are bright is large at several μA, and the minute signal current I SIG (A) is large when the background light removal operation is not performed. This is because it is buried in the background light component current I CONT (A) and cannot be detected. In order to detect the minute signal current I SIG (A) , the current source 53 is preferably 10 times (10 nA) or less than the minimum signal current (˜1 nA) output from the PSD output terminal 5. At this time, the PSD output terminal 5 has the PMOS transistors 61 to 62, the NMOS transistor 63, and the resistor 64 to.
Feedback is applied by 65 and current sources 66 to 68 so as to maintain a constant value (V DD -V GS (61) ). V DD is the power supply potential of 15
, V GS (61) is the gate-source voltage of the PMOS transistor 61.

【0009】次に、スイッチ57を開にすると同時に測距
対象物2に投光部1よりLED光を投光し、測距対象物
2からの反射光をPSD4で受光する信号検出動作を行
う。ここで、NMOSトランジスタ54のゲート電位は、
ホールド容量55によりスイッチ57が閉の場合の状態に保
持されるため、スイッチ57を開にしても、NMOSトラ
ンジスタ54のドレインが吸い込む電流には変化がなく、
背景光成分電流ICONT(A) を継続して吸い込む。よっ
て、PSD出力端子5から出力される信号成分の電流I
SIG(A)は、全てNMOSトランジスタ63のドレインに流
れ込む。
Next, the switch 57 is opened, and at the same time, the LED light is projected onto the object to be measured 2 from the light projecting portion 1, and the reflected light from the object to be measured 2 is received by the PSD 4 to perform a signal detection operation. . Here, the gate potential of the NMOS transistor 54 is
Since the hold capacitor 55 holds the switch 57 in the closed state, the current drawn by the drain of the NMOS transistor 54 does not change even when the switch 57 is opened.
The background light component current I CONT (A) is continuously absorbed. Therefore, the current I of the signal component output from the PSD output terminal 5
All SIG (A) flows into the drain of the NMOS transistor 63.

【0010】このとき、信号検出動作時のNMOSトラ
ンジスタ63のドレイン電流ID(63)は、次式(2)で示
すようになり、右辺第1項のISIG(A)分だけ増加する。 ID(63) =ISIG(A)+IBIAS(53)/101 +IBIAS(68)/101 ・・・・(2) したがって、背景光除去動作時に比較して電流増幅用N
MOSトランジスタ71のドレイン電流ID(71) も、100
×ISIG(A)分だけ増加する。よって、信号圧縮用寄生P
NPトランジスタ41のエミッタには、NMOSトランジ
スタ63に入力された信号電流ISIG(A)と電流増幅用NM
OSトランジスタ71で増幅された増幅電流100 ×I
SIG(A)の和101 ×ISIG(A)が流れ込み、信号圧縮用寄生
PNPトランジスタ41のエミッタ電位VE(41) を上昇さ
せる。なお、電流増幅用NMOSトランジスタ71の数に
より、検出できる信号電流の最小値が決まる。
At this time, the drain current I D (63) of the NMOS transistor 63 at the time of the signal detection operation becomes as shown by the following equation (2) and increases by I SIG (A) of the first term on the right side. I D (63) = I SIG (A) + I BIAS (53) / 101 + I BIAS (68) / 101 (2) Therefore, N for current amplification is compared with the background light removal operation.
The drain current ID (71) of the MOS transistor 71 is also 100
× I SIG (A) increments. Therefore, the signal compression parasitic P
The signal current I SIG (A) input to the NMOS transistor 63 and the current amplifying NM are applied to the emitter of the NP transistor 41.
Amplified current 100 × I amplified by OS transistor 71
The sum of SIG (A) 101 × I SIG (A) flows in to raise the emitter potential V E (41) of the signal compression parasitic PNP transistor 41. The minimum value of the signal current that can be detected is determined by the number of current amplification NMOS transistors 71.

【0011】ここで、Ach側とBch側に出力される信号
電流をそれぞれISIG(A)とISIG(B)とすると、信号圧縮
用寄生PNPトランジスタ41と141 のエミッタ電位差Δ
SIG は、次式(3),(4)より次式(5)で表され
る。 VE(41) =VT ln{(101 ×ISIG(A)+IBIAS(53))/IS }・・・(3) VE(141)=VT ln{(101 ×ISIG(B)+IBIAS(153) )/IS }・・(4) ΔVSIG =VE(41) −VE(141) =VT ln{(101 ×ISIG(A)+IBIAS(53)) /(101 ×ISIG(B)+IBIAS(153) )} ・・・・・・・(5) ここで、IBIAS(53)<101 ×ISIG(A)及びIBIAS(153)
<101 ×ISIG(B),IBIAS(53)=IBIAS(153) と仮定す
れば、ΔVSIG はPSD出力端子5及び6から出力され
る信号電流の比ISIG(A)/ISIG(B)(PSDの受光位
置)で一意に決まる。但し、VT は熱起電力で、IS
飽和電流である。
Assuming that the signal currents output to the Ach side and the Bch side are I SIG (A) and I SIG (B) , respectively, the emitter potential difference Δ between the signal compression parasitic PNP transistors 41 and 141 is Δ.
V SIG is represented by the following equation (5) from the following equations (3) and (4). V E (41) = V T ln {(101 × I SIG (A) + I BIAS (53) ) / I S } ... (3) V E (141) = V T ln {(101 × I SIG ( B) + I BIAS (153) ) / I S } ... (4) ΔV SIG = V E (41) −V E (141) = V T ln {(101 × I SIG (A) + I BIAS (53) ) / (101 × I SIG (B) + I BIAS (153) )} (5) where I BIAS (53) <101 × I SIG (A) and I BIAS (153)
Assuming that <101 × I SIG (B) , I BIAS (53) = I BIAS (153) , ΔV SIG is the ratio of signal currents I SIG (A) / I SIG output from the PSD output terminals 5 and 6. (B) Uniquely determined by (PSD light receiving position). However, V T is a thermoelectromotive force and I S is a saturation current.

【0012】以上より、エミッタ電位差ΔVSIG と測距
対象物までの距離との関係を予め求めておき、演算部7
にセーブしておけば、信号圧縮用寄生PNPトランジス
タ41と141 のエミッタ電位差ΔVSIG により、測距対象
物までの距離を知ることができる。更に、測距精度を上
げるため背景光除去動作と信号検出動作を1セットにし
て100 セット前後の測距を行い、平均値をとることが一
般的に行われている。
From the above, the relationship between the emitter potential difference ΔV SIG and the distance to the object to be measured is obtained in advance, and the calculation unit 7
If saved, the distance to the object to be measured can be known from the emitter potential difference ΔV SIG between the signal compression parasitic PNP transistors 41 and 141. Further, in order to improve the distance measurement accuracy, it is general to perform the distance measurement for about 100 sets with the background light removal operation and the signal detection operation as one set and take the average value.

【0013】[0013]

【発明が解決しようとする課題】しかし、図2に示した
従来の測距回路では、信号電流を増幅するため信号圧縮
用寄生PNPトランジスタ41及び141 のエミッタ端子
に、多数のNMOSトランジスタ71及び171 が接続され
るため、大きな寄生容量42及び142 が付加される。した
がって、PSD出力端子5及び6から出力される信号電
流が微少な場合には、寄生容量42及び142 を充電するの
に時間がかかり、信号圧縮用寄生PNPトランジスタ41
及び141 のエミッタ電位の応答性が非常に悪くなる。応
答性の悪さは、投光部1からの(LED)投光時間の増
大を意味し、投光部1でのLEDに対する大電流導通時
間の増大(過負荷)と投光部1での消費電流の増大及び
測距時間の増大を招く。一方、これらの問題を避けるた
めに投光回数を減少させると、測距精度の低下を招く。
However, in the conventional distance measuring circuit shown in FIG. 2, a large number of NMOS transistors 71 and 171 are provided at the emitter terminals of the signal compression parasitic PNP transistors 41 and 141 in order to amplify the signal current. Are connected, large parasitic capacitances 42 and 142 are added. Therefore, when the signal current output from the PSD output terminals 5 and 6 is very small, it takes time to charge the parasitic capacitances 42 and 142, and the signal compression parasitic PNP transistor 41.
And 141 the emitter potential response is very poor. Poor responsiveness means an increase in (LED) light projecting time from the light projecting unit 1, an increase in large current conduction time for the LED in the light projecting unit 1 (overload), and consumption in the light projecting unit 1. This causes an increase in current and an increase in distance measurement time. On the other hand, if the number of times of light projection is reduced in order to avoid these problems, the accuracy of distance measurement deteriorates.

【0014】本発明は、従来の測距回路における上記問
題点を解消するためになされたもので、PSD出力端子
から出力される信号電流が微少な場合にも応答性が良好
で、CMOS構造に形成された寄生トランジスタを利用
した対数圧縮回路などを用いた測距回路を提供すること
を目的とする。
The present invention has been made in order to solve the above-mentioned problems in the conventional distance measuring circuit, and has a good responsiveness even when the signal current output from the PSD output terminal is very small, and has a CMOS structure. It is an object of the present invention to provide a distance measuring circuit using a logarithmic compression circuit using the formed parasitic transistor.

【0015】[0015]

【課題を解決するための手段】上記問題点を解決するた
め、本発明は、測距対象物に向けて光束を投光する投光
手段と、前記測距対象物からの前記光束の反射光を受光
し、前記測距対象物の距離に応じた1対の信号電流を出
力する受光手段と、前記1対の信号電流を1対のNPN
トランジスタのそれぞれのベースに入力し、それぞれの
エミッタから1対の増幅電流を取り出す電流増幅手段
と、前記1対の増幅電流をCMOS構造中の寄生バイポ
ーラトランジスタのエミッタにそれぞれ入力し、1対の
対数圧縮信号を出力する対数圧縮手段と、前記1対の対
数圧縮信号から前記測距対象物までの距離を求める距離
検出手段とで、CMOS構造を利用した測距回路を構成
するものである。
In order to solve the above problems, the present invention provides a light projecting means for projecting a light beam toward an object to be measured, and a reflected light of the light beam from the object to be measured. And a pair of NPN for receiving the pair of signal currents and a light receiving unit for receiving a pair of signal currents according to the distance of the object to be measured.
A current amplifying means for inputting to each base of the transistor and extracting a pair of amplified currents from each emitter, and the pair of amplified currents respectively input to the emitters of the parasitic bipolar transistors in the CMOS structure. A logarithmic compression unit that outputs a compressed signal and a distance detection unit that obtains the distance to the object to be measured from the pair of logarithmic compressed signals constitute a distance measurement circuit using a CMOS structure.

【0016】以上のような構成のCMOS構造を用いた
測距回路においては、投光手段から測距対象物に光束が
投光され、受光手段で前記測距対象物からの反射光を受
光し、前記測距対象物の距離に応じた1対の信号電流が
出力される。その1対の信号電流をNPNトランジスタ
のベースに流し込み、エミッタより電流増幅率倍(β
倍)に増幅された1対の信号増幅電流を得る。更に、1
対の信号増幅電流がMOS構造内に寄生する2つの寄生
トランジスタのエミッタに流し込まれ、対数圧縮信号が
出力される。更に、前記2つの対数圧縮信号の差電圧か
ら距離検出手段により前記測距対象物までの距離が求め
られる。
In the distance measuring circuit using the CMOS structure having the above-mentioned structure, a light beam is projected from the light projecting means to the distance measuring object, and the light receiving means receives the reflected light from the distance measuring object. , A pair of signal currents corresponding to the distance of the object to be measured is output. The pair of signal currents is flown into the base of the NPN transistor, and the current amplification factor times (β
To obtain a pair of signal amplification currents. Furthermore, 1
A pair of signal amplification currents are flown into the emitters of two parasitic transistors parasitic in the MOS structure, and a logarithmic compression signal is output. Further, the distance to the object to be measured is obtained by the distance detecting means from the voltage difference between the two logarithmic compression signals.

【0017】以上のように、上記構成の測距回路では、
NPNトランジスタの電流増幅作用を利用して信号電流
を増幅するため、信号圧縮用寄生PNPトランジスタの
エミッタには信号電流増幅用の大面積MOSを接続する
必要がなく、信号圧縮用寄生PNPトランジスタのエミ
ッタに付く寄生容量が非常に小さくなる。そのため、P
SD出力端子から出力される信号電流が微少な場合にも
応答性の悪化が避けられる。そのため、投光部のLED
の投光時間の増大を抑え、LEDへの大電流導通時間の
増大(過負荷)と投光部における消費電流の増大及び測
距時間の増大を抑えることができる。また、投光回数を
減少させる必要もないため、測距精度の低下も抑えられ
る。
As described above, in the distance measuring circuit having the above configuration,
Since the signal current is amplified by utilizing the current amplification effect of the NPN transistor, it is not necessary to connect a large area MOS for signal current amplification to the emitter of the signal compression parasitic PNP transistor, and the emitter of the signal compression parasitic PNP transistor is not required. The parasitic capacitance attached to is extremely small. Therefore, P
Even when the signal current output from the SD output terminal is minute, deterioration of responsiveness can be avoided. Therefore, the LED of the projector
It is possible to suppress an increase in the light projection time of the LED, an increase in the large current conduction time to the LED (overload), an increase in the current consumption in the light projection unit, and an increase in the distance measurement time. Further, since it is not necessary to reduce the number of times the light is projected, it is possible to suppress a decrease in distance measurement accuracy.

【0018】[0018]

【発明の実施の形態】次に、図面を参照して本発明の実
施の形態を詳細に説明する。図1は、本発明によるCM
OS構造を用いた測距回路の実施の形態を示す図で、図
2に示した従来例と対応する構成要素には同一符号を付
して示している。この実施の形態のCMOS構造を用い
た測距回路は、測距対象物にLEDの光パルスを投光す
る投光部1と、その反射光を受光し受光位置に応じた1
対の信号電流を出力する半導体位置検出素子(PSD)
4と、回路に電力を供給する電源電位15と接地電位16
と、PSD出力端子5及び6より出力される1対の信号
電流をそれぞれのベースに入力し、それぞれのエミッタ
よりβ倍の信号増幅電流を出力する1対の電流増幅用N
PNトランジスタ21及び121 と、オペアンプ31,PMO
Sトランジスタ32,電流源33〜34及びオペアンプ131 ,
PMOSトランジスタ132 ,電流源133 〜134 ,電圧源
35からなりPSD出力端子5及び6の電位を電圧源35と
等しい値に固定する帰還部17及び18と、1対の信号増幅
電流をそれぞれのエミッタに流し込み、それぞれのエミ
ッタより対数圧縮信号を得るMOS構造に形成された信
号圧縮用寄生PNPトランジスタ41及び141 と、信号圧
縮用寄生PNPトランジスタ41及び141 のエミッタに付
加される寄生容量42及び142 と、オペアンプ51,基準電
位用寄生PNPトランジスタ52,電流源53,NMOSト
ランジスタ54,ホールド容量55,抵抗56,スイッチ57及
びオペアンプ151 ,基準電位用寄生PNPトランジスタ
152 ,電流源153 ,NMOSトランジスタ154 ,ホール
ド容量155 ,抵抗156 ,スイッチ157 からなりPSD出
力端子5及び6から出力される電流に含まれる背景光成
分を除去するための背景光除去部13及び14と、信号圧縮
用寄生PNPトランジスタ41と141 のそれぞれのエミッ
タ電位を入力端子8及び9に入力し出力端子10より距離
情報を算出する演算部7とから構成されている。
Next, an embodiment of the present invention will be described in detail with reference to the drawings. FIG. 1 shows a CM according to the present invention.
In the figure showing the embodiment of the distance measuring circuit using the OS structure, the same reference numerals are given to the components corresponding to those of the conventional example shown in FIG. The distance measuring circuit using the CMOS structure of this embodiment has a light projecting unit 1 for projecting an LED light pulse to a distance measuring object, and a reflected light received by the light projecting unit 1 according to a light receiving position.
Semiconductor position detector (PSD) that outputs a pair of signal currents
4, power supply potential 15 and ground potential 16 for supplying power to the circuit
And a pair of current amplifying N for inputting a pair of signal currents output from the PSD output terminals 5 and 6 to the respective bases and outputting a β times signal amplification current from each emitter.
PN transistors 21 and 121, operational amplifier 31, PMO
S transistor 32, current sources 33 to 34 and operational amplifier 131,
PMOS transistor 132, current sources 133 to 134, voltage source
Feedback portions 17 and 18 which are composed of 35 and fix the potentials of the PSD output terminals 5 and 6 to a value equal to that of the voltage source 35, and a pair of signal amplification currents are flown into the respective emitters to obtain logarithmically compressed signals from the respective emitters. The signal compression parasitic PNP transistors 41 and 141 formed in the MOS structure, the parasitic capacitances 42 and 142 added to the emitters of the signal compression parasitic PNP transistors 41 and 141, the operational amplifier 51, the reference potential parasitic PNP transistor 52, Current source 53, NMOS transistor 54, hold capacitor 55, resistor 56, switch 57 and operational amplifier 151, reference potential parasitic PNP transistor
The background light removing units 13 and 14 for removing the background light components included in the currents output from the PSD output terminals 5 and 6 are composed of a current source 153, a current source 153, an NMOS transistor 154, a hold capacitor 155, a resistor 156, and a switch 157. And an arithmetic unit 7 which inputs the emitter potentials of the signal compression parasitic PNP transistors 41 and 141 to the input terminals 8 and 9 and calculates distance information from the output terminal 10.

【0019】ここで、PSD出力端子5からの信号電流
を処理する電流増幅用NPNトランジスタ21と帰還部17
と信号圧縮用寄生PNPトランジスタ41と寄生容量42と
背景光除去部13をAch側とし、PSD出力端子6からの
信号電流を処理する電流増幅用NPNトランジスタ121
と帰還部18と信号圧縮用寄生PNPトランジスタ141と
寄生容量142 をBch側とする。
Here, the current amplifying NPN transistor 21 for processing the signal current from the PSD output terminal 5 and the feedback section 17 are provided.
And the signal compression parasitic PNP transistor 41, the parasitic capacitance 42, and the background light removing unit 13 on the Ach side, and the current amplification NPN transistor 121 that processes the signal current from the PSD output terminal 6
The feedback section 18, the signal compression parasitic PNP transistor 141, and the parasitic capacitance 142 are on the Bch side.

【0020】次に、このように構成された測距回路の動
作について説明する。Ach側とBch側の動作は全く等し
いので、Ach側を例にして動作説明を行う。この実施の
形態においても、従来例と同様に、背景光除去動作と信
号検出動作が行われる。始めに、測距対象物2にLED
光を投光する前に、スイッチ57を閉じて、オペアンプ51
の+端子を−端子と等しい電位にするような帰還回路を
構成し、背景光除去動作を行う。これにより、信号圧縮
用寄生PNPトランジスタ41には、電流源53と等しい電
流しか流れ込まず、PSD出力端子5の出力に含まれる
背景光成分電流ICONT(A) (不要な電流)を、NMOS
トランジスタ54のドレインより吸い込む。このように帰
還回路を構成することにより、オペアンプ51の+端子の
電位が−端子の電位より高い場合、オペアンプ51の出力
は上昇するから、NMOSトランジスタ54のコレクタよ
り多くの電流を吸い込むようになる。そのため、電流増
幅用NPNトランジスタ21のベースに流れ込む電流及び
電流増幅用NPNトランジスタ21のエミッタから流れ出
す電流が小さくなり、信号圧縮用寄生PNPトランジス
タ41に流れ込む電流も小さくなり、オペアンプ51の+端
子の電位は低下する。オペアンプ51の+端子の電位が−
端子の電位より低くなった場合には、全く逆の動作とな
る。このように、信号圧縮用寄生PNPトランジスタ41
に電流源53と等しい電流が流れるように帰還がかかる。
Next, the operation of the distance measuring circuit thus constructed will be described. The operations on the Ach side and the Bch side are exactly the same, so the operation will be described using the Ach side as an example. Also in this embodiment, the background light removing operation and the signal detecting operation are performed as in the conventional example. First, LED on the distance measurement object 2
Before projecting light, switch 57 is closed and operational amplifier 51
A feedback circuit is configured to make the + terminal of the same potential as that of the-terminal, and the background light removal operation is performed. As a result, only the same current as the current source 53 flows into the signal compression parasitic PNP transistor 41, and the background light component current I CONT (A) (unnecessary current) included in the output of the PSD output terminal 5 is supplied to the NMOS.
Suction from the drain of transistor 54. By configuring the feedback circuit in this way, when the potential of the + terminal of the operational amplifier 51 is higher than the potential of the-terminal, the output of the operational amplifier 51 rises, so that a larger amount of current is absorbed by the collector of the NMOS transistor 54. . Therefore, the current flowing into the base of the current amplifying NPN transistor 21 and the current flowing out from the emitter of the current amplifying NPN transistor 21 are reduced, the current flowing into the signal compression parasitic PNP transistor 41 is also reduced, and the potential of the + terminal of the operational amplifier 51 is reduced. Will fall. The potential of the + terminal of the operational amplifier 51 is −
When it becomes lower than the potential of the terminal, the operation is completely opposite. In this way, the signal compression parasitic PNP transistor 41
Feedback is applied so that a current equal to that of the current source 53 flows through.

【0021】なお、電流増幅用NPNトランジスタ21の
ベース電流IB(21) とエミッタ電流IE(21) には、次式
(6)で示すような関係がある。 −IE(21) ≒β×IB(21) ・・・・・・・(6) 但し、IE(21) に付く負の符号はエミッタより電流が流
れ出ることを意味し、βはバイポーラトランジスタの電
流増幅率で、100 程度の値をとる。ここで、背景光除去
動作時の電流増幅用NPNトランジスタ21には、電流源
34と電流源53の和電流が流れているから、電流源34と電
流源53の電流値をそれぞれIBIAS(34)とIBIAS(53)とす
れば、この時の電流増幅用NPNトランジスタ21のベー
ス電流IB(21) は、次式(7)で示すようになる。 IB(21) =IBIAS(34)/β+IBIAS(53)/β ・・・・・・・・・・(7) また、PSD出力端子5は、オペアンプ31,PMOSト
ランジスタ32,電流源33〜34により、電圧源35と等しい
値を保つように帰還がかかっている。
The base current I B (21) and the emitter current I E (21) of the current amplifying NPN transistor 21 have a relationship shown by the following equation (6). −IE (21) ≈β × IB (21) ... (6) However, the negative sign attached to IE (21) means that current flows out from the emitter, and β is bipolar. The current amplification factor of the transistor is about 100. Here, the current amplification NPN transistor 21 at the time of the background light removing operation includes a current source
Since the sum current of the current source 34 and the current source 53 is flowing, if the current values of the current source 34 and the current source 53 are I BIAS (34) and I BIAS (53) , respectively, the current amplifying NPN transistor 21 The base current I B (21) of is as shown by the following equation (7). I B (21) = I BIAS (34) / β + I BIAS (53) / β (7) Further, the PSD output terminal 5 includes an operational amplifier 31, a PMOS transistor 32, and a current source 33. By ~ 34, feedback is applied so as to keep the same value as the voltage source 35.

【0022】次に、スイッチ57を開にすると同時に、測
距対象物2に投光部1よりLED光を投光し、測距対象
物2からの反射光をPSD4で受光する信号検出動作を
行う。ここで、NMOSトランジスタ54のゲート電位
は、ホールド容量55によりスイッチ57が閉の場合の状態
に保持されるため、スイッチ57を開にしても、NMOS
トランジスタ54のドレインが吸い込む電流には変化がな
く、背景光成分電流ICONT(A) を継続して吸い込む。し
たがって、PSD出力端子5から出力される信号成分の
電流ISIG(A)は、全て電流増幅用NPNトランジスタ21
のベースに流れ込む。これにより、信号検出動作時の電
流増幅用NPNトランジスタ21のベース電流I
B(21) は、次式(8)で示すようになり、右辺第1項の
SIG(A)分だけ増加する。 IB(21) =ISIG(A)+IBIAS(34)/β+IBIAS(53)/β ・・・・・(8)
Next, when the switch 57 is opened, at the same time, the LED light is projected from the light projecting unit 1 onto the object to be measured 2 and the reflected light from the object 2 to be measured is received by the PSD 4. To do. Here, the gate potential of the NMOS transistor 54 is held by the hold capacitor 55 in the state in which the switch 57 is closed.
There is no change in the current drawn by the drain of the transistor 54, and the background light component current I CONT (A) is continuously taken in. Therefore, the current I SIG (A) of the signal component output from the PSD output terminal 5 is entirely the current amplifying NPN transistor 21.
Flows into the base of. As a result, the base current I of the NPN transistor 21 for current amplification at the time of signal detection operation
B (21) is represented by the following equation (8), and increases by I SIG (A) of the first term on the right side. I B (21) = I SIG (A) + I BIAS (34) / β + I BIAS (53) / β (8)

【0023】したがって、背景光除去動作時に比較し
て、電流増幅用NPNトランジスタ21のエミッタでは、
β×ISIG(A)分だけ流れ出す電流が増加したことにな
る。この増加電流β×ISIG(A)が、PMOSトランジス
タ32のドレインに流れ込み、更にPMOSトランジスタ
32のソースより信号圧縮用寄生PNPトランジスタ41の
エミッタに流れ込んで、信号圧縮用寄生PNPトランジ
スタ41のエミッタ電位VE(41) を上昇させる。
Therefore, compared with the background light removing operation, the emitter of the current amplifying NPN transistor 21 is
The current flowing out has increased by β × I SIG (A) . This increased current β × I SIG (A) flows into the drain of the PMOS transistor 32, and further the PMOS transistor 32
It flows into the emitter of the signal compression parasitic PNP transistor 41 from the source of 32, and raises the emitter potential V E (41) of the signal compression parasitic PNP transistor 41.

【0024】ここで、Ach側とBch側に出力される信号
電流を、それぞれISIG(A)とISIG(B)とすると、信号圧
縮用寄生PNPトランジスタ41と141 のエミッタ電位差
ΔVSIG は、次式(9),(10)より次式(11)に示す
ようになる。 VE(41) =VT ln{(β×ISIG(A)+IBIAS(53))/IS }・・・・(9) VE(141)=VT ln{(β×ISIG(B)+IBIAS(153) )/IS }・・・(10) ΔVSIG =VE(41) −VE(141) =VT ln{(β×ISIG(A)+IBIAS(53)) /(β×ISIG(B)+IBIAS(153) )} ・・・・・・・・(11) ここで、IBIAS(53)<β×ISIG(A)及びIBIAS(153)
β×ISIG(B),IBIAS(53)=IBIAS(153) と仮定すれ
ば、ΔVSIG はPSD出力端子5及び6から出力される
信号電流の比ISIG(A)/ISIG(B)(PSDの受光位置)
で一意に決まる。但し、VT は熱起電力で、IS は飽和
電流である。よって、エミッタ電位差ΔVSIG と測距対
象物までの距離との関係を予め求めておき、演算部7に
セーブしておけば、信号圧縮用寄生PNPトランジスタ
41と141 のエミッタ電位差ΔVSIG により、測距対象物
までの距離を知ることができる。
If the signal currents output to the Ach side and the Bch side are I SIG (A) and I SIG (B) , respectively, the emitter potential difference ΔV SIG between the signal compression parasitic PNP transistors 41 and 141 is The following equation (11) is obtained from the following equations (9) and (10). V E (41) = V T ln {(β × I SIG (A) + I BIAS (53) ) / I S } ... (9) V E (141) = V T ln {(β × I SIG (B) + I BIAS (153) ) / I S } ... (10) ΔV SIG = V E (41) −V E (141) = V T ln {(β × I SIG (A) + I BIAS (53 ) ) / (Β × I SIG (B) + I BIAS (153) )} (11) where I BIAS (53) <β × I SIG (A) and I BIAS (153 ) ) <
Assuming that β × I SIG (B) and I BIAS (53) = I BIAS (153) , ΔV SIG is the ratio of signal currents I SIG (A) / I SIG ( B) (PSD light receiving position)
Is uniquely determined by. However, V T is a thermoelectromotive force and I S is a saturation current. Therefore, if the relationship between the emitter potential difference ΔV SIG and the distance to the object to be measured is obtained in advance and saved in the arithmetic unit 7, the signal compression parasitic PNP transistor can be obtained.
The distance to the object to be measured can be known from the emitter potential difference ΔV SIG between 41 and 141.

【0025】しかも、信号圧縮用寄生PNPトランジス
タ41と141 のエミッタには、電流増幅用の大面積MOS
が接続されていないため、寄生容量42及び142 は小さ
く、微少信号時でも信号圧縮用寄生PNPトランジスタ
41及び141 のエミッタ電位VE(41) 及びVE(141)の応答
性は充分確保される。よって、投光部1の投光時間の増
大を抑え、投光部1でのLEDに対する大電流導通時間
の増大(過負荷)と消費電流の増大及び測距時間の増大
を抑えることができる。また、投光回数を減少させる必
要もないため、測距精度の低下も抑えられる。更に、測
距回路のほとんどの部分をCMOSプロセスで構成でき
るため、ディジタル回路及びCPUなどの処理部との一
体化も容易で、低コスト化にも有利であるという利点も
持っている。
In addition, a large area MOS for current amplification is used for the emitters of the signal compression parasitic PNP transistors 41 and 141.
Is not connected, the parasitic capacitances 42 and 142 are small, and the parasitic PNP transistor for signal compression is used even when a minute signal is input.
Responsiveness of the emitter potentials V E (41) and V E (141) of 41 and 141 is sufficiently secured. Therefore, it is possible to suppress the increase of the light projecting time of the light projecting unit 1, and to suppress the increase of the large current conduction time (overload) of the LED in the light projecting unit 1, the increase of the current consumption, and the increase of the distance measurement time. Further, since it is not necessary to reduce the number of times the light is projected, it is possible to suppress a decrease in distance measurement accuracy. Furthermore, since most of the distance measuring circuit can be configured by the CMOS process, it has an advantage that it can be easily integrated with a digital circuit and a processing unit such as a CPU, and is advantageous in cost reduction.

【0026】[0026]

【発明の効果】以上実施の形態に基づいて説明したよう
に、本発明によればNPNトランジスタの電流増幅作用
を利用して信号電流を増幅するように構成しているの
で、信号圧縮用寄生バイポーラトランジスタには信号電
流増幅用の大面積MOSを接続する必要がなくなり、寄
生容量を非常に小さくでき、それにより応答性の悪化が
避けられ、投光時間の増大を抑え、投光部の消費電流の
増大及び測距時間の増大を抑えることができ、更に投光
回数を減少させる必要もないので測距精度の低下も抑え
ることができる。
As described based on the above embodiments, according to the present invention, the signal current is amplified by utilizing the current amplifying action of the NPN transistor. Therefore, the signal compression parasitic bipolar transistor is used. Since it is not necessary to connect a large area MOS for signal current amplification to the transistor, the parasitic capacitance can be made extremely small, thereby avoiding the deterioration of responsiveness, suppressing the increase of the light projecting time, and the current consumption of the light projecting unit. It is possible to suppress an increase in the distance measurement time and an increase in the distance measurement time, and since it is not necessary to reduce the number of times the light is projected, it is also possible to suppress a decrease in the distance measurement accuracy.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係るCMOS構造を用いた測距回路の
実施の形態を示す回路構成図である。
FIG. 1 is a circuit configuration diagram showing an embodiment of a distance measuring circuit using a CMOS structure according to the present invention.

【図2】従来のCMOS構造を用いた測距回路を示す回
路構成図である。
FIG. 2 is a circuit configuration diagram showing a distance measuring circuit using a conventional CMOS structure.

【図3】CMOS構造に生じる寄生トランジスタの態様
を示す図である。
FIG. 3 is a diagram showing an aspect of a parasitic transistor generated in a CMOS structure.

【符号の説明】[Explanation of symbols]

1 投光部 2 測距対象物 3 レンズ 4 半導体位置検出素子 5,6 半導体位置検出素子出力端子 7 演算部 8,9 演算部入力端子 10 演算部出力端子 13,14 背景光除去部 15 電源電位 16 接地電位 17,18 帰還部 21,121 電流増幅用NPNトランジスタ 31,131 オペアンプ 32,132 PMOSトランジスタ 33,34,133, 134 電流源 35 電圧源 41,141 信号圧縮用寄生PNPトランジスタ 42,142 寄生容量 51,151 オペアンプ 52,152 基準電位用寄生PNPトランジスタ 53,153 電流源 54,154 NMOSトランジスタ 55,155 ホールド容量 56,156 抵抗 57,157 スイッチ 1 Light emitting unit 2 Distance measurement object 3 Lens 4 Semiconductor position detecting element 5,6 Semiconductor position detecting element output terminal 7 Arithmetic unit 8,9 Arithmetic unit input terminal 10 Arithmetic unit output terminal 13,14 Background light removing unit 15 Power supply potential 16 Ground potential 17,18 Feedback unit 21,121 Current amplification NPN transistor 31,131 Operational amplifier 32,132 PMOS transistor 33,34,133,134 Current source 35 Voltage source 41,141 Signal compression parasitic PNP transistor 42,142 Parasitic Capacitance 51,151 Operational amplifier 52,152 Reference potential parasitic PNP transistor 53,153 Current source 54,154 NMOS transistor 55,155 Hold capacity 56,156 Resistor 57,157 Switch

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 測距対象物に向けて光束を投光する投光
手段と、前記測距対象物からの前記光束の反射光を受光
し、前記測距対象物の距離に応じた1対の信号電流を出
力する受光手段と、前記1対の信号電流を1対のNPN
トランジスタのそれぞれのベースに入力し、それぞれの
エミッタから1対の増幅電流を取り出す電流増幅手段
と、前記1対の増幅電流をCMOS構造中の寄生バイポ
ーラトランジスタのエミッタにそれぞれ入力し、1対の
対数圧縮信号を出力する対数圧縮手段と、前記1対の対
数圧縮信号から前記測距対象物までの距離を求める距離
検出手段とから構成されたことを特徴とするCMOS構
造を用いた測距回路。
1. A pair of light projection means for projecting a light beam toward an object to be measured, and a pair of light receiving means for receiving the reflected light of the light beam from the object to be measured and corresponding to the distance to the object to be measured. And a pair of NPN for receiving the pair of signal currents.
A current amplifying means for inputting to each base of the transistor and extracting a pair of amplified currents from each emitter, and the pair of amplified currents respectively input to the emitters of the parasitic bipolar transistors in the CMOS structure. A distance measuring circuit using a CMOS structure, comprising: a logarithmic compression means for outputting a compressed signal; and a distance detecting means for obtaining a distance to the distance measuring object from the pair of logarithmic compression signals.
JP3009396A 1996-01-25 1996-01-25 Distance measuring circuit using cmos structure Withdrawn JPH09203609A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3009396A JPH09203609A (en) 1996-01-25 1996-01-25 Distance measuring circuit using cmos structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3009396A JPH09203609A (en) 1996-01-25 1996-01-25 Distance measuring circuit using cmos structure

Publications (1)

Publication Number Publication Date
JPH09203609A true JPH09203609A (en) 1997-08-05

Family

ID=12294175

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3009396A Withdrawn JPH09203609A (en) 1996-01-25 1996-01-25 Distance measuring circuit using cmos structure

Country Status (1)

Country Link
JP (1) JPH09203609A (en)

Similar Documents

Publication Publication Date Title
US7570040B2 (en) Accurate voltage reference circuit and method therefor
JPH07294248A (en) Distance measuring equipment
KR20020081135A (en) Compact detector circuit of transmitter with broad dynamic range
JP5134176B2 (en) Accurate power detection circuit for use in power amplifiers
JPH09203609A (en) Distance measuring circuit using cmos structure
JPH03242503A (en) Semiconductor detector for position of light
US6396319B2 (en) Semiconductor integrated circuit with quick charging/discharging circuit
JP2001194110A (en) Range finding circuit using cmos structure
JP2998805B2 (en) Integrator circuit
JPH0444407A (en) Gain control circuit
US6885247B2 (en) Current amplifier
JP3093415B2 (en) Distance detection device and distance detection method
JP3193481B2 (en) Distance measuring device
JPH11351816A (en) Multipoint distance measuring circuit using cmos structure
JP2519809Y2 (en) Differential input / output type amplifier circuit
KR890007395Y1 (en) Mid-band frequency amplifier circuit
JPH0533846B2 (en)
JPH1188068A (en) Light receiving amplifier circuit
JPS62129712A (en) Range finding operation circuit
JP2000352512A (en) Distance measuring circuit to use cmos structure
JP2689969B2 (en) Semiconductor integrated circuit
JPH08340128A (en) Photoelectric conversion circuit
JP2001118025A (en) Threshold detecting circuit, thershold adjusting circuit, and squaring circuit
JPS6354809A (en) Bias circuit
JPS621201B2 (en)

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20030401