JPH09201761A - Polishing process method of compound material - Google Patents

Polishing process method of compound material

Info

Publication number
JPH09201761A
JPH09201761A JP1271696A JP1271696A JPH09201761A JP H09201761 A JPH09201761 A JP H09201761A JP 1271696 A JP1271696 A JP 1271696A JP 1271696 A JP1271696 A JP 1271696A JP H09201761 A JPH09201761 A JP H09201761A
Authority
JP
Japan
Prior art keywords
polishing
polishing surface
polished
abrasive grains
composite material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1271696A
Other languages
Japanese (ja)
Other versions
JP3208056B2 (en
Inventor
Yukio Yamaguchi
幸男 山口
Minoru Hayashi
実 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Noritake Co Ltd
Original Assignee
Noritake Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Noritake Co Ltd filed Critical Noritake Co Ltd
Priority to JP1271696A priority Critical patent/JP3208056B2/en
Publication of JPH09201761A publication Critical patent/JPH09201761A/en
Application granted granted Critical
Publication of JP3208056B2 publication Critical patent/JP3208056B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Polishing Bodies And Polishing Tools (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a polishing method which can reduce the difference of processing level, and generates no metal attachment, when a member to be polished formed by combining different sorts of materials is polishing processed. SOLUTION: While abrasive particles 42 are fed on a polishing surface 14 to be the surface of a ceramic plate 26 which consists of a fluorin gold mica system ceramics with the Vickers hardness about 2200MPa, one side surface of a member for magnetic head to be a member being polished, consisting of a compound material is contacted and slid on the polishing surface 14, so as to polish the one side surface. Consequently, since the hardness of the polishing surface 14 is relatively low being about Hv=2200MPa, the abrasive particles 42 fed on the polishing surface 14 in the polishing process are buried in the polishing surface 14, and maintained in the condition making the heights of their edges even.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、複合材料から成る被研
磨材のポリシング加工方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for polishing a material to be polished made of a composite material.

【0002】[0002]

【従来の技術】電子部品や光学部品を構成するセラミッ
クス,ガラス,水晶等の被研磨材は、その表面平滑性と
加工変質層の低減が求められると共に、高い面精度が望
まれることから、一般に仕上げ加工としてポリシング加
工が施される。このポリシング加工は、例えば、錫や銅
等の軟質金属から構成される円板状の研磨定盤の研磨面
上に被研磨材を治具を用いて周方向の移動不能に保持
し、ダイヤモンドやCBN(立方晶系窒化ホウ素)等の
所謂超砥粒が分散された遊離砥粒液すなわちスラリーを
供給しつつ、研磨定盤を回転させて被研磨材を周方向に
相対移動させると共にその被研磨材を研磨定盤の研磨面
上で自転させることにより行われる。
2. Description of the Related Art Materials to be polished such as ceramics, glass, and quartz which constitute electronic parts and optical parts are generally required to have high surface accuracy as well as surface smoothness and reduction of work-affected layer. A polishing process is applied as a finishing process. This polishing process is performed, for example, by holding a material to be polished on a polishing surface of a disk-shaped polishing platen made of a soft metal such as tin or copper so as to be immovable in the circumferential direction by using a jig, While supplying so-called superabrasives in which so-called superabrasives such as CBN (cubic boron nitride) are dispersed, the polishing platen is rotated to relatively move the material to be circumferentially moved and to be polished. It is performed by rotating the material on the polishing surface of the polishing platen.

【0003】[0003]

【発明が解決すべき課題】ところで、上記の電子部品や
光学部品等は、二種以上の異なる材料が接合等により組
み合わされた複合材料の形態で用いられることも多いた
め、仕上げ加工(ポリシング加工)を施される被研磨材
がそのような異種材料が組み合わされた状態であること
も多い。例えば、図3に示される磁気ヘッド用部材30
はその一例である。この磁気ヘッド用部材30は、比較
的高硬度の Al2O3-TiC(ビッカース硬度Hv≒21600MPa)
から成るベース32に、比較的低硬度の Al2O3(Hv≒98
00MPa )から成る絶縁層36とパーマロイ等の磁性材料
(Hv≒2000MPa )から成る磁性層34とが積層された積
層部38がCVD法等により固着されて構成されてい
る。
By the way, the above-mentioned electronic parts, optical parts, etc. are often used in the form of a composite material in which two or more different materials are combined by joining or the like. In many cases, the material to be abraded is a combination of such different materials. For example, the magnetic head member 30 shown in FIG.
Is an example. This magnetic head member 30 has a relatively high hardness of Al 2 O 3 -TiC (Vickers hardness Hv≈21600 MPa).
The base 32 made of Al 2 O 3 (Hv≈98
An insulating layer 36 made of 00 MPa) and a magnetic layer 34 made of a magnetic material (Hv≉2000 MPa) such as permalloy are laminated, and a laminated portion 38 is fixed by a CVD method or the like.

【0004】このような磁気ヘッド用部材30が記録用
磁性体上を走査される際には、ポリシング加工が施され
た一面40がその磁性体側に位置させられるが、この
際、高い磁気特性を得るためには、磁性層34と記録用
磁性体との距離が可及的に小さくされることが望まし
い。ところが、上記の磁気ヘッド部材30のような硬度
の異なる異種材料が組み合わされた被研磨材を、軟質金
属から成る研磨定盤によってポリシング加工すると、硬
度の低い材料(上記の磁気ヘッド用部材30においては
積層部38、特に磁気層34)が相対的に早く除去され
る。そのため、図に示すような高硬度のベース32の一
面40b と低硬度の積層部38(すなわち絶縁層36お
よび磁性層34)の一面40a ,40m との間に大きな
加工段差da,dm が生じ、磁性層34と記録用磁性体
との距離が比較的大きくなるという問題があった。しか
も、研磨定盤が塑性変形し易い軟質金属から構成されて
研磨面に傷が生じ易いことから、その傷に起因して被研
磨材にスクラッチ等の傷が生じたり形状精度が低下し易
く、また、磁性層34の一面40m に研磨定盤を構成す
る金属が付着してその磁気特性を低下させ得るといった
問題があった。
When such a magnetic head member 30 is scanned over the recording magnetic material, the polishing-processed surface 40 is positioned on the magnetic material side. At this time, high magnetic characteristics are obtained. In order to obtain it, it is desirable that the distance between the magnetic layer 34 and the recording magnetic body be made as small as possible. However, when a material to be polished such as the magnetic head member 30 in which different materials having different hardness are combined is polished by a polishing platen made of a soft metal, a material having a low hardness (in the magnetic head member 30 described above, The laminated portion 38, especially the magnetic layer 34) is removed relatively quickly. Therefore, large processing steps da and dm are generated between the one surface 40b of the high hardness base 32 and the one surfaces 40a and 40m of the low hardness laminated portion 38 (that is, the insulating layer 36 and the magnetic layer 34) as shown in FIG. There is a problem that the distance between the magnetic layer 34 and the recording magnetic body becomes relatively large. Moreover, since the polishing platen is made of a soft metal that is easily plastically deformed and scratches are easily generated on the polishing surface, scratches such as scratches are easily generated on the material to be polished due to the scratches, or the shape accuracy is easily deteriorated, In addition, there is a problem that the metal constituting the polishing platen may adhere to one surface 40 m of the magnetic layer 34 to deteriorate the magnetic characteristics.

【0005】そこで、上記のような複合材料の被研磨材
を加工段差dm が可及的に小さくなるようにポリシング
加工でき、且つ、磁性層34表面への金属付着が生じ難
い非金属の研磨定盤が種々提案されている。例えば、特
開昭60−62459号公報に記載されている空孔を均
一に分散させたアルミナセラミック定盤や、特開昭60
−135173号公報等に記載されている高い粘弾性を
有する樹脂定盤等がそれである。これらの研磨定盤によ
れば、アルミナセラミック定盤においては空孔に保持さ
れた砥粒によって、樹脂定盤においてはその表面に保持
された砥粒によって、それぞれポリシング加工が成され
ることとなるが、何れの研磨定盤も比較的弾性が高く変
形し難い。そのため、被研磨材のうちの硬度の低い部分
が相対的に早く除去されるとその部分には砥粒が殆ど作
用しないこととなって、ベース32と磁気層34との加
工段差dm が比較的小さく留められる。また、研磨定盤
が高硬度或いは粘弾性を有することから研磨面に傷が生
じ難く、それに起因して被研磨材の一面40にスクラッ
チ等の傷が発生し或いは形状精度が低下することが抑制
される。
Therefore, the above-mentioned abrasive material of the composite material can be polished so that the processing step dm is as small as possible, and the non-metal polishing constant which does not easily cause metal adhesion to the surface of the magnetic layer 34. Various boards have been proposed. For example, an alumina ceramic surface plate in which pores are uniformly dispersed, which is described in JP-A-60-62459, and JP-A-60-62
A resin surface plate having a high viscoelasticity described in, for example, JP-A-135173, is such. According to these polishing surface plates, polishing processing is performed by the abrasive particles held in the holes in the alumina ceramic surface plate and by the abrasive particles held on the surface of the resin surface plate, respectively. However, any of the polishing surface plates has relatively high elasticity and is difficult to be deformed. Therefore, when a portion of the material to be polished having a low hardness is removed relatively early, the abrasive grains hardly act on that portion, so that the processing step dm between the base 32 and the magnetic layer 34 is relatively large. Can be kept small. Further, since the polishing platen has high hardness or viscoelasticity, scratches are unlikely to occur on the polishing surface, which suppresses scratches or the like on the one surface 40 of the material to be polished or deterioration of the shape accuracy. To be done.

【0006】ところで、近年においては、記録用磁性体
の一層の高密度化の要請に伴って、MRヘッド(信号の
読み出しに磁気抵抗[magnetoresistive]素子を用い、書
き込みに誘導型の薄膜ヘッドを用いた複合ヘッド)等の
読み出し感度の高い磁気ヘッドが用いられている。この
MRヘッドの高い読み出し感度を実現するためには、磁
性層34と記録用磁性体との距離を一層小さくする必要
があり、そのため、ベース32と磁性層34との加工段
差dm を例えば 100Å以下と極めて小さくする必要があ
る。しかしながら、前記のアルミナセラミック定盤で
は、比較的高硬度であることから空孔以外の部分では砥
粒が保持され得ないため、比較的多量の砥粒が研磨面上
で移動することを十分に抑制できない。したがって、低
硬度の磁性層34の除去量が比較的大きくなって、加工
段差dm を 300Å程度以下とすることは困難であり、M
Rヘッドのポリシング加工に適用することはできなかっ
た。一方、前記の樹脂定盤においては、研磨面上で移動
する砥粒は比較的少ないものの、アルミナセラミック定
盤程には剛性が高くないことから、加工圧力によって研
磨面が僅かに変形させられることに起因して、加工段差
dm を300 Å程度以下にすることが同様に困難であっ
た。
By the way, in recent years, in response to the demand for higher density of the recording magnetic material, an MR head (a magnetoresistive element is used for signal reading and an inductive thin film head is used for writing). A magnetic head having high read sensitivity is used. In order to realize the high read sensitivity of this MR head, it is necessary to further reduce the distance between the magnetic layer 34 and the recording magnetic body. Therefore, the processing step dm between the base 32 and the magnetic layer 34 is, for example, 100 Å or less. And need to be extremely small. However, in the above-mentioned alumina ceramic surface plate, since the abrasive grains cannot be held in the portions other than the holes due to the relatively high hardness, it is sufficient to move a relatively large amount of the abrasive grains on the polishing surface. I can't control it. Therefore, the removal amount of the low hardness magnetic layer 34 becomes relatively large, and it is difficult to set the processing step dm to about 300 Å or less.
It could not be applied to polishing processing of the R head. On the other hand, in the above resin surface plate, although the number of abrasive grains that move on the polishing surface is relatively small, since the rigidity is not as high as that of the alumina ceramic surface plate, the polishing surface may be slightly deformed by the processing pressure. Due to the above, it was similarly difficult to set the processing step dm to about 300 Å or less.

【0007】本発明は、以上の事情を背景として為され
たものであって、その目的は、異種材料が組み合わされ
ている被研磨材をポリシング加工する場合の加工段差を
一層小さくでき、且つ、金属付着が生じ得ない研磨方法
を提供することにある。
The present invention has been made in view of the above circumstances, and it is an object of the present invention to further reduce the processing step when polishing a material to be polished in which different kinds of materials are combined. An object of the present invention is to provide a polishing method in which metal adhesion cannot occur.

【0008】[0008]

【課題を解決するための手段】斯かる目的を達成するた
め、本発明の要旨とするところは、平坦な研磨面を備え
た研磨定盤のその研磨面に所定の砥粒を供給する砥粒供
給工程と、2種以上の材料が一体化させられた複合材料
から成る被研磨材の一面を、その砥粒が供給されたその
研磨面に摺接させることによりその一面を平滑に加工す
る摺接工程とを含む複合材料のポリシング加工方法であ
って、前記研磨面が、ビッカース硬度が1000〜4000MPa
程度のセラミックスから成ることにある。
In order to achieve such an object, the gist of the present invention is that an abrasive grain which supplies a predetermined abrasive grain to the polishing surface of a polishing platen having a flat polishing surface. A sliding step for smoothing one surface of a material to be polished made of a composite material in which two or more materials are integrated by sliding the one surface of the material to be polished onto the polishing surface to which the abrasive grains are supplied. A polishing method for a composite material including a contact step, wherein the polished surface has a Vickers hardness of 1000 to 4000 MPa.
It consists of a certain degree of ceramics.

【0009】[0009]

【発明の効果】このようにすれば、ビッカース硬度が10
00〜4000MPa 程度のセラミックスから成る研磨面に砥粒
を供給すると共に、その研磨面に複合材料から成る被研
磨材の一面を摺接させることにより、その一面がポリシ
ング加工される。そのため、ポリシング加工をするに際
して研磨面に供給された砥粒は、その研磨面が比較的低
硬度であることからその研磨面に埋め込まれて切れ刃高
さが揃った状態で保持される。したがって、セラミック
スから成る研磨面上に固定された砥粒が被研磨材の一面
に一様に作用することとなって、硬度が異なる2種以上
の材料から成る複合材料の一面をポリシング加工する場
合にも、その硬度の差に起因して大きな加工段差が発生
することが抑制されると共に、研磨定盤の研磨面が非金
属から構成されることから、被研磨材の一面に金属付着
が生じることがない。しかも、セラミックスは一般に剛
性が高く外力が加えられた場合にも変形し難いことか
ら、ポリシング加工中においてその平坦度が維持される
ため、一層加工段差を小さくできることとなる。
As described above, the Vickers hardness is 10
Abrasive grains are supplied to a polishing surface made of ceramics of about 00 to 4000 MPa, and one surface of a material to be polished made of a composite material is brought into sliding contact with the polishing surface, thereby polishing the one surface. Therefore, the abrasive grains supplied to the polishing surface during the polishing process are embedded in the polishing surface because the polishing surface has a relatively low hardness and are held in a state where the cutting edge heights are uniform. Therefore, when the abrasive grains fixed on the polishing surface made of ceramics act uniformly on one surface of the material to be polished, and when polishing one surface of the composite material composed of two or more materials having different hardnesses. In addition, the occurrence of a large processing step due to the difference in hardness is suppressed, and since the polishing surface of the polishing platen is made of a non-metal, metal adhesion occurs on one surface of the material to be polished. Never. In addition, since ceramics generally have high rigidity and are unlikely to be deformed even when an external force is applied, the flatness is maintained during the polishing process, so that the processing step can be further reduced.

【0010】[0010]

【発明の他の態様】ここで、好適には、前記の複合材料
のポリシング加工方法は、前記摺接工程の前に設けられ
て前記研磨面に供給された前記砥粒を押圧することによ
り、その研磨面に埋め込む砥粒埋込工程を更に含み、前
記摺接工程は、その砥粒が埋め込まれた研磨面に所定の
潤滑液を供給しつつ、その研磨面に前記被研磨材の一面
を摺接させるものである。このようにすれば、研磨定盤
の研磨面に予め砥粒が埋め込まれた状態で潤滑液を供給
しつつ被研磨材の一面のポリシング加工が行われるた
め、砥粒を供給しつつポリシング加工を行う場合に比較
して研磨面上を移動する砥粒が一層少なくなり、加工段
差を一層小さくすることが可能である。
According to another aspect of the present invention, preferably, the method of polishing a composite material comprises pressing the abrasive grains, which are provided before the sliding contact step and supplied to the polishing surface, The method further comprises a step of embedding abrasive grains in the polishing surface, wherein the sliding contact step supplies one surface of the material to be polished to the polishing surface while supplying a predetermined lubricating liquid to the polishing surface in which the abrasive grains are embedded. It is a sliding contact. By doing so, polishing of one surface of the material to be polished is performed while supplying the lubricating liquid in a state where the abrasive grains are embedded in the polishing surface of the polishing platen in advance, so the polishing process is performed while supplying the abrasive grains. As compared with the case where it is performed, the number of abrasive grains moving on the polishing surface is further reduced, and the processing step can be further reduced.

【0011】また、好適には、前記複合材料のポリシン
グ加工方法に用いられる研磨面を構成する前記セラミッ
クスは、切削加工が可能なマシナブルセラミックスから
成るものである。このようにすれば、マシナブルセラミ
ックスは、比較的低硬度且つ高弾性を有して、外力が与
えられた場合に部分的な変形を生じる性質を有するた
め、研磨面に供給された砥粒が容易にその研磨面に埋め
込まれて保持されることとなる。
Further, preferably, the ceramic constituting the polishing surface used in the polishing method of the composite material is a machinable ceramic capable of being cut. By doing so, the machinable ceramic has a relatively low hardness and high elasticity, and has a property of partially deforming when an external force is applied, so that the abrasive grains supplied to the polishing surface are It is easily embedded and held in the polishing surface.

【0012】また、好適には、前記マシナブルセラミッ
クスは、フッ素金雲母、チタン酸アルミ、窒化アルミ、
六方晶窒化ホウ素の何れかを主成分とするものである。
これらの材料を主成分とするマシナブルセラミックス
は、マシナブルセラミックスの中でも比較的高い硬度を
有するため、ポリシング加工中において研磨面の平坦度
が維持されて被研磨材の一面の高い面精度を得ることが
できる。
Preferably, the machinable ceramics are fluorophlogopite, aluminum titanate, aluminum nitride,
The main component is any one of hexagonal boron nitride.
Since machinable ceramics containing these materials as the main components have relatively high hardness among machinable ceramics, the flatness of the polished surface is maintained during polishing and high surface accuracy of one surface of the material to be polished is obtained. be able to.

【0013】また、好適には、前記研磨面には、前記砥
粒の分散および加工スラッジの排除を行うための微細な
溝が形成されている。このようにすれば、研磨面に供給
された砥粒がその研磨上で好適に分散させられると共
に、ポリシング加工の際に生じる汚泥状の不溶性廃棄物
である加工スラッジが研磨面上から速やかに排出される
ため、被研磨材の一面の一層高い面精度が得られる。
Further, it is preferable that fine grooves are formed on the polished surface for dispersing the abrasive grains and removing processing sludge. In this way, the abrasive grains supplied to the polishing surface are dispersed appropriately during the polishing, and the processing sludge, which is sludge-like insoluble waste generated during polishing, is quickly discharged from the polishing surface. Therefore, higher surface accuracy of one surface of the material to be polished can be obtained.

【0014】[0014]

【発明の実施の形態】以下、本発明の一実施例を図面を
参照して詳細に説明する。
Embodiments of the present invention will be described below in detail with reference to the drawings.

【0015】図1は、本発明の一実施例の研磨定盤10
の使用状態を模式的に示す図である。研磨定盤10は、
ポリシング盤12の図示しない回転軸に軸心回りの回転
可能に取り付けられている。ポリシング盤12は、研磨
定盤10の上面の研磨面14上において被研磨材を保持
するための円筒状のホルダ16と、そのホルダ16の内
側に位置させられてその内側に保持された被研磨材を研
磨面14に向かって押圧するための加圧板18と、その
研磨面14上に所定の研磨液を供給するための研磨液供
給ノズル19とを備えている。なお、一般に、ホルダ1
6および加圧板18は、ポリシング盤12上に複数(例
えば4つ程度)備えられているが、図には1つのみを示
す。
FIG. 1 shows a polishing platen 10 according to an embodiment of the present invention.
It is a figure which shows typically the usage condition of. The polishing surface plate 10 is
It is attached to a rotating shaft (not shown) of the polishing board 12 so as to be rotatable around its axis. The polishing plate 12 includes a cylindrical holder 16 for holding a material to be polished on the polishing surface 14 on the upper surface of the polishing platen 10, and a polishing target held inside the holder 16 and held inside thereof. A pressure plate 18 for pressing the material toward the polishing surface 14 and a polishing liquid supply nozzle 19 for supplying a predetermined polishing liquid onto the polishing surface 14 are provided. In addition, in general, the holder 1
A plurality of (for example, about four) 6 and pressure plates 18 are provided on the polishing board 12, but only one is shown in the drawing.

【0016】上記の加圧板18は、図示しないシリンダ
から突き出し可能に備えられたロッド20の先端部に取
り付けられており、上下方向すなわち上記回転軸と平行
な方向に移動可能且つ、上記ホルダ16とはそのロッド
20の軸心回りの相対回転可能な状態に設けられてい
る。そのため、研磨定盤10が回転させられるポリシン
グ盤12の使用時においては、加圧板18がホルダ16
の内側に位置させられることにより、そのホルダ16
は、研磨定盤10の内周側と外周側との回転速度差に従
って、ロッド20の軸心回りに自転させられる。ホルダ
16の内側には、その内径よりも小径で被研磨材を保持
するための多数の穴が形成された図示しないキャリアが
備えられており、その被研磨材もキャリアの自転に伴っ
てロッド20の軸心回りに回転させられる。そのため、
被研磨材が研磨定盤10の研磨面14の略全面を一様に
通過することとなって、多数の被研磨材が一様にポリシ
ング加工される。
The pressure plate 18 is attached to the tip of a rod 20 provided so as to be able to protrude from a cylinder (not shown), is movable in the vertical direction, that is, in the direction parallel to the rotation axis, and is movable with the holder 16. Is provided in a relatively rotatable state around the axis of the rod 20. Therefore, when the polishing platen 12 in which the polishing platen 10 is rotated is used, the pressing plate 18 is held by the holder 16
By being positioned inside the holder 16
Is rotated around the axis of the rod 20 according to the difference in rotational speed between the inner peripheral side and the outer peripheral side of the polishing platen 10. Inside the holder 16, there is provided a carrier (not shown) having a number of holes smaller than the inner diameter for holding the material to be polished, and the material to be polished also rotates along with the rotation of the carrier. Can be rotated around the axis of. for that reason,
Since the material to be polished passes through substantially the entire polishing surface 14 of the polishing platen 10, a large number of materials to be polished are uniformly polished.

【0017】また、上記の研磨定盤10は、図2に示さ
れるように、例えば、φ300 ×t25mm程度の大きさの円
板状のアルミニウム合金から成る台金22の一面に、例
えばφ300 ×φ100 ×t5mm程度の大きさの中央部に貫通
穴24を備えた円板状のセラミック板26が、例えば、
エポキシ樹脂等の接着剤によって接着されたものであ
り、全体が例えばφ300 ×t30mm 程度の大きさの円板状
に形成されている。なお、上記台金22の中央部には、
ポリシング盤12に研磨定盤10を取り付けるための、
軸心方向に貫通する例えばM16程度のネジ穴28が設
けられている。
As shown in FIG. 2, the polishing platen 10 has, for example, φ300 × φ100 on one surface of a base metal 22 made of a disc-shaped aluminum alloy having a size of φ300 × t25 mm. A disk-shaped ceramic plate 26 having a through hole 24 in the center of a size of about × t5 mm is, for example,
It is adhered by an adhesive such as an epoxy resin, and is formed into a disk shape having a size of, for example, about φ300 × t30 mm. In addition, in the central portion of the base metal 22,
For attaching the polishing surface plate 10 to the polishing plate 12,
A screw hole 28 of, for example, about M16 is provided so as to penetrate in the axial direction.

【0018】上記のセラミック板26は、例えば、ビッ
カース硬度が2200MPa 程度、3点曲げ強さが110MPa程
度、圧縮強さが430MPa程度、ヤング率が6.4 ×104MPa程
度、吸水率が0 の比較的低硬度のフッ素金雲母系セラミ
ックス等の所謂マシナブルセラミックスから成るもので
ある。このセラミック板26の表面すなわち研磨定盤1
0の研磨面14は、例えば± 1μm 程度の平面度に仕上
げられている。
The ceramic plate 26 has a Vickers hardness of about 2200 MPa, a three-point bending strength of about 110 MPa, a compressive strength of about 430 MPa, a Young's modulus of about 6.4 × 10 4 MPa, and a water absorption rate of 0. It is made of so-called machinable ceramics such as fluorophlogopite-based ceramics having extremely low hardness. The surface of the ceramic plate 26, that is, the polishing surface plate 1
The polishing surface 14 of 0 is finished to have a flatness of, for example, about ± 1 μm.

【0019】以上のように構成されたポリシング盤12
によって、例えば図3に示されるような磁気ヘッド用部
材30の一面40をポリシング加工する方法を以下に説
明する。
The polishing board 12 constructed as described above.
A method of polishing the one surface 40 of the magnetic head member 30 as shown in FIG. 3, for example, will be described below.

【0020】先ず、研磨定盤10をネジ穴28において
図示しない回転軸に固定する。そして、例えばその研磨
定盤10をその回転軸回りに回転させつつ、研磨面14
上に例えば1/4 μm 程度の多結晶ダイヤモンドから成る
砥粒42を供給して、図4(a) に示されるようにその研
磨面14上に分散させる。この砥粒42が分散させられ
た研磨面14上に、図4(b) に示されるように、全体が
上端側を閉塞された円筒状を成して、外周面から内周面
に貫通する多数のスリットが軸心方向に沿って所定間隔
で設けられた例えばアルミナ等から成る修正リング44
を載せる。そして、前記の加圧板18や図示しない錘等
によってその修正リング44を所定の加圧力で研磨面1
4に押圧した状態で研磨定盤10を前記回転軸回りに回
転させる。これにより、図4(c) に断面を示されるよう
に、修正リング44によって研磨面14に向かって押圧
された砥粒42が、その研磨面14すなわち研磨定盤1
0のセラミック板26に埋め込まれる。
First, the polishing platen 10 is fixed to a rotary shaft (not shown) in the screw holes 28. Then, for example, while rotating the polishing platen 10 around its rotation axis, the polishing surface 14
Abrasive grains 42 of, for example, about 1/4 .mu.m of polycrystalline diamond are supplied onto the polishing surface 14 and dispersed on the polishing surface 14 as shown in FIG. 4 (a). As shown in FIG. 4 (b), the entire polishing surface 14 in which the abrasive particles 42 are dispersed has a cylindrical shape with the upper end side closed, and penetrates from the outer peripheral surface to the inner peripheral surface. A correction ring 44 made of, for example, alumina, in which a large number of slits are provided at predetermined intervals along the axial direction.
Put. Then, the correction ring 44 is applied to the polishing surface 1 with a predetermined pressure by the pressure plate 18 or a weight (not shown).
The polishing platen 10 is rotated around the rotation axis while being pressed against 4. As a result, as shown in the cross section of FIG. 4 (c), the abrasive grains 42 pressed against the polishing surface 14 by the correction ring 44 are transferred to the polishing surface 14, that is, the polishing platen 1.
It is embedded in the ceramic plate 26 of 0.

【0021】上記のようにして、研磨定盤10の研磨面
14上に砥粒42が埋め込まれた後、前記図1に示され
るように内周側に被研磨材が保持されるようにホルダ1
6を載置し、加圧板18でその被研磨材を押圧した状態
で、研磨定盤10を回転軸回りに回転させることによっ
て、その被研磨材の研磨面14側の一面がポリシング加
工される。なお、本実施例においては、前記図4(a) に
示される工程が砥粒供給工程に、図4(b) に示される工
程が砥粒埋込工程に、図1に示される工程が摺接工程に
それぞれ相当する。
After the abrasive grains 42 are embedded on the polishing surface 14 of the polishing platen 10 as described above, the holder is held so that the material to be polished is held on the inner peripheral side as shown in FIG. 1
6 is placed and the polishing platen 10 is pressed by the pressure plate 18 to rotate the polishing platen 10 around the rotation axis, whereby one surface of the polishing material on the polishing surface 14 side is polished. . In this embodiment, the step shown in FIG. 4 (a) is the abrasive grain supplying step, the step shown in FIG. 4 (b) is the abrasive grain embedding step, and the step shown in FIG. 1 is the sliding step. Each corresponds to a contact process.

【0022】ところで、上記の研磨定盤10は、例えば
図5に示される工程に従って作製される。先ず、工程1
の接着工程において、所定寸法・形状のセラミック板2
6および台金22をそれぞれ用意し、例えばエポキシ樹
脂系接着剤等によって互いに接着する。次いで、工程2
の粗切削工程において、このセラミック板26と台金2
2との接合体を、例えば、ダイヤモンドコンパクトや天
然ダイヤモンド等から成る切削バイトによって粗切削す
ることにより、前記の寸法および形状に加工する。そし
て、工程3の加工面切削工程において、これを前記ポリ
シング盤12に取付け、そのポリシング盤12に備えら
れている図示しないフェーシング装置によって、研磨面
14となるセラミック板26の表面を例えば± 1μm 程
度の平面度に加工する。更に、工程4の研磨工程におい
て、軸心回りに回転させながら、セラミック板26の表
面に例えば粒子径30nm程度のコロイダルシリカを供給し
つつ、前記図4(b) の砥粒埋込工程と同様に前記修正リ
ング44を所定の加圧力でセラミック板26の表面に向
かって押圧してその修正リング44を回転させる。これ
により、セラミック板26の表面が磁気ヘッド用部材3
0等の加工に好適な所定の面粗さに加工されて、研磨定
盤10が得られる。
By the way, the polishing platen 10 is manufactured in accordance with the steps shown in FIG. 5, for example. First, step 1
In the bonding process of the ceramic plate 2 of a predetermined size and shape
6 and the base metal 22 are respectively prepared and bonded to each other by, for example, an epoxy resin adhesive or the like. Then, step 2
In this rough cutting process, the ceramic plate 26 and the base metal 2
The jointed body with 2 is roughly cut with a cutting tool made of diamond compact, natural diamond, or the like to be processed into the above-described size and shape. Then, in the machining surface cutting step of step 3, this is attached to the polishing board 12, and the surface of the ceramic plate 26 serving as the polishing surface 14 is, for example, about ± 1 μm by a facing device (not shown) provided in the polishing board 12. Process to flatness. Further, in the polishing step of step 4, while supplying the colloidal silica having a particle diameter of about 30 nm to the surface of the ceramic plate 26 while rotating around the axis, the same as the abrasive grain embedding step of FIG. 4 (b). Then, the correction ring 44 is pressed against the surface of the ceramic plate 26 with a predetermined pressure to rotate the correction ring 44. As a result, the surface of the ceramic plate 26 has the magnetic head member 3
The polishing surface plate 10 is obtained by processing to have a predetermined surface roughness suitable for processing 0 or the like.

【0023】下記の表1は、上記の研磨定盤10を用い
て、図3に示される50×4 ×2.5 mmの大きさの磁気ヘッ
ド用部材30の一面40をポリシング加工した結果を、
従来の錫等の軟質金属から成る定盤等によった場合と比
較して示すものである。下記の比較例の定盤のビッカー
ス硬度は、それぞれアルミナ定盤が15700MPa、軟質セラ
ミック定盤(ワラストナイト結晶相)が150MPa、錫定盤
が100MPa程度である。なお、被研磨材である磁気ヘッド
用部材30を構成する材料および硬度、加工条件は表2
に示す通りである。
Table 1 below shows the results obtained by polishing the one surface 40 of the magnetic head member 30 having a size of 50 × 4 × 2.5 mm shown in FIG. 3 using the above polishing platen 10.
This is shown in comparison with the conventional case where a surface plate made of a soft metal such as tin is used. The Vickers hardness of the surface plate of the following comparative example is about 15700 MPa for the alumina surface plate, 150 MPa for the soft ceramic surface plate (wollastonite crystal phase), and about 100 MPa for the tin surface plate. Table 2 shows the material and hardness of the magnetic head member 30 that is the material to be polished, and the processing conditions.
As shown in FIG.

【0024】[0024]

【表1】 [Table 1]

【0025】[0025]

【表2】 [Table 2]

【0026】上記の表1から明らかなように、本実施例
の場合には、ベース32と磁性層34との加工段差dm
が50〜60Å程度と小さく、しかも、磁気ヘッド用部材3
0の一面40のスクラッチや金属付着もなく、平面度も
良好であった。これに対して、例えば特開昭60−62
459号公報等に記載されているようなアルミナセラミ
ックスから成るアルミナ定盤を用いた場合には、加工段
差dm が250 Å程度と大きく、深いスクラッチも生じ
た。また、従来の錫定盤(すなわち軟質金属製定盤)を
用いた場合には、加工条件を工夫することにより、加工
段差dm を50〜80Å程度と十分に小さくすることが可能
となったが、この軟質金属製定盤では、磁性層34の表
面40m に金属付着が生じて、磁気ヘッドの製造歩留り
が大きく低下させられる結果となった。
As is clear from Table 1 above, in the case of this embodiment, the processing step dm between the base 32 and the magnetic layer 34 is formed.
Is as small as 50 to 60Å, and the magnetic head member 3
There was no scratch or metal adhesion on one surface 40 of 0, and the flatness was good. On the other hand, for example, JP-A-60-62
When an alumina surface plate made of alumina ceramics as described in Japanese Patent No. 459 was used, the working step dm was as large as 250 Å and deep scratches were also generated. When a conventional tin surface plate (that is, a soft metal surface plate) is used, the processing step dm can be sufficiently reduced to about 50 to 80 Å by devising the processing conditions. In this soft metal surface plate, metal deposition occurs on the surface 40m of the magnetic layer 34, resulting in a large reduction in the manufacturing yield of the magnetic head.

【0027】なお、上記のワラストナイト結晶相から成
る軟質定盤による場合の結果から明らかなように、ビッ
カース硬度が150MPa程度と低過ぎる場合には、加工段差
dmが300 Å程度と比較的大きくなると共に、定盤の変
形によって被研磨材である磁気ヘッド用部材30の一面
40に縁ダレが生じて平面度が大きく低下するという問
題が生じた。
As is clear from the results obtained with the soft surface plate made of the wollastonite crystal phase, when the Vickers hardness is about 150 MPa, which is too low, the machining step dm is relatively large, about 300 Å. In addition, the deformation of the surface plate causes edge sagging on the one surface 40 of the magnetic head member 30 that is the material to be polished, resulting in a significant decrease in flatness.

【0028】上述のように、本実施例によれば、ビッカ
ース硬度が2200MPa 程度のフッ素金雲母系セラミックス
から成るセラミック板26の表面である研磨面14に砥
粒42を供給すると共に、その研磨面14に複合材料か
ら成る被研磨材である磁気ヘッド用部材30の一面40
を摺接させることにより、その一面40がポリシング加
工される。そのため、ポリシング加工をするに際して研
磨面14に供給された砥粒42は、その研磨面14がHv
=2200MPa 程度と比較的低硬度であることからその研磨
面14に埋め込まれて図4(c) に示されるように切れ刃
高さが揃った状態で保持される。したがって、研磨面1
4上に固定された砥粒42が磁気ヘッド用部材30の一
面40に一様に作用することとなって、硬度が異なる2
種以上の材料から成る複合材料の一面40をポリシング
加工する場合にも、その硬度の差に起因して大きな加工
段差dm が発生することが抑制されると共に、研磨定盤
10の研磨面14が非金属から構成されることから、磁
気ヘッド用部材30の一面40に金属付着が生じること
がない。しかも、フッ素金雲母系セラミックスから成る
研磨定盤10は剛性が十分に高く、被研磨材等から外力
が加えられた場合にも変形し難いことから、ポリシング
加工中においてその平坦度が維持されるため、一層加工
段差dm を小さくできることとなる。
As described above, according to this embodiment, the abrasive grains 42 are supplied to the polishing surface 14 which is the surface of the ceramic plate 26 made of fluorophlogopite-based ceramics having a Vickers hardness of about 2200 MPa, and the polishing surface is 14, one surface 40 of the magnetic head member 30 which is a material to be polished made of a composite material
The one surface 40 is polished by making the sliding contact. Therefore, the abrasive grains 42 supplied to the polishing surface 14 during the polishing process are
Since it has a relatively low hardness of about 2200 MPa, it is embedded in the polishing surface 14 and is held in a state where the cutting edge heights are uniform as shown in FIG. 4 (c). Therefore, the polishing surface 1
The abrasive grains 42 fixed on the surface 4 uniformly act on the one surface 40 of the magnetic head member 30.
Even when polishing one surface 40 of the composite material made of one or more kinds of materials, it is possible to suppress the occurrence of a large processing step dm due to the difference in hardness, and the polishing surface 14 of the polishing surface plate 10 is Since it is made of non-metal, no metal adheres to the one surface 40 of the magnetic head member 30. Moreover, since the polishing platen 10 made of fluorophlogopite-based ceramics has sufficiently high rigidity and is hard to be deformed even when an external force is applied from a material to be polished, its flatness is maintained during polishing. Therefore, the processing step dm can be further reduced.

【0029】また、本実施例によれば、複合材料のポリ
シング加工方法は、摺接工程に対応する図1に示される
工程の前に設けられて研磨面14に供給された砥粒42
を押圧することにより、その研磨面14に埋め込む図4
(b) に示される砥粒埋込工程を更に含み、前記摺接工程
は、その砥粒42が埋め込まれた研磨面14に所定の研
磨液(潤滑液)を供給しつつ、その研磨面14に磁気ヘ
ッド用部材30の一面40を摺接させるものである。こ
のようにすれば、研磨定盤10の研磨面14に予め砥粒
42が埋め込まれた状態で研磨液を供給しつつ磁気ヘッ
ド用部材30の一面40のポリシング加工が行われるた
め、砥粒42を供給しつつポリシング加工を行う場合に
比較して研磨面14上を移動する砥粒42が一層少なく
なり、加工段差dm を一層小さくすることが可能であ
る。
Further, according to the present embodiment, in the polishing method of the composite material, the abrasive grains 42 provided before the step shown in FIG. 1 corresponding to the sliding contact step and supplied to the polishing surface 14 are provided.
4 is embedded in the polishing surface 14 by pressing.
The method further includes an abrasive grain embedding step shown in (b), wherein the sliding contact step supplies a predetermined polishing liquid (lubricant) to the polishing surface 14 in which the abrasive grains 42 are embedded while the polishing surface 14 is being polished. The one surface 40 of the magnetic head member 30 is brought into sliding contact with the above. With this configuration, the polishing surface 14 of the polishing platen 10 is preliminarily filled with the abrasive grains 42 and the polishing liquid is supplied while polishing the one surface 40 of the magnetic head member 30. It is possible to further reduce the processing step dm, as compared with the case where the polishing processing is performed while supplying the polishing particles.

【0030】また、本実施例によれば、複合材料のポリ
シング加工方法に用いられる研磨定盤10の研磨面14
は、切削加工が可能なマシナブルセラミックスであるフ
ッ素金雲母系セラミックスから成るものである。このよ
うにすれば、マシナブルセラミックスは、比較的低硬度
且つ高弾性を有して、外力が与えられた場合に部分的な
変形を生じる性質を有するため、研磨面14に供給され
た砥粒42が容易にその研磨面14に埋め込まれて保持
されることとなる。
Further, according to the present embodiment, the polishing surface 14 of the polishing surface plate 10 used in the polishing method of the composite material.
Is composed of fluorophlogopite-based ceramics, which are machinable ceramics that can be cut. By doing so, since the machinable ceramic has a relatively low hardness and a high elasticity and has a property of causing partial deformation when an external force is applied, the abrasive grains supplied to the polishing surface 14 42 is easily embedded and held in the polishing surface 14.

【0031】次に、本発明の他の実施例を説明する。な
お、以下の実施例においては、被研磨材を図6に示され
るような光通信用部品であるMTコネクタ46とし、研
磨定盤10のセラミック板26をチタン酸アルミ系セラ
ミックス(ビッカース硬度が1500MPa 程度、3点曲げ強
さが 10MPa程度、圧縮強さが350MPa程度、吸水率が 1.8
%程度)から構成して、前記の図5に示される研磨工程
において、コロイダルシリカに代えて0.5 μm の酸化セ
リウム分散液(水性液)を用い、ポリシング加工時の加
工圧力を1.5 ×104Pa とした他は、前述の磁気ヘッド用
部材30の場合と同様の条件でポリシング加工を行っ
た。
Next, another embodiment of the present invention will be described. In the following examples, the material to be polished is the MT connector 46, which is a component for optical communication as shown in FIG. 6, and the ceramic plate 26 of the polishing platen 10 is made of aluminum titanate-based ceramics (Vickers hardness is 1500 MPa. 3-point bending strength of about 10 MPa, compressive strength of about 350 MPa, water absorption rate of 1.8
%), And in the polishing step shown in FIG. 5 described above, 0.5 μm cerium oxide dispersion liquid (aqueous liquid) was used in place of colloidal silica, and the processing pressure during polishing was 1.5 × 10 4 Pa. Other than the above, polishing was performed under the same conditions as in the case of the magnetic head member 30 described above.

【0032】なお、MTコネクタ46は、上記の図6に
示されるように、例えば 3×3 ×長さ2.5 mm程度の光学
ガラス(例えばホウケイ酸ガラスBK7等)から成るス
リーブ48中に、φ80μm 程度のSiO2製のファイバ50
が備えられたものであり、このファイバ50が現れてい
る端面52をポリシング加工する。
As shown in FIG. 6, the MT connector 46 has a diameter of about 80 μm in a sleeve 48 made of optical glass (for example, borosilicate glass BK7) having a length of 3 × 3 × 2.5 mm. SiO 2 fiber 50
The end face 52 where the fiber 50 is exposed is polished.

【0033】ポリシング加工の結果を、比較例と共に下
記表3に示す。なお、下記の比較例のうち、セリウムパ
ッッドは、酸化セリウム砥粒を樹脂系結合剤で結合した
ものであり、例えばゴム硬度(JIS K 6301に規定される
スプリング式硬さ試験 JIS A形)で70程度と極めて硬度
が低いものである。
The results of the polishing process are shown in Table 3 below together with comparative examples. In the comparative examples below, the cerium pad is one in which cerium oxide abrasive grains are bonded with a resin binder, and has a rubber hardness (spring hardness test JIS A type specified in JIS K 6301) of 70, for example. The hardness is extremely low.

【0034】[0034]

【表3】 [Table 3]

【0035】上記表3から明らかなように、MTコネク
タ46の端面52のポリシング加工の場合にも、本実施
例の研磨定盤10によれば、スリーブ48とファイバ5
0との加工段差が30Å程度と小さく、スクラッチ、スリ
ーブ48とファイバ50との境界部の欠けや金属付着等
もなく、平面度も良好であった。これに対して、アルミ
ナ定盤を用いた場合には、加工段差が150 Å程度と大き
く、スクラッチや境界部欠けが生じた。また、比較的軟
質のセリウムパッドを用いた場合には、加工段差が150
Å程度と大きく、縁ダレが生じて平面度が低下した。更
に、従来の錫定盤を用いた場合には、加工段差は40Å程
度と小さくできたものの、金属付着が生じて加工歩留り
が大きく低下させられることとなった。
As is clear from Table 3 above, even in the case of polishing the end surface 52 of the MT connector 46, according to the polishing platen 10 of the present embodiment, the sleeve 48 and the fiber 5 are provided.
The processing step with 0 was as small as about 30 Å, scratches, chipping of the boundary between the sleeve 48 and the fiber 50, metal adhesion, etc. were not found, and the flatness was also good. On the other hand, when the alumina platen was used, the working step was as large as 150 Å, and scratches and boundary chipping occurred. Also, when using a relatively soft cerium pad, the machining step is 150
It was as large as Å, and the flatness decreased due to edge sagging. Further, when the conventional tin surface plate was used, the processing step could be reduced to about 40 Å, but metal adhesion occurred and the processing yield was greatly reduced.

【0036】すなわち、本実施例においても、ビッカー
ス硬度が1500MPa 程度のマシナブルセラミックスである
チタン酸アルミ系セラミックスから研磨面14を構成す
ることにより、硬度の異なる2種の材料(光学ガラスと
SiO2)から成る複合材料であるMTコネクタ46の端面
52をポリシング加工する場合にも、その硬度の差に起
因して大きな加工段差が発生することが抑制されると共
に、研磨定盤10の研磨面14が非金属から構成される
ことから、端面52に金属付着が生じることがない。し
かも、チタン酸アルミ系セラミックスから研磨定盤10
が構成される場合にも、フッ素金雲母系セラミックスの
場合と同様に剛性が十分に高く、被研磨材等から外力が
加えられた場合にも変形し難いことから、ポリシング加
工中においてその平坦度が維持されるため、一層加工段
差を小さくできることとなる。
That is, also in this embodiment, by forming the polishing surface 14 from aluminum titanate-based ceramics which is a machinable ceramics having a Vickers hardness of about 1500 MPa, two kinds of materials having different hardnesses (optical glass and
Even when the end surface 52 of the MT connector 46 which is a composite material made of SiO 2 ) is polished, it is possible to suppress the occurrence of a large processing step due to the difference in hardness and to polish the polishing platen 10. Since the surface 14 is made of a non-metal, metal adhesion does not occur on the end surface 52. Moreover, the polishing platen 10 is made of aluminum titanate-based ceramics.
, The rigidity is sufficiently high as in the case of fluorophlogopite-based ceramics, and it is difficult to deform even when an external force is applied from the material to be polished. Therefore, the processing step can be further reduced.

【0037】なお、本実施例においては、研磨定盤10
のセラミック板26をチタン酸アルミ系セラミックスか
ら構成したが、これに代えてフッ素金雲母系セラミック
スからセラミック板26を構成しても同様な結果が得ら
れる。
In this embodiment, the polishing platen 10
Although the ceramic plate 26 was made of aluminum titanate-based ceramics, the same result can be obtained by forming the ceramic plate 26 from fluorophlogopite-based ceramics instead.

【0038】なお、研磨定盤10のセラミック板26を
種々のビッカース硬度のセラミックスから構成して、前
記の磁気ヘッド用部材30およびMTコネクタ46等の
ように硬度の異なる材料が一体化させられた複合材料の
ポリシング加工を行った結果を下記表4に纏めて示す。
表において、加工段差の欄の「×」は100 Åよりも大き
いことを、「○」は100 Å以下であることを、「◎」は
60Å以下であることをそれぞれ示す。また、平面度の欄
の「ダレ」は、被研磨材の平面度が低下させられたこと
を示す。
The ceramic plate 26 of the polishing platen 10 is made of ceramics having various Vickers hardnesses, and materials having different hardnesses such as the magnetic head member 30 and the MT connector 46 are integrated. The results of polishing the composite material are summarized in Table 4 below.
In the table, "X" in the machining step column is larger than 100 Å, "○" is 100 Å or less, and "◎" is
It shows that it is less than 60Å. In addition, “Dag” in the flatness column indicates that the flatness of the material to be polished is reduced.

【0039】[0039]

【表4】硬度(MPa) 750 1000 2000 3000 4000 5000 加工段差 × ○ ◎ ◎ ○ × スクラッチ なし なし なし なし なし あり 境界部欠け なし なし なし なし なし あり 平面度 ダレ 良好 良好 良好 良好 良好総合評価 × ○ ◎ ◎ ○ × [Table 4] Hardness (MPa) 750 1000 2000 3000 4000 5000 Difference in processing × ○ ◎ ◎ ○ × Scratch None None None None None None Yes Boundary chipping None None None None None Yes Flatness sagging Good Good Good Good Good Overall evaluation × ○ ◎ ◎ ○ ×

【0040】上記の表4から明らかなように、ビッカー
ス硬度が1000〜4000MPa 程度の場合には、加工段差が10
0 Å以下と十分に小さくなり、スクラッチや材料境界面
の欠けが生じず良好な平面度が得られる。これに対し
て、ビッカース硬度が1000MPaよりも小さくなると、前
述のワラストナイト結晶相から成る軟質セラミック定盤
のように、加工段差が比較的大きくなると共に平面度が
低下する。また、反対に、ビッカース硬度が4000MPa よ
りも大きくなると、前述のアルミナ製定盤の場合のよう
に、加工段差が比較的大きくなると共にスクラッチや材
料境界面の欠けが生じることとなる。したがって、上記
のビッカース硬度の範囲が望ましいのである。なお、加
工段差を可及的に小さく、例えばMRヘッドに好ましい
60Å以下とするためには、前述の実施例に示されるよう
に、ビッカース硬度が2000〜3000MPa 程度とされること
が望ましい。
As is clear from Table 4 above, when the Vickers hardness is about 1000 to 4000 MPa, the machining step is 10
It is sufficiently small as 0 Å or less, and good flatness can be obtained without causing scratches or chipping of the material boundary surface. On the other hand, when the Vickers hardness is less than 1000 MPa, the processing step becomes relatively large and the flatness is lowered like the soft ceramic surface plate made of the wollastonite crystal phase described above. On the other hand, when the Vickers hardness is greater than 4000 MPa, the machining step becomes relatively large and scratches and chipping of the material boundary surface occur as in the case of the above-described alumina surface plate. Therefore, the above range of Vickers hardness is desirable. It should be noted that the processing step is as small as possible, which is preferable for an MR head
In order to set it to 60 Å or less, it is desirable that the Vickers hardness is about 2000 to 3000 MPa as shown in the above-mentioned embodiment.

【0041】以上、本発明の一実施例を図面を参照して
詳細に説明したが、本発明は他の態様でも実施される。
Although one embodiment of the present invention has been described in detail with reference to the drawings, the present invention can be implemented in other modes.

【0042】例えば、実施例においては、研磨定盤10
のセラミック板26をフッ素雲母系セラミックス或いは
チタン酸アルミ系セラミックスから構成したが、これら
に代えて、ビッカース硬度が1000〜4000MPa 程度の他の
セラミックスからセラミック板26を構成しても良い。
このセラミック板26を構成する材料としては、上記の
他に、例えば、同様にマシナブルセラミックスとして知
られている六方晶系窒化ホウ素や窒化アルミ等が好適に
用いられる。
For example, in the embodiment, the polishing platen 10
The ceramic plate 26 is made of fluoromica-based ceramics or aluminum titanate-based ceramics, but the ceramic plate 26 may be made of other ceramics having a Vickers hardness of about 1000 to 4000 MPa instead.
In addition to the above materials, for example, hexagonal boron nitride and aluminum nitride, which are also known as machinable ceramics, are preferably used as the material for forming the ceramic plate 26.

【0043】また、実施例においては、セラミック板2
6をアルミニウム合金から成る台金22に接着して研磨
定盤10を構成したが、セラミック板26の剛性および
曲げ強度が十分に高い場合には、台金22は必ずしも用
いられなくとも良い。
Further, in the embodiment, the ceramic plate 2
Although the polishing platen 10 is formed by bonding 6 to the base metal 22 made of an aluminum alloy, the base metal 22 may not be necessarily used when the rigidity and bending strength of the ceramic plate 26 are sufficiently high.

【0044】また、実施例においては、砥粒埋込工程に
おいて、予め砥粒42を研磨定盤10の研磨面14に埋
め込んで、その後、研磨液のみを供給しながらポリシン
グ加工を行ったが、砥粒埋込工程は必ずしも実施されな
くとも良い。すなわち、砥粒42を含む研磨液を供給し
ながら、ポリシング加工を行うこともできる。このよう
にしても、研磨面14上に供給された砥粒42は、直ち
にその研磨面14に埋め込まれることとなるため、前述
の実施例と同様に、複合材料をポリシング加工する場合
の加工段差を十分に小さくすることができる。ただし、
そのようにする場合には、一時的に砥粒42が研磨面1
4上を移動し得ることとなるため、一層加工段差を小さ
くすることを望む場合には、実施例に示したように砥粒
埋込工程を実施することが好ましい。
Further, in the embodiment, in the abrasive grain embedding step, the abrasive grains 42 were previously embedded in the polishing surface 14 of the polishing platen 10, and then polishing was performed while supplying only the polishing liquid. The abrasive grain embedding step does not necessarily have to be performed. That is, the polishing process can be performed while supplying the polishing liquid containing the abrasive grains 42. Even in this case, since the abrasive grains 42 supplied onto the polishing surface 14 are immediately embedded in the polishing surface 14, the processing step when polishing the composite material as in the above-described embodiment. Can be made sufficiently small. However,
When doing so, the abrasive grains 42 are temporarily removed from the polishing surface 1.
Therefore, if it is desired to further reduce the processing step, it is preferable to carry out the abrasive grain embedding step as shown in the embodiment.

【0045】また、実施例においては、研磨面14上に
供給する砥粒42として多結晶ダイヤモンドを用いた
が、これに代えて、CBN砥粒、酸化アルミニウム、炭
化ケイ素や酸化セリウム等が砥粒42として用いられて
も良い。
In the embodiment, polycrystalline diamond is used as the abrasive grains 42 to be supplied onto the polishing surface 14. Instead of this, CBN abrasive grains, aluminum oxide, silicon carbide, cerium oxide, etc. are used. It may be used as 42.

【0046】また、実施例においては、被研磨材として
異種材料が組み合わされた磁気ヘッド用部材30やMT
コネクタ46が加工される場合について説明したが、本
発明の研磨定盤10は、種々の被研磨材のポリシング加
工に用いられ得、加工段差が生じ得ない単一材料から成
る被研磨材においても、良好な加工面を得るために用い
ることができる。
Further, in the embodiment, the magnetic head member 30 and MT in which different materials are combined as the material to be polished.
Although the case where the connector 46 is processed has been described, the polishing surface plate 10 of the present invention can be used for polishing various materials to be polished, and can be used even for a material to be polished made of a single material that does not cause a processing step. , Can be used to obtain a good machined surface.

【0047】また、実施例においては、研磨定盤10の
研磨面14には溝等は何等設けられていなかったが、例
えば、スパイラル状、同心円状、放射状等の種々の微細
な幅および深さの溝が研磨面14に設けられても良い。
このようにすれば、砥粒埋込工程において砥粒42の分
散性を高めることができると共に、ポリシング加工時に
生じるスラッジの排出効率を高めて、被研磨材の表面を
一層高い精度で加工することが可能である。
In the embodiment, no groove or the like is provided on the polishing surface 14 of the polishing platen 10. However, for example, various fine widths and depths of spiral shape, concentric circle shape, radial shape, etc. Grooves may be provided in the polishing surface 14.
By doing so, it is possible to enhance the dispersibility of the abrasive grains 42 in the abrasive grain embedding step, enhance the discharge efficiency of sludge generated during polishing, and process the surface of the material to be polished with higher accuracy. Is possible.

【0048】その他、一々例示はしないが、本発明はそ
の主旨を逸脱しない範囲で種々変更を加え得るものであ
る。
Although not illustrated one by one, the present invention can be modified in various ways without departing from the spirit of the invention.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例の研磨定盤が用いられたポリ
シング盤の構成を示す斜視図である。
FIG. 1 is a perspective view showing a structure of a polishing plate using a polishing plate of an embodiment of the present invention.

【図2】図1の研磨定盤を示す図である。FIG. 2 is a view showing the polishing platen of FIG.

【図3】ポリシング加工の対象となる被研磨材の一例を
示す図であり、(a) は斜視図を、(b) は(a) におけるb
−b断面の要部を拡大して示す図である。
3A and 3B are diagrams showing an example of a material to be polished which is an object of polishing processing, in which FIG. 3A is a perspective view and FIG.
It is a figure which expands and shows the principal part of -b cross section.

【図4】(a) 〜(c) は、図1のポリシング盤を用いたポ
リシング加工方法を説明する図である。
4 (a) to 4 (c) are views for explaining a polishing method using the polishing board of FIG.

【図5】図2の研磨定盤の製造方法を説明する工程図で
ある。
5A to 5D are process diagrams illustrating a method for manufacturing the polishing platen of FIG.

【図6】被研磨材の他の例である光通信用部品を示す斜
視図である。
FIG. 6 is a perspective view showing an optical communication component which is another example of a material to be polished.

【符号の説明】[Explanation of symbols]

10:研磨定盤 14:研磨面 26:セラミック板 42:砥粒 10: Polishing surface plate 14: Polishing surface 26: Ceramic plate 42: Abrasive grains

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 平坦な研磨面を備えた研磨定盤の該研磨
面に所定の砥粒を供給する砥粒供給工程と、2種以上の
材料が一体化させられた複合材料から成る被研磨材の一
面を、該砥粒が供給された該研磨面に摺接させることに
より該一面を平滑に加工する摺接工程とを含む複合材料
のポリシング加工方法であって、 前記研磨面が、ビッカース硬度が1000〜4000MPa 程度の
セラミックスから成ることを特徴とする複合材料のポリ
シング加工方法。
1. An abrasive grain supplying step of supplying predetermined abrasive grains to the polishing surface of a polishing platen having a flat polishing surface, and an object to be polished made of a composite material in which two or more kinds of materials are integrated. A polishing method of a composite material, comprising: a sliding contact step of sliding one surface of the material to the polishing surface to which the abrasive grains are supplied to smooth the one surface, wherein the polishing surface is Vickers. A method for polishing a composite material, characterized by comprising a ceramic having a hardness of about 1000 to 4000 MPa.
【請求項2】 前記摺接工程の前に設けられて前記研磨
面に供給された前記砥粒を押圧することにより、該研磨
面に埋め込む砥粒埋込工程を更に含み、 前記摺接工程は、該砥粒が埋め込まれた研磨面に所定の
潤滑液を供給しつつ、該研磨面に前記被研磨材の一面を
摺接させるものである請求項1の複合材料のポリシング
加工方法。
2. The method further comprises an abrasive grain embedding step, which is provided before the sliding contact step and is embedded in the polishing surface by pressing the abrasive grains supplied to the polishing surface, the sliding contact step comprising: The method of polishing a composite material according to claim 1, wherein a predetermined lubricating liquid is supplied to the polishing surface in which the abrasive grains are embedded, and one surface of the material to be polished is brought into sliding contact with the polishing surface.
【請求項3】 前記セラミックスが、切削加工が可能な
マシナブルセラミックスから成るものである請求項1ま
たは2の複合材料のポリシング方法。
3. The polishing method for a composite material according to claim 1, wherein the ceramic is made of machinable ceramic capable of being cut.
【請求項4】 前記マシナブルセラミックスが、フッ素
金雲母、チタン酸アルミ、窒化アルミ、六方晶窒化ホウ
素の何れかを主成分とするものである請求項3の複合材
料のポリシング方法。
4. The method of polishing a composite material according to claim 3, wherein the machinable ceramics contains fluorine phlogopite, aluminum titanate, aluminum nitride, or hexagonal boron nitride as a main component.
【請求項5】 前記研磨面に前記砥粒の分散および加工
スラッジの排除を行うための微細な溝が形成されている
ものである請求項1乃至4の何れかの複合材料のポリシ
ング方法。
5. The polishing method for a composite material according to claim 1, wherein fine grooves for dispersing the abrasive grains and removing processing sludge are formed on the polishing surface.
JP1271696A 1996-01-29 1996-01-29 Polishing method for composite materials Expired - Fee Related JP3208056B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1271696A JP3208056B2 (en) 1996-01-29 1996-01-29 Polishing method for composite materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1271696A JP3208056B2 (en) 1996-01-29 1996-01-29 Polishing method for composite materials

Publications (2)

Publication Number Publication Date
JPH09201761A true JPH09201761A (en) 1997-08-05
JP3208056B2 JP3208056B2 (en) 2001-09-10

Family

ID=11813165

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1271696A Expired - Fee Related JP3208056B2 (en) 1996-01-29 1996-01-29 Polishing method for composite materials

Country Status (1)

Country Link
JP (1) JP3208056B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000190206A (en) * 1998-12-22 2000-07-11 Nippon Steel Corp Polishing method and polishing device
JP2007217748A (en) * 2006-02-16 2007-08-30 Taiheiyo Cement Corp Method for depositing spray deposit film on machinable ceramic substrate
JP2008238398A (en) * 2008-05-12 2008-10-09 Kazumasa Onishi Manufacturing equipment of lapping machine
JP2009291911A (en) * 2008-06-06 2009-12-17 Disco Abrasive Syst Ltd Lapping apparatus
US7717769B2 (en) 2003-05-26 2010-05-18 Kazumasa Ohnishi Manufacture of lapping board
JP2012218121A (en) * 2011-04-12 2012-11-12 Bando Chemical Industries Ltd Polishing plate

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2636819B2 (en) 1994-12-20 1997-07-30 日本たばこ産業株式会社 Oxazole-based heterocyclic aromatic compounds

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000190206A (en) * 1998-12-22 2000-07-11 Nippon Steel Corp Polishing method and polishing device
US7717769B2 (en) 2003-05-26 2010-05-18 Kazumasa Ohnishi Manufacture of lapping board
JP2007217748A (en) * 2006-02-16 2007-08-30 Taiheiyo Cement Corp Method for depositing spray deposit film on machinable ceramic substrate
JP2008238398A (en) * 2008-05-12 2008-10-09 Kazumasa Onishi Manufacturing equipment of lapping machine
JP4705971B2 (en) * 2008-05-12 2011-06-22 一正 大西 Lapping machine manufacturing equipment
JP2009291911A (en) * 2008-06-06 2009-12-17 Disco Abrasive Syst Ltd Lapping apparatus
JP2012218121A (en) * 2011-04-12 2012-11-12 Bando Chemical Industries Ltd Polishing plate

Also Published As

Publication number Publication date
JP3208056B2 (en) 2001-09-10

Similar Documents

Publication Publication Date Title
CA2079276C (en) Polishing process for optical connector assembly with optical fiber and polishing apparatus
US5683290A (en) Apparatus for forming a convex tip on a workpiece
JPH0829639A (en) Polishing base plate of spherical surface polishing deevice for end face of optica fiber and spherical surface polishing mthod of optical fiber
JP2002160147A (en) Edge polishing method for plate glass
JP3208056B2 (en) Polishing method for composite materials
JP3782346B2 (en) End face polishing method
JP2971764B2 (en) Abrasive fixed type polishing table
CN1254633A (en) Method for grinding glass substrate
JPH05157941A (en) Method for polishing optical connector
JPH1133918A (en) Grinding wheel for working inside and outside diameter of substrate for magnetic recording medium, and method for working inside and outside diameter
JPH10286755A (en) Conditioning method of abrasive grain fix type grinding surface plate
JP2001191247A (en) Both surface grinding method of disc-like substrate, manufacturing method of substrate for information recording medium and manufacturing method of information recording medium
JP4794602B2 (en) Grinding wheel tip and grinding wheel using this grinding wheel tip
JPH10134316A (en) Method for working magnetic head
JP2001129763A (en) Truer for eliminating side face runout of diamond blade or the like and side face runout eliminating method using it
JPH10217076A (en) Work method of disk substrate, work device and outer peripheral blade grinding wheel used in this work method
JP2001334469A (en) Diamond wheel for glass substrate work and working method of glass substrate
US20020037687A1 (en) Abrasive article, apparatus and process for finishing glass or glass-ceramic recording disks
JP2001246536A (en) Method of mirror-finishing edge of recording medium disc original plate
JPH05208373A (en) Abrasive cutting wheel and cutting method
JPH09180389A (en) Magnetic head slider production device and magnetic head slider production
JP2000190199A (en) Plane correcting method for surface plate
JP7285552B2 (en) Groove polishing body
JP3213255B2 (en) Super abrasive whetstone
JP2001038640A (en) Centerless grinding wheel and regenerating method and grinding method therefor

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080706

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090706

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090706

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100706

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110706

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120706

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120706

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130706

Year of fee payment: 12

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees